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ABSTRACT Information on the trajectories of turning vehicles at signalized intersections can be used
in numerous applications, such as movement planning of autonomous vehicles, realistic representation of
surrounding vehicle movements in driving simulator and virtual reality applications, and in microscopic
simulation tools. However, no proper framework is currently available to realistically model and estimate
trajectories of turning vehicles reflecting the intersection geometries, which is critical for the reliability
of simulation models. This study explores the applicability of the minimum-jerk principle, which has been
initially applied in neuroscience and robotics domains, to model and simulate free-flow trajectories of turning
vehicles. The modeling method is validated by comparing model outputs with empirical trajectories collected
at several signalized intersections in Nagoya, Japan. The capability of the model in realistically capturing
the variations in turning trajectories based on intersection geometry (e.g., intersection angle and turning
radius) is also explained. Further, the applicability of the modeling framework at intersections with different
geometric features under different speeds and accelerations are also discussed.

INDEX TERMS Autonomous vehicles, motion planning, numerical simulation, path planning, predictive

models, traffic control, trajectory optimization.

I. INTRODUCTION

Signalized intersections with relatively higher traffic
demands could often be accident blackspots, not only because
of the large traffic volume, but also due to the complex move-
ment patterns of road users and their interactions. Besides,
due to the limitations of the available spaces in urban areas,
the intersection geometries, e.g., intersection angle, curb
radius, and location of crosswalks may not always be the
ideal ones. The improper settings of geometries at these
intersections may cause human errors and such errors may
cause serious conflicts as well as accidents [1], [2]. To apply
countermeasures effectively, it is necessary to understand and
evaluate vehicle maneuvers particularly affected by inter-
section geometries. Especially, turning vehicle trajectories
(including two-dimensional paths, speeds, and accelerations)
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and their variation are important to be analyzed because of
their complexity and the frequency of potential conflicts with
other vehicles and pedestrians [3].

There are various applications of the models which can
accurately represent detailed turning vehicle trajectories and
their variation. In recent years, driving simulator (DS) tools
including virtual reality (VR) applications and microscopic
simulation tools have emerged as useful tools to study driver
behavior and safety at intersections [4]-[6]. Those tools
enable researchers and practitioners to analyze the impact
of surrounding vehicle maneuver on the driver behavior at
critical locations, e.g., accident blackspots. To investigate
the realistic reactions of the subject drivers, behaviors of
surrounding vehicles should be realistically represented.
Furthermore, advances in autonomous driving also demand
models particularly for representing accurate speed and
acceleration profiles [7]-[9]. Autonomous vehicles (AVs) are
required to react the maneuvers of human-driven vehicles,
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which are influenced by intersection geometry. For such
purposes, reliable models to predict trajectories of human-
driven vehicles are strongly required.

Currently, no proper modeling framework is available to
represent driver behavior while negotiating turns. Most of the
existing microscopic simulation tools, even those used in esti-
mating surrogate safety measures such as time-to-collision,
simplify turning maneuvers of vehicles inside the intersection
[10]. As a result of these simplifications, properties such as
variation in speed and acceleration may not be represented
reflecting the impact of geometry information. It is question-
able whether such simulation models are suitable for safety
assessments at intersections for geometry improvement.

To overcome existing limitations, recent studies have
developed dedicated microscopic simulation models for
safety evaluation at signalized intersections [4]. However,
these approaches have considered vehicle paths and speed
profiles from different models. Tan et al. [4] considered the
vehicle turning path model by Alhajyaseen et al. [11] and
speed profile models by Wolfermann et al. [12] without con-
sidering the physical integrity of these models. Combining
different models does not guarantee the spatial and temporal
consistency between the location and speed of a turning
vehicle. Further, the kinematic properties of a turning vehicle
might not have been accurately represented. Wei et al. [13]
also presented a model that can estimate the paths of left-
turning vehicles. Speed and acceleration characteristics of
the turning trajectories have not been described in this study.
Further, generalization of this model for different intersec-
tions may be difficult due to some parameters, such as the
vertical distance from the outermost lane boundary of the
west entrance (ds) and the instantaneous turning angle ().

Several previous studies modified the classical social force
model, which is being primarily used to simulate pedestrian
behavior, to simulate right-turning vehicle trajectories (right-
side traffic) [14], [15]. The influence of intersection geometry
(e.g., intersection angle, curve radii) on the calibrated model
was not discussed in these studies. Thus, re-calibration of
the model may be necessary for intersections with different
geometric features. Xu et al. [16] reproduced turning vehi-
cle paths at intersections using potential fields. Although
turning paths and variations are described in their model,
speed and acceleration variations along the turning course
are not considered. Several other works presented data-driven
approaches using deep learning methods (e.g., neural net-
works) to predict trajectories of turning vehicles [17], [18].
Such approaches require video data for learning the model
and therefore, generalization of the method to new cases may
be difficult if the data is not available.

Wang et al. [19] explained a trajectory prediction
method for left-turning vehicles that integrates geographic
information system, global positioning system (GPS) and
other sensors to provide real-time position, velocity and
acceleration. Double-Kalman filter was used in prediction
algorithm. Prediction accuracy of this method primarily
depends on the accuracy of GPS-based data and reliability
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of sensors. Further, onboard systems are required to be
installed to obtain such data. In addition, behavioral aspects
and effect of geometrical features of the intersection are not
considered in this study. Jiang et al. [20] proposed an eco-
approach for simulating left-turning vehicles at signalized
intersections under mixed traffic, i.e., human driven and
connected and automated, environments. They explained that
the proposed method improves the traffic safety by providing
a safe speed, enhances the fuel efficiency and reduces the
emissions. A recent study deployed optimal control method,
assuming that drivers maximize their utility, to model vehicle
movements at intersections [21]. This approach also requires
empirical data for calibration. Therefore, generalizing the
model for intersections with different geometrical features
may be hard.

In order to overcome the limitations of one-dimensional
models, Ma et al. [22] proposed a method that is called
plan-decision-action framework to simulate turning vehicle
trajectories. In the desired trajectory model, which is a key
element of their model, the angular velocity and acceleration
were assumed as constants throughout the curved segment.
Such assumptions could degrade the reliability of the model.
Further, empirical data are needed to calibrate such parame-
ters for a range of conditions. Several other studies used tra-
jectory data extracted using computer vision-based tracking
tools, e.g., BriskLUMINA [23], to explore pedestrian-vehicle
interactions and surrogate safety measures at intersections
[24], [25]. Even though such tracking tools can extract vehicle
and pedestrian trajectories with a high accuracy, they do not
describe behavioral characteristics of drivers that could be
useful in modelling and estimating trajectories.

In microscopic simulation models, which were developed
for safety evaluation, kinematic information, e.g., speed
and acceleration, of turning vehicles must be precisely
represented. The realistic representation of vehicle turning
maneuvers is also useful for 3-D representation of vehicle
maneuvers in DS and VR applications. The reliability of such
applications may be dependent on accurate representation of
vehicle trajectories. Considering such important applications,
the objective of this study is to formulate and test a novel
modelling approach for estimating trajectories (i.e., mainly,
paths, speed, and acceleration profiles) of turning vehicles at
intersections. The proposed approach is based on minimum-
jerk concept, which was initially used in neuroscience domain
to study human-like movements. We demonstrate that the
proposed method can estimate the trajectories of turning vehi-
cles with remarkable accuracy utilizing real-world trajectory
data extracted from videos collected at several signalized
intersections.

The paper is organized as follows: Section II discusses
the trajectory data extraction method and the background
of the modeling approach. Section III presents the ver-
ification of the proposed method. The sensitivity analy-
sis is presented in Section IV, followed by a discussion.
Finally, conclusions and directions for further studies are
presented.
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TABLE 1. Geometric characteristics of the considered intersections.

Intersection name and Corner radius Intersection

approach (m) angle (°)
Nishi-Osu West approach 17 76.9
Taikotori West approach 17 94.1
Kawana North approach 17 106
Ueda South approach 13.5 119

il. METHODS

A. DATA

Video data were collected at several signalized intersections
in Nagoya, Japan to verify and validate the proposed mod-
eling approach. The geometric characteristics of the intersec-
tions considered in this study are summarized in Table 1. Note
that all intersections operate in left-side traffic.

These intersections have different geometric characteris-
tics and a shared green signal phase for left-turning vehicles
and pedestrians/cyclists. Trajectories of turning vehicles at
these intersections were extracted using the TrafficAnalyzer
video image processing system [26]. Using this tool, the posi-
tions of vehicles, where the right-rear wheel is touching the
ground, were obtained at 0.5 s intervals by manual tracking.
By considering the dimensions of the vehicle, the observed
right-rear wheel trajectory is transformed into a trajectory
that corresponds to the center-front of the vehicle. Video
coordinates (in pixels) are converted to global coordinates
(in m) by using projective transformation. The transformed
trajectories were smoothened using the Kalman smoothing
method. A tracking example for a right-turning vehicle using
TrafficAnalyzer is shown in Fig. 1.

Vehicle trajectories are affected by the existence of sur-
rounding vehicles and pedestrians, traffic signal settings and
intersection geometries. Meanwhile in this study, left and
right turn trajectories only under free-flow conditions (no
impact with other vehicles, pedestrians, or cyclists).

The trajectories generated by this analysis are expected as
the base or intended trajectories of the turning vehicles which
can be utilized for further analyses of interaction to other road
users as well as to traffic signal control.

B. MINIMUM JERK PRINCIPLE

The modeling method proposed in this study is based on the
minimum-jerk principle, which was initially used to describe
skilled human arm movements in a plane (2-D space). Flash
and Hogan [27] demonstrated that the smoothness of skilled
arm movement, e.g., reaching, writing, and drawing tasks,
can be explained as a function of jerk. The cost function J
that is to be minimized is the time integration of the square of
the magnitude of the jerk vector when moving from a given
initial location to a final location within a given time #;.This
cost function J can be given as;

I 2 2
1 d3 d3
I = 5/ ((Tz;j) + (—#) )dt 1)
0
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where #; is the movement time from a known initial position
to a specified final position.

In previous studies, features of human goal-oriented [28]
and turning [29] movements have been described in terms of
minimum-jerk theory. Further, this concept was utilized in
motion planning of robot limbs [30], [31] and motion control
problems in autonomous vehicles [32], [33]. In another study,
the car following behavior was described using the minimum-
jerk concept [34]. This is based on the analogy that the
behavior of a following vehicle is comparable to the skilled
reaching movements of the human arm. Dias et al. [35]
explored the effect of curve radius and desired speed on
drivers’ speeding behavior on expressway curves using the
minimum-jerk principle.

Flash and Hogan [27] proved that the solution of the min-
imization problem given in Eq. 1 can be obtained as a set of
fifth-order polynomials of time expressed as;

x (1) = ap + ait + art* + azt> + agt* +as®  (2a)
y() = bo + bt + byt* + bat® + byt* + bst® (2b)

where x (¢) and y () are x- and y-coordinates of the location
at time t, and g; and b; (j = {0,..., 5}) are constants.

Eq. 2aand 2b indicate there are 12 unknowns, and therefore
12 boundary conditions are required to solve these equations.
Location (in x- and y-coordinates), velocity and acceleration
vectors (x- and y-components) at the initial and the final
points provide the 12 boundary conditions. Initial and final
locations of the trajectory can be obtained from geometry data
of the intersection and its periphery. Speed and acceleration
of a vehicle at entry and exit locations are dependent on the
characteristics of the entry and exit links.

The movement time # is an unknown that is required to
solve the equations. If the position and speed information of
an intermediate location are known, #¢ can be estimated using
Eq. 2a and 2b. In this study, we use intermediate location
information to estimate #r and the constants in Eq. 2a and 2b.

C. MODEL FRAMEWORK

Dias et al. [36] used location, velocity and acceleration at
starting and final locations, and movement time between
these locations (#) as trajectory information and explained
that trajectories of turning vehicles under free-flow condi-
tions could be described using the minimum-jerk principle.
Although they proved the applicability of minimum-jerk the-
ory to turning vehicles, they did not represent the impact
of intersection geometry. Another critical issue was that
their model requires #+ as an input and this information
is not available. The current study is an extension of the
previous one. Instead of using movement time between
initial and final points, we use information at an inter-
mediate point to estimate the trajectory. Information at
an intermediate point (minimum speed and location of
minimum speed) is estimated using models presented in
Wolfermann et al. [12] to quantitatively estimate the impact
of geometry and entry speed. Minimum-jerk theory and
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FIGURE 1. Trajectory data extraction using TrafficAnalyzer.

models presented in Wolfermann ez al. [12] (to estimate min-
imum speed (v;;i,) and location of minimum speed (Syin))
are combined in this study to estimate trajectories of turning
vehicles.

The structure of the proposed model is shown in Fig. 2. The
input variables are the conditions of a turning vehicle at entry
and exit of the intersection (i.e., location, speed and accelera-
tion), type of the vehicle (passenger car or heavy vehicle), and
intersection geometry settings such as intersection angle, curb
radius, lateral exit distance and hard nose distance, defined as
in Fig. 3(b).

Considering the simulation application of this model, it is
rational to assume the conditions of turning vehicles at entry
are available when running the simulation. Meanwhile, it is
also reasonable to assume the vehicle conditions at exit are
determined by the design speed of the exit road sections. With
given entering speed and vehicle type, minimum speed and
location of minimum speed are probabilistically chosen using
the normal distribution estimated by Wolfermann’s model.
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FIGURE 2. Flowchart of trajectory generation.

The minimum speed and location of minimum speed are used
in minimum-jerk model to estimate the whole trajectory of a
single turning vehicle.

The models by Wolfermann er al. [12] empirically esti-
mated the minimum speed and the location of the minimum
speed of a turning vehicle under ideal or free-flow conditions
as functions of entry speed and several geometric properties
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the vehicle path, (down) the parameters in regression models (adopted
from Wolfermann et al. [12], note: IP point is the crossing point of the
two median extensions of entry and exit approaches).

of the intersection. Parameters of the probabilistic models for
minimum speed (v,i,) and location of minimum speed (s;in)
are presented in Table 2. The models for v,,;;, and s,,;, are
represented as normal distributions; mean (u) and standard
deviation (o) are modeled as a function of entry speed and
geometric characteristics of the intersection. Physical mean-
ing of the minimum speed (vy,;,) and location of minimum
speed related to the trajectory (s;,;;) are schematically illus-
trated in Fig. 3(a). Model parameters are depicted in Fig. 3(b).

Combining empirical models with the minimum-jerk prin-
ciple, a series of simultaneous equations are obtained as
explained below.

At the starting position of the trajectory;

x(t=0)=ap (3a)
it =0)=a (3b)
Rt =0) = 2a 3c)

where x (t = 0), x (t = 0), and X (r = 0) are the x-compon-
ents of the location, velocity, and acceleration vectors of the
turning vehicle at the starting point, respectively. These are
known, and for convenience the initial location is set as (0, 0).

VOLUME 8, 2020

TABLE 2. Parameters of minimum speed (v_min) and location
of minimum speed (s_min) models for turning vehicles
(Wolfermann et al. [12]).

Left-turning Right-turning
Normal Distribution vehicles vehicles
Parameters Vnin Smin Vinin Simin
N(w,o) N@o) Nuo) N(uo)
Constant -0.301 1.42 2.6508  7.346
Entering speed 0.0908 - 0.1879  0.501
(m/s)
Corner radius (m)
Intersection angle
(deg)
Lateral exit 0.233 0.577
n distance (m)
Heavy vehicle
dummy
(HV: 1, PC: 0)
Distance from IP - - - 0.288
point to entering
hard nose 4HN;,
(m)
Constant 0.665 0.135 1.4042
Entering speed - - -
(m/s)
Corner radius (m) - 0.144 -
Intersection angle - - -0.0054 -
(deg) 0.0350
Lateral exit 0.0419 0.336 - -
distance (m)
Distance from IP - - - 0.110
point to entering
hard nose 4HN;,
(m)

0.0607  0.586 -

0.0387  0.0896  0.0289  0.0776

0496 - - -

14.056
-0.528

At the final location of the trajectory;

X (; = tf) =ao +aity + aztf + 03(; + 614f;1 + asl}; (4a)
i (1 =1r) = a1 + 20ty + 3a3t7 + 4astf + Sast;  (4b)
i (1 =1tf) = 2ay + 6asty + 12a4t} + 20ast; (4¢)

where x (t=17), %(t =1t7), and X (t =1r) are the x-
components of the location, velocity, and acceleration vectors
of the turning vehicle at the known final location or the exit
point, respectively.

At the location of minimum speed,

x(t =ty) =ao+aity + aztr%, + a3t,3n + a4t,t + a5t31 (5a)
X (t = ty) = a1 + 2apty + 3a3t] + dast] + Sastr  (5b)
X (t = ty) = 2ay + 6a3ty, + 12a41> + 20ast>, (5¢)

where t,, represents the time to the location of minimum
speed measured from the starting location, and x (t = 1,,,),
X (t =ty), and X (¢ = t,,) are the x-components of the loca-
tion, velocity, and acceleration vectors of the turning vehicle,
respectively, at the location of minimum speed. Distributions
ofx (t = t,,) and x (t = t,,) can be estimated using the models
reported in Wolfermann et al. [12]. Based on these distri-
butions, values for x (t = #,,) and x (t = t,,,) are randomly
chosen and substituted in Eq. 5(b) and 5(c).

However, t,, and X (t = t,,) are unknowns. Nevertheless,
it may be assumed that X (t =1,) = 0. If we consider
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Eq. 3(a)-(c), Eq. 4(a)-(c), and Eq. 5(a)-(b) (ignoring Eq. 5(¢)),
there are eight unknowns (ao, a1, a2, a3, a4, as, tr, and
t,) with eight simultaneous equations. Thus, solving these
equations, a set of solutions for constants and movement
times (# and t,) can be obtained. Using the estimated #r,
constants (bo, b1, b, b3, bs, and bs) for y-components of
the trajectory can be obtained by solving the simultaneous
equations formulated below.
At the starting location of the trajectory,

y(t=0) = bo (6a)
y(t=0) =b (6b)
V(@ =0)=2b (6¢)

where, y(t=0), y(t=0), and y(t =0) are the y-
components of the location, velocity, and acceleration vectors
of the turning vehicle at the starting point, respectively.

At the final point of the trajectory,

Y (t =tf) = bo + b1ty +batf + b3t} +aatf + bsi7 (Ta)
3 (t = tr) = by + 2baty + 3b3t] + 4bat} + 5bst?  (7b)
¥ (t = 1) = 2by + 6bsty + 12bytf + 20bst? (7c)

where y (t = tf), y (t = tf), and y (t = tf) are the y-
components of the location, velocity, and acceleration vectors
of the turning vehicle at the final point, respectively. As t; was
estimated earlier, b; (j = {0...., 5} can also be estimated in a
similar manner.

Due to the stochastic nature of v,,;, and s,,;,, a Monte
Carlo simulation was conducted to verify the performance
and validity of the proposed modeling approach.

lll. MODEL VALIDATION

The capability of the proposed model for estimating a trajec-
tory with random boundary conditions was tested. A Monte
Carlo simulation was performed with 100 different random
seeds to choose an entry speed, an exit speed, an entry acceler-
ation, and an exit acceleration from the speed and acceleration
distributions at the initial and final locations obtained from
empirical data. v,,;,;, and s,,;, were estimated based on the
randomly chosen entry speed and geometric characteristics of
the considered curve using the models presented in Table 2.
For the simulations, (40" ranges of the v,,;, and s,,,;, models
in Table 2 were used. It should be noted that only passenger
cars (PC) were considered in this study and therefore heavy
vehicle dummy (in Table 2 ) was ignored.

Resulting estimated path distributions for several right and
left turn maneuvers at four intersections are compared with
empirical paths in Fig. 4. It is observed that the average
estimated paths do not deviate considerably from the aver-
age empirical paths. Further, estimated paths do not travel
beyond the road boundaries. Statistical tests reveal that for
Taikodori right, Nishi-Osu left, Kawana right, and Ueda left
turns, the difference between averages of estimated and actual
trajectories are not statistically significant. The t-statistic and
p-value of t-test for Taikodori, Nishi-Osu, Kawana, and Ueda
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were (0.84, 0.20), (0.62, 0.27), (0.24, 0.41), and (0.90, 0.18),
respectively. Maximum deviations (approximately at the mid-
dle of the intersection) of average estimated trajectories from
average empirical trajectories were 1.06 m, 0.81 m, 0.74 m,
and 0.37 m for Taikodori, Nishi-Osu, Kawana, and Ueda,
respectively. The maximum deviation between average esti-
mated path and the average empirical path tends to increase
with decreasing corner radius.

Estimated speed profiles and acceleration profiles for two
intersection approaches are compared with empirical profiles
in Fig. 5 and Fig. 6. It is evident that estimated speed and
acceleration profiles are consistent with empirical profiles.
Estimated speed and acceleration profiles do not significantly
deviate from empirical profiles, as shown in Fig. 5(c)-(d)
and Fig. 6(c)-(d). Thus, if initial and final states (locations,
velocities, and accelerations) are known, trajectories of turn-
ing vehicles can be estimated by integrating minimum-jerk
theory with regression models presented in Wolfermann et al.
[12], which estimate minimum speed and location of mini-
mum speed.

IV. SENSITIVITY ANALYSIS

A sensitivity analysis was conducted to verify the effect of
intersection geometry (intersection angle and turning radius)
and boundary conditions (speed and acceleration at entry and
exit). Details of the analysis are discussed in this section.

A. EFFECT OF INTERSECTION GEOMETRY

1) CURVE RADII

Estimated path, speed, and acceleration profile distributions
for two hypothetical intersections with corner radii of 15 m
and 20 m are depicted in Fig. 7. Intersection angle was kept
at 90° for both intersections. Entering and exit speeds were
assumed to be the same and were set as 8.5 m/s. Entering
and exit accelerations were set as -0.2 m/s? and 0.2 m/s2,
respectively. Distance from IP point to entering hard nose,
which is required to estimate minimum speed and location of
minimum speed, was set as 20 m. A Monte Carlo simulation
was performed with 100 random seeds to randomize v,,; and
Smin- Standard deviations of maximum lateral deviation from
the median path for 15 m and 20 m radii were estimated
as = 0.73 m and £ 0.93 m, respectively. These statistics
indicate that intersections with larger radii tend to have larger
trajectory variation than intersections with smaller radii. This
result is consistent with the findings of Alhajyaseen et al. [11]
who estimated the paths of vehicles using the Euler-Spiral
approximation method. The variation may be mainly due to
the variations in movement times (variance of estimated #;
was 0.11 s2 and 0.20 s2 for corner radii of 15 m and 20 m,
respectively).

Speed profiles in Fig. 7 show that the radius of the curve
does not affect the average speed and variation. This may
be because the curve radius is not considered in estimating
the value and location of minimum speed for right-turning
vehicles (see Table 2). The estimated minimum speed (£ SD)

VOLUME 8, 2020
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FIGURE 4. Comparison of estimated and empirical (actual) paths for (a) Kawana right turns, (b) Ueda left turns, (c) Taikotori right turns,

(d) Nishiosu left turns.

for 15 m and 20 m radii was 5.81 (& 0.90) m/s and 6.05
(£ 0.85) m/s, respectively. Statistical tests confirmed that
these minimum speeds are not statistically significant (Mann-
Whitney U test z-score = 1.51, p-value = 0.13). However,
due to differences in size or curve distance, movement time
differs significantly.

Estimated maximum acceleration (& SD) for 15 m and
20 m radii was 1.48 (£ 0.39) m/s? and 1.29 (& 0.33) m/s?,
respectively. Statistical tests confirmed that these maximum
accelerations are statistically significant (Mann-Whitney U
test z-score = 2.46, p-value = 0.01). This suggests that
although speed profiles do not display significant variations,
accelerations are sensitive to the radius of the turn. The
reason, in this particular case, could be the movement time; as
the travel path of the turning maneuver is shorter forR = 15m
and the average minimum speed is the same for both radii
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cases, larger decelerations and accelerations are necessary for
R = 15 m to maintain the speed pattern. Such behaviors are
also realistically captured in the proposed model.

2) INTERSECTION ANGLE

Estimated path distributions for three hypothetical intersec-
tions with intersection angles of 60°, 90°, and 120° are shown
in Fig. 8.

In these simulations, corner radius was assumed as 15 m for
all intersections. Entering and exit speeds were assumed the
same and were set as 8.5 m/s for all cases. Entering and exit
accelerations were set as -1.0 m/s2 and 1.0 m/s2, respectively,
for all cases. Lateral exit distance was set as 1.5 m. A Monte
Carlo simulation was conducted with 100 random seeds to
randomize the minimum speed and location of minimum
speed.
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FIGURE 5. Comparison of estimated and empirical (actual) (a) speed (d) aggregated acceleration profiles, for Takiotori right turns.

profiles, (b) acceleration profiles, (c) aggregated speed profiles,
(d) aggregated acceleration profiles, for Ueda left turns. These statistics illustrate that as the intersection angle

Standard deviations of maximum lateral deviation from the increases, vehicle paths become less varied or less dis-
median path for 60°, 90°, and 120° angles were estimated tributed. This finding is consistent with the result obtained
as = 090 m, + 0.68 m, and £+ 0.54 m, respectively. in Alhajyaseen et al. [11].
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Fig. 10 shows boxplots of the estimated speed and accel-
eration profiles. In contrast to path distributions, speed and
acceleration profiles with larger intersection angles display
a larger variation, as shown in Fig. 8 and Fig. 9. Average
minimum speed (£ SD) for speed profiles shown in Fig 8 is
4.2 (£ 0.6) m/s, 5.5 (£ 0.7) m/s, and 6.7 (£ 0.9) m/s for
60°, 90°, and 120° angles, respectively. Estimated minimum
speed values using the Wolfermann et al. [12] model for those
angles are 4.2 (+ 0.7) m/s, 5.4 (£ 0.7) m/s, and 6.5 (£ 0.7)
m/s, respectively. These minimum speeds are very similar for
all cases. However, the standard deviations of speed tend to
be larger with increasing intersection angle.

Findings of the sensitivity analysis further explain that the
proposed modeling framework can be applied to estimate
trajectories of turning vehicles at any intersection when geo-
metric features of the intersection and expected entry and
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FIGURE 9. Sensitivity of speed and acceleration profiles of left-turning
vehicles to intersection angle.

exit conditions (speed and acceleration) are known. That is,
empirical data are not required.

B. EFFECT OF BOUNDARY CONDITIONS

As explained in Section II-C, v;,;;, and s;,;,;, are modeled as
functions of entry speed with geometric variables. The exit
speed and entry and exit accelerations have not been con-
sidered in these models. However, such properties are inputs
for the minimum-jerk model (Eq. 3 to 7). Thus, the effects
of these variables on estimated paths, speed and acceleration
profiles were also explored, and outcomes are presented in
this section. In the simulations reported in this section, geo-
metric characteristics of the intersections kept unchanged.

1) EXIT SPEED
Trajectories for 90° left-turning vehicles were simulated
using a constant entry speed (8.5 m/s) and different exit
speeds (6 m/s, 8.5 m/s, and 11 m/s). Entry and exit accel-
erations were set as —0.5 m/s2 and 0.5 m/s2, respectively, for
all cases. To randomize the minimum speed and location of
minimum speed, a Monte Carlo simulation was conducted
with 150 random seeds. v;;;; and s, distributions are the
same for all cases as the entry speeds are the same.
Resulting path, speed and acceleration profiles, and aggre-
gated distributions for the three cases are compared in Fig. 11.
The trajectories tend to shift to the inner side when the exit
speed decreases, as shown in Fig. 11(a). Speed and accelera-
tion profiles in Fig. 11(b) and 11(c) display a similar pattern
until the minimum speed is achieved and then begin to deviate
significantly. This is mainly because vy, and s,,;, distribu-
tions used in this study (proposed in Wolfermann ez al. [12])
are independent of exit speed. Thus, further studies are nec-
essary to explore the effect of exit speed on vy, and sy,
distributions.

2) ENTRY ACCELERATION

For this simulation, entry and exit speeds were set as 8.5 m/s
for all cases. Curve radius and lateral exit distances were set
as 15 m and 1.75 m, respectively. Exit acceleration was set as
0.5 m/s? and three entry accelerations, 0.0 m/s2, —1.0 m/s2,
and —2.0 m/s2, were considered. A Monte Carlo simulation
was performed with 100 random seeds for each case to ran-
domize the minimum speed and location of minimum speed.
Resulting paths, speed profiles, and acceleration profiles for
the three entry accelerations are compared in Fig. 12. It is
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FIGURE 10. Boxplots for estimated speed and acceleration profiles for different intersection angles.

observed that simulated vehicle paths tend to shift to the inner
corner of the turn with decreasing entry acceleration. Differ-
ences between medians of paths at the middle of the inter-
section were statistically significant (Kruskal-Wallis test H
statistic = 148.88, p-value < 0.0001). Observing speed pro-
files, it is understood that minimum speeds tend to decrease
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with decreasing entry acceleration. Average minimum speeds
(£ SD) were 4.87 (£ 0.77) m/s, 5.03 (£0.57) m/s, and
5.16 (£0.53) m/s for entry accelerations (Ai) of 0 m/s2,
1 m/s?, and 2 m/s?, respectively. Statistical tests con-
firmed that the difference between minimum speeds for the
three cases is statistically significant (Kruskal-Wallis test H
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statistic = 9.68, p-value = 0.008). Estimated v,
for this particular case (using the model presented in
Wolfermann et al. [12]) was 5.27 (& 0.74) m/s. Acceleration
distributions significantly deviate until the minimum speed is
achieved and then follow a similar pattern.

3) EXIT ACCELERATION

As with entry acceleration, entry and exit speeds were set
as 8.5 m/s for all exit acceleration cases. Curve radius and
lateral exit distance were set as 15 m and 1.75 m, respectively.

VOLUME 8, 2020

(a)

Speed (m/s)

——Ai=-0.5m/s2, Af =2 m/s2

2 - - -Ai=-05 m/s2, Af= 0 m/s2
o — —Ai=-0.5m/s2, Af=1m/s2
E 0 2 4 3 8
s Time (s)
: C]
10 2 e
T
2, N
——Ai=-0.5m/s2, Af =2 m/s2 E
<
——Ai=-0.5 m/s2, Af =0 m/s2 % 0
8
- Ai=-05 m/s2, Af =1 m/s2 g1
0 & i=-0.5m/s2, Af =2 m/s2
-30 -20 -10 o -2 =-0.5 m/s2, Af =0 m/s2
X(m) N — —Ai=-0.5m/s2, Af=1m/s2
Time (s)
20
(d) ] (e) 3 :}:
< = - 5
Ee oy 3 L N
< M 5 1
2 F % B '}
B ] % S 00 t
g £
g4 E
& = Ai=0.5 m/s2, Af=0.0 m/s2 H L] = Ai=0.5 m/s2, Af=0.0 m/s2
g A AI=0.5 m/s2, Af=1.0 m/s2 s ] i {, £ A=0.5 m/s2, Af=1.0m/s2
£ Ai=0.5 m/s2, Af=2.0 m/s2 H 0 Ai=0.5 m/s2, Af=2.0 m/s2

T @ N 9 9 T ® o
o < oo a9
& &

48

3236
36-40
40-44

0-4

4 8 |8 3 %
Distance from the starting point (m)

FIGURE 13. Comparison of (a) paths, (b) speed profiles, (c) acceleration
profiles, (d) aggregated speed profiles, (e) aggregated acceleration
profiles, for different exit accelerations.

Entry acceleration was set as —0.5 m/s” and three exit accel-
erations, 0.0 m/sZ, 1.0 m/s2, and 2.0 m/s2, were considered.
A Monte Carlo simulation was performed with 100 random
seeds for each case to randomize the minimum speed and
location of minimum speed. Resulting paths, speed profiles,
and acceleration profiles for the three entry accelerations are
compared in Fig. 13. It is clear that paths and speed profiles
overlap for exit deceleration cases. Statistical tests confirm
that differences between paths are not statistically significant
(Kruskal-Wallis test H statistic = 4.63, p-value = 0.1). Aver-
age minimum speeds (£ SD) were 5.38 (£ 0.40) m/s, 5.29
(£0.58) m/s, and 5.20 (40.52) m/s for exit accelerations (Af)
of 0 m/s2, 1 m/s2, and 2 m/s?, respectively. Statistical tests
confirmed that the difference between minimum speeds for
the three cases is statistically significant (Kruskal-Wallis test
H statistic = 3.58, p-value = 0.06). Acceleration distributions
follow a similar pattern until the minimum speed is achieved
and then begin to deviate significantly.

V. DISCUSSION

Currently, no proper framework is available in microscopic
simulation models and VR tools to realistically model and
estimate trajectories of turning vehicles, even under free-
flow conditions taking into account the impact of intersection
geometry. In existing models, the maneuvers and behaviors
of drivers in terms of the path, speed, and acceleration are
not described. Further, intersection geometry has not been
properly incorporated. In this study, we proposed a modeling
framework based on the minimum-jerk principle to estimate
trajectories of turning vehicles at signalized intersections.
The minimum-jerk principle is an empirically verified the-
oretical concept that has been previously applied to describe
smooth human movements.

109831



IEEE Access

C. Dias et al.: Modeling Trajectories and Trajectory Variation of Turning Vehicles at Signalized Intersections

Previous studies combined vehicle paths and speed pro-
files generated from separate models [4]. Maintaining spa-
tial and temporal consistency between paths and speed and
acceleration profiles is extremely difficult as the location of
the deceleration starting point (before making the turning
maneuver) is generally unknown and depends on many fac-
tors including geometric characteristics of the intersection
and desired speed of the vehicle. Although there are alter-
native approaches, e.g., data driven approaches [17]-[19],
it is difficult to generalize such approaches for intersections
with different geometric properties. This model is robust
compared to previous studies as it; a) maintains the spatial
and temporal consistency between paths, speeds, and higher
order profiles, b) does not assume any pre-defined shape (or
trend) for speed and acceleration profiles, c) can be applied to
estimate trajectories at intersections with different geometric
properties, and d) does not require empirical trajectory data
for calibration. Further studies are needed to validate such
advantages and to compare the performance of the proposed
approach with existing approaches.

Section III and IV explained that the proposed modelling
framework could realistically estimate paths and speed pro-
files for a given intersection even without empirical data.
That is, variations of paths and speed profiles are consistent
in estimates and corresponding empirical data even though
randomized boundary conditions were used. However, accel-
eration (and higher order profiles) tend to display larger
variations under such conditions. This explains the necessity
of incorporating realistic boundary conditions if higher order
profiles are to be estimated with higher accuracy.

Trajectories for vehicles yielding or stopping for pedes-
trians or cyclists were not examined in this study. Other
interactions with preceding or following vehicles were also
not considered. Under such non-free-flow conditions, drivers
may not tend to maximize the smoothness of their motions.
Nevertheless, accurate representation of free-flow trajectories
in microscopic simulations or DS applications as the ‘desired
trajectory’ or ‘ideal trajectory’ is important. For example,
the desired trajectory (including paths, speed, and acceler-
ation profiles), which is the output of the model described
in this study, can be implemented in a driving simulator
in a leading vehicle with subject drivers asked to follow
the simulated vehicle to test their reactions. In addition to
geometric features, road conditions (including pavement con-
ditions), environmental conditions, vehicle conditions and
driver behaviors could also affect the trajectories of turning
vehicles. Such influences may also be considered in future
studies.

VI. CONCLUSIONS

Realistic representation of turning vehicle trajectories reflect-
ing the impact of intersection geometry is important in safety
estimation tools such as driving simulators, virtual reality
applications and microscopic traffic simulations to enhance
reliability. Existing studies have not adequately addressed
this issue. In this study, a modeling approach based on the
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minimum-jerk principle was proposed and tested for esti-
mating turning vehicle trajectories (paths, speed and accel-
eration profiles). The comparison of modeled and empirical
real world trajectories suggests that the proposed modelling
method can reproduce trajectories with high accuracy. Input
variables of the model are intersection geometries and the
entering speed of the vehicles, and no pre-determined trends
(or shapes) were assumed to model speed and acceleration
profiles. The modeled profiles in this study follow the kine-
matic features of turning vehicles and are more realistic than
previous studies. The trajectories produced can be used as
the initial or ideal pattern for representing turning vehicle
maneuvers. Sensitivity analysis shows that the model real-
istically represents the effects of geometric features of an
intersection on trajectories. The applicability of the model in
different geometric settings and boundary conditions was also
confirmed through the sensitivity analysis.

Only free-flow turning trajectories were modeled in this
study and therefore the model cannot be applied in modeling
vehicle trajectories that interact with pedestrians, cyclists,
or other vehicles in an intersection. Applicability of the pro-
posed modeling approach in such cases should be verified in
future studies using additional empirical data. Nevertheless,
free-flow turning trajectories can be considered as the base
patterns for any simulation model used in driving simulator
or virtual reality applications. The findings in this study may
be useful in enhancing the reliability and accuracy of such
applications.
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