
Partition-based Model Representation Learning

Yayun Hsu

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2020

© 2020

Yayun Hsu

All Rights Reserved

Abstract

Representation Learning – A Partition-based Model Approach

Yayun Hsu

Modern machine learning consists of both task forces from classical statistics and modern

computation. On the one hand, this field becomes rich and quick-growing; on the other hand,

different convention from different schools becomes harder and harder to communicate over time.

A lot of the times, the problem is not about who is absolutely right or wrong, but about from

which angle that one should approach the problem. This is the moment when we feel there should

be a unifying machine learning framework that can withhold different schools under the same

umbrella. So we propose one of such a framework and call it “representation learning”.

Representations are for the data, which is almost identical to a statistical model. However,

philosophically, we would like to distinguish from classical statistical modeling such that (1)

representations are interpretable to the scientist, (2) representations convey the pre-existing

subject view that the scientist has towards his/her data before seeing it (in other words,

representations may not align with the true data generating process), and (3) representations are

task-oriented.

To build such a representation, we propose to use partition-based models. Partition-based models

are easy to interpret and useful for figuring out the interactions between variables. However, the

major challenge lies in the computation, since the partition numbers can grow exponentially with

respect to the number of variables. To solve the problem, we need a model/representation

selection method over different partition models. We proposed to use I-Score with backward

dropping algorithm to achieve the goal.

In this work, we explore the connection between the I-Score variable selection methodology to

other existing methods and extend the idea into developing other objective functions that can be

used in other applications. We apply our ideas to analyze three datasets, one is the genome-wide

association study (GWAS) [1], one is the New York City Vision Zero [2], and, lastly, the MNIST

handwritten digit database [3].

On these applications, we showed the potential of the interpretability of the representations can be

useful in practice and provide practitioners with much more intuitions in explaining their results.

Also, we showed a novel way to look at causal inference problems from the view of

partition-based models.

We hope this work serve as an initiative for people to start thinking about approaching problems

from a different angle and to involve interpretability into the consideration when building a model

so that it can be easier to be used to communicate with people from other fields.

2

Lydia Hsu

Lydia Hsu

Table of Contents

List of Figures . vi

Chapter 1: Introduction and Background . 1

1.1 Motivation . 1

1.2 Representation Learning . 2

1.2.1 Linear Regression as Representation . 4

1.2.2 Mixed (Hierarchical) Models as Latent Representation 6

1.2.3 Mixture Models as Representation . 7

1.3 Partition-based Models . 8

Chapter 2: Technical Approach . 10

2.1 I-score . 10

2.1.1 Backward Dropping Algorithm . 12

2.1.2 Comparison . 12

2.2 Generalized Additive Model (GAM) . 13

2.3 Neural Networks . 15

2.4 Generative Neural Networks . 17

2.5 Entropy and Mutual Information . 18

2.6 Definition of Terminologies . 18

i

2.6.1 Task and Objective Function . 18

2.6.2 Feature v.s. Latent Factor/Variable . 19

2.6.3 Feature Selection v.s. Feature Embedding 21

2.6.4 Discriminative Model v.s. Generative Model 21

Chapter 3: Sufficient Representation Learning Framework 22

3.1 Introduction . 22

3.2 Sufficient Representation – Statistical Desirable Qualities 23

3.3 Sufficient Representation – Statistical Desirable Qualities 24

3.4 Definition of Sufficient Representation . 25

3.5 Representation Learning Procedure . 27

3.6 Notation . 28

3.7 Toy Example . 28

3.8 Representation Learning v.s. Generative Model Learning 31

3.8.1 Searching For the Objectives For A Generative Model 32

3.9 Summary . 35

Chapter 4: I-Score Sufficient Representation Learning . 36

4.1 Partition-based Representation Learning . 36

4.2 Problem Setup . 37

4.2.1 Inference . 37

4.2.2 Prediction . 39

4.3 Sufficient Gaussian-Partition Model – Unsupervised 39

4.3.1 Model Assumption and Learning Objective 39

ii

4.3.2 Example . 40

4.3.3 Stirling prior . 44

4.4 Sufficient Gaussian-Partition Model – Supervised 46

4.4.1 Notation . 46

4.4.2 Model Assumption and Learning Objective 47

4.4.3 I-score for Supervised Variable Selection With Discrete Features 48

Chapter 5: Representation Learning In Genome-wide Association Studies 54

5.1 Introduction . 54

5.2 GWAS Background . 54

5.3 Statistical Problem . 56

5.4 Data . 57

5.5 Models . 57

5.6 Results . 60

5.6.1 GWAS Data . 60

5.7 Discussion . 62

Chapter 6: I-Score Representation Learning in Causal Inference 63

6.1 Introduction . 63

6.2 Neyman–Rubin Causal Model . 64

6.3 Representation Learning in Causal Inference . 65

6.4 Definition and Proposition . 66

6.5 Causal Inference . 69

6.5.1 On the Search of Adjustment Sets . 71

iii

6.5.2 Inference . 77

6.5.3 Simulation . 79

6.6 Application to Vision Zero Data . 87

6.6.1 Background . 87

6.6.2 Data . 87

6.6.3 Analysis . 88

6.7 Conclusion . 92

Chapter 7: I-Score Representation Learning in Neural Networks 98

7.1 Introduction . 98

7.2 Variational Autoencoder and Information Bottleneck 99

7.2.1 Introduction . 99

7.2.2 Variational Autoencoder . 99

7.2.3 Representation Learning In Neural Networks 101

7.2.4 Related Work – Factor Analysis/Probabilistic PCA 103

7.2.5 Inference Method . 104

7.2.6 Generative Adversarial Network and BiGAN 105

7.2.7 Info-BiGAN Implementation . 107

7.2.8 Empirical Results . 110

7.2.9 Observations . 110

7.3 Conclusion . 110

Epilogue . 113

iv

References . 121

v

List of Figures

1.1 Example of a hierarchical representation of a cat. 4

2.1 Illustration of the structure of an ANN. 16

2.2 A data generating process example. 20

3.1 An illustration of representation learning. 32

3.2 Latent variable model. 32

4.1 Data generating assumption. 38

4.2 Proposed decomposition of representation learning. 38

4.3 Data generating process assumption (unsupervised). 40

4.4 Partitions ranked by the proposed procedure. 44

4.5 Histograms on the number of partitions. 45

4.6 Intuition for the partition selection mechanism. 46

4.7 Data generating process assumption (supervised). 48

5.1 Kinship coefficient matrices used in 3 modeling options for fitting the linear mixed-
effects model to data with family structures. (a) Option 1: representatives. (b)
Option 2: kinship. (c) Option 3: independent. 59

5.2 Ideal relation among significant SNP sets from 3 different modeling options. 60

5.3 Manhattan plots for option 1. 61

vi

5.4 Manhattan plots for option 2 and option 3 (black dots). 61

6.1 The comparison between case and control without any conditioning. 90

6.2 The comparison between case and control conditioned on borough. 91

6.3 The comparison between case and control conditioned on the date when enhanced
crossings were built. 92

6.4 The comparison between case and control conditioned on if the corridor was pri-
oritized. 93

6.5 The comparison between case and control conditioned on if the zone was prioritized. 93

6.6 The comparison between case and control conditioned on the date when slow zones
were built. 94

6.7 The comparison between case and control conditioned on the borough and the
prioritized corridor. 95

6.8 The comparison between case and control conditioned on the slow zone and the
prioritized corridor. 96

6.9 The final partitions chosen from I-Score procedure. 97

7.1 Deep artificial neural network as hierarchical representation learning. 100

7.2 The encoder compresses data into a latent representation, and the decoder recon-
structs the data given the hidden representation. 101

7.3 GAN architecture. 106

7.4 BiGAN architecture. 107

7.5 The latent space learned from VAE and Info-BiGAN with different p(z). Top:
VAE; Middle: Info-BiGAN with Normal prior; Bottom: Info-BiGAN with Uni-
form prior. 111

7.6 Generated hand-written digits from Info-BiGAN. 112

vii

Chapter 1: Introduction and Background

1.1 Motivation

Machine learning is the intersection where many disciplines meet, especially Statistics and

Computer Science. Modern machine learning suffers from the trade-off between inference and

prediction [4]. 1 For example, in traditional statistical linear regression, under the normality as-

sumption, the model learned from maximum likelihood gives us direct inference results on the

coefficients. If one attempts to use the resulting model for predicting out-of-sample future obser-

vations, it is usually not the best, compared with other methods such as nonparametric regression,

kernel methods, or even neural networks. However, the current solution to this problem is a mat-

ter of choice – practitioners are forced to choose sides between these two cultures, without other

middle-ground option(s). In this work, we would like to propose a new learning framework, which

we will call it the “representation learning”, that acts as another option other than traditional sta-

tistical modeling and black-box modeling.

From a statistical viewpoint, many modern machine learning methods are the retell of stories

from earlier statistical toolbox with the aids of modern computation. As a statistician, I am glad

to see how modern computation elevates statistics to a new scale that statisticians would never had

imagined a few decades ago. From Computer Science (and even Artificial Intelligence) standpoint,

researchers are thrilled to see the idea of learning a prediction model from past data, instead of

human hard-coded rules, has opened a whole new world of problem-solving regimes. For example,

AlphaGo, the first computer Go program to beat a human professional Go player, is based on

modern deep-learning systems, instead of hard-coded systems such as Deep Blue 2 that appeared

1Throughout this work, we will refer to the former as the traditional statistical model, and the latter as the black-box
model, following the same naming of Breiman.

2the first computer chess-playing system to win both a chess game and a chess match against a human reigning
world champion

1

nearly 30 years ago.

As a result, we have seen almost exponential growth in machine learning because of the joint

contribution of great minds from various disciplines. However, this rapid development is not with-

out a price – if we look at modern, computational-approached methods through a statistical lens,

many of them are not explainable, and even violate some statistical principles; however, they per-

form well in practice. For example, a regression coefficient is not a causal estimate unless a large

set of assumptions are met. But in practice, many assumptions are actually uncheckable. In those

cases, do we give up the methods entirely? Do we still apply the methods blindly? Or are there

any other choices?

Given the rich developments and successes on both sides, instead of trying to deny their dif-

ferent mindsets entirely, we feel the need to construct a new framework, where people from the

two sides of the spectrum can meet and share a common language. Hopefully, by constructing

this bridge, people will be able to understand and appreciate what each other has been doing, thus

helping the further development of each.

1.2 Representation Learning

The solution that we propose here, the new learning framework that we will construct, will

be called representation learning. Indeed, the term “representation learning” has been around for

quite a while, but there is no unifying definition for it. From Computer Science community, repre-

sentation learning has become a field in itself, with regular workshops at the leading conferences

such as NIPS and ICML, and a new conference dedicated to it, the ICLR (International Conference

on Learning Representations), sometimes under the header of Deep Learning or Feature Learn-

ing. The rapid increase in scientific activity on representation learning has been accompanied and

nourished by many empirical successes both in academia and in industry [5]. Fields such as signal

processing, natural language processing, object recognition, and transfer learning, have all seen

benefits from representation learning.

In this work, my goal is not to provide a universal definition for representation learning; rather,

2

my goal is to borrow the name and to set up a new learning framework that was described in the

previous section. Throughout the whole thesis, I will focus on (1) setting up the framework, (2)

providing a proper loss function/ objective function, and (3) interpreting the results and implica-

tions.

First of all, we define representations to be hierarchies of decompositions or transformations

of the raw data such that some of them are useful for some tasks. There are generous-purposed

representations and specific-tasked representations. Let me explain these qualitative properties of

representations using an intuitive example. Figure 1.1 illustrates the idea – we are given a bunch of

pictures of cats, which is the observable data. In representation learning, we abstract the pictures

of cats into hierarchies of representations. The two ends of the hierarchical representations are the

data (in this example, the picture of the cats) and the task (in this example, predicting the label

“cat”). The data is observable; the label may be observable or not. Furthermore, the label can

change domains – the same picture of a cat can be labeled as “cat”, “animal”, “happy”, “summer”

or “black-and-white”, etc. Between the data and the label, several hierarchies of representations

can be constructed. The first layer above the raw data is for more generous purpose; as the layers

move towards the label, those layers become more and more specific for the “task” – predicting

the label. Here all the inner layers are legitimate representations, but not all of them are useful for

all tasks. For example, if the task is to distinguish a cat from a dog, then probably the color of the

picture doesn’t help much; while if the task is to distinguish in which season the picture was taken,

then color becomes an important representation.

I will use the term “task” to include most of the problems considered in machine learning,

involving prediction, estimation, variable selection, etc.

We will see later that, using this proposed learning framework, we will be able to achieve (1)

good interpretation (2) prevention of overfitting, and (3) variable selection all at once.

As discussed previously, the purpose of constructing such a framework is to give a common

language to both sides of the culture. So in the following sections, I will explain how to use this

newly defined “representations” to look at some traditional statistical models.

3

Figure 1.1: Example of a hierarchical representation of a cat.

1.2.1 Linear Regression as Representation

Suppose we have data (Yi,X1
i ,X

2
i , ...X

p
i), where i denotes the index for observations and p de-

notes the number of independent variables/ observed features. In the linear regression setting, we

have model

Y = XT β + ε, (1.1)

where Y is a known vector of observations with mean Xβ, β is an unknown vector of constants,

ε is an unknown vector of random errors with mean 0 and variance R, and X is a known design

matrix. We can view Equation 1.1 as a decomposition of Y into the signal XT β and the noise ε

parts. We call XT β as the representation of Y under this model specification.

Traditionally in the modeling stage, the problem is that we don’t know (1) how many indepen-

dent variables we should use and (2) even if we know the answer to (1), we still don’t know which

variables compose the best subset. So many selection criteria have been proposed, such as AIC,

BIC, and LASSO. On the other hand, from a black-boxed model point of view, if a better predic-

tion accuracy can be achieved by adding more independent variables, there is no fault of doing so.

It is a matter of the focus. In our proposed representation learning, we introduce a new focus –

the interpretability of the representation. By interpretability, we mean the intuitive interpretation

that we human can make sense about. In some cases, the interpretability may be obvious and even

checkable in its own field knowledge. Such cases are like using random forests to build a genome-

4

wide prediction for a certain disease. In other cases, the interpretability may not be obvious – in

these cases, one may still want to stick with traditional criteria.

Now let’s go back to the linear regression example, and elaborate more on the representation

learning ideas. We know that, under the usual linear regression assumptions, the solution from ma-

chine learning theory says that the predicted Y is given by Ŷ = (X(XT X)−1XT)Y = HY , where H

is often called the hat matrix, and it stands for a linear transformation on Y [6] [7]. In our proposed

representation learning framework, we say this is the empirical representation of Y . This represen-

tation is obtained through maximum likelihood estimation, so, by construction, it is interpretable

for inference but may not for prediction. The interpretation is – Ŷ is a projection of the vector ®Y

onto the space spanned by X , and it is perpendicular to the residual vector, ®ε ; therefore, we have a

orthogonal decomposition of Y into signal and noise.

However, in terms of prediction, as we know from machine learning theory that, for prediction

purpose, it is often better to use slightly biased estimators obtained through penalization – this then

becomes a black-boxed model. Is there another solution to the regression problem that can have

both of the interpretability and the prediction accuracy?

Our proposed solution is that, linear regression can be done first by representation learning –

this is the inference step that gives us interpretability – and then use the learned representations

to build the prediction model. By doing so, we strike a balance between inference and prediction.

Representation learning can use, for example, I-Score, principle component analysis (PCA), vari-

ational autoencoder (VAE), etc. The I-Score variable selection procedure is the main route we will

pursue in this thesis, and hence more detailed introduction will be present later. But the basic idea

is that we first use I-Score to perform variable selection, and then use the selected variables to build

regression models or neural networks.

5

1.2.2 Mixed (Hierarchical) Models as Latent Representation

An additive mixed model is a statistical model containing both fixed effects and random effects.

In matrix notation, a mixed model can be represented as

Y = XT β + ZT µ + ε, (1.2)

where where Y is a known vector of observations with mean XT β, β is an unknown vector

of fixed effects, µ is an unknown vector of random effects with mean 0 and variance–covariance

matrix G, ε is an unknown vector of random errors with mean 0 and variance R, and X and Z are

known design matrices relating the observation Y to β and µ, respectively [8]. We will call X and

Z as the “features” – X is the observable, raw feature, and Z is the latent feature (may or may not

be observable).

In our representation learning language, we can view the above modeling as an additive, hier-

archical decomposition of the observation Y .

Y = µ0 + σ0ε0
︸ ︷︷ ︸

µ1

+σ1ε1

︸ ︷︷ ︸

µ2

+σ2ε2 + ...

assuming that each εi is independent with µ0.

The modeling of a hierarchical model suffers from similar issues as linear regression – since

we don’t know how many hierarchies is “correct” (there may even not be a correct answer), we’d

better first build representations in the inference step and then proceed with the model-building.

The difference is that, since Z may be unobservable, it may require us to do some clustering on Y

in building the representations.

For demonstration purpose (and without loss of generality), let us study a two-level model,

albeit the concept can be generalized to even higher levels of hierarchies.

6

Several results from this model construction:

E(Y) = µ0 (1.4)

Var(Y) = σ2
0 + σ

2
1 + σ

2
2 (1.5)

Cov(Y, µ1) = σ
2
0 (1.6)

Cov(Y, µ2) = σ
2
0 + σ

2
1 (1.7)

That is, even before we fit the model, we know the form of the variance-covariance structure. In

some applications, such as kinship modeling, we can pre-assign the variance-covariance structure

before fitting the model. This once again emphasizes the idea that an interpretable representation

can go before model fitting, to ensure the learning results make intuitive sense in real applications.

1.2.3 Mixture Models as Representation

In mixture models, the whole population can be treated as a mixture of several mixture com-

ponents. Since the mixture components are usually unseen, we refer to them as latent variables.

The mixture components can be either discrete or continuous, but often for modeling convenience,

they are assumed to be discrete. In general, a mixture model assumes the data are generated by the

following process: first we sample from the latent variable Z , and then we sample the observables

X from a distribution which depends on Z; that is,

p(x, z) = p(x |z)p(z), (1.8)

where p(x |z) is the representation based on latent components. Note that the above factorization

doesn’t suggest any ordering. So it is important to determine the ordering in the representation

building stage.

Let us first review how traditionally people fit these kinds of model. Assuming that the true

model is a Gaussian mixture model on the marginal data X with mixture components Z . X is

7

observable while Z is not. We assume Z is a discrete random variable, and there are probabilities

defined on p(X |Z = k), for k ∈ {1,2, ...,K}, where K is the total number of mixture components.

Each p(X |Z = k) is Gaussian with mean µk and variance σ2
k . The parameters of interest are all

the µk , σ2
k and p(Z = k). We call each p(X |Z = k) the probabilistic representation of X based on

Z = k. If we follow maximum likelihood estimation for the parameters, there are two major issues:

(1) different K may result in nonidentifiability, and (2) even if K is fixed, the MLE objective has

no analytical solution.

In practice, to resolve issue (1), people pre-select a fixed K . To resolve (2), a more traditional

statistical method is the expectation-maximization algorithm (EM), while in recent years, Bayesian

methods such as topic modeling and variational inference have become more and more popular [9].

However, it is often hard to determine how many mixture components there should be. Later

we will see that the method of I-Score representation learning can actually serve as a method for

determining the number of mixtures by specifying some sort of “prior belief” 3.

On caveat is that, for a fixed dataset, there is no unique representation. It is simply because,

representations are the subjective beliefs of the interpreter and they need not imitate the true data

generating process, that we allow different practitioners to have their own representations, as long

as they achieve the task well.

1.3 Partition-based Models

Here we define a partition over the feature space, where all features are discrete, is a collection

of sets that (1) are mutually disjoint and (2) have a union as the entire composited feature space.

Suppose we have data (Yi,X
(1)
i ,X (2)i , ...X (p)i), where i denotes the index for observations, p

denotes the number of independent variables/ observed features, all the Yi’s are continuous and

all the X (p)i ’s are discrete. The partition of the feature space is defined on the composition of

(X (1)i ,X (2)i , ...X (p)i). Assume that the partitions are {Π1,Π2, ...ΠK}, where K stands for the total

number of partitions constructed.

3not the same kind of prior belief that people usually talk about in Bayesian inference

8

The model we consider is

Yi =
∑

k

µk · I(Yi ∈ Πk) + εi, (1.9)

where µk is the “local mean” of Y in partition Πk , and εi is the individual level error with mean

0 and independent with all other observations within the same partition, but may dependent with

other observations across different partitions. The learning interests are all the local means µk and

the clustering procedure I(Yi ∈ Πk). We interpret all the local means µk as the representation of Y

under this partition-based model.

A partition-based model essentially clusters the observed Y ’s into these feature partitions. The

desirable clustering should make observations inside each partition as homogeneous as possible.

This has two consequences: First, we can then build local models within each partition, which

yields a very expressive model. Second, we may find that some of the partitions contain no ob-

servations inside, which further implies the irrelevancy of the variables used to construct those

partitions. Hence, variable selection is also achieved in the process.

The hardest part of building such a model is the choice of objective function and the corre-

sponding algorithm to automate the clustering process. These two will be the focus of this thesis –

the I-Score objective function and the corresponding backward dropping algorithm [10] [11].

9

Chapter 2: Technical Approach

The procedures of our representation learning involve the following: (1) latent structure learn-

ing of the predictors, (2) predictional modeling learning, (3) model checking, and (4) result inter-

pretation. For (1), we use the I-Score, proposed by Chernoff, Lo and Zheng [12], to serve as a

variable selection tool. For (2), we use the generalized additive model (GAM) and neural networks

as the basis. We will see that the model learned in this way has a natural interpretation. Some

applications on the full implementation will be discussed in Chapter 5-7.

2.1 I-score

The setting of the problem is that we are given a dataset {(Yi,Xi)}
N
i=1 where N is the sample size.

Although many variations have been proposed, here we stick to the setting that Y is a continuous

random variable and all X’s are discrete. There may be a few features in X that is not useful for

predicting Y . We would like to sift them out, while not knowing what the true model is. The

approach is to partition the N observations into several partitions, according to the composition of

subsets of X with ni observations in the ith partition.

The composition of X is to redefine the high dimensional marginal X’s into a one dimensional

variable that takes the joint value. For example, if we originally have two-dimensional (X1,X2) in

the data, and each of the random variables can only take values either 0 or 1. We can composite

(X1,X2) into another random variable, say, X3, such that X3 can take four possible values that

correspond to the situation when (X1,X2) = {(0,0), (0,1), (1,0), (1,1)}, respectively. We call each

one in the composite set a partition, as it is a partition over the feature space.

A great advantage of this model is that we take into consideration the joint distribution of the

original X’s without making any implausible assumptions such as independence of the marginal

10

X’s.

However, the price for being able to take care of the joint distribution in X is that this kind

of composite random variables can easily become sparse in the sense that there are many possible

partitions that don’t have enough observations. So, instead of compositing all the raw features into

one big new feature, we randomly sub-sample a few features and test their I-Score.

For a subset of X that composites i partitions, the I-Score is defined to be

I =
1
N

∑
i

n2
i (Ȳi − Ȳ)2, (2.1)

where ni is the number of observations inside the ith partition,
∑

i ni = N , Ȳi is the average of Y

in the ith partition (local mean), and Ȳ =
∑

i
niȲi
N is the overall average of Y (global mean). It can

be a measure of influence based on how well the partition separates the subjects into relatively

homogeneous subsets. It not only considers the deviation of local means to the global mean, but

also take the number of observations inside each partition into account. The higher the I-Score, the

more influential towards Y the set of features is.

One reason for explaining why partition models make such practical use is through local av-

eraging. Many smoothers in nonparametric regression such as splines are known to be able to

smooth the curve fitting by doing some kind of local averaging. However, the idea of locality

becomes more and more vague as the dimension of features increases. This is the place where the

partitions come in handy. In partitions, there is no ordering nor continuity. This methodology can

then be related to tree-based methods, such as decision trees. However, the I-Score framework is

different from trees in the sense that they take the interaction between features into account, by

selecting a subset of features together at once; while in building decision trees, we only split the

tree based on one marginal feature at a time.

Ideally, we would like to search over all possible subsets and find out the one with the highest

I-Score. However, since the number of partitions grow exponentially with the number of features,

it is impossible to do an exhaustive search in practice. Instead, they also proposed the backward

11

dropping algorithm [10] [11]. Essentially it is a greedy search that every time we drop one variable

that has the minimum contribution to the score until we reach the peak value.

2.1.1 Backward Dropping Algorithm

Suppose in our data, we have p features, X1,X2, ...Xp. The backward dropping algorithm is to

randomly select a subset of features from the total p features, and to evaluate the I-Score of the

current subset by gradually dropping one feature at a time, until we find the maximum I-Score

generated by a certain subset of the current random subset – this is how we drop the redundant

variables. In each dropping stage, we perform greedy search – to drop the one variable that gives

the highest decrease of I-Score in each iteration. The procedure is practical in many real data

experiments [10] [11] [13].

2.1.2 Comparison

In a partition model, where we have the local means Ȳi and the global mean Ȳ =
∑

i niȲi, we

have the following decomposition:

n∑
i=1

(
Yi − Ȳ

)2
=

n∑
i=1

(
Yi − Ȳi

)2
+

n∑
i=1

(
Ȳi − Ȳ

)2
. (2.2)

In general, if we treat Equation 2.2 as a special case of the following equation, we can say that

the local means in a partition-based model is an unbiased estimator for the response. So we have

the following,
n∑

i=1

(
Yi − Ŷ

)2
=

n∑
i=1

(
Yi − Ŷi

)2
+

n∑
i=1

(
Ŷi − Ȳ

)2
. (2.3)

When we try to minimize
∑n

i=1
(
Yi − Ȳi

)2, it is equivalent to maximize
∑n

i=1
(
Ȳi − Ȳ

)2, since

their sum, the sample variance, is fixed. Without any restriction on the number of partitions,

the minimum value of
∑n

i=1

(
Yi − Ŷi

)2
is zero; that is, by giving each datapoint its own partition.

This is the same phenomenon of overfitting in linear regression. In linear regression, we prevent

overfitting by restricting the functional form of Ŷi to be linear. On the contrary, in our proposed

12

partition-based representation learning, we prevent overfitting by choosing partitions that prefer

more than one observations to be inside each partition. This is guided by using the I-Score as

the objective function, since the I-Score is essentially the weighted version of the second term on

the right hand side of Equation 2.2. The rationale of doing this is to guide the learning process

to learn a meaningful, interpretable representation, instead of blindly optimizing the objective

function. The representation here is that, inside each partition, the data are homogeneously i.i.d. In

other words, the proposed partition-based representation learns a smoother representation than the

normal regression, without being completely smooth (the null model of regression). On the other

hand, it improves the typical objective functions used in tree-based learning methods by taking the

interactions of the features into account, since, instead of finding marginal signal each time, one

whole partition that consists of many variables is considered every time the in I-Score method.

In sum, if we see there is a spectrum of methods, one side of which is linear regression and

the other side being tree-based methods, the I-Score framework is in the middle. It has a natural

interpretability just like trees, and meanwhile, it is computationally efficient as linear regression.

2.2 Generalized Additive Model (GAM)

Generalized additive models (GAM) are the generalization of general linear models [14] [15].

The idea is based upon the Kolmogorov-Arnold representation theorem that any multivariate func-

tion could be represented as sums and compositions of univariate functions. Mathematically, if we

start from the basic linear regression, we can compare the assumptions of these similar models:

1. Standard Linear Regression: We assume the observable Y follows a Normal distribution,

where the mean of the distribution is a linear combination of the observable features X1,X2, ...

Y ∼ N(µ,σ2), where (2.4)

µ = β0 + β1X1 + β2X2 + ... (2.5)

2. Polynomial Regression: We assume the observable Y follows a Normal distribution, where

13

the mean of the distribution is a polynomial function of the observable features X1,X2, ...

Y ∼ N(µ,σ2), where (2.6)

µ = β0 + β1X1 + β2X2
1 + ... (2.7)

3. Generalized Linear Model: We assume the observable Y follows an exponential-family dis-

tribution, where the link function of the mean is a linear combination of the observable

features X1,X2, ...

Y ∼ Exponential Family, where (2.8)

g(µ) = β0 + β1X1 + β2X2 + ..., (2.9)

where g(·) is the link function.

4. Generalized Additive Model: We assume the observable Y follows an exponential-family

distribution, where the link function of the mean is a linear combination of functions in the

observable features X1,X2, ...

Y ∼ Exponential Family, where (2.10)

g(µ) = β0 + f1(X1) + f2(X2) + ..., (2.11)

where g(·) is the link function, and f j(X j)may be functions with a specified parametric form

(for example, a polynomial) or may be specified non-parametrically.

The above comparison clearly shows how GAM generalizes based on GLM. What is more,

since each feature is added to the model term by term, the model fitting is not only flexible, but

also computationally efficient.

14

2.3 Neural Networks

In 1943, artificial neural networks (ANN) were introduced by Warren McCulloch and Walter

Pitts [16] as a computational model [17]. Rosenblatt [18] created the perceptron, which later be-

came the basis for building more complex networks [19]. The first functional networks with many

layers were published by Ivakhnenko and Lapa in 1965, as the Group Method of Data Handling

[20] [21] [22]. The basics of continuous backpropagation [20] [23] [24] [25] were derived in the

context of control theory by Kelley [26] in 1960 and by Bryson in 1961 [27], using principles of

dynamic programming.

Later in the seventies, the technique of automatic differentiation proposed by Seppo Linnain-

maa was applied to discrete connected networks of nested differentiable functions [28] [29]. In

1973, Dreyfus used backward propagation to adapt parameters of controllers in proportion to error

gradients [30]. Werbos’s (1975) backpropagation algorithm enabled practical training of multi-

layer networks. In 1982, he applied Linnainmaa’s automatic differentiation method to neural net-

works in the way that became widely used [23] [31].

In the eighties, computation power enjoyed a rapid growth because of very-large-scale inte-

gration (VLSI) – increasing transistor count in digital electronics provided more processing power

– and hence many models that were considered computationally expensive became possible in

practice. Geoffrey Hinton et al. (2006) proposed learning a high-level representation using suc-

cessive layers of binary or real-valued latent variables with a restricted Boltzmann machine [32]

to model each layer. In 2012, Ng and Dean created a network that learned to recognize higher-

level concepts, such as cats, only from watching unlabeled images [33]. Unsupervised pre-training

and increased computing power from GPUs and distributed computing allowed the use of larger

networks, particularly in image and visual recognition problems, which became known as “deep

learning” [34].

Once again, another technology advancement elevated the possibility to the next level – in

2010, Ciresan et al. showed that GPUs make backward propagation feasible for many-layered

15

feedforward neural networks [35]. Between 2009 and 2012, ANNs began winning prizes and

approaching human level performance on various tasks, initially in pattern recognition and machine

learning [36] [37]. Nowadays ANNs have beaten many old models and even become the standard

models in many fields, such as computer vision and natural language processing (NLP).

The structure of a neural network can be seen as a directed, weighted graph, as illustrated in

Figure 2.1.

Figure 2.1: Illustration of the structure of an ANN.

An artificial neural network consists of a collection of simulated neurons. Each neuron is

a node which is connected to other nodes via links. Each link has a weight, which determines

the strength of one node’s influence on another [38]. The neurons are typically organized into

multiple layers, especially in deep learning. Neurons of one layer connect only to neurons of the

immediately preceding and immediately following layers. The layer that receives external data is

the input layer. The layer that produces the ultimate result is the output layer. In between them are

zero or more hidden layers. Single layered networks are also used. Between two layers, multiple

connection patterns are possible. They can be fully connected, with every neuron in one layer

connecting to every neuron in the next layer. They can be pooling, where a group of neurons in

16

one layer connect to a single neuron in the next layer, thereby reducing the number of neurons in

that layer [39]. Neurons with only such connections form a directed acyclic graph and are known

as feedforward networks. Alternatively, networks that allow connections between neurons in the

same or previous layers are known as recurrent networks. Other than these, there have been many

variations being proposed.

2.4 Generative Neural Networks

There is a surge of generative deep neural networks in the recent years. To train a generative

model, we first collect a large amount of data in some domain (e.g., think millions of images,

sentences, or sounds, etc.) and then train a neural network to generate data like it. The most pop-

ular structure nowadays are variational autoencoders (VAE) and generative adversarial networks

(GAN). 1 [40] [41] [42]

The trick is that the neural networks we use as generative models have a number of parameters

significantly smaller than the amount of data we train them on, so the models are forced to discover

and efficiently internalize the essence of the data in order to generate it.

Generative models have many short-term applications. But in the long run, they hold the po-

tential to automatically learn the natural features of a dataset, whether categories or dimensions or

something else entirely. This will be an important step towards artificial intelligence.

Currently, all of the different approaches to generative neural networks have their pros and

cons. For example, VAEs allow us to perform both learning and efficient Bayesian inference

in sophisticated probabilistic graphical models with latent variables. However, their generated

samples tend to be slightly blurry. GANs currently generate the sharpest images but they are more

difficult to optimize due to unstable training dynamics. All of these problems do not have certain

solutions and are very active areas of research now.

1The more detailed introduction will be present in Chapter 7.

17

2.5 Entropy and Mutual Information

The entropy H(X) of a discrete random variable X is defined as

H(X) = −
∑
x∈X

p(x) log p(x). (2.12)

It is a function which attempts to characterize the unpredictability of a random variable, both

in terms of the number of possible outcomes and its frequency.

The concept of mutual information is intimately linked to that of entropy of a random variable,

a fundamental notion in information theory that quantifies the expected amount of information held

in a random variable.

Not limited to real-valued random variables and linear dependence like the correlation coeffi-

cient, mutual information is more general and determines how different the joint distribution of the

pair (X,Y) is to the product of the marginal distributions of X and Y . Formally, the definition of

mutual information is (again, we only consider both X and Y to be discrete)

MI(X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.13)

2.6 Definition of Terminologies

In this coming sections, we will define the terminologies that will be used throughout the whole

work.

2.6.1 Task and Objective Function

Definition 2.6.1. A task for a machine learning procedure is the optimization of an objective func-

tion.

Commonly-seen tasks are prediction, classification, inference, and variable selection. When

defining a task, a corresponding objective function that is based on empirical data should also be

18

defined. For example, when one defines “prediction” as the task, there should be a corresponding

objective function, such as the sum of squares of the difference between the observed value and

the predicted value.

Definition 2.6.2. Objective functions are statistics that we can develop optimization algorithms

for.

2.6.2 Feature v.s. Latent Factor/Variable

Features are observable independent variables. Latent factors/variables are unobservable inde-

pendent variables that are not present in the dataset. We will refer to the features present in the

dataset as the raw feature, and any other transformation of the raw features will be called trans-

formed features. Since latent factors/variables are unobservable, they are assumed by the scientists

and then learned from data.

Historically, we see there is the trend of learning from raw to transformed features. It starts

from feature engineering, the most concrete case, when people hard-code their prior knowledge

about the underlying mechanism into the model. For example, in a facial recognition system, we

may hard-code features such as the eye color, the face shape and the length of hair into the system.

However, in order to expand the scope and applicability of machine learning methods, we actually

would like to make learning algorithms to be less dependent on feature engineering [5]. Another

rationale for doing this is about data-drivenality – most of the time, we actually have limited

knowledge about what good features are, so it would be better for the machine to figure it out by

itself from data. More importantly, if we want to make progress towards artificial intelligence,

which fundamentally means to understand the environment around, the artificial intelligence agent

must have the ability to figure out important underlying explanatory factors hidden in the observed

sensory data [5].

In terms of a data generating process, we define the flow of the data generating factors Ci, the

observable raw features X , and the transformed features fi(X), where i denotes the indexing. The

idea is illustrated in Figure 2.2. In this example, we have four data generating factors C1 to C4, the

19

observable raw feature X , and the transformed features f1(X) and f2(X).

Figure 2.2: A data generating process example.

If we model the data generating process as a sequential procedure, we call everything happened

before the raw features as the upstream transformations; similarly, we call everything happened

after the raw features as the downstream transformations. So in the previous example, the raw

feature is X , the upstream transformations include C1 to C4, and the downstream transformations

include f1(X) and f2(X). The ordering may not impact much in the mathematical modeling stage,

but they are essential in adding on interpretability of the model.

In sum, we make the following definitions:

Definition 2.6.3. Transformed features are the downstream transformations of the raw feature.

Without seeing the data, neither features or transformed features can be formed.

Definition 2.6.4. Latent Factors/Variables are the upstreams transformations of the raw features.

They can be formed without data.

20

2.6.3 Feature Selection v.s. Feature Embedding

Similarly, as the development of machine learning in many different applications, different

names of similar procedures were generated. We will use the following unifying definition when-

ever we mention about these terminologies:

Definition 2.6.5. Feature selection is the process of choosing relevant and useful features for suf-

ficing the task.

Definition 2.6.6. Feature embedding is the process of transforming features.

In fact, in this definition, feature selection can be treated as one special case of feature embed-

ding, where each feature is transformed into the feature times the corresponding indicator function

which indicates the selection decision.

2.6.4 Discriminative Model v.s. Generative Model

Definition 2.6.7. Discriminative models are models that could model the process and give results

of either regression (continuous response) or classification (discrete response). They do not neces-

sarily reproduce the true data generation process, but is sufficient for the discrimination task.

Definition 2.6.8. Generative models are models that try to reproduce the true data generation

process. Why do we need generative models? First, they help us understand the data generation

process, which may be potentially helpful if we would like to do causal inference or transfer

learning. Second, they add on interpretability. And, thirdly, when we don’t have enough data, they

can generate more data in for semi-supervised learning purpose.

In some cases, discriminative models can be viewed as a hierarchy embedded inside a genera-

tive model. The decision of going for a discriminative or a generative model should be determined

by the interpretability of the corresponding representation and the ultimate task.

21

Chapter 3: Sufficient Representation Learning Framework

3.1 Introduction

As introduced earlier, there is the dilemma between inference and prediction. As a statistician,

I would like to begin with traditional statistical inference methods, and gradually move towards

modern statistical methods that incorporate decision theory, graphical models and Bayesian meth-

ods. While each has its own origin and assumptions, practitioners nowadays seem to ignore these

important distinctions, which may lead to misuse of the inferences. In this work, we would like

to create a unifying framework that connects statistical modeling methods with computationally-

inspired black-boxed models such as neural networks. We hope this will provide more insights and

correct the practice of statistics into various fields of applications.

One of the major challenges of transporting traditional statistical methods into modern data

is the scale of the dataset. At the time while Statistics was emerging, the applicable data wasn’t

really big or high-dimensional compared to nowadays data. So even though the model wasn’t

exactly “correct”, it may not be too far away from the correct one. However, as more complicated

and high-dimensional data emerge, such as genome data and image data, the correctness of model

specification has become more important than ever before. So, in this work, we would like to

discuss about the interaction between model, representation and optimization for a task – which

could probably be omitted when the data was not so complicated, but no longer so once we enter

the big data era.

So our first idea of the new learning framework is that, since “all models are wrong” [43], let’s

shift our focus on finding models that are interpretable. We call these interpretable models the

representation of the data. As machine learning progresses, there are more and more demands into

this criteria, especially when we enters the era of artificial intelligence. For example, instead of

22

letting a black-boxed algorithm to tell us if the scan photo of a patient’s liver has a tumor, we often

feel more comfortable and reliable if the algorithm also tells us why. The consequence of this is

that our desirable representations may go before data-fitting, which violates traditional statistical

learning principles.

Hence, we would like to suggest that, instead of trying to find the true model (if it exists),

we try to find a useful representation within a model that is interpretable and sufficient for a task.

Traditionally in model fitting, we have the mindset that there is only one true model, so we have

to perform model selection to choose the best one. However, in representation learning, there

is no true or false. Representations simply reflect how the scientists interpret the data but they

do not need to reflect the true status of the nature. In other words, there can be many different

representations for the same data, as long as they are sufficient for their assigned tasks.

3.2 Sufficient Representation – Statistical Desirable Qualities

We are now in the process towards defining what a good representation is. Since the idea of

being good may be too subjective, we, instead, identify some desirable properties of an appropriate

representation. In Bengio 2014 [5], he discussed about many criteria for a good representation

from a computational point of view. Essentially, in machine learning, the performance of the

methods is highly dependent on the choice of good features [5]. However, in practice, people

choose features based on the performance of the machine learning method. The rationale being

that, if the performance of the machine learning method is good, then it must be that the underlying

features are good. But is this the right way? Or how about doing it in the opposite way? As

discussed previously, in representation learning, we are concerned about the interpretability – if

we completely let the performance of a discriminative learning method guide the feature selection

or embedding process, the resulting features may not be interpretable. One family of such examples

is the L-x penalization methods in linear regressions. While computationally efficient, it can hardly

explain the meaning of the results beyond statistical significance.

Even in the case if the goal of the learning is about the ultimate performance, where learning the

23

optimum representations is not the most important consideration, we may still find representation

learning as an important step for modern machine learning problems. For example, if we have a

bunch of photos of cats and dogs, and the task is to do classification; while a logistic regression

model may well suffice the needs, people still appreciate methods like neural networks that can

provide some insights about the representations learned inside the network. Another example

is that, in identifying possible cancer patients, decision trees are much preferred than regression

methods because of its natural interpretability which provides much more insights for scientists

and doctors to look further into the biological meanings of those variables. This is also mentioned

in Bengio et al. [5] that the success of machine learning algorithms generally depends on data

representation, because different representations can entangle and hide more or less the different

explanatory factors of variation behind the data [5]. Although specific domain knowledge can be

used to help design representations, learning with generic priors can also be used, and the quest for

artificial intelligence is motivating the design of more powerful representation learning algorithms

implementing such priors [5].

3.3 Sufficient Representation – Statistical Desirable Qualities

So far, we have discussed some qualitatively desired properties of representation learning. In

this section, we would like to propose one statistical criteria, sufficiency, inspired from classical

Statistics.

To apply the idea to our proposed partition-based model, the key is to find a partition-based

representation such that, conditioned on the representation, the task and the raw features become

independent. If that is the case, then we don’t need to worry about the distributions of the raw

features, which, in some sense, may help variable selection and dimensional reduction at the same

time.

We need to assume that the raw data itself is always sufficient. This guarantees the existence

of a sufficient representation for any specific dataset.

24

3.4 Definition of Sufficient Representation

Here we would like to define, quantitatively, what a sufficient representation is. The idea is

the generalization of sufficient statistics. We have data including raw features X ∈ Rp, and there

may or may not be corresponding label Y . Here we assume Y ∈ R. Even if Y has more than

one dimension, we can deal with one of the dimensions each time, and we assume all of them

are independent. We also define a task θ. This θ can be, for example, estimating a parameter,

estimating a function, choosing a model, ..., etc. Whether θ is stochastic or not depends on the

design and application.

We would also like to define what we mean by “data” – a generalized idea. There are three

kinds of data: the observed, the futured, and the unobserved. The observed (or the collected) data

is the conventional data. They are the current data that we have already observed their values.

We will use subscripts to denote them in order to tell them apart; for example, Xi means the ith

observed data X . The future data is the imaginary data that may exist in the future, but unknown

to us at the current moment. The unobserved data can be either in the past, concurrent, or in the

future. Since it is never observed, it does not matter when it would happen. A hidden feature also

belongs to this category. We will see the importance of these distinctions later.

According to the task, a corresponding objective function fobj(Xi,Yi, θ), or fobj(Xi, θ), depend-

ing on the availability of Y , will be defined. We define the achievement of the task to be obtaining

the optimum solution, θ∗, to the objective function. This can be done analytically or computation-

ally. In practice, the achievement of the exact solution may not be feasible, but, still, one can try to

find a proxy or a subset to the optimum solution. The optimum solution can be written as

θ∗ = argmaxθ fobj(Xi,Yi, θ), or (3.1)

θ∗ = argmaxθ fobj(Xi, θ). (3.2)

Note that there may or may not be a “true” theoretical θ. Even if there is one, the optimum solu-

tion θ∗ from the objective function may or may not equal to the true value θ. Furthermore, when θ∗

25

is obtained by an optimization algorithm, it becomes a function of the algorithm. This gives prac-

titioners more flexibility in designing the objective function and the corresponding optimization

algorithm(s).

We define a sufficient representation Z to be a function of the data (X,Y), such that the achieve-

ment of the task is conditionally independent with the observed data (Xi,Yi), given the representa-

tion. That is,

θ∗ ⊥⊥ (Xi,Yi)
N
i=1 |Z, or (3.3)

θ∗ ⊥⊥ (Xi)
N
i=1 |Z (3.4)

One quick example is to perform MLE on Normally-distributed data – the objective function

3.2, is the Normal likelihood function, and the task θ is to estimate the mean of the Normal distri-

bution (assuming the variance is known). According to the theory of MLE, the sufficient statistic is

the sample mean. We then interpret (in the representation learning setting) that, the sample mean

is the representation for the data in achieving the task of estimating the population mean. In other

words, since it is the representation, to estimate the population mean, all we need is the sample

mean and we can throw away other information in the raw data. However, the missing piece in

classical theory is that the task for MLE learning is for inference, so the results are for inference

purpose. If we want more from the results of MLE, such as prediction, it is a wrong use of the

model and may lose the interpretability as well.

Next, we would like to propose that, one dedicated objective function should be used for one

task at a time. There may not be a universal mathematical benefit of doing this, but this will guar-

antee the interpretability of the representation. For example, if our goal is to perform dimension

reduction and linear regression, we compare the following two methods: (1) a principle component

analysis (PCA) is performed first, and then use the resulting principle components for a linear re-

gression, and (2) a linear regression with L-1 penalty (i.e. LASSO). While there are pros and cons

for these two methods, we can always say that (1) has a better interpretability than (2), because it

26

has a dedicated step for dimension reduction and another one for regression. So we can interpret

the results separately; while in (2), the dimension reduction is almost done inside a black-box – it

is very hard to interpret the result.

Finally, there is a connection between the objective function and the algorithm that is used to

optimize the objective. Even for the same objective function, different optimizing algorithms may

yield different solutions. So it is important to specify the pair of “objective function + optimization

algorithm” together.

More examples will be present later in this chapter. Before that, we would like to give a general

guideline of the procedures that one should follow for performing our proposed representation

learning.

3.5 Representation Learning Procedure

In order to implement our proposed sufficient representation learning, we propose the following

procedures:

1. Define the task, the corresponding objective function, the optimization algorithm (if no ana-

lytical solution), and the desired form of the representation.

2. Define the joint distribution of every variable including the representation, and decompose

the likelihood up to the desired level of hierarchy. Choose prior(s) if needed.

3. Find the optimum solution to the objective function and check the sufficiency of the repre-

sentation.

4. Use data to perform the algorithm.

5. Interpret the results or assess the goodness of the learned representation.

27

3.6 Notation

In the following sections, more examples will demonstrate how this sufficiency can be achieved

in different contexts. Here let us define the notations and terminologies that will be used later in

this chapter.

If X ∈ Rp is a vector that has p dimensions, we will denote each dimension component by

X (k), where k means the ith dimension component. In other words, X = (X (1),X (2), ...,X (p)). If X

represents a dataset, then we call X (1) the first feature, X (2) the second feature, ..., etc. We will use

subscriptions to denote the sample index; for example, X (1)i means the value of the first feature X (1)

for the ith sample. Without special explanations, X is for the independent variables, or features;

and Y is for the response variables, or labels.

For collected data, we will denote it by (Yi,X
(1)
i ,X (2)i , ...,X (p)i)

N
i=1 or (X (1)i ,X (2)i , ...,X (p)i)

N
i=1, de-

pending on the availability of Y . i is for the index of the (unordered) data values.

3.7 Toy Example

Suppose the true model is Y = X (1) + log X (1) + ε , where Y is the response variable, X (1) is

the only true feature, ε is the error that follows a standard Normal distribution and is independent

with X (1). In reality, we collect data (Yi,X
(1)
i ,X (2)i)

N
i=1, where X (1) is the first feature and X (2) is the

second feature in the dataset. In other words, there are redundant features in the dataset. However,

in practice, we don’t know which features are redundant, nor the true model. How should we

model the data?

The common practice that we see is to jump right into some type of regression, hoping that one

magical model will do it all.

However, we propose that let us pause for a second and define the task first, since, modeling

the data is not done blindly; instead, it should be task-oriented.

Task 1: In our first example, let’s say Task 1 is to predict future Y ; that is, to obtain the

optimum estimator for future Y , denoted by Ŷ . The corresponding objective function is chosen to

28

be minimizing the expected square loss E(1
N

∑
i(Yi − Ŷ)2), where the predicted future value, Ŷ , is

constructed from the current dataset, and Yi’s are the actual future data. We assume that the future

X are known, so there is no need to be worried about the uncertainty for X . From machine learning

theory, we know the bias-variance decomposition:

Assume y = f (x) + ε is the true model and f̂ is the estimator for f , then we have (3.5)

E(
1
N

∑
i

(Yi − Ŷ)2) = E(Y − Ŷ)2 (3.6)

= E(f (x) + ε − ˆf (x))2 (3.7)

= E(ε)2 + E(f (x) − E(ˆf (x)))2 + E(ˆf (x) − E(ˆf (x)))2 (3.8)

= E(ε)2 + (f (x) − E(ˆf (x)))2 + E(ˆf (x) − E(ˆf (x)))2 (3.9)

The minimum of Equation 3.9 is obtained at E(ε)2, which is the variance of Y . This is often

called the irreducible error. One obvious solution is when Ŷ = f (x).

f (x) = argminŶ E(
1
N

∑
i

(Yi − Ŷ)2), (3.10)

and it obviously satisfies the sufficiency condition Equation 3.3:

f (X) ⊥⊥ (Yi,X
(1)
i ,X (2)i)

N
i=1 |Ŷ = f (X), (3.11)

where X without subscriptions is for future values, and Xi and Yi with subscriptions are for

values in the collected data.

However, to obtain the exact true function almost never happens in reality.

Since the task of prediction is actually much less than obtaining the whole true function, the

solution becomes much more obtainable and practical, if we are willing to say that, we are not

trying to find the true function; instead, we are trying to find a function that can perform the task

of prediction as well as the true function. This new function that we construct has our own desired

29

properties and is called a representation.

For example, if we use nonparametric regression methods such as a spline and find the esti-

mated function f̂spline(x). Let’s assume that, for all x within our interest of prediction, f̂spline(x) =

f (x). Then we also have the sufficiency condition just like Equation 3.11:

f (X) ⊥⊥ (Yi,X
(1)
i ,X (2)i)

N
i=1 | f̂spline(X), (3.12)

while the functional form of f̂spline(x) can be totally different from the true f (x). We call

f̂spline(x) a representation, because it contains our belief of looking at the data through the lens of

the basis functions of the spline, and the results are interpretable using lingos in spline models.

In sum, in this example, we used useful representations of the raw features X for the task of

predicting future Y . A representation is sufficient if we can fulfill the task using the representation

only, instead of using the raw features.

Task 2: In our second example, let’s say Task 2 is to find influential variables that helps to

predict Y , then identifying X (1) alone is sufficient for this task, regardless of the functional form.

How can we correctly identify X (1)? We propose using our partition-based model and use I-Score

as the selection criteria with backward dropping algorithm. In this framework, the partitions in

X (1) is sufficient for fulfilling this task, and the corresponding representation is each local mean of

Y inside the partitions. More detailed discussion will be present in Chapter 4.

Identifying influential variables is not a typical task in statistical machine learning. However,

it is useful for many modern applications. Take, for example, the transfer learning in the context

of modern artificial neural networks. The idea is that, the labels Y of a picture may be “attached” a

posteriori, and we would like to be able to switch between different labeling domains. For example,

if we have a handful of pictures of cats and dogs, we can label them according to the animals inside

the picture, or we can also label them according to colorful or black-and-white picture. In this kind

of applications, we need to identify some general-purposed influential variables regardless of the

functional form. Since the exact functional form may change, if we switch from one domain to

30

another, the general-purposed influential variables are less likely to vary a lot from domain to

domain.

3.8 Representation Learning v.s. Generative Model Learning

Now we have defined our proposed representation learning framework, and we would like

to compare it with a generative modeling learning framework using the new viewpoints. The

purpose of this is to provide one more example for distinguishing our method with other existing

methods, as well as to pave the background for Chapter 7, when we will discuss the application in

a generative model.

Representation learning and generative model learning are two different problems by nature.

As discussed previously, representations are subjective in the sense that they reflect the way the

scientists interpret the data; while (generative) models are (mimicking) the true, objective data

generating process.

Let’s illustrate the idea using Figure 3.1, which shows the general idea of representation learn-

ing. Here we follow the same notations from Figure 2.2, except for adding Y , the response variable,

Z , the representation, and the task. It is obvious that, in representation learning, we want to learn

Z , and all the required information can be taken from X and Y , which are observable. However, if

we want to learn the generative model, we need to start with all the latent generating factors from

C1 to C4, which may not be viable in practice.

However, as we will develop later, representation learning can actually be beneficial to gen-

erative model learning. With the invention of variational autoencoder (VAE), researchers have

successfully combined these two kinds of learning together into one architecture. Kingma et al.

[40] proposed the idea that learning a generative model can feedback for representation learning.

Essentially, we can imagine the task in Figure 3.1 is connected back to the generating factors C1

to C4. On the flip side, to assess the goodness of the learned representation, one can assess the

goodness of samples generated based on the learned representation.

Now we have laid out the framework of representation learning, and proposed one desirable

31

Figure 3.1: An illustration of representation learning.

property of the representation. Next, we will shift our focus to how to design an objective function

for a specific set of representations, so that the learned representation is as sufficient as possible 1.

Let’s first do this by reviewing the objectives in the framework of latent variable modeling.

3.8.1 Searching For the Objectives For A Generative Model

Figure 3.2: Latent variable model.

There are many ways of modeling a generative model, one of which is through latent variable
1In some cases, the assessment of sufficiency may not be quantifiable.

32

modeling. In the existing literature, the formulation of latent variable model can be defined through

the graphical model as shown in Figure 3.2, where we have data {Xi}
N
i=1 and latent variable Z ,

where Xi ∈ R
p and is observable, while Z is not observable and the dimension depends on the

modeling.

The graphical model suggests the joint distribution of the observable X and the latent Z can be

factorized into

p(X,Z) = p(X |Z)p(Z) (3.13)

There are many different objectives for learning these types of model. Particularly, since Z is

unobservable, if one marginalizes the latent variable, the typical maximum likelihood method can

be applied on the observable X .

p(X) =
∫

p(X |Z)p(Z)dZ (3.14)

Note that since only the data X is observable, if we start from Equation 3.14, there are many

different ways of specifying latent variable Z’s. In other words, there is no one unique solution to

the latent variable Z’s, even if there truly exists one.

One of the oldest method for learning this kind of model is the expectation-maximization (EM)

algorithm. In that setting, we have a pre-defined parameterized distribution of Z , denoted by

p(Z). The inference goal is to learn the parameters in the joint distribution of X and Z , denoted

by pθ(X,Z), where θ is the parameter of interest. The distribution is often assumed to be from

an exponential family. Note that the key assumption for this method to work is that the joint

distribution pθ(X,Z) has to be fixed. In other words, if we change the distribution on the “prior”

p(Z), it cannot change the joint distribution pθ(X,Z). However, how to specify p(Z) remains

difficult in practice.

Later, in the variational inference (VI) framework, people claimed that they don’t need to

specify the real distribution p(Z); instead, it is only required to specify a proxy q(Z) to p(Z |X). In

33

our representation learning lingo, this q(Z) is the representation for p(Z |X). And the goodness of

the representation is assessed by the K-L divergence between the proxy q(Z) and the true p(Z |X).

Since

KL(q(Z)| |p(Z |X)) = −Eq[logp(Z,X) − logq(Z)] + logp(X) (3.15)

⇒logp(X) − KL(q(Z)| |p(Z |X)) = Eq[logp(Z,X) − logq(Z)], (3.16)

minimizing KL(q(Z)| |p(Z |X)) is equivalent to maximizing the evidence lower bound (ELBO),

Eq[logp(Z,X) − logq(Z)] . Furthermore, it is interpreted that, since ELBO is the lower bound of

logp(X), maximizing the ELBO is identical to maximizing the log-likelihood. So it’s the best of

both worlds – not only they find a way to perform Bayesian inference in a computationally-efficient

fashion, they also preserve the good tradition from classical Statistics (the MLE).

However, there is no free lunch. We would like to point out two cautions for this interpreta-

tion. First, for generative model learning, it may be sufficient to use typical MLE as the learning

objective, since the purpose of MLE is for inference (under the correct model specification); nev-

ertheless, for representation learning, MLE may not suffice to be the optimum objective. Second,

in this framework, people often overlook the importance of the population p(X,Z) being fixed. As

mentioned earlier, if we only observe X , there is no way to identify one unique Z . Thus resulting

non-unique joint distribution p(X,Z). If p(X,Z) is not unique, ELBO is not unique, and it is unfair

to compare across different models with different lower bounds.

A similar argument was proposed by [fixing the broken ELBO], in which the authors argued

that the learning of representations in the context of variational inference should be expanded into

a two-dimensional problem by both considering the reconstruction and the distortion rates. In our

point of view, this is the same as saying the key population quantity of interest is no longer p(X)

alone, but the joint p(X,Z). In the ELBO, the first term gives us the first dimension, which is

the reconstruction of observable X , given a chosen Z , and the second term is about choosing one

optimum Z .

34

So far, although both EM and VI claim to be able to learn a latent representation based on

a pre-specified Z , we still need to clarify the difference between generative model learning and

representation learning: If the learning goal is only pertaining to the marginal distribution of p(X),

any p(Z) may be useful, since we will marginalize p(Z) anyway. However, if the learning goal

is to learn a good or even an optimum latent variable, Equation 3.14 formulation does not suffice.

In fact, there is no one unique p(Z), and there is no way for the machine to automatically learn a

“meaningful” p(Z) if we do not put any constraints on it. Furthermore, how “meaningful” p(Z)

really depends on how we want to use the latent variables for. This once again emphasizes the

importance of pre-specifying the meaning of the representation before the learning starts.

In the following chapters, we will focus on partition-based models and the design the proper

objective function for representation learning. In our setting, the latent variable creates partitions

on the feature space. Conditioned on each partition, the distribution of the data is homogenous.

3.9 Summary

In this chapter, we proposed our definition for a statistically desirable data representation, and

developed a learning framework for the representation. We will use this framework to further im-

plement a learning methodology incorporating the I-Score, and also use the framework to examine

other existing learning methodologies in the coming chapters.

35

Chapter 4: I-Score Sufficient Representation Learning

4.1 Partition-based Representation Learning

From a black-box model’s point of view, one of the major challenges of modeling is to tell

signals apart from noises. The culprit of this problem stems from (1) the observed data always

contains noise (although this is an assumption, it is hard to be refuted) (2) the paradigm lets data

to select the model, instead of the other way around. The result of learning from this paradigm

is often over-fitting. From statistical inference viewpoint, (1) is also an accepted assumption, and

people avoid (2) by choosing a pre-fixed model. However, although the statistical thinking is more

“careful”, in practice, it is hard to not wanting to select the model after seeing the data. In addition,

no one ever knows the “true” model, which adds on even more restriction on the usage of a pure

statistical inference procedure in practice.

In this chapter, we consider partition-based representations and study them in detail. Partition-

based models caught our attention because of their niche in performing model selection without

model fitting. It prevents overfitting by restricting the class of the representations to be partitions

in the feature space.

Another property of partition-based models is that although the idea is similar to latent variable

models in the sense that each observed data is implicitly being assigned to a hidden cluster, the

potential number of clusters in a partition-based model can grow with the sample size (i.e. not

pre-fixed), which makes it a nonparametric method.

One of the existing commonly-seen partition-based models are the decision trees. However,

trees ignore the structures inside the features, especially correlations between the features. Our

proposed method has an advantage over tree-based methods in this regard.

Another distinction between our proposed method and tree-based methods is that our method

36

can be implemented either top-down or bottom-up, while tree-based methods are always top-down

– building models from one variable at first and gradually grow the tree into further branches.

4.2 Problem Setup

Assume the true data generating process is depicted as the graphical model shown in Figure 4.1.

First, there are some generating factors C, which then generates the observed data X . Then, the

labels Y are generated accordingly. The labels Y may or may not be observable. Also, labels can

switch domains, such as switching from classifying the type of animal in the photo to classifying

the season in which the photo was taken.

The representation Z learning is illustrated in Figure 4.2. The desired representation Z should

satisfy the conditional independence property, Y ⊥⊥ X |Z . We will find an objective function that

encourages this learning process.

Depending on the task and the corresponding objective function, the sufficient representation

changes accordingly. Let’s take two examples:

4.2.1 Inference

If the task is to perform inference and the corresponding objective function is the likelihood

function, then we have the following decomposition, when we have pairs of data (Xi,Yi)
N
i=1, where

N is the sample size, C the true data generating factors and Z , the learned representations.

p(Yi,Xi) =

∫
Z

p(Yi,Xi , Z)dZ (4.1)

=

∫
Z

p(Yi |Xi , Z)p(Z |Xi)p(Xi)dZ (4.2)

=

∫
Z

p(Yi |Z)p(Z |Xi)p(Xi)dZ (4.3)

= p(Xi) ·

∫
Z

p(Yi |Z)p(Z |Xi)dZ (4.4)

37

Let me explain the above steps in detail: in Equation 4.1, this is the result of assuming that the

data generation process follows Figure 4.1. Equation 4.2 is the ideal decomposition of the data gen-

erating process after our proposed representation learning, illustrated in Figure 4.2. Equation 4.3

follows from the desired property of representation learning; that is, the conditional independence

property, Y ⊥⊥ X |Z . The result in Equation 4.4 shows that, by introducing such a representation,

to model the joint distribution p(Yi,Xi), it can actually be broken into modeling p(Xi), p(Yi |Z), and

p(Z |Xi), separately.

Figure 4.1: Data generating assumption.

Figure 4.2: Proposed decomposition of representation learning.

38

4.2.2 Prediction

If the task is to predict future values of Y and the corresponding objective function is the

empirical square loss. We know from statistical theory that the conditional expectation is the best

predictor under square loss. That is,

E(Y |X) ∈ argmin
g(x)

E[(Y − g(X))2] (4.5)

If we have a representation Z such that E(Y |X) = E(Y |Z), the representation is sufficient for

prediction through squared loss.

4.3 Sufficient Gaussian-Partition Model – Unsupervised

In this section, we will demonstrate the proposed representation learning in detail using a para-

metric Gaussian mixture model.

4.3.1 Model Assumption and Learning Objective

In a Gaussian mixture model, we have observable random variable X and unobservable latent

partition/cluster 1 assignment mechanism Z , where X |Z is one-dimensional Gaussian, and θk is

the corresponding parameter(s). We also assume that Z itself follows a categorical distribution,

and p(Z = πk) = ηk is the corresponding parameter(s). Here the representation is X |Z .

When fitting the model, we have data {Xi}
N
i=1, where N is the sample size. We assume model

Mk to be a k-partitioned model, 1 ≤ k ≤ n, over which there is a categorical distribution. Here

we assume that there exists a partition model such that the noises within partitions are iid from the

same distribution, while the noises between different partitions are independent. Since we don’t

observe Z , we need to estimate the number of k. We will do this as part of the model selection.

1In this example, we will use these two terms interchangeably.

39

4.3.2 Example

Here we demonstrate an unsupervised learning example. The objective function is the log

likelihood function. The data generating process is illustrated in Figure 4.3

Figure 4.3: Data generating process assumption (unsupervised).

1. Define the task, the corresponding objective function, and the desired representation.

We would like to cluster the observed X’s into several homogeneous partitions, such that,

conditioned on each partition, the distribution of the local observations follows a Gaussian

distribution. We would like to use maximum likelihood as the objective function.

2. Define the joint distribution of every variable and parameter, and decompose the like-

40

lihood up to the desired level of hierarchy. Choose prior(s) if needed.

p(Xn, Zk, θk, ηk,Mk) = p(Xn |Zk, θk, ηk,Mk)p(Zk |θk, ηk,Mk)p(θk |ηk,Mk)p(ηk |Mk)p(Mk)

(4.6)

= p(Xn |Zk, θk,Mk)p(Zk |ηk,Mk)p(θk |Mk)p(ηk |Mk)p(Mk) (4.7)

= p(Xn |Zk, θk,Mk)p(Zk |ηk,Mk)p(Mk) (4.8)

= Πk[[N(Xn |µk, σk) · p(Zi = k |ηk,Mk)]
I(Zi=k) · p(Mk) (4.9)

We assume that we don’t have particular prior information to consider, so we dropped the

prior terms for the hyperparameters, p(θk |Mk) and p(ηk |Mk); however, we keep the prior on

the model selection, namely, p(Mk), as a controlling factor of model complexity. As a result,

the marginal likelihood is p(Xn |Zn, θk,Mk), and the priors are p(Zn |ηk,Mk) and p(Mk).

Therefore, the log likelihood is

log p(X1, ...,Xn |µk, σk, ηk .Z,Mk) (4.10)

=
∑

i

log[Πk[N(Xn |µk, σk) · p(Zi = k |ηk,Mk)]
I(Zi=k)] + log p(Mk) (4.11)

=
∑

i

∑
k

I(Zi = k) log(ηk N(Xi |µk, σk)) + log p(Mk) (4.12)

=
∑

i

{

K∑
k=1

I(Zi = k) log(ηk) +

K∑
k=1

I(Zi = k) log[N(Xi |µk, σk)]} + log p(Mk) (4.13)

=

K∑
k=1

nk log(ηk) +
∑

i

K∑
k=1

I(Zi = k) log[N(Xi |µk, σk)] + log p(Mk) (4.14)

Note that the uncertainties considered here are (1) model uncertainty (how many clusters)

and (2) uncertainty of assigning each data point to which cluster.

For model uncertainty, we propose a prior based on Stirling number of the second kind (or

Stirling partition number). It is proportional to
∑k

i=1 n2
i , where k is the number of clusters in

model Mk . We will show more explanation about this prior in later section.

41

For assignment uncertainty, we try some possible assignments and use empirical estimation.

Contrasted to common practice, in which people estimate the assignment uncertainty by the

posterior probability, p(Zi = k |Xi), we use an algorithm called backward dropping to search

for possible assignments.

3. Define several candidate models, inside which the desired representation should be

specified.

Here the candidate model Mk is the partition model with k partitions, where k can potentially

be from 1 to N , the sample size. In other words, on one extreme case, there is one cluster

for each data point; on the other side, all the data points belong to the same cluster. The

representation inside each cluster is the Gaussian mixture components. That is, p(X |Z = k)

follows Normal(µk, σ
2
k).

4. According to the objective function, develop an algorithm.

In this example, we are able to further simplify Equation 4.14 – To eliminate Z from Equation 4.14,

we can either (1) take expectation with respect to it, or (2) use empirical estimate to substitute for

it. Here we can only do (2), since each assignment is hard assignment and observed in the sense

that we try possible combinations all out.

When X is univariate, Equation 4.14 equals

log p(X1, ...,Xn |µk, σk, ηk .Z,Mk) (4.15)

=

K∑
k=1

nk log(ηk) +
∑

i

K∑
k=1

I(Zi = k) log[N(Xi |µk, σk)] + log p(Mk) (4.16)

=

K∑
k=1

nk log(ηk) −
∑

i

K∑
k=1

I(Zi = k)[
nk

2
logσ2

k +
(Xi − µk)

2

2σ2
k

] + log p(Mk) (4.17)

42

Then the objective function for selecting the optimum model is

M∗ = argmax
Mk

log p(X1, ...,Xn | µ̂k, σ̂k, η̂k, Ẑ,Mk) (4.18)

= argmax
Mk

K∑
k=1

nk log(η̂k) +

N∑
i=1

K∑
k=1

I(Ẑi = k) log[N(Xi | µ̂k, σ̂k)] + log p(Mk) (4.19)

= argmax
Mk

K∑
k=1

nk log(η̂k) −

N∑
i=1

K∑
k=1

I(Ẑi = k)[
nk

2
log σ̂2

k +
(Xi − µ̂k)

2

2σ̂2
k

] + log p(Mk) (4.20)

= argmax
Mk

K∑
k=1

nk log(η̂k) −

N∑
i=1

K∑
k=1

I(Ẑi = k)[
nk

2
log σ̂2

k +
(Xi − µ̂k)

2

2σ̂2
k

] + log
∑

k n2
k

N
, (4.21)

where η̂k =
nk
N , µ̂k =

∑nk
i=1

Xi

nk
, σ̂2

k =
∑nk

i=1
(Xi−µ̂k)

2

nk
, and Ẑi can done by simulating possible condi-

tions.

So the basic algorithm is, we first select a random partition model, and then calculate the corre-

sponding log-likelihood 4.52. Iterate this process several times and find out the one partition model

with the highest log-likelihood 4.52 – this yields the optimum M∗. Once we find the optimum M∗,

we can calculate the corresponding η̂k =
nk
N , µ̂k =

∑nk
i=1

Xi

nk
, and σ̂2

k =
∑nk

i=1
(Xi−µ̂k)

2

nk
.

When the sample size is small, it is possible to iterate through all possible partitions (exhaustive

search); otherwise, we first select a random partition of a pre-defined size, and then perform back-

ward dropping algorithm within each iteration. Every time only the one model with the highest

log-likelihood will survive. Finally we can compare all the iteration results and find the one with

the highest log-likelihood.

Numerical example:

Suppose our data is {1,2,3,4,5,6} and we want to come up with a reasonable prior such that it

can promote the middle-ground selection of number of clusters.

Intuitively, we know both ends of the extremes – treating all 6 points as one big cluster, or,

contrarily, treating each point as a group by itself – are bad options, for one being under-fitting

and the other over-fitting. Note that we are not saying it is impossible for either of them to be the

43

“ground truth” – we are just saying that we want to construct a prior based on the data to encourage

something not too extreme. Afterwards it will all depend on the practitioner’s use, and our prior

can serve at least as a reasonable initial guess.

If we consider all possible partitions, and calculate the corresponding value of Equation 4.52,

we get the top-rated partitions as shown in Figure 4.4, which seems indeed doing what we would

like to achieve:

Figure 4.4: Partitions ranked by the proposed procedure.

4.3.3 Stirling prior

The motivation of the problem is – how to create an empirical distribution based on the number

of observations in each partition that has a (slightly right-skewed,) bell-shape like distribution?

If the prior is proportional to the sum of the counts, it stays constant, no matter which model is

under consideration. Or we may call this the uniform prior. However, if we take the square sum

44

or the sum of n log n, the distribution will be something that gives the peak in the middle of the

distribution. Here is one demonstration of the distribution of the sum of some power of the number

of counts in each partition using ten observations:

Figure 4.5: Histograms on the number of partitions.

One intuition of the distribution of the sum of squares when the sum is a constant can be shown

graphically in the Figure 4.6:

Each side of the square stands for the sum of the lengths, which is a constant, and the sum of the

shaded square areas are the sum of the square of the lengths. Obviously there are more possibilities

when the partitions aren’t on the extreme ends; thus putting more prior on the distribution that

emphasizes not on the extremes. Also, one can think of this as partitioning the co variance matrix

into several clusters.

Also note that the distributions above is independent from the value of the observations. In

other words, the prior on the models p(Mi) is motivated from the data, but it is not used for param-

eter estimation, and thus it won’t cause overfitting.

45

Figure 4.6: Intuition for the partition selection mechanism.

Using this neat trick to set the prior on models can help selecting the model “in the middle”

and slightly towards the lower end. This helps prevent either overfitting or underfitting.

4.4 Sufficient Gaussian-Partition Model – Supervised

4.4.1 Notation

The data is a set of {(Yi,Xi)}
N
i=1. Y is the label. X ∈ Rp is the raw feature set consisting of

p features. Here we consider all the features are discrete. If we composite all the p features, we

obtain partitions over the feature space, π1, π2,..., πK , where K is the total number of partitions.

For example, if each feature takes 2 discrete values, then K = 2p. We use Π to denote the random

variable that has a categorical distribution over the partitions. We also assume that, given p fea-

tures, not all of these features are necessary for prediction purpose. That being said, if we take a

subset of m features, where m < k, the corresponding model will have less than K partitions. We

use model 2 Mk to denote the k-partitioned model.

2Note that here what we mean by “model” is referring to the corresponding number of partitions in that represen-
tation, instead of the usual way people use in Statistics lingo.

46

4.4.2 Model Assumption and Learning Objective

Assume there exists a function f (X) such that (one may interpret such f (·) as a hidden feature

constructed from X) the following joint distribution and the decomposition holds:

p(Yn,Xn, θk, ηk,Mk) = p(Yn,Xn, f (Xn), θk, ηk,Mk) (4.22)

= p(Yn,Xn | f (Xn), θk, ηk,Mk)p(f (Xn)|θk, ηk,Mk)p(θk |ηk,Mk)p(ηk |Mk)p(Mk)

(4.23)

= p(Yn,Xn | f (Xn), θk,Mk)p(f (Xn)|ηk,Mk)p(θk |Mk)p(ηk |Mk)p(Mk) (4.24)

= p(Yn,Xn | f (Xn), θk,Mk)p(f (Xn)|ηk,Mk)p(Mk) (4.25)

= p(Yn |Xn, f (Xn), θk,Mk)p(Xn | f (Xn),Mk)p(f (Xn)|ηk,Mk)p(Mk) (4.26)

= p(Yn | f (Xn), θk,Mk)p(f (Xn)|ηk,Mk)p(Mk) (4.27)

(4.28)

where θk is the parameters for Y |X in model Mk , and ηk is the parameters for f (X) in model Mk .

The data generating process is illustrated in the graphical model shown in Figure 4.7

The term p(Xn | f (Xn),Mk) represents the amount of information lost when we use f (Xn) only

to predict Y , instead of using Xn. When p(Xn | f (Xn),Mk) = 1, it means that there is no information

loss by just using f (Xn). Such a condition can be achieved by the partition model.

In Equation 4.27, we assumed that the desirable latent variable f (Xn) can satisfy Yn ⊥⊥ Xn | f (Xn).

If f (Xn) has lesser dimension than X , then it serves as a dimensional reduction technique. One

example would be, if we first perform PCA on all the predictors X and then regress Y on the

reconstructed X′ (reduced dimension).

There are two tasks that we may be interested in, one is variable selection through Z , the other

being prediction. Regarding to prediction, according to Bayesian model averaging theory, the

47

Figure 4.7: Data generating process assumption (supervised).

optimum prediction under square loss is the average posterior mean

E(Y |Yn,Xn) =
∑
Mk

E(Y |Mk,Yn,Xn)p(Mk |Yn,Xn) (4.29)

In practice, we may substitute the model averaging part with the optimum model selected –

E(Y |Yn,Xn) =
∑
Mk

E(Y |Mk,Yn,Xn)p(Mk |Yn,Xn) (4.30)

≈ E(Y |M∗,Yn,Xn) (4.31)

which is equivalent to the empirical Bayesian procedure.

4.4.3 I-score for Supervised Variable Selection With Discrete Features

Model Assumption

The scenario we consider is – We have data {(X1,Y1)..., (Xn,Yn)}, where X is the feature/predictor

and Y is the response/label. X ∈ Rp and all of them are discrete. Our model assumption is that,

48

conditioned on model Mk , there are k hidden partitions which are formed by the composition of a

subset of X , 1 ≤ k ≤ |ΠX |. Observations Y that are from the same partition are i.i.d. from some

N(µk, σ
2
k) distribution. Unlike the unsupervised counterpart, where the partitions are completely

clueless, here we have the features X to guide the selection of partitions.

Algorithm

1. Define the task, the corresponding objective function, and the desired representation.

We would like to cluster the observed Y ’s into several homogeneous partitions, such that,

conditioned on each partition, the distribution of the local observations follows a Gaussian

distribution. We would like to use maximum a posteriori as the objective function.

p(Yn | µ̂k, σ̂k, η̂k, Ẑk,M∗) is the representation, and we would like to learn the optimum f (·)∗

from MAP:

f (·)∗ = argmax f (Xi)
p(f (Xi)|Y1, ...,Yn) (4.32)

∝ ΠiΠk[N(Yi |µ(f (Xi)), σ
2) · p(f (Xi) = k |ηi)]

I(f (Xi)=k) · p(Mk) (4.33)

2. Define the joint distribution of every variable and parameter, and decompose the like-

lihood up to the desired level of hierarchy. Choose prior(s) if needed.

49

p(Yn,Xn, θk, ηk,Mk) = p(Yn,Xn, f (Xn), θk, ηk,Mk) (4.34)

= p(Yn,Xn | f (Xn), θk, ηk,Mk)p(f (Xn)|θk, ηk,Mk)p(θk |ηk,Mk)p(ηk |Mk)p(Mk)

(4.35)

= p(Yn,Xn | f (Xn), θk,Mk)p(f (Xn)|ηk,Mk)p(θk |Mk)p(ηk |Mk)p(Mk)

(4.36)

= p(Yn,Xn | f (Xn), θk,Mk)p(f (Xn)|ηk,Mk)p(Mk) (4.37)

= p(Yn |Xn, f (Xn), θk,Mk)p(Xn | f (Xn),Mk)p(f (Xn)|ηk,Mk)p(Mk)

(4.38)

= p(Yn | f (Xn), θk,Mk)p(f (Xn)|ηk,Mk)p(Mk) (4.39)

= N(Yi |µ(f (Xi)), σ
2) · p(f (Xi) = k |ηk,Mk) (4.40)

where θk is the parameters for Y |X in model Mk , and ηk is the parameters for f (X) in model

Mk . 1 ≤ k ≤ |Πx |, and the distribution of p(f (Xn)) is a categorical distribution where

ηk = {p1, ..., pk}. The distribution of p(Yn | f (Xn), θ,Mk) is assumed to be Gaussian with

parameter θk = {µk, σ
2}. We dropped the prior on the model selection, p(Mk) because of

the presence of X . Here the prior isn’t as crucial.

Next, let us write down the posterior (likelihood) as

p(f (Xi)|Y1, ...,Yn) ∝ Πi

∑
k

[N(Yi |µ(f (Xi)), σ
2) · p(f (Xi) = k |ηi)]

I(f (Xi)=k) (4.41)

Therefore, the log posterior likelihood is

50

log p(f (Xi)|Y1, ...,Yn) ∝
∑

i

log[
∑

k

[N(Yi |µ(f (Xi)), σ
2) · p(f (Xi) = k |ηi)]

I(f (Xi)=k)] (4.42)

=
∑

i

∑
k

I(Zi = k) log(ηk N(Xi |µk, σk)) + log p(Mk) (4.43)

=
∑

i

{

K∑
k=1

I(Zi = k) log(ηk) +

K∑
k=1

I(Zi = k) log[N(Xi |µk, σk)]} + log p(Mk)

(4.44)

=

K∑
k=1

nk log(ηk) +
∑

i

K∑
k=1

I(Zi = k) log[N(Xi |µk, σk)] + log p(Mk)

(4.45)

Note that the uncertainties considered here are (1) model uncertainty (how many partitions)

and (2) uncertainty of assigning each data point to which partition.

Still, just as the unsupervised case, for assignment uncertainty, we use the backward drop-

ping algorithm to search for possible assignments.

3. Define several candidate models, inside which the desired representation should be

specified.

Here the candidate model Mk is the partition model with k partitions, where k can potentially

be from 1 to N , the sample size. In other words, on one extreme case, there is one partition

for each data point; on the other side, all the data points belong to the same partition. The

representation inside each model is the Gaussian mixture components. That is, p(Y | f (X) =

k) follows Normal(µk , σ2
k).

4. According to the objective function, develop an algorithm.

In this example, we are able to further simplify Equation 4.14 – To eliminate Z from Equation

4.14, we can either (1) take expectation with respect to it, or (2) use empirical estimate to

substitute for it. Here we can only do (2), since each assignment is hard assignment and

51

observed in the sense that we try possible combinations all out.

When X is univariate, Equation 4.14 equals

log p(X1, ...,Xn |µk, σk, ηk .Z,Mk) (4.46)

=

K∑
k=1

nk log(ηk) +
∑

i

K∑
k=1

I(Zi = k) log[N(Xi |µk, σk)] + log p(Mk) (4.47)

=

K∑
k=1

nk log(ηk) −
∑

i

K∑
k=1

I(Zi = k)[
nk

2
logσ2

k +
(Xi − µk)

2

2σ2
k

] + log p(Mk) (4.48)

Then the objective function for selecting the optimum model is

M∗ = argmax
Mk

log p(X1, ...,Xn | µ̂k, σ̂k, η̂k, Ẑ,Mk) (4.49)

= argmax
Mk

K∑
k=1

nk log(η̂k) +

N∑
i=1

K∑
k=1

I(Ẑi = k) log[N(Xi | µ̂k, σ̂k)] + log p(Mk) (4.50)

= argmax
Mk

K∑
k=1

nk log(η̂k) −

N∑
i=1

K∑
k=1

I(Ẑi = k)[
nk

2
log σ̂2

k +
(Xi − µ̂k)

2

2σ̂2
k

] + log p(Mk)

(4.51)

= argmax
Mk

K∑
k=1

nk log(η̂k) −

N∑
i=1

K∑
k=1

I(Ẑi = k)[
nk

2
log σ̂2

k +
(Xi − µ̂k)

2

2σ̂2
k

] + log
∑

k n2
k

N
,

(4.52)

where η̂k =
nk
N , µ̂k =

∑nk
i=1

Xi

nk
, σ̂2

k =
∑nk

i=1
(Xi−µ̂k)

2

nk
, and Ẑi can done by simulating possible

conditions.

So the basic algorithm is, we first select a random partition model, and then calculate the

corresponding log-likelihood 4.52. Iterate this process several times and find out the one

partition model with the highest log-likelihood 4.52 – this yields the optimum M∗. Once

we find the optimum M∗, we can calculate the corresponding η̂k =
nk
N , µ̂k =

∑nk
i=1

Xi

nk
, and

σ̂2
k =

∑nk
i=1
(Xi−µ̂k)

2

nk
.

When the sample size is small, it is possible to iterate through all possible partitions (ex-

52

haustive search); otherwise, we first select a random partition of a pre-defined size, and then

perform backward dropping algorithm within each iteration. Every time only the one model

with the highest log-likelihood will survive. Finally we can compare all the iteration results

and find the one with the highest log-likelihood.

53

Chapter 5: Representation Learning In Genome-wide Association

Studies

5.1 Introduction

In this chapter, we will implement the learning framework outlined in the previous chap-

ter on real data. The application we consider here is the genome-wide association studies

(GWAS). A genome-wide association study (GWAS) is an approach used in genetics re-

search to associate specific genetic variations with particular diseases. The method involves

scanning the genomes from many different people and looking for genetic markers that can

be used to predict the presence of a disease. Once such genetic markers are identified, they

can be used to understand how genes contribute to the disease and develop better prevention

and treatment strategies [44].

Statistically, there are many challenges involved in modeling GWAS, such as the high-

dimensionality (about 500 thousands to 5 millions of SNP’s), non i.i.d. sample (due to family

structures), and lack of sample size. Here we will address the family structure problem by

attempting different mixed effect models.

Note: This chapter is adapted from Hsu et al. [45].

5.2 GWAS Background

To carry out a genome-wide association study, researchers use two groups of participants:

people with the disease being studied and similar people without the disease. Researchers

obtain DNA from each participant, usually by drawing a blood sample or by rubbing a cotton

54

swab along the inside of the mouth to harvest cells.

Each person’s complete set of DNA, or genome, is then purified from the blood or cells,

placed on tiny chips and scanned on automated laboratory machines. The machines quickly

survey each participant’s genome for strategically selected markers of genetic variation,

which are called single nucleotide polymorphisms, or SNPs.

If certain genetic variations are found to be significantly more frequent in people with the

disease compared to people without disease, the variations are said to be "associated" with

the disease. The associated genetic variations can serve as powerful pointers to the region of

the human genome where the disease-causing problem resides.

However, the associated variants themselves may not directly cause the disease. They may

just be "tagging along" with the actual causal variants. For this reason, researchers often

need to take additional steps, such as sequencing DNA base pairs in that particular region of

the genome, to identify the exact genetic change involved in the disease.

The impact on medical care from genome-wide association studies could potentially be sub-

stantial. Such research is laying the groundwork for the era of personalized medicine, in

which the current one size-fits-all approach to medical care will give way to more customized

strategies.In the future, after improvements are made in the cost and efficiency of genome-

wide scans and other innovative technologies, health professionals will be able to use such

tools to provide patients with individualized information about their risks of developing cer-

tain diseases. The information will enable health professionals to tailor prevention programs

to each person’s unique genetic makeup. In addition, if a patient does become ill, the in-

formation can be used to select the treatments most likely to be effective and least likely to

cause adverse reactions in that particular patient.

55

5.3 Statistical Problem

It is well known that genome-wide association studies (GWAS) may lead to spurious find-

ings if one fails to address the dependence among individuals such as that resulting from

family structure. If the true dependence structure is known, the best practice is to explicitly

incorporate this information into the analysis. However, the true dependence structure is

rarely available. Consequently, different strategies have been proposed to address this issue

[46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58].

Statistically, we use multilevel models to model complicated family structures. Multilevel

models, also known as variance component models, random effects models, or hierarchical

linear models, have seen rapid growth and development in many different fields. Multi-

level models provide a flexible regression modeling framework for handling data sampled

from clustered population structures, such as students within classes that are within schools,

patients within hospitals, repeated measurements within individuals, or children within fam-

ilies. Ignoring the multilevel structure of the data can lead to incorrect inferences that result

from underestimating the standard errors for the regression coefficients.

Linear mixed-effect regression models assume the family effect to be a random effect. The

covariance structure for the random effect is generally assumed to correspond to that implied

by a polygenic model, incorporating the genetic relationship (kinship) between each pair of

individuals. Although the use of this linear mixed-effect regression model was originally

proposed for pedigrees with known relationships [4] [47] [48] [49] [50], this approach is

popular for use with samples of unknown or uncertain relationship [51] [52] [53] [54] [55]

[56] [57] [58], including apparently unrelated samples that may nevertheless display distant

levels of common ancestry.

56

5.4 Data

The data set we use for this analysis is collected under the Genetics of Lipid Lowering Drugs

and Diet Network (GOLDN) study. It was designed to identify genetic determinants of lipid

response to two interventions: (1) a high-fat meal challenge and (2) fenofibrate treatment

for 3 weeks [59]. The dataset only includes families with at least two siblings. This family

information allow us for the analysis of family structural dependencies. Volunteers were

required to withhold lipid-lowering agents (pharmaceuticals or nutraceuticals) for at least

4 weeks prior to their initial visit. A total of 1053 met all eligibility requirements. For

the current study, we evaluated fasting triglyceride (TG) and very-low-density lipoprotein

cholesterol among 991 participants for whom epigenetic data were available [60].

5.5 Models

Using a linear mixed-effect model, we model the response to both the fixed effects X and

random effects Z as follows:

Y = Xβ + Zµ + ε, where (5.1)

µ ∼ N(0, σ2
µ Im) (5.2)

ε ∼ N(0, σ2
ε In) (5.3)

where Y is a vector of beta scores (the response in this study) with mean Xβ; β is an un-

known vector of fixed effects; µ is the vector of unknown random effects, with mean 0 and

the variance– covariance matrix proportional to the kinship matrix; and ε is an unknown

vector of random errors, with mean 0 and the variance–covariance matrix assumed to be

proportional to the identity matrix. X and Z are the observable and latent design matrices

respectively and Im and In are identity matrices with corresponding sizes m × m and n × n.

57

The variance–covariance matrix of Y is given by

Cov(Y) = σ2
µZ ZT + σ2

ε In (5.4)

Analysis of variance is one of the popular methods in the statistical literature to estimate

the variance components σ2
µ and σ2

ε . However, as we discussed in the I-Score section, the

decomposition of variance alone cannot be used as an objective function for selecting the

representations between signal and noise. So we need other methods such as I-Score to put

constraints on the representation selection mechanism. But the unique thing here for this

dataset is the family structure, which can used to specify the latent random effects Z , is

available.

So we assume that the latent random effects can totally be accounted by the family structure,

and attempt three different strategies to model it. First, we recreate the Irvin study [58]:

modeling the beta score as a function of TG level using mixed linear regression adjusted for

age, gender, study site, and 4 methylation principal components as fixed effects (namely, X in

Equation 5.1) and the family structure (Z in in Equation 5.1) as random effects. Throughout

the 3 models we try, the matrices X are identical, as in [58]. We made this decision because

our interest is in the evaluation of the covariance matrix introduced by the random effects Z ,

but not the fixed part X . Here, the kinship matrix is based on the theoretical estimates – the

probability of sharing genetic relatedness. We refer to this ideal option as the kinship option.

When the kinship information is not available, there are two other coping strategies: one

that assumes everyone in this study is independent, ignoring family structure (denoted as the

independence option), and one that uses only one randomly drawn representative individual

from each family (referred as the representative option). While these 3 modeling options

differ in the covariance matrix for the random effects, the fixed-effect parts remain the same.

Figure 5.1 illustrates the assumed variance–covariance matrices.

Option 1, in expectation, is equivalent to using centroids for each family, which is not always

58

Figure 5.1: Kinship coefficient matrices used in 3 modeling options for fitting the linear mixed-
effects model to data with family structures. (a) Option 1: representatives. (b) Option 2: kinship.
(c) Option 3: independent.

feasible for all data types.

Under the assumption that the assumed model is correct, the important single-nucleotide

polymorphisms (SNPs) identified by these 3 modeling options should have a nested struc-

ture as in Figure 5.2 in expectation, where the black box includes all SNPs and each circle

includes the significant SNP sets concluded from each model. In practice, we also expect

that the random variations in data and departures from model assumptions will lead to fewer

overlapped identified SNP sets. If the analysis results from real data meet these expectations,

it is only a matter of tradeoff between effective sample size and power. If any results from

real data analysis deviates from this theoretical expectation, it might suggest the need for

more detailed inspection of the coping strategies for family structures.

We use the lmekin function in R package coxme for the estimation of the mixed effect model

and compare the results from the 3 modeling options. This is done by using user-specified

variance functions. We use the 3 random effect structures explained previously in Figure

5.1 for the simulation. The results from the application to the GAW data set and a simple

simulation study are shown and discussed in the next section.

59

Figure 5.2: Ideal relation among significant SNP sets from 3 different modeling options.

5.6 Results

5.6.1 GWAS Data

We first apply the 3 modeling options for fitting linear mixed effects model to the GAW20

data. For each SNP, as in Irvin et al. [58], we test for statistical significant departure from

the null hypothesis that the SNP has no effect on the beta scores. The Manhattan plots

from these 3 modeling options are shown in Figure 5.3 and Figure 5.4. As expected, when

the effective sample size is small, as with the representative option, we have less power in

detecting significant SNPs. So the overall p values from option 1 are lower than those from

options 2 and 3. Figure 5.4 plots the results from options 2 and 3 together, because of their

similarity. While the chromatic dots show the results using the original Irvin et al. study [58],

the black dots are the significant findings from option 3. The results from these 2 options

are very similar. In fact, the top 100 significant SNPs identified using options 2 and 3 have

71 SNPs in common. Using option 1, cg12033043 from chromosome 8 is found to be the

most significant SNP. Using option 2, cg27026926 from chromosome 8, cg05599320 from

chromosome 1, cg13982695 from chromosome 11, cg27331738 from chromosome 8, and

60

cg00223867 from chromosome 8 are identified to be the top 5 significant SNPs, which are

among the top 100 SNPs identified by option 3.

Figure 5.3: Manhattan plots for option 1.

Figure 5.4: Manhattan plots for option 2 and option 3 (black dots).

This result does not completely meet our expectation. Both option 1 and option 2 are fitting

statistical valid models to the data, while option 3 (independence) is based on an incorrect

assumption. However, even though option 3 is under an incorrect assumption, it has a sub-

stantial overlap with option 2.

To understand what we observed in the real data analysis, we carry out a simple simulation

study to further compare the three coping options. We ran independently 3 sets of simu-

61

lations, in which we draw samples under the model assumed in eq. (1) to eq. (3), with

random effects from multivariate normal distribution and known variance–covariance struc-

ture. The results showed that, while option 2 has the highest discovery rate, the significant

SNP’s found by option 3 is still closer to the that found in option 2 than option 1 is.

This suggests a potential hybrid modeling option that combines results from the indepen-

dence option and the representative option when the kinship coefficients are not available.

5.7 Discussion

In this work, we evaluate different modeling options for coping with data with family struc-

ture in the context of genetics studies. Our analysis suggests the need for adjusting for

kinships. When kinship information is not known, we compare two opposite strategies, one

that treats all individuals in the study as independent and the other that approximately uses

the family centroid by randomly sampling 1 representative from each family. Our results

suggest that the cost of ignoring other members from a family (the representative option) is

greater than that of ignoring dependence among all individuals in a study (the independence

option). More research should be conducted to understand this phenomenon. From the re-

sults of a simple simulation, we suggest that both strategies should be used in practice and

that the focus should be on SNPs that are identified by both.

From representation learning point of view, the surprising result may due to that (1) the

kinship matrix isn’t sufficient for modeling the family structure, or (2) there may be more

hidden confounders that need to be adjusted for. All the hypotheses require more structured

data for an entailed further investigation.

62

Chapter 6: I-Score Representation Learning in Causal Inference

6.1 Introduction

Philosophically, there have been many debates about the right framework and the proper

definition of what causality is, and even debates about the existence of causality. Here we

would not get involved into these debates; instead, we would like to provide insights from

a representation perspective – we human understand the outside world through our own

representations of the world; therefore, whether there really exists causality or not is not an

issue for representations in human minds. All we care about is to use our own representation

of the world to fulfill our tasks. As long as the tasks can be achieved, whatever the mental

representations are isn’t what we are interested in pursuing. Furthermore, different people

may even have different mental representations.

To translate the above philosophical perspective into statistical language, we can say that, in

different scenarios (tasks are different), people may use different representations of the data,

and there is no “right” or “wrong” representation. As long as the representation can fulfill

the task, it is a reasonable one.

In statistical causal inference literature, the most common framework is the Neyman–Rubin

causal model. We will follow their setting and introduce how our proposed representation

learning can be fit into and even improve the current methods.

63

6.2 Neyman–Rubin Causal Model

The Neyman–Rubin causal model is an approach to the statistical analysis of cause and effect

based on the framework of potential outcomes – the name “Rubin causal model” was first

coined by Paul W. Holland [61], and the potential outcomes framework was first proposed

by Jerzy Neyman [62], who first discussed the problem only in the setting of completely ran-

domized experiments. Later, Rubin extended it into a general framework for thinking about

causation in both observational and experimental studies [63]. Because of its mathematical

clarity and practicality, this framework has become more and more popular in many fields,

including Statistics [61] [64], Medicine [65], Economics [66] [67] [68], Political Science

[69] [70], Sociology [71] [72] [73] and even Law [74].

Basically, this model is based on the idea of potential outcomes. For example, a person got

a flu and took an over-counter drug. Three days later, her symptoms became less and she

felt energized again. Is it because of the drug that cured her flu, or is it because of her own

immune system and there’s nothing to do with the drug? To measure the causal effect of the

drug, we need to compare the outcome for the same individual in both alternative futures.

Since it is impossible to see both potential outcomes in reality, one of the potential outcomes

is always missing. This dilemma is the “fundamental problem of causal inference”.

Because of the fundamental problem of causal inference, unit-level causal effects cannot be

directly observed. However, randomized experiments allow for the estimation of population-

level causal effects [75] – this is what we normally use Statistical inference for, where inde-

pendence between observations is required in the assumption. A randomized experiment can

create an artificial environment that can satisfy this independence assumption by assigning

people randomly to treatments: drug or no drug. Because of this random assignment, the

groups are (on average) equivalent, and the mean difference in the outcomes (discovery level

from the flu) can be attributed to the drug effect. An estimate of the average treatment effect

(ATE) can then be obtained by computing the difference in means between the treated and

64

the control observations.

In many circumstances, however, randomized experiments are not possible due to ethical or

practical concerns. In such scenarios there is a non-random assignment mechanism. This is

especially the case for clinical trials – not everyone is willing to or susceptible to take the

same drug, and let alone the same dosage. Because of this practical challenge, many statis-

tical methods have been developed for causal inference, such as propensity score matching.

These methods attempt to correct for the assignment mechanism by finding control units

similar to treatment units.

Another popular branch of methods is sample stratification. These methods attempt to find

stratifications in data such that the outcome and the treatment assignment are independent

within each stratum. If the stratifications are created based on some variables, we call these

variables the confounders. Mathematically, we are interested in finding confounders C such

that the outcome Y and the treatment assignment Z are conditionally independent: Y ⊥⊥ Z |C.

In proceeding with the above methodology, one precaution is to avoid Simpson’s paradox,

which is only apparent in the sense that the successes of groups seem reversed when the

groups are combined [76]. This result is often encountered in medical science statistics, and

occurs when frequency data are hastily given causal interpretation, the paradox disappears

when causal relations are derived systematically, through formal analysis. This paradox

is chiefly an issue of aggregated statistical analysis where separate in real life groups are

analyzed together [77] [78]. The variable that should have been used to separate these groups

are the confounders [76] [78].

6.3 Representation Learning in Causal Inference

As discussed in the previous section, the key probabilistic idea upon which statistical causal

inference relies is conditional probability. But when we are making causal inferences, con-

ditional probabilities are not themselves of direct interest. We use conditional probabilities

65

to learn about counterfactuals of interest. This is when our proposed representation learning

comes in handy. In other words, we would like to find representations f (X), where X stands

for some observable features/covariates and f (X) is a proper functional transformation of

X , such that the outcome Y and the treatment assignment Z are independent: Y ⊥⊥ Z | f (X).

These representations f (X) also serve the role as confounders.

6.4 Definition and Proposition

(a) Definition of a “Strongly Relevant Variable":

Given a set of covariates X = {X1,X2, ...,Xm}, a covariate Xk ∈ X is defined as strongly

relevant in terms of predicting the response variable Y if

P(Y |X) , P(Y |X−k)

where X−k = X \ {Xk},

and we will use this notation throughout this chapter.

(6.1)

(b) Definition of a “Weakly Relevant Variable":

Given a set of covariates X = {X1,X2, ...,Xm}, a covariate Xk ∈ X is defined as weakly

relevant in terms of predicting the response variable Y if

P(Y |X) = P(Y |X−k)

where X−k = X \ {Xk},

(6.2)

(c) Definition of a “Irrelevant Variable":

Given a set of covariates X = {X1,X2, ...,Xm}, a covariate Xk ∈ X is defined as strongly

relevant in terms of predicting the response variable Y if

P(Y |X) = P(Y |X−k)

where X−k = X \ {Xk},

(6.3)

66

(d) Definition of an “Unassociated Variable":

Given a set of covariates X = {X1,X2, ...,Xm}, a covariate Xk ∈ X is defined as

marginally unassociated to the response variable Y if

E(Y |X) = E(Y |X−k) (6.4)

(e) Definition of a “Noisy Variable":

Given a set of covariates X = {X1,X2, ...,Xm}, a covariate Xk ∈ X is defined as noisy

to the response variable Y if it is unassociated and is independent with all the other

covariates X−k.

E(Y |X) = E(Y |X−k) and Xk ⊥⊥ X−k (6.5)

(f) Definition of an “Association Set":

Given a set of covariates X and the response variable Y , after eliminating all the

marginally noisy variables, we call the remaining set an association set of X to Y and

will be denoted by XY.

Proposition: Given an association set XY = {X1,X2, ...,X j}, it has the property that

E(Y |XY) , E(Y |XY−i) ∀ i ∈ {1,2, ... j} (6.6)

(g) Definition of the “Minimum Association Set":

Given a finite set of covariates X = {X1,X2, ...,Xm} and the response variable Y , the

minimum association set out of X will be denoted by XYmin and is defined as follows:

67

XY ⊇ XYmin has the property that

For all elements Xi in XYmin,

�XI ⊇ Xi, s.t. E(Y |XYmin) = E(Y |XYmin \ XI); i.e.

∀XI ⊇ Xi, E(Y |XYmin) , E(Y |XYmin \ XI)

(6.7)

On the other hand, XY
c
min = {X1,X2, ...,X j} has the property that

For all elements Xi in XY
c
min,

∃XI ⊇ Xi, E(Y |XY
c
min) = E(Y |XY

c
min \ XI)

(6.8)

(h) Proposition:

For any p positive integers x1, x2, ..., xp that have a fixed sum N; that is,
∑N

i=1 xi = N ,

(
∑N

i=1 xi)
2 ≥

∑N
i=1 x2

i .

(i) Theorem: Assume that X−m and Xm both have discrete distributions.

If Xm is noisy for Y , then

I(Y,XY) ≤ I(Y,XY−m), or, equivalently,

∑
XY

(E(Y |XY) − E(Y))2 · (P(XY = x)))2 ≤
∑

XY−m

(E(Y |XY−m) − E(Y))
2 · (P(XY−m = x−m))

2.

(6.9)

• Proof:

Since Xm is noisy for Y , for all x−m, E(Y |XY−m = x−m) = E(Y |XY = x) for some x.

Conditioned on each x−m, P(XY−m = x−m) =
∑

x P(XY = x) for the same set of x.

68

By proposition (h), conditioned on each x−m, we have

P2(XY−m = x−m) ≥
∑

x

P2(XY = x) for the same set of x. (6.10)

Therefore, by summing over x−m with the corresponding x in Inequality 6.10, we

get Inequality 6.9.

(j) I-score serves as the statistics to test against the null hypothesis that the given set of

covariates Xdata is all noisy.

(k) The I-score backward dropping algorithm can be used to search for the minimum asso-

ciation set out of the given set of covariates Xdata.

6.5 Causal Inference

(a) Notation: Let Y1i denote the potential outcome for unit i if the unit receives treatment,

and let Y0i denote the potential outcome for unit i in the control regime. The treatment

effect for observation i is defined by µ0i = Y1i − Y0i.

(b) Model:

Y1i = Y0i + µ0i = Y0i + (µ0 + εi) ∀i,

where εi has mean 0 and is independent among all individual.
(6.11)

(c) Fundamental problem of causal inference: in an observational study, Y1i and Y0i can

never both be observed for any i.

(d) Statistically, we can make use of the population distribution trying to solve this prob-

lem.

69

(e) If our goal is to estimate the average treatment effect µ0, and if we assume

E(Y0 |Z = 0,X) = E(Y0 |X), and

E(Y1 |Z = 1,X) = E(Y1 |X)

(which is slightly weaker than the conditional independence assumption) then

(6.12)

µ0 = E(Y1) − E(Y0)

= E(Y1 − Y0)

= E(E(Y1 − Y0)|X)

= E(E(Y1 |X) − E(Y0 |X))

= E(E(Y1 |Z = 1,X) − E(Y0 |Z = 0,X))

(6.13)

Since µ0 is a constant that doesn’t depend on X, we have

µ0 = E(Y1 |Z = 1,X) − E(Y0 |Z = 0,X) (6.14)

For any proper subset Xc ⊂ X such that the above equation still holds, i.e.

µ0 = E(Y1 |X) − E(Y0 |X)

= E(Y1 |Z = 1,X) − E(Y0 |Z = 0,X)

= E(Y1 |Z = 1,Xc) − E(Y0 |Z = 0,Xc),

(6.15)

we will call this Xc one proper adjustment set (for estimating the ATE), and the smallest

among all of these sets is called the minimum adjustment set (for estimating the ATE).

70

Hence, Xc = {X1,X2, ...,X j} has the property that

E(Y0 |Z = 0,Xc) , E(Y0 |Z = 0,Xc−i) ∀ i ∈ {1,2, ... j}, or

E(Y1 |Z = 1,Xc) , E(Y1 |Z = 1,Xc−i) ∀ i ∈ {1,2, ... j}
(6.16)

6.5.1 On the Search of Adjustment Sets

Relationship between the Adjustment Set and the Association Set

• In this section, we will show, under the causal inference model, what is the relationship

between the association set XY and the adjustment set Xc, and how to search for Xc.

Note: XY and Xc may not be their minimum.

• To search for Xc, we define the following Y ′(δ) and its corresponding XY′(δ):

• Define Y ′(δ) = Y0 · (1 − Z) + (Y1 + δ) · Z = Y0 · (1 − Z) + (Y0 + µ0 + δ) · Z

• When δ = −µ0, Y ′(δ) is equivalent to Y0.

Theories

• Theorem I

XY0 = XY1, and we will define

XY = XY0 = XY1 .

• Theorem II

X ⊇ XY0 ⊇ XY0 ∩ XZ ⊇ Xc.

X ⊇ XY0 ⊇ Xc.

X ⊇ XY0 = XY1 ⊇ Xc.

71

• Theorem III

XY
c ∩ XZ ⊂ XY′(δ) ∩ XZ ∀δ ∈ R \ −µ0.

• Theorem IV

For any x j ∈ XY∩XZ, ∃ corresponding ε j s.t. x j ∈ XY′(δ)∩XZ ∀ δ ∈ (−µ0−ε j,−µ0+ε j).

It is also true when ε j = 0.

• Theorem V

XY′(δ)
c ∩ XZ ⊂ XY ∩ XZ ∀δ ∈ R \ −µ0.

• Theorem VI

XY ∩ XZ
c = XY′(δ) ∩ XZ

c ∀δ ∈ R \ −µ0.

Proof of the Theorems

• Proof of Theorem I

By definition, XY0 = {X1,X2, ...,X j} has the property that

E(Y0 |XY0) , E(Y0 |XY0−i) ∀ i ∈ {1,2, ... j}

⇒E(Y1 |XY0) = E(Y0 + µ + ε |XY0) = E(Y0 |XY0) + µ,

, E(Y0 |XY0−i) + µ ∀ i ∈ {1,2, ... j}

= E(Y1 |XY0−i) ∀ i ∈ {1,2, ... j}

(6.17)

72

Therefore, XY0 ⊂ XY1 . Similarly, we can prove that XY1 ⊂ XY0 . Hence we have

XY0 = XY1 . (6.18)

We will denote XY = XY0 = XY1 .

• Proof of Theorem II

P(Z = 1|Y0,XY0) = E(Z |Y0,XY0) = E[E(Z |Y0,XY0)|Y0,XY0]

E(Y0 |Z = 0,Xc) = E(Y0 |Xc) , E(Y0 |Xc−i). ∀ i ∈ {1,2, ... j}, and

E(Y1 |Z = 1,X) = E(Y1 |Z = 1,Xc) = E(Y1 |Xc) , E(Y1 |Xc−i). ∀ i ∈ {1,2, ... j}

(6.19)

For any element x j ∈ Xc = {X1,X2, ...,X j}, we have the property by (the conditional

independence) assumption

E(Y0 |Z = 0,X) = E(Y0 |Z = 0,Xc) = E(Y0 |Xc) , E(Y0 |Xc−i). ∀ i ∈ {1,2, ... j}, and

E(Y1 |Z = 1,X) = E(Y1 |Z = 1,Xc) = E(Y1 |Xc) , E(Y1 |Xc−i). ∀ i ∈ {1,2, ... j}

(6.20)

Similarly,

E(Y1 |Z = 1,Xc− j,X j) = E(Y1 |Xc− j,X j) , E(Y1 |Xc− j). (6.21)

As a result, Xc is the association set in terms of the predictivity of Xc to both Y0 and Y1.

• Proof of Theorem III

73

First, we consider the set XZ . For any element x j ∈ XZ , we have the property

E(Z |x j = xi) , E(Z) for at least one xi ∈ {x1,x2, ...,xΠxj
}

⇐⇒ P(Z = 1|x j = xi) , P(Z = 1) for at least one xi ∈ {x1,x2, ...,xΠxj
}

(6.22)

and if also x j ∈ Xc
0

E(Y0 |x j = xi) = E(Y0) ∀ xi ∈ {x1,x2, ...,xΠxj
}. (6.23)

Then,

E(Y ′0 |x j = xi) = E(Y0 |x j = xi) + (µ0 + δ) · P(Z = 1|x j = xi) ∀ xi ∈ {x1,x2, ...,xΠxj
}

= E(Y0) + (µ0 + δ) · P(Z = 1|x j = xi) ∀ xi ∈ {x1,x2, ...,xΠxj
}

, E(Y0) + (µ0 + δ) · P(Z = 1) for at least one xi ∈ {x1,x2, ...,xΠxj
}

= E(Y ′0)

(6.24)

=⇒ E(Y ′0 |x j = xi) , E(Y ′0) for at least one xi ∈ {x1,x2, ...,xΠxj
}.

For all δ, except for δ = −µ0, E(Y ′0 |x j = xi) , E(Y ′0).

=⇒ x j is associated with Y ′0 .

=⇒ x j ∈ X′0.

Therefore, Xc
0 ∩ XZ ⊂ X′0 ∩ XZ , for all δ, except for δ = −µ0.

• Proof of Theorem IV

74

First, we consider the set XZ . For any element x j ∈ XZ , we have the property

∃ at least one xi ∈ {x1,x2, ...,xΠxj
} s.t. E(Z |x j = xi) , E(Z)

⇐⇒ ∃ at least one xi ∈ {x1,x2, ...,xΠxj
} s.t. P(Z = 1|x j = xi) , P(Z = 1)

(6.25)

Also, since x j ∈ X0,

E(Y0 |x j = xi) , E(Y0) for at least one xi ∈ {x1,x2, ...,xΠxj
}. (6.26)

Then,

E(Y ′0 |x j = xi) − E(Y ′0)

= [E(Y0 |x j = xi) + (µ0 + δ) · P(Z = 1|x j = xi)] − [E(Y0) + (µ0 + δ) · P(Z = 1)]

= [E(Y0 |x j = xi) − E(Y0)] + (µ0 + δ) · [P(Z = 1|x j = xi) − P(Z = 1)]

, 0 for many δ

(6.27)

=⇒ E(Y ′0 |x j = xi) , E(Y ′0) for many δ.

Especially, when δ = −µo + ε , the above equation becomes

E(Y ′0 |x j = xi) − E(Y ′0)

= [E(Y0 |x j = xi) + (µ0 − µo + ε) · P(Z = 1|x j = xi)] − [E(Y0) + (µ0 − µo + ε) · P(Z = 1)]

= [E(Y0 |x j = xi) − E(Y0)] + ε · [P(Z = 1|x j = xi) − P(Z = 1)]

= f (ε)

(6.28)

75

which is a continuous function in ε , since both E(Y0 |x j = xi) − E(Y0) and P(Z = 1|x j =

xi) − P(Z = 1) are fixed constants.

Therefore,

lim
ε→0

f (ε) = f (0) = E(Y ′0(δ = −µ0)|x j = xi)−E(Y ′0(δ = −µ0)) = E(Y0 |x j = xi)−E(Y0) , 0

Similarly, when δ = −µo − ε , we can prove the same result.

Hence, we have, for any x j ∈ X0 ∩ XZ, ∃ε s.t. x j ∈ X0
′(δ ∈ (−µ0 − ε,−µ0 + ε)) ∩ XZ.

It is also true when ε = 0, for any x j ∈ X0 ∩ XZ, x j ∈ X0
′(δ = −µ0) ∩ XZ.

• Proof of Theorem V

First, we consider the set Xc
Z . For any element x j ∈ Xc

Z , we have the property

E(Z |x j = xi) = E(Z) ∀xi ∈ {x1,x2, ...,xΠxj
}

⇐⇒ P(Z = 1|x j = xi) = P(Z = 1) ∀xi ∈ {x1,x2, ...,xΠxj
}

(6.29)

and if also x j ∈ X0

E(Y0 |x j = xi) , E(Y0) for at least one xi ∈ {x1,x2, ...,xΠxj
}. (6.30)

76

Then,

E(Y ′0 |x j = xi) = E(Y0 |x j = xi) + (µ0 + δ) · P(Z = 1|x j = xi) ∀ xi ∈ {x1,x2, ...,xΠxj
}

= E(Y0 |x j = xi)) + (µ0 + δ) · P(Z = 1) ∀ xi ∈ {x1,x2, ...,xΠxj
}

, E(Y0) + (µ0 + δ) · P(Z = 1) for at least one xi ∈ {x1,x2, ...,xΠxj
}

= E(Y0) + µ0 · P(Z = 1) + δ · P(Z = 1)

= E(Y ′0) + δ · P(Z = 1)

(6.31)

When δ = 0, E(Y ′0 |x j = xi) , E(Y ′0).

=⇒ x j is associated with Y ′0 .

=⇒ x j ∈ X′0.

=⇒ X0 ∩ Xc
Z ⊂ X′0 ∩ Xc

Z .

Similarly, we can prove that X′0∩Xc
Z ⊂ X0∩Xc

Z , which then implies X0∩Xc
Z = X′0∩Xc

Z .

6.5.2 Inference

The estimation problem is to use the observed data to estimate the true average treatment

effect, i.e. µ = E(Y1) − E(Y0). However, we only have Y1 |Z = 1 and Y0 |Z = 0 available in

the data. In general, E(Y1) − E(Y0) , E(Y1 |Z = 1) − E(Y0 |Z = 0). The equality only holds

when there exists no confounders, which is usually not practical. Nevertheless, under the

conditional independence assumption,

E(Y1) − E(Y0) = E(Y1 |Z = 1,X = xi) − E(Y0 |Z = 0,X = xi) ∀xi ∈ {x1,x2, ...,xπX} (6.32)

77

However, this is usually infeasible in practice because of the sparsity generated by the parti-

tions of X. Our interest is in searching for a minimum subset Xc ⊂ X, such that

E(Y1) − E(Y0) = E(Y1 |Z = 1,X = x) − E(Y0 |Z = 0,X = x) ∀x ∈ X

= E(Y1 |Z = 1,X = xc) − E(Y0 |Z = 0,X = xc) ∀xc ∈ Xc,

(6.33)

where Xc is minimum in the sense that getting rid of any elements in the set Xc would result

in inequality in Equation 6.24.

78

6.5.3 Simulation

In this section, we will use several examples to show the idea that, when the sweeping vari-

able δ equals to the true causal effect, the intersection of the variables influential to the out-

come and the variables influential to the treatment assignment will be the true confounders;

in other cases when δ does not equal to the true causal effect, at least one of the true con-

founders will be included in the intersection of the variables influential to the outcome and

the variables influential to the treatment assignment will be the true confounders.

Case 1:

X1,X2, ...X20 iid Bernoulli(0.5)

P(Z = 1) = logit(X1 + X2 + X3 + X4 + X5)

Y0 = X3 + X4 + X5 + X6 + X7 + N(0,1)

µ0 = 3 + N(0,1)

Y = Y0 · (1 − Z) + (Y0 + µ0) · Z = Y0 · (1 − Z) + Y1 · Z

Y ′ = Y0 · (1 − Z) + (Y0 + µ0 + δ) · Z = Y0 · (1 − Z) + (Y1 + δ) · Z

sample size = 20000, case = 10000, control = 10000

(6.34)

79

δ X′0(δ) ∩ XZ (ideal)
-20 1,2,4,5
-19 1,2,4,5
-18 1,2,3,4,5
-17 1,2,3,4,5
-16 1,2,3,4,5
-15 1,2,3,4,5
-14 1,2,3,4,5
-13 1,2,4,5
-12 1,2,4,5
-11 1,2,5
-10 1,2
-9 1,2,5
-8 1,2
-7 1,2,3
-6 1,2
-5 3,4,5
-4 3,4,5
-3 2,3,4,5
-2 3,4,5
-1 3,4,5
0 1,3,4,5
+1 3,4,5
+2 1,2,3,4,5
+3 1,2,3,4,5
+4 1,2,3,4,5
+5 1,2,3,4,5
+6 1,2,3,4,5
+7 1,2,3,4,5
+8 1,2,3,4,5
+9 1,2,3,4,5
+10 1,2,3,4,5
+11 1,2,3,4,5
+12 1,2,3,4,5
+13 2,3,4,5
+14 1,2,3,4,5
+15 1,2,3,4,5
+16 1,2,3,4,5
+17 1,2,3,4,5
+18 1,2,3,4,5
+19 1,2,3,4,5
+20 1,2,3,4,5

80

Case 2:

X1,X2, ...X20 iid Bernoulli(0.5)

P(Z = 1) = logit(X1 + X2 + X3 + X4 + X5)

Y0 = X3 + X4 + X5 + X6 + X7 + N(0,1)

µ0 = 3 + N(0,1)

Y = Y0 · (1 − Z) + (Y0 + µ0) · Z = Y0 · (1 − Z) + Y1 · Z

Y ′ = Y0 · (1 − Z) + (Y0 + µ0 + δ) · Z = Y0 · (1 − Z) + (Y1 + δ) · Z

sample size = 1000, case = 200, control = 800

(6.35)

81

δ X′0
-10 1,2,6,7
-9 1,2,6,7
-8 1,2,5,6,7
-7 1,2,3,5,6,7
-6 3,4,5,6,7
-5 1,2,3,4,5,6,7,19
-4 1,2,3,4,5,6,7,19
-3 3,4,5,6,7
-2 1,3,4,5,6,7
-1 2,3,4,5,6,7
0 1,2,3,4,5,6,7
+1 1,2,3,4,5,6,7
+2 1,3,4,5,6,7
+3 1,2,3,4,5,7
+4 1,2,3,4,5,7
+5 1,3,4,5
+6 1,3,4,5
+7 1,3,4,5
+8 1,3,4,5
+9 1,4
+10 4

82

Case 3:

X1,X2, ...X20 iid Bernoulli(0.5)

P(Z = 1) = logit(X1 + X2 + X3 + X4 + X5)

Y0 = (X3 + X4 + X5 + X6 + X7) mod 5 + N(0,1)

µ0 = 3 + N(0,1)

Y = Y0 · (1 − Z) + (Y0 + µ0) · Z = Y0 · (1 − Z) + Y1 · Z

Y ′ = Y0 · (1 − Z) + (Y0 + µ0 + δ) · Z = Y0 · (1 − Z) + (Y1 + δ) · Z

sample size = 20000, case = 10000, control = 10000

(6.36)

83

δ X′0(δ) ∩ XZ (ideal)
-20 1,2,3,4
-19 1,2,3,4,5
-18 1,2,3,4
-17 1,2,3,4,5
-16 1,2,3,4,5
-15 1,2,3,4
-14 1,2,3,4
-13 1,2,3,4,5
-12 1,2,3,4,5
-11 1,2,3,4
-10 1,2,3
-9 1,2
-8 1,2,3
-7 1,2
-6 1,2
-5 1,2,3,4,5
-4 3,4,5
-3 3,4,5
-2 3,4,5
-1 3,4,5
0 3,4,5
+1 1,3,4,5
+2 1,3,4,5
+3 1,2,3,4,5
+4 1,2,3,4,5
+5 1,2,3,4,5
+6 2,3,4,5
+7 1,2,3,4,5
+8 1,3,4,5
+9 1,3,4,5
+10 1,2,3,4,5
+11 2,3,4,5
+12 2,3,4,5
+13 1,3,4,5
+14 1,3,4,5
+15 1,3,4,5
+16 1,3,4,5
+17 1,2,3,4,5
+18 1,3,4,5
+19 1,2,3,4,5
+20 1,3,4,5

84

Case 4:

X1,X2, ...X20 iid Bernoulli(0.5)

P(Z = 1) = logit(X1 + X2 + X3 + X4 + X5)

Y0 = (X3 + X4 + X5 + X6 + X7) mod 5 + N(0,1)

µ0 = 3 + N(0,1)

Y = Y0 · (1 − Z) + (Y0 + µ0) · Z = Y0 · (1 − Z) + Y1 · Z

Y ′ = Y0 · (1 − Z) + (Y0 + µ0 + δ) · Z = Y0 · (1 − Z) + (Y1 + δ) · Z

sample size = 1000, case = 200, control = 800

(6.37)

85

δ X′0
-10 1,2,6,7
-9 1,2,6,7
-8 1,2,6,7
-7 1,2,6,7
-6 2,3,4,5,6,7
-5 3,4,5,6,7
-4 3,4,5,6,7
-3 3,4,5,6,7
-2 3,4,5,6,7
-1 3,4,5,6,7
0 3,4,5,6,7
+1 3,4,5,6
+2 3,4,5,6
+3 1,2,3,4,5,6
+4 1,3,4,5
+5 1,3,4,5
+6 1,3,4,5
+7 3,4,5
+8 3,4,5
+9 3,4,5
+10 3,4,5

86

6.6 Application to Vision Zero Data

6.6.1 Background

Vision Zero is a multi-national road traffic safety project that aims to achieve a highway

system with no fatalities or serious injuries involving road traffic. It started in Sweden and

was approved by their parliament in October 1997 [79]. A core principle of the vision is that

“Life and health can never be exchanged for other benefits within the society” rather than

the more conventional comparison between costs and benefits, where a monetary value is

placed on life and health, and then that value is used to decide how much money to spend

on a road network towards the benefit of decreasing risk [80]. The original Swedish theory

hypothesizes that pedestrian deaths are not as much “accidents” as they are a failure of street

design. As a result, the installment of the program emphasizes on the implementation of new

safety facilities, such as increasing the numbers of speed bumps.

In New York City, Vision Zero was officially announced by New York City Mayor Bill de

Blasio in 2014, whose goal is to eliminate all traffic deaths and serious injuries on New York

City streets by 2024. This is an ongoing project and we shall be able to see more data as the

project goes. In our analysis, we compare the increment of numbers of deaths before and

after 2016.

6.6.2 Data

After the date of 01/01/2016, there are 1817 roads treated with Vision Zero in the dataset

and 26657 roads that were never treated. We have 28 covariates in the original dataset, but

not all of them are suitable for our analysis purpose, so we filtered some out and leave 6

major covariates. The covariates are Borough, Priority Corridors, Priority Zones, Arterial

Slow Zone, Enhanced Crossings, and Left Turn Traffic Calming. The more detailed expla-

nations will be provided in the next section. The main response is the increase in number

87

of deaths (so the more negative the result, the more desirable). The project took place grad-

ually over time, but here we do not take in the time effects into account; we assume that

the effectiveness of the Vision Zero program has very few correlation with the time it was

installed.

6.6.3 Analysis

The response we would like to study is the difference in the increment of numbers of deaths

between the treated (Vision Zero installed) and the control group. Without any stratification,

the grand difference is estimated by

δ̂ =
1
N
(

N∑
i=1

Yi · I(i ∈ treated) −
N∑

i=1
Yi · I(i ∈ control)), (6.38)

where δ̂ is the estimated difference between the treated and the control, and Yi is the individ-

ual i’s increment of deaths before and after the installation of Vision Zero.

We suspect there exists some strata such that the causal effects inside each stratum is dif-

ference from the grand difference. Those strata form partitions in the space of Y , so we can

decompose the grand difference into

δ̂ =
∑

z

nz

N
(

N∑
i=1

Yi · I(i ∈ treated|Z = z) −
N∑

i=1
Yi · I(i ∈ control|Z = z)) (6.39)

where δ̂ is the estimated difference between the treated and the control, Yi is the individual

i’s increment of deaths before and after the installation of Vision Zero, and Z denotes the

variable that creates nonhomogeneous partitions. We would like to find out those influential

covariates and their interaction that comprise these influential partitions.

Another aspect is the model of the treatment assignment. That is, in this study, we suspect the

assignment of the treatment is not completely random. There may exist some confounders

that both determines the treatment assignment mechanism and the outcome. However, unlike

88

what practitioners usually perform a logistic regression to model the treatment assignment

mechanism, we perform I-Score variable selection, simply because here our task is only to

find out the influential variables so that we can stratify on them – hence we do not need to

model the whole data.

After filtering out several unusable (e.g. too sparse) variables, we focus on the following

covariates:

• Borough – The boroughs of New York City except Staten Island (too few samples);

namely, Brooklyn, Manhattan, Queens, and The Bronx.

• Priority Corridors – TRUE/FALSE whether intersection was in a corridor prioritized

by Vision Zero.

• Priority Zones – TRUE/FALSE whether intersection was in a zone prioritized by Vision

Zero.

• Arterial Slow Zone – The date slow zone built.

• Enhanced Crossings – The date enhanced crossing built.

• Left Turn Traffic Calming – The date traffic calming built.

We performed I-Score variable selection with backward dropping algorithm – one for the

response variable, and the other for the treatment assignment. Each time there are four

covariates being selected randomly and the backward dropping algorithm proceeds until we

find the highest I-Score. The results suggest that the combination of Prioritized Corridor and

the Borough, and the combination of Arterial Slow Zone and Prioritized Corridor gave the

top two highest I-Scores. Below we demonstrate the covariate effects using different graphs:

First, in Figure 6.1, the grand difference between the treated and the control is shown using

a violin plot, where the green one is the treated and the red one is the control. We can see

that the treated roads have much less increase in the number of deaths. However, there is

no decrease in the number of deaths being observed in the treated roads, while there are

89

some decrease being observed in the control group. This may suggest that, since the City

Government prioritizes to treat roads with more serious past accidents, the outcome of the

policy so far have decreased the number of deaths that would have been had the Vision Zero

not been done on them, but not so intense to the point to actually reverse the trend.

Figure 6.1: The comparison between case and control without any conditioning.

Next, let us look at the marginal effects of each covariate. From here on, we can interpret

each subgraph as one partition. Figure 6.2 shows the comparison of these two groups when

conditioned on different boroughs. Although they are slightly deviated from the grand trend,

but the deviation isn’t too far.

Figure 6.3 shows the comparison of these two groups when conditioned on the date when

enhanced crossings were built. Figure 6.4 shows the comparison of these two groups when

conditioned on if the corridor was prioritized. Figure 6.4 clearly shows that whether the

corridor was prioritized makes a difference in the increment of number of deaths in the two

groups.

Figure 6.5 shows the comparison of these two groups when conditioned on if the zone was

prioritized. Figure 6.6 shows the comparison of these two groups when conditioned on the

90

Figure 6.2: The comparison between case and control conditioned on borough.

date when slow zones were built. Figure 6.6 shows conditioning on slow zones has an impact

on the distribution of the increase in number of deaths between the two groups.

For interaction effects, the top two combination suggested by I-Score variable selection al-

gorithm are the combination of Prioritized Corridor and the Borough, and the combination

of Arterial Slow Zone and Prioritized Corridor. The conditional violin plots are shown in

Figure 6.7 and 6.8, respectively.

Finally, we combine the three variables together and have the following partitions created

as the representation of the data, shown in Figure 6.9. We can clearly see that most of the

distribution of the treated and the control inside each partition differ some the grand trend.

We suggest that it is worthy of more investigation given more future data. Since now many

partitions have imbalance data inside, conclusions made from the current data may not be

sufficient for explaining the whole story.

91

Figure 6.3: The comparison between case and control conditioned on the date when enhanced
crossings were built.

6.7 Conclusion

In this chapter, we proposed the following novel ideas and methods and how representation

learning can incorporate causal inference inside to yield a richer model and results.

(a) Provide a quantitative definition of the confounder set under the potential outcome

framework.

(b) Provide several possible candidates for the adjustment sets.

(c) Provide a practical variable selection method for searching for the adjustment sets (1)

as a whole (i.e. taking the joint interactions into account), and (2) without testing for

confounding.

(d) Applied the proposed procedure on New York City Vision Zero data for causal analysis.

92

Figure 6.4: The comparison between case and control conditioned on if the corridor was priori-
tized.

Figure 6.5: The comparison between case and control conditioned on if the zone was prioritized.

93

Figure 6.6: The comparison between case and control conditioned on the date when slow zones
were built.

94

Fi
gu

re
6.

7:
T

he
co

m
pa

ri
so

n
be

tw
ee

n
ca

se
an

d
co

nt
ro

lc
on

di
tio

ne
d

on
th

e
bo

ro
ug

h
an

d
th

e
pr

io
ri

tiz
ed

co
rr

id
or

.

95

Fi
gu

re
6.

8:
T

he
co

m
pa

ri
so

n
be

tw
ee

n
ca

se
an

d
co

nt
ro

lc
on

di
tio

ne
d

on
th

e
sl

ow
zo

ne
an

d
th

e
pr

io
ri

tiz
ed

co
rr

id
or

.

96

Fi
gu

re
6.

9:
T

he
fin

al
pa

rt
iti

on
s

ch
os

en
fr

om
I-

Sc
or

e
pr

oc
ed

ur
e.

97

Chapter 7: I-Score Representation Learning in Neural Networks

7.1 Introduction

Neural networks have been credited as one of the major breakthroughs in artificial intelli-

gence of the recent decades [81]. Neural networks are a set of algorithms, modeled loosely

after the human brain, that are designed to recognize patterns. Most of today’s neural net-

works are organized into layers of nodes, and they are feed-forward, meaning that data moves

through them in only one direction. An individual node might be connected to several nodes

in the layer beneath it, from which it receives data, and several nodes in the layer above it,

to which it sends data.

Neural networks help us cluster and classify data. We may think of them as a clustering and

classification layer on top of the data you store and manage. They help to group unlabeled

data according to similarities among the example inputs, and they classify data when they

have a labeled dataset to train on. Neural networks can also extract features that are fed to

other algorithms for clustering and classification.

Although the idea of neural networks is decent, the model contains too many parameters

that wasn’t able to be handled easily. The first trainable neural network, the Perceptron,

was demonstrated by the Cornell University psychologist Frank Rosenblatt in 1957. The

Perceptron’s design was much like that of the modern neural net, except that it had only one

layer with adjustable weights and thresholds, sandwiched between input and output layers.

It was not until later when modern computational power took flight did the training of neu-

ral networks become possible. What’s more, researchers started to experiment on stacking

layers of neural networks together, which much resembles the real structure of neurons in a

98

brain. By stacking layers of neurons, the model becomes “deep” and hence the name deep

learning emerged.

Based on the success of basic neural networks, researchers came up with many different new

model architectures, each aiming at different tasks. Among which, the one we are going

to see in this chapter is the variational autoencoder (VAE) and the generative adversarial

network (GAN).

7.2 Variational Autoencoder and Information Bottleneck

7.2.1 Introduction

Generally, a neural network can be treated as a sequence of representation learning. Tishby

[82] argued that the success of deep learning is in part due to the capability of neural net-

works to build incrementally better representations that expose the relevant variability, while

at the same time discarding nuisances. This interpretation is intriguing, as it establishes a

connection between machine learning, probabilistic inference, information theory, and even

artificial intelligence. However, common training practice does not seem to stem from this

insight, and indeed deep networks may maintain even in the top layers dependencies on eas-

ily ignorable nuisances. In this work, we actually would like to elaborate on Tishby’s original

information bottleneck [83] , through the lens of our sufficient representation notion. Our

main augmentation to the original theory is that not all latent representations are qualified

for being the information bottleneck, they have to satisfy the sufficiency condition. Same

arguments were also proposed by Alemi et al. [84].

7.2.2 Variational Autoencoder

As shown in Figure 7.1, we have the model that starts with the latent generating factor

C (Let’s assume it is the “true” generating factor of X .) and goes through a cascade of

99

transformations until reaching the observed data X . It is because of this special feed-forward

structure that we can interpret the model as building up a series of “representations” of the

data. Note that since C may be stochastic, even if each layer of cascading functions are

deterministic, the outputs at each layer can still be stochastic. However, we can decompose

or re-parameterize each layer into the deterministic part and the stochastic part.

Figure 7.1: Deep artificial neural network as hierarchical representation learning.

Variational autoencoders (VAEs) were defined in 2013 by Kingma et al. and Rezende et al..

In neural net language, a variational autoencoder consists of an encoder, a decoder, and a

loss function. As illustraed in Figure 7.2, the encoder is a neural network, whose input is a

datapoint X and output is a hidden representation Z . and it has weights and biases θ. For

example, X can be a 28-by-28 pixel photo of a handwritten number. The encoder “encodes”

the data which is 784-dimensional into a latent (hidden) representation space Z , which is

much less than 784 dimensions. This is typically referred to as a “bottleneck”’ because the

encoder must learn an efficient compression of the data into this lower-dimensional space.

Let’s denote the encoder qθ(z |x). Note that the lower-dimensional space is stochastic: the

encoder outputs parameters to qθ(z |x), which is a Gaussian probability density. We can

sample from this distribution to get noisy values of the representations Z .

100

The decoder is another neural network. Opposite to the encoder, the input of a decoder is the

representation Z . It outputs the parameters to the probability distribution of the data, and has

weights and biases φ. The decoder is denoted by pφ(x |z). Running with the handwritten digit

example, let’s say the photos are black and white and each pixel can take value only either 0

or 1. The probability distribution of a single pixel can be then represented using a Bernoulli

distribution. The decoder gets as input the latent representation of a digit Z and outputs 784

Bernoulli parameters, one for each of the 784 pixels in the image. The decoder “decodes” the

real-valued numbers in Z into 784 real-valued numbers between 0 and 1. Information from

the original 784-dimensional vector cannot be perfectly transmitted, because the decoder

only has access to a summary of the information (in the form of a less than 784-dimensional

vector Z .

Figure 7.2: The encoder compresses data into a latent representation, and the decoder reconstructs
the data given the hidden representation.

7.2.3 Representation Learning In Neural Networks

The main idea here is to establish cascading representations and its translation to probabilis-

tic language. Assume we have total l layers in the network, we denote the output of each

layer as {Z1,Z2, ...,Z l}. By construction, the network defines a generative process

p(X) =
∑

c,z1,...zl

p(X |Z l , Z l−1, ..., C)p(Z l |Z l−1, Z l−2, ..., C)...p(Z1 |C)p(C) (7.1)

101

Each of the terms p(Z i |Z i−1) may denote a complicated non-linear relationship; however, it

is assumed that each p(Z i |Z i−1) can be sampled using a neural network. At each layer, we

also need the conditional distribution to be independent from random noise; namely,

p(Z i |Z i−1, ε) = p(Z i |Z i−1), (7.2)

where ε is any arbitrary noise that is independent to the data generation. This expresses the

idea that, at each layer, Z i−1 explains away the causal relationship to Z i , against all other

noisy signals.

We define the sufficient representation Zk appears when

Definition 7.2.1.

Zk is the sufficient representation in deep learning when

p(X) =
∑

c,z1,...zl

p(X |Z l , Z l−1, ..., C)p(Z l |Z l−1, Z l−2, ..., C)...p(Z1 |C)p(C) (7.3)

=
∑

zk,...zl

p(X |Z l , Z l−1, ..., Zk)p(Z l |Z l−1, Z l−2, ..., Zk)...p(Zk+1 |Zk)p(Zk) (7.4)

=
∑
zk

∑
zk+1,...zl

p(X |Z l , Z l−1, ..., Zk)p(Z l |Z l−1, Z l−2, ..., Zk)...p(Zk+1 |Zk)p(Zk) (7.5)

=
∑
zk

p(Zk)
∑

zk+1,...zl

p(X |Z l , Z l−1, ..., Zk)p(Z l |Z l−1, Z l−2, ..., Zk)...p(Zk+1 |Zk)

(7.6)

In other words, conditioned on the Zk layer, all the other previous layers are independent

from layers after Zk .

We can also interpret this model as the normalizing flow [], where each layer simply acts as

adding on the complexity and expressiveness of the model.

The part
∑

zk+1,...zl p(X |Z l , Z l−1, ..., Zk)p(Z l |Z l−1, Z l−2, ..., Zk)...p(Zk+1 |Zk) = p(X |Zk) is

what we defined as the representation. Furthermore, we say this Zk is the sufficient repre-

102

sentation in deep learning, which is sufficient for the reconstruction of X . X can be modeled

as a stochastic function of Zk . The idea is similar to probabilistic PCA, except that the trans-

formation from X to the hidden space Z can be non-linear, and the solution isn’t unique.

7.2.4 Related Work – Factor Analysis/Probabilistic PCA

In classical statistics, factor analysis is one of the tools that can be used to find out the latent

structure inside the data. If we have data X and latent factor F, the model can be written as

X = µ + ΛF + ε, (7.7)

where X ∈ Rp×1, µ (the global mean) ∈ Rp×1,Λ ∈ Rp×m,F ∈ Rm×1, and ε ∈ Rp×1.

If we assume that E(F) = 0,E(ε) = 0,Cov(F) = E(FFT) = I,Cov(ε) = Ψ, and Cov(F, ε) =

0, then

Cov(X) = E[(X − µ)(X − µ)T] (7.8)

= E[(ΛF + ε)(ΛF + ε)T] (7.9)

= E[ΛFFT
Λ

T + ΛFεT + εFT
Λ

T + εεT] (7.10)

= ΛE(FFT)ΛT + ΛE(FεT) + E(εFT)ΛT + E(εεT) (7.11)

= ΛIΛT + Λ0 + 0ΛT + Ψ (7.12)

= ΛΛT + Ψ (7.13)

Consider a data set X = {xn} of N data points, where each data point is D-dimensional,

xn ∈ R
D. We aim to represent each xn under a latent variable zn ∈ R

K with lower dimension,

K < D. The set of principal axes W relates the latent variables to the data.

Specifically, we assume that each latent variable is normally distributed, zn ∼ N(0, I).

The corresponding data point is generated via a projection, xn | zn ∼ N(Wzn, σ
2I),where the

103

matrix W ∈ RD×K are known as the principal axes. In probabilistic PCA, we are typically

interested in estimating the principal axes W and the noise term σ2.

Probabilistic PCA generalizes classical PCA. Marginalizing out the the latent variable, the

distribution of each data point is xn ∼ N(0,WWY + σ2I).

Classical PCA is the specific case of probabilistic PCA when the covariance of the noise

becomes infinitesimally small, σ2 → 0.

Conceptually, a VAE has the same property to transform the observed data into some latent

factors. What is different is that a VAE does so by using a simulated neural network, instead

of an analytical matrix decomposition.

7.2.5 Inference Method

The objective function for a VAE is the negative log-likelihood with a regularizer; namely,

li(θ, φ) = −Ez∼qθ (z |xi)[log pφ(xi |z)] +KL[qθ(z |xi)| |p(z)] (7.14)

We have introduced this formulation earlier when we discussed about variational inference.

The reuse of the variational equality into a neural network model is the insight of Kingma

et al. [40] The objective function is actually a penalization of model complexity for the KL-

divergence. So really what is happening is that we want some latent variable model with

priors and its corresponding objective function. The first term is the reconstruction loss, or

expected negative log-likelihood of the ith datapoint. The expectation is taken with respect

to the encoder’s distribution over the representations. This term encourages the decoder to

learn to reconstruct the data. If the decoder’s output does not reconstruct the data well, the

decoder parameterizes a likelihood distribution that does not place much probability mass on

data. The second term is a regularizer that we throw in. This is the KL-divergence between

the encoder’s distribution qθ(z |x) and p(z). This divergence measures how close q is to p and

104

thus quantifies the information lost when using q to represent p. In the VAE, p is specified

as a standard Normal distribution. If the encoder outputs representations z that are different

than those from a standard normal distribution, it will receive a penalty in the loss.

We now discuss the inference in terms of representation learning. The notion of suffi-

cient representation zk satisfies the condition MI(x; zk) = MI(x; c), which is equivalent

to Ex,z(log p(x |zk)) = Ex,c(log p(x |c)). Since the mutual information has a natural bound;

that is, MI(x; x) ≥ MI(x; z), we will use it as the measure of dependency between variables,

as opposed to other measures such as covariance that relies on linearity assumption.

Here we present the information bottleneck method proposed by Tishby et al. [82]. The

assumption in this framework is that, to predict Y , all the information is in the observed X .

To satisfy all the requirements, the requirement is equivalent to these mutual information

criteria:

MI(X; Z∗) = MI(X; C), (7.15)

MI(X; C |Z∗) = 0 (7.16)

In the context of a VAE, since the task is the reconstruction of X , so Y = X̂ . In other words,

Z∗ = argmaxz MI(X̂; X) − αMI(X̂; Z) − βMI(X; X̂ |Z), (7.17)

where the first term is the usual VAE learning objective, and the second and third terms are

our proposed penalization terms.

7.2.6 Generative Adversarial Network and BiGAN

Generative adversarial networks (GAN) is a class of machine learning frameworks proposed

by Ian Goodfellow et al. [85]. It consists of two neural networks, one the generative network

and the other the discriminative network. These two networks contest with each other in a

105

game – the generator scores high when it generates new sample that resembles the observed

data so that the discriminator cannot tell them apart; while the discriminator scores high

when it can accurately tell the true data apart from the synthesized. [85] [86] The main

structure is illustrated in Figure 7.2.6.

Figure 7.3: GAN architecture.

This idea shred new lights on the direction of future machine learning. Yann LeCun de-

scribed it as “the most interesting idea in the last 10 years in machine learning”. [87] The

novelty is that, instead of human hard-coded objective function, the objective function itself

can also be learned using a model (in this case, a neural network) that is adjustable through-

out the learning process. The overfitting is prevented by the competition between the two

networks that have opposite interests by design.

After the initial GAN, many variants have been proposed, one of which is Bidirectional GAN

(BiGAN) [88]. Similar to the initial GAN, there is a generator and a discriminator. What is

different is that, since the goal of BiGAN is to infer a latent code Z , the discriminator has

to tell if the joint input consisting the observation and the code is a real one or a synthesized

one. The main structure is illustrated in Figure 7.2.6.

106

Figure 7.4: BiGAN architecture.

7.2.7 Info-BiGAN Implementation

Network Structure

We propose the following network structure:

In addition to a regular BiGAN, one of the main difference of this network structure to other

107

fully or semi supervised network is that we build the auxiliary classifier based on the latent

representation Z . From our empirical experiments, this shows an improvement in preventing

mode collapse. The same phenomenon was also observed in the work of Creswell et al.

[89] The intuitive explanation is that, when the auxiliary classifier is built based on Y , in

order to minimize the loss, the generator would be encouraged to generate more images

of some specific class that is easier to generate. In hand-written digits example, this may

be the number “1”. However, when the auxiliary classifier is built based on Z , then the

generator just needs to focus on generating real images without the burden of prediction. It

is then the encoder’s job to find a good representation that can do the job of prediction and

reconstruction.

Learning Procedure

Based upon the above Info-BiGAN structure, we propose to augment the objective function

using the one we proposed in Equation 7.17.

Z ∼ N(µ(X), σ2(X)) (7.18)

X̂ = f (Z) (7.19)

We demonstrate the learning procedure as follows:

(a) Define the joint distribution of every variable and parameter, and decompose the

likelihood up to the desired level of hierarchy. The marginal distribution of the

observable variables should be invariant to different configuration of the model

and hyperparameter(s).

Let’s define Xn to be the observed data, Zn to be the corresponding latent code, θk to

be the parameter of X |Z , ηk to be the parameter of Z , and Mk to be neural network k.

Then we have the following decomposition.

108

p(Xn, Zn, θk, ηk,Mk) = p(Xn |Zn, θk, ηk,Mk)p(Zn |θk, ηk,Mk)p(θk |ηk,Mk)p(ηk |Mk)p(Mk)

(7.20)

= p(Xn |Zn, θk,Mk)p(Zn |ηk,Mk)p(θk |Mk)p(ηk |Mk)p(Mk) (7.21)

= p(Xn |Zn, θk,Mk)p(Zn |ηk,Mk)p(Mk) (7.22)

(b) Define several candidate models, inside which the condition when signals and

noises become independent should be specifically specified.

We can try many architectures of different neural networks to serve as candidate mod-

els. The main structure here is a BiGAN, but we can try different implementations of

the generator and discriminator.

(c) Decide to use prior distributions or not. Separate the probability decomposition

into the likelihood part and the prior part.

We will follow the convention of specifying a normal distribution on the latent code Z .

(d) Define a task for at least one of the representations.

The encoder should be able to automatically encode observed data into a latent space

where different classes are separate as much as possible.

(e) According to the task, develop an objective function. For example, it could be

MLE, MAP, or information criteria. Our general suggestion is that, for model

interpretability, one would like to use likelihood based objectives; while for gener-

ative purpose, one may want to use information criteria to measure the difference

between simulated and real data. For prediction purpose, usually it is more likely

to be associated with likelihood based objectives.

The target here is to make the “true” p(Xn) to be close to the synthesized p(Xn |Mk) =

EẐ p(Xn | Ẑn, θk,Mk)p(Ẑn |ηk,Mk)p(Mk) within model Mk .

109

(f) Select the model and/or parameter(s) that optimizes the above objective function,

call them M∗ and θ∗ respectively.

We follow the usual neural networks training implemented in TensorFlow 2. The opti-

mization is done through gradient descent.

7.2.8 Empirical Results

We use the MNIST dataset as an example to compare different generative models. Figure

7.2.8 shows the disentangling results from original BiGAN, normal BiGAN, and uniform

BiGAN:

Figure 7.2.8 shows a few samples generated from the generator.

7.2.9 Observations

1. The higher dimension the representation is, the more realistic the generated images are.

2. The disentanglement effect becomes stronger as training epoch increases.

3. Different choices of p(z) changes the latent space structure significantly.

7.3 Conclusion

In this chapter, we proposed a new BiGAN neural network structure and implemented it. The

training involves an I-Score inspired objective function, and it showed some interesting re-

sults. Especially we demonstrated that this new objective function can be used to encourage

a better disentangled latent codes.

Another novelty is to explain the mechanism of general neural networks using our represen-

tation learning framework.

110

Figure 7.5: The latent space learned from VAE and Info-BiGAN with different p(z). Top: VAE;
Middle: Info-BiGAN with Normal prior; Bottom: Info-BiGAN with Uniform prior.

111

Figure 7.6: Generated hand-written digits from Info-BiGAN.

112

Epilogue

In this work, we proposed a new learning framework called representation learning. We

introduced the motivation, the core elements, and did a few implementations on different

datasets. We hope this change of mindset can help statistical machine learning more

flexible and inclusive to more black-box models.

We also demonstrated the I-Score method is useful for selecting influential variables for

prediction purpose without building a prediction model. The method is mainly built on

partition-based models, which has a natural interpretability.

The completeness of the unifying framework still requires collaboration of people from

various backgrounds. We hope this work serve as an initiative for people to start thinking

about approaching problems from a different angle and to involve interpretability into the

consideration when building a model and communicate with people from other fields.

113

References

[1] W. T. C. C. Consortium et al., “Genome-wide association study of 14,000 cases of
seven common diseases and 3,000 shared controls,” Nature, vol. 447, no. 7145, p. 661,
2007.

[2] N. E. D. L. Shahum, “Vision zero,”

[3] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,” 2010.

[4] L. Breiman et al., “Statistical modeling: The two cultures (with comments and a re-
joinder by the author),” Statistical science, vol. 16, no. 3, pp. 199–231, 2001.

[5] Y. Bengio, A. C. Courville, and P. Vincent, “Unsupervised feature learning and deep
learning: A review and new perspectives,” CoRR, vol. abs/1206.5538, 2012. arXiv:
1206.5538.

[6] S. Weisberg, Applied linear regression. John Wiley & Sons, 2005, vol. 528.

[7] M. H. Kutner, C. J. Nachtsheim, J. Neter, W. Li, et al., Applied linear statistical models.
McGraw-Hill Irwin New York, 2005, vol. 5.

[8] G. Molenberghs and G. Verbeke, Linear mixed models for longitudinal data. Springer,
2000.

[9] C. M. Bishop et al., Neural networks for pattern recognition. Oxford university press,
1995.

[10] S.-H. Lo and T. Zheng, “Backward haplotype transmission association (bhta) algorithm–
a fast multiple-marker screening method,” Human heredity, vol. 53, no. 4, pp. 197–
215, 2002.

[11] ——, “A demonstration and findings of a statistical approach through reanalysis of
inflammatory bowel disease data,” Proceedings of the National Academy of Sciences,
vol. 101, no. 28, pp. 10 386–10 391, 2004.

[12] H. Chernoff, S.-H. Lo, and T. Zheng, “Discovering influential variables: A method of
partitions,” Ann Appl Stat, vol. 3, Sep. 2010.

[13] H. Wang, S.-H. Lo, T. Zheng, and I. Hu, “Interaction-based feature selection and
classification for high-dimensional biological data,” Bioinformatics, vol. 28, no. 21,
pp. 2834–2842, 2012.

114

https://arxiv.org/abs/1206.5538

[14] S. N. Wood, Generalized additive models: an introduction with R. CRC press, 2017.

[15] T. J. Hastie and R. J. Tibshirani, Generalized additive models. CRC press, 1990, vol. 43.

[16] D. Hebb, “Organization of behavior. new york: Wiley,” J. Clin. Psychol, vol. 6, no. 3,
pp. 335–307, 1949.

[17] B. Farley and W Clark, “Simulation of self-organizing systems by digital computer,”
Transactions of the IRE Professional Group on Information Theory, vol. 4, no. 4, pp. 76–
84, 1954.

[18] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks,
vol. 61, pp. 85–117, 2015.

[19] A. G. Ivakhnenko and V. G. Lapa, Cybernetic predicting devices. CCM Information
Corporation, 1973.

[20] A. Ivakhnenko, “Cybernetics and forecasting techniques,”

[21] J. Schmidhuber, “Deep learning,” Scholarpedia, vol. 10, no. 11, p. 32 832, 2015.

[22] S. E. Dreyfus, “Artificial neural networks, back propagation, and the kelley-bryson
gradient procedure,” Journal of guidance, control, and dynamics, vol. 13, no. 5, pp. 926–
928, 1990.

[23] E. Mizutani, S. E. Dreyfus, and K. Nishio, “On derivation of mlp backpropagation
from the kelley-bryson optimal-control gradient formula and its application,” in Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium,
IEEE, vol. 2, 2000, pp. 167–172.

[24] H. J. Kelley, “Gradient theory of optimal flight paths,” Ars Journal, vol. 30, no. 10,
pp. 947–954, 1960.

[25] A. E. Bryson, “A gradient method for optimizing multi-stage allocation processes,” in
Proc. Harvard Univ. Symposium on digital computers and their applications, vol. 72,
1961.

[26] S. Linnainmaa, “The representation of the cumulative rounding error of an algorithm
as a taylor expansion of the local rounding errors,” Master’s Thesis (in Finnish), Univ. Helsinki,
pp. 6–7, 1970.

[27] ——, “Taylor expansion of the accumulated rounding error,” BIT Numerical Mathematics,
vol. 16, no. 2, pp. 146–160, 1976.

[28] S. Dreyfus, “The computational solution of optimal control problems with time lag,”
IEEE Transactions on Automatic Control, vol. 18, no. 4, pp. 383–385, 1973.

115

[29] P. J. Werbos, “Applications of advances in nonlinear sensitivity analysis,” in System modeling and optimization,
Springer, 1982, pp. 762–770.

[30] M. Minsky and S. A. Papert, Perceptrons: An introduction to computational geometry.
MIT press, 2017.

[31] J. Weng, N. Ahuja, and T. S. Huang, “Cresceptron: A self-organizing neural network
which grows adaptively,” in [Proceedings 1992] IJCNN International Joint Conference on Neural Networks,
IEEE, vol. 1, 1992, pp. 576–581.

[32] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[33] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep, big, simple
neural nets for handwritten digit recognition,” Neural computation, vol. 22, no. 12,
pp. 3207–3220, 2010.

[34] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations in convolu-
tional architectures for object recognition,” in International conference on artificial neural networks,
Springer, 2010, pp. 92–101.

[35] J Schmidhuber, “On the eight competitions won by his deep learning team 2009–
2012,” A. Kurzweil, Interviewer) Retrieved from http://www. kurzweilai. net/how-bio-inspired-deeplearning-keeps-winning-competitions,
2012.

[36] A. Graves and J. Schmidhuber, “Offline handwriting recognition with multidimen-
sional recurrent neural networks,” in Advances in neural information processing systems,
2009, pp. 545–552.

[37] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber, “A
novel connectionist system for unconstrained handwriting recognition,” IEEE transactions on pattern analysis and machine intelligence,
vol. 31, no. 5, pp. 855–868, 2008.

[38] M. F. Abbod, J. W. Catto, D. A. Linkens, and F. C. Hamdy, “Application of arti-
ficial intelligence to the management of urological cancer,” The Journal of urology,
vol. 178, no. 4, pp. 1150–1156, 2007.

[39] M. Miljanovic, “Comparative analysis of recurrent and finite impulse response neural
networks in time series prediction,” Indian Journal of Computer Science and Engineering,
vol. 3, no. 1, pp. 180–191, 2012.

[40] D. P. Kingma and M. Welling, “Stochastic gradient vb and the variational auto-encoder,”
in Second International Conference on Learning Representations, ICLR, vol. 19, 2014.

116

[41] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with
deep convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434,
2015.

[42] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,” arXiv preprint arXiv:1701.00160,
2016.

[43] G. E. Box, “All models are wrong, but some are useful,” Robustness in Statistics,
vol. 202, p. 549, 1979.

[44] Y. S. Kim, P. Maruvada, and J. A. Milner, “Metabolomics in biomarker discovery:
Future uses for cancer prevention,” 2008.

[45] Y. Hsu, J. Auerbach, T. Zheng, and S.-h. Lo, “Coping with family structure in genome-
wide association studies: A comparative evaluation,” in BMC proceedings, BioMed
Central, vol. 12, 2018, pp. 235–240.

[46] R. A. Fisher, “The correlation between relatives on the supposition of mendelian in-
heritance.,” Earth and Environmental Science Transactions of the Royal Society of Edinburgh,
vol. 52, no. 2, pp. 399–433, 1919.

[47] C. R. Henderson, “Estimation of variance and covariance components,” Biometrics,
vol. 9, no. 2, pp. 226–252, 1953.

[48] E Boerwinkle, R Chakraborty, and C. Sing, “The use of measured genotype informa-
tion in the analysis of quantitative phenotypes in man: Models and analytical meth-
ods,” Annals of human genetics, vol. 50, no. 2, pp. 181–194, 1986.

[49] M. Abney, C. Ober, and M. S. McPeek, “Quantitative-trait homozygosity and asso-
ciation mapping and empirical genomewide significance in large, complex pedigrees:
Fasting serum-insulin level in the hutterites,” The American Journal of Human Genetics,
vol. 70, no. 4, pp. 920–934, 2002.

[50] W.-M. Chen and G. R. Abecasis, “Family-based association tests for genomewide
association scans,” The American Journal of Human Genetics, vol. 81, no. 5, pp. 913–
926, 2007.

[51] Y. S. Aulchenko, D.-J. De Koning, and C. Haley, “Genomewide rapid association us-
ing mixed model and regression: A fast and simple method for genomewide pedigree-
based quantitative trait loci association analysis,” Genetics, vol. 177, no. 1, pp. 577–
585, 2007.

[52] H. M. Kang, J. H. Sul, S. K. Service, N. A. Zaitlen, S.-y. Kong, N. B. Freimer, C.
Sabatti, E. Eskin, et al., “Variance component model to account for sample structure

117

in genome-wide association studies,” Nature genetics, vol. 42, no. 4, pp. 348–354,
2010.

[53] Z. Zhang, E. Ersoz, C.-Q. Lai, R. J. Todhunter, H. K. Tiwari, M. A. Gore, P. J. Brad-
bury, J. Yu, D. K. Arnett, J. M. Ordovas, et al., “Mixed linear model approach adapted
for genome-wide association studies,” Nature genetics, vol. 42, no. 4, pp. 355–360,
2010.

[54] S Sawcer, G Hellenthal, M Pirinen, C. Spencer, N. Patsopoulos, L Moutsianas, A
Dilthey, Z Su, C Freeman, S. Hunt, et al., “International multiple sclerosis genet-
ics consortium wellcome trust case control consortium 2 genetic risk and a primary
role for cell-mediated immune mechanisms in multiple sclerosis,” Nature, vol. 476,
no. 7359, pp. 214–219, 2011.

[55] J Yu, G Pressoir, and W. Briggs, “A unified mixed-model method for association
mapping that accounts for multiple levels of relatedness,” Nat genet, vol. 38, no. 2,
pp. 203–208, 2006.

[56] N. Amin, C. M. Van Duijn, and Y. S. Aulchenko, “A genomic background based
method for association analysis in related individuals,” PloS one, vol. 2, no. 12, e1274,
2007.

[57] M. Fakiola, A. Strange, H. J. Cordell, E. N. Miller, M. Pirinen, Z. Su, A. Mishra, S.
Mehrotra, G. R. Monteiro, G. Band, et al., “Common variants in the hla-drb1–hla-
dqa1 hla class ii region are associated with susceptibility to visceral leishmaniasis,”
Nature genetics, vol. 45, no. 2, pp. 208–213, 2013.

[58] J Eu-Ahsunthornwattana, E. Miller, and M Fakiola, “Comparison of methods to ac-
count for relatedness in genome-wide association studies with family-based data,”
PLoS Genet, vol. 10, no. 7, e1004445, 2014.

[59] M. R. Irvin, E. K. Kabagambe, H. K. Tiwari, L. D. Parnell, R. J. Straka, M. Tsai,
J. M. Ordovas, and D. K. Arnett, “Apolipoprotein e polymorphisms and postprandial
triglyceridemia before and after fenofibrate treatment in the genetics of lipid lowering
and diet network (goldn) study,” Circulation: Cardiovascular Genetics, vol. 3, no. 5,
pp. 462–467, 2010.

[60] M. R. Irvin, D. Zhi, R. Joehanes, M. Mendelson, S. Aslibekyan, S. A. Claas, K. S.
Thibeault, N. Patel, K. Day, L. W. Jones, et al., “Epigenome-wide association study
of fasting blood lipids in the genetics of lipid-lowering drugs and diet network study,”
Circulation, vol. 130, no. 7, pp. 565–572, 2014.

[61] P. W. Holland, “Statistics and causal inference,” Journal of the American statistical Association,
vol. 81, no. 396, pp. 945–960, 1986.

118

[62] J Neyman, “Sur les applications de la theorie des probabilites aux experiences agri-
coles: Essai des principes (masters thesis); justification of applications of the calculus
of probabilities to the solutions of certain questions in agricultural experimentation.
excerpts english translation (reprinted),” Stat Sci, vol. 5, pp. 463–472, 1923.

[63] D. B. Rubin, “Causal inference using potential outcomes: Design, modeling, deci-
sions,” Journal of the American Statistical Association, vol. 100, no. 469, pp. 322–
331, 2005.

[64] P. R. Rosenbaum, “Overt bias in observational studies,” in Observational studies, Springer,
2002, pp. 71–104.

[65] N. A. Christakis and T. J. Iwashyna, “The health impact of health care on families:
A matched cohort study of hospice use by decedents and mortality outcomes in sur-
viving, widowed spouses,” Social science & medicine, vol. 57, no. 3, pp. 465–475,
2003.

[66] A. Abadie and G. W. Imbens, “Large sample properties of matching estimators for
average treatment effects,” econometrica, vol. 74, no. 1, pp. 235–267, 2006.

[67] S. Galiani, P. Gertler, and E. Schargrodsky, “Water for life: The impact of the priva-
tization of water services on child mortality,” Journal of political economy, vol. 113,
no. 1, pp. 83–120, 2005.

[68] S. Galiani, P. Gertler, E. Schargrodsky, and F. Sturzenegger, “The benefits and costs of
privatization in argentina: A microeconomic analysis,” Privatization in Latin America—Myths and Reality,
2005.

[69] J. Bowers and B. Hansen, “Attributing effects to a get-out-the-vote campaign using
full matching and randomization inference,” in Prepared for presentation at the Annual Meeting of the Midwestern Political Science Association,
2005.

[70] J. S. Sekhon, “Quality meets quantity: Case studies, conditional probability, and coun-
terfactuals,” Perspectives on Politics, vol. 2, no. 2, pp. 281–293, 2004.

[71] S. L. Morgan and D. J. Harding, “Matching estimators of causal effects: Prospects
and pitfalls in theory and practice,” Sociological methods & research, vol. 35, no. 1,
pp. 3–60, 2006.

[72] T. A. DiPrete and H. Engelhardt, “Estimating causal effects with matching methods
in the presence and absence of bias cancellation,” Sociological Methods & Research,
vol. 32, no. 4, pp. 501–528, 2004.

[73] C. Winship and S. L. Morgan, “The estimation of causal effects from observational
data,” Annual review of sociology, vol. 25, no. 1, pp. 659–706, 1999.

119

[74] D. B. Rubin, “Using propensity scores to help design observational studies: Applica-
tion to the tobacco litigation,” Health Services and Outcomes Research Methodology,
vol. 2, no. 3-4, pp. 169–188, 2001.

[75] ——, “Estimating causal effects of treatments in randomized and nonrandomized
studies.,” Journal of educational Psychology, vol. 66, no. 5, p. 688, 1974.

[76] A. Kyrgidis, E. Verrou, K. Kitikidou, C. G. Andreadis, I. Katodritou, and K. Vahtse-
vanos, “Reply to i. abraham,” Journal of Clinical Oncology, vol. 28, no. 9, e145–e147,
2010.

[77] N. S. Abramson, S. F. Kelsey, P. Safar, and K. Sutton-Tyrrell, “Simpson’s paradox and
clinical trials: What you find is not necessarily what you prove,” Annals of emergency medicine,
vol. 21, no. 12, pp. 1480–1482, 1992.

[78] C. H. Wagner, “Simpson’s paradox in real life,” The American Statistician, vol. 36,
no. 1, pp. 46–48, 1982.

[79] S. Goodyear, “The swedish approach to road safety:“the accident is not the major
problem”,” written account of Goodyear’s interview with Matts-Åke Belin, traffic safety strategist with the Swedish Transport Administration and one of its key architects of the original Vision Zero program). CityLab. Washington, DC: The Atlantic Monthly Group. Retrieved December,
vol. 5, 2014.

[80] E. Hauer, “Computing what the public wants: Some issues in road safety cost–benefit
analysis,” Accident Analysis & Prevention, vol. 43, no. 1, pp. 151–164, 2011.

[81] M. Ford, Architects of Intelligence: The truth about AI from the people building it. Packt
Publishing Ltd, 2018.

[82] N. Tishby and N. Zaslavsky, “Deep learning and the information bottleneck principle,”
in 2015 IEEE Information Theory Workshop (ITW), IEEE, 2015, pp. 1–5.

[83] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,” arXiv preprint physics/0004057,
2000.

[84] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational information
bottleneck,” arXiv preprint arXiv:1612.00410, 2016.

[85] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing systems,
2014, pp. 2672–2680.

[86] P. Luc, C. Couprie, S. Chintala, and J. Verbeek, “Semantic segmentation using adver-
sarial networks,” arXiv preprint arXiv:1611.08408, 2016.

120

[87] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of adversarial machine
learning,” Pattern Recognition, vol. 84, pp. 317–331, 2018.

[88] R. Bao, S. Liang, and Q. Wang, “Featurized bidirectional gan: Adversarial defense via
adversarially learned semantic inference,” arXiv preprint arXiv:1805.07862, 2018.

[89] A. Creswell, A. A. Bharath, and B. Sengupta, “Conditional autoencoders with adver-
sarial information factorization,” space, vol. 19, p. 24, 2017.

121

	Title Page
	Table of Contents
	List of Figures
	Introduction and Background
	Motivation
	Representation Learning
	Linear Regression as Representation
	Mixed (Hierarchical) Models as Latent Representation
	Mixture Models as Representation

	Partition-based Models

	Technical Approach
	I-score
	Backward Dropping Algorithm
	Comparison

	Generalized Additive Model (GAM)
	Neural Networks
	Generative Neural Networks
	Entropy and Mutual Information
	Definition of Terminologies
	Task and Objective Function
	Feature v.s. Latent Factor/Variable
	Feature Selection v.s. Feature Embedding
	Discriminative Model v.s. Generative Model

	Sufficient Representation Learning Framework
	Introduction
	Sufficient Representation – Statistical Desirable Qualities
	Sufficient Representation – Statistical Desirable Qualities
	Definition of Sufficient Representation
	Representation Learning Procedure
	Notation
	Toy Example
	Representation Learning v.s. Generative Model Learning
	Searching For the Objectives For A Generative Model

	Summary

	I-Score Sufficient Representation Learning
	Partition-based Representation Learning
	Problem Setup
	Inference
	Prediction

	Sufficient Gaussian-Partition Model – Unsupervised
	Model Assumption and Learning Objective
	Example
	Stirling prior

	Sufficient Gaussian-Partition Model – Supervised
	Notation
	Model Assumption and Learning Objective
	I-score for Supervised Variable Selection With Discrete Features

	Representation Learning In Genome-wide Association Studies
	Introduction
	GWAS Background
	Statistical Problem
	Data
	Models
	Results
	GWAS Data

	Discussion

	I-Score Representation Learning in Causal Inference
	Introduction
	Neyman–Rubin Causal Model
	Representation Learning in Causal Inference
	Definition and Proposition
	Causal Inference
	On the Search of Adjustment Sets
	Inference
	Simulation

	Application to Vision Zero Data
	Background
	Data
	Analysis

	Conclusion

	I-Score Representation Learning in Neural Networks
	Introduction
	Variational Autoencoder and Information Bottleneck
	Introduction
	Variational Autoencoder
	Representation Learning In Neural Networks
	Related Work – Factor Analysis/Probabilistic PCA
	Inference Method
	Generative Adversarial Network and BiGAN
	Info-BiGAN Implementation
	Empirical Results
	Observations

	Conclusion

	Epilogue
	References

