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Abstract

Probabilistic Programming for Deep Learning

Dustin Tran

We propose the idea of deep probabilistic programming, a synthesis of advances for systems

at the intersection of probabilistic modeling and deep learning. Such systems enable the development

of new probabilistic models and inference algorithms that would otherwise be impossible: enabling

unprecedented scales to billions of parameters, distributed and mixed precision environments, and AI

accelerators; integration with neural architectures for modeling massive and high-dimensional

datasets; and the use of computation graphs for automatic differentiation and arbitrary manipulation

of probabilistic programs for flexible inference and model criticism.

After describing deep probabilistic programming, we discuss applications in novel variational

inference algorithms and deep probabilistic models. First, we introduce the variational Gaussian

process (vgp), a Bayesian nonparametric variational family, which adapts its shape to match complex

posterior distributions. The vgp generates approximate posterior samples by generating latent inputs

and warping them through random non-linear mappings; the distribution over random mappings is

learned during inference, enabling the transformed outputs to adapt to varying complexity of the true

posterior. Second, we introduce hierarchical implicit models (hims). hims combine the idea of

implicit densities with hierarchical Bayesian modeling, thereby defining models via simulators of

data with rich hidden structure.
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Chapter 1: Introduction, Background, & History

Probabilistic modeling is a powerful approach for analyzing empirical information using foundations

from probability theory (Tukey, 1962; Newell and Simon, 1976; Box, 1976). Probabilistic models

are an essential element of machine learning (Murphy, 2012; Goodfellow et al., 2016) and statistics

(Friedman et al., 2001; Gelman et al., 2013), featuring applications across fields such as compu-

tational biology (Friedman et al., 2000), computational neuroscience (Dayan and Abbott, 2001),

cognitive science (Tenenbaum et al., 2011), information theory (MacKay, 2003), and natural language

processing (Manning and Schütze, 1999).

In this thesis, we propose the idea of deep probabilistic programming, a synthesis of advances for the

design and implementation of systems at the intersection of probabilistic modeling and deep learning.

Such systems enable the development of new probabilistic models and inference algorithms that would

otherwise be impossible: enabling unprecedented scales to billions of parameters, distributed and

mixed precision environments, and AI accelerators; integration and flexibility with neural architectures

for modeling massive and high-dimensional datasets; and the use of computation graphs for automatic

differentiation and arbitrary manipulation of probabilistic programs for flexible inference algorithms

and model criticism strategies.

Below we provide background in the probabilistic approach to machine learning as well as history

behind probabilistic systems for their research and eventual deployment. Chapter 2 and Chapter 3

describes the design of deep probabilistic programming systems. Chapter 4 and Chapter 5 discuss

applications in novel probabilistic inference strategies as well as novel model classes.

1.1 Probabilistic Machine Learning

The process of data analysis in machine learning and statistics reflects that of the scientific method.

Namely, there are core building blocks—interchangeable components which enable rapid iteration
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Model Infer

Data

Criticize

Figure 1.1: Box’s loop.

as they build on one another. These building blocks form a cycle that leads to their individual

improvements as the cycle is unrolled over time. To formalize this, we follow a philosophy of

statistics and machine learning known as Box’s loop (Box, 1976; Blei, 2014). Given a phenomena of

interest:

1. Build a probabilistic model. The model formalizes a hypothesis about the phenomena using

the language of probability.

2. Reason about the phenomena given model and gathered data. This data may come from

designing and running an experiment, or it may come from gathering data that already exists

(for example, previous experiments, or content such as text or images on the internet).

3. Criticize the model’s fit to the data, that is, how well the hypothesis empirically reflects the

phenomena. Revise and repeat.

As an illustration, suppose a child flips a coin ten times, with the set of outcomes being

[0, 1, 0, 0, 0, 0, 0, 0, 0, 1],

where 0 denotes tails and 1 denotes heads. She is interested in the probability that the coin lands

heads. To analyze this, she first builds a “model”: suppose she assumes the coin flips are independent

and land heads with the same probability. Second, she reasons about the phenomenon: she infers the

model’s hidden structure (the unknown probability value) given data. Finally, she criticizes the model:

she analyzes whether her model captures the real-world phenomenon of coin flips. If it doesn’t, then

she may revise the model and repeat.
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Next we more formally describe the three components of probabilistic models, inference, and criti-

cism.

1.1.1 Probabilistic Models

A probabilistic model asserts how observations from a natural phenomenon arise. The model is a joint

distribution p(x, z) of observed variables x corresponding to data, and latent variables z that provide

the hidden structure to generate from x. The joint distribution factorizes into two components.

The likelihood p(x | z) is a probability distribution that describes how any data x depend on the latent

variables z. The likelihood posits a data generating process, where the data x are assumed drawn

from the likelihood conditioned on a particular hidden pattern described by z. The prior p(z) is a

probability distribution that describes the latent variables present in the data. It posits a generating

process of the hidden structure.

Ultimately, how the likelihood depends on z can be incredibly complex in the real world: neural net-

works are a common class of functions that enable parameterizing the likelihood for high-dimensional

distributions, proven empirically to work well across perceptual tasks such as image classification

(Krizhevsky et al., 2012). For the purposes of this thesis, we do not provide background on neural

networks. Their specific architectures are not central to the thesis; we recommend Goodfellow et al.

(2016) as a survey.

1.1.2 Inference of Probabilistic Models

How can we use a model p(x, z) to analyze gathered data x? In other words, what hidden structure z

explains the data? We seek to infer this hidden structure using the model.

One method of inference leverages Bayes’ rule to define the posterior

p(z | x) =
p(x, z)∫
p(x, z)dz

.

The posterior is the distribution of the latent variables z, conditioned on the observed data x. It is a

probabilistic description of the data’s hidden representation.

From the perspective of inductivism, as practiced by many Bayesians, the posterior is our updated
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hypothesis about the latent variables, representing our new subjective belief about the phenomena.

From the perspective of hypothetico-deductivism, as practiced by statisticians such as Box, Rubin,

and Gelman, the posterior is simply a fitted model to data and thus a falsifiable hypothesis, to be

criticized and ultimately revised (Box, 1982; Gelman and Shalizi, 2013).

Inferring the posterior. Now we know what the posterior represents. How do we calculate it? This is

the central computational challenge in probabilistic inference. The posterior is difficult to compute

because of its normalizing constant, which is the integral in the denominator. This is often a high-

dimensional integral that lacks an analytic (closed-form) solution. Thus, calculating the posterior

means approximating the posterior.

1.1.3 Variational Inference

Variational inference is an umbrella term for algorithms which cast posterior inference as optimization

(Hinton and van Camp, 1993; Waterhouse et al., 1996; Jordan et al., 1999a). The core idea involves

two steps:

1. posit a family of distributions q(z ; λ) over the latent variables;

2. match q(z ; λ) to the posterior by optimizing over its parameters λ.

This strategy converts the problem of computing the posterior p(z | x) into an optimization problem:

minimize a loss function

λ∗ = arg min
λ

loss(p(z | x), q(z ; λ)).

The optimized distribution q(z ; λ∗) is used as a proxy to the posterior p(z | x).

1.1.4 Maximum a Posteriori Estimation

One form of variational inference is known as maximum a posteriori (MAP) estimation. It uses the

mode as a point estimate of the posterior distribution,

zMAP = arg max
z
p(z | x) = arg max

z
log p(z | x).
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Namely, the posited family of variational distributions are simply delta distributions with probability

1 at a point. In practice, we work with logarithms of densities to avoid numerical underflow issues

(Murphy, 2012).

The MAP estimate is the most likely configuration of the hidden patterns z under the model. However,

we cannot directly solve this optimization problem because the posterior is typically intractable. To

circumvent this, we use Bayes’ rule to optimize over the joint density,

zMAP = arg max
z

log p(z | x) = arg max
z

log p(x, z).

This is valid because

log p(z | x) = log p(x, z)− log p(x) = log p(x, z)− constant in terms of z.

MAP estimation includes the common scenario of maximum likelihood estimation as a special

case,

zMAP = arg max
z
p(x, z) = arg max

z
p(x | z),

where the prior p(z) is flat, placing uniform probability over all values z supports. Placing a

nonuniform prior can be thought of as regularizing the estimation, penalizing values away from

maximizing the likelihood, which can lead to overfitting. For example, a normal prior or Laplace

prior on z corresponds to `2 penalization, also known as ridge regression, and `1 penalization, also

known as the LASSO.

Maximum likelihood is also known as cross entropy minimization. For a data set x = {xn},

zMAP = arg max
z

log p(x | z) = arg max
z

N∑
n=1

log p(xn | z) = arg min
z
− 1

N

N∑
n=1

log p(xn | z).

The last expression can be thought of as an approximation to the cross entropy between the true data

distribution and p(x | z), using a set of N data points.

Gradient descent. To find the MAP estimate of the latent variables z, we use the gradient of the log
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joint density∇z log p(x, z) and follow it to a (local) optima.

1.1.5 Laplace Approximation

Maximum a posteriori (MAP) estimation approximates the posterior p(z | x) with a point mass (delta

function) by simply capturing its mode. MAP is attractive because it is fast and efficient. How can

we use MAP to construct a better approximation to the posterior?

The Laplace approximation (Laplace, 1986) is one way of improving a MAP estimate. The idea is to

approximate the posterior with a normal distribution centered at the MAP estimate,

p(z | x) ≈ Normal(z ; zMAP,Λ
−1).

This requires computing a precision matrix Λ. Derived from a Taylor expansion, the Laplace

approximation uses the Hessian of the negative log joint density at the MAP estimate. It is defined

component-wise as

Λij =
∂2

∂zi∂zj
− log p(x, z).

For flat priors (which reduces MAP to maximum likelihood), the precision matrix is known as the

observed Fisher information (Fisher, 1925). Edward uses TensorFlow’s automatic differentiation,

making this distribute.

1.1.6 KL(q‖p) Minimization

MAP estimation and the Laplace approximation are simple, but make local and Gaussian assumptions

in approximating the true posterior distribution. Another popular form of variational inference

minimizes the Kullback-Leibler divergence from q(z ; λ) to p(z | x),

λ∗ = arg min
λ

KL(q(z ; λ) ‖ p(z | x))

= arg min
λ

Eq(z ; λ)

[
log q(z ; λ)− log p(z | x)

]
.
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The KL divergence is a non-symmetric, information theoretic measure of similarity between two prob-

ability distributions (Hinton and van Camp, 1993;Waterhouse et al., 1996; Jordan et al., 1999a).

The Evidence Lower Bound. The above optimization problem is intractable because it directly depends

on the posterior p(z | x). To tackle this, consider the property

log p(x) = KL(q(z ; λ) ‖ p(z | x)) + Eq(z ; λ)

[
log p(x, z)− log q(z ; λ)

]
where the left hand side is the logarithm of the marginal likelihood p(x) =

∫
p(x, z)dz, also known

as the model evidence.

The evidence is a constant with respect to the variational parameters λ, so we can minimize KL(q‖p)

by instead maximizing the evidence lower bound (elbo),

ELBO(λ) = Eq(z ; λ)

[
log p(x, z)− log q(z ; λ)

]
.

In the elbo, both p(x, z) and q(z ; λ) are tractable. The optimization problem reduces to

λ∗ = arg max
λ

ELBO(λ).

As per its name, the elbo is a lower bound on the evidence, and optimizing it tries to maximize the

probability of observing the data. What does maximizing the elbo do? Splitting the elbo reveals a

trade-off

ELBO(λ) = Eq(z ; λ)[log p(x, z)]− Eq(z ; λ)[log q(z ; λ)],

where the first term represents an energy and the second term (including the minus sign) represents

the entropy of q. The energy encourages q to focus probability mass where the model puts high

probability, p(x, z). The entropy encourages q to spread probability mass to avoid concentrating to

one location.

There are two general strategies to obtain gradients for gradient-based optimization: score function

gradient; and reparameterization gradient.
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Score function gradient. Gradient descent is a standard approach for optimizing complicated objectives

like the elbo. The idea is to calculate its gradient

∇λ ELBO(λ) = ∇λ Eq(z ; λ)

[
log p(x, z)− log q(z ; λ)

]
,

and update the current set of parameters proportional to the gradient. The score function gradient

estimator leverages a property of logarithms to write the gradient as

∇λ ELBO(λ) = Eq(z ; λ)

[
∇λ log q(z ; λ)

(
log p(x, z)− log q(z ; λ)

)]
.

The gradient of the elbo is an expectation over the variational model q(z ; λ); the only new ingredient

it requires is the score function ∇λ log q(z ; λ) (Paisley et al., 2012b; Ranganath et al., 2014).

We can use Monte Carlo integration to obtain noisy estimates of both the elbo and its gradient. The

basic procedure follows these steps:

1. draw S samples {zs}S1 ∼ q(z ; λ),

2. evaluate the argument of the expectation using {zs}S1 , and

3. compute the empirical mean of the evaluated quantities.

A Monte Carlo estimate of the gradient is then

∇λ ELBO(λ) ≈ 1

S

S∑
s=1

[(
log p(x, zs)− log q(zs ; λ)

)
∇λ log q(zs ; λ)

]
.

This is an unbiased estimate of the actual gradient of the elbo.

Reparameterization gradient. If the model has differentiable latent variables, then it is generally

advantageous to leverage gradient information from the model in order to better traverse the opti-

mization space. One approach to doing this is the reparameterization gradient (Kingma and Welling,

2014a; Rezende et al., 2014).

Some variational distributions q(z ; λ) admit useful reparameterizations. For example, we can

reparameterize a normal distribution z ∼ Normal(µ,Σ) as z = µ+Lε, where ε ∼ Normal(0, I) and
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Σ = LL>. In general, write this as

ε ∼ q(ε), z = z(ε ; λ),

where ε is a random variable that does not depend on the variational parameters λ. The deterministic

function z(·;λ) encapsulates the variational parameters instead, and following the process is equivalent

to directly drawing z from the original distribution.

The reparameterization gradient leverages this property to write the gradient as

∇λ ELBO(λ) = Eq(ε)
[
∇λ
(

log p(x, z(ε ; λ))− log q(z(ε ; λ) ; λ)
)]
.

The gradient of the elbo is an expectation over the base distribution q(ε), and the gradient can be

applied directly to the inner expression. We can use Monte Carlo integration to obtain noisy estimates

of both the elbo and its gradient. The basic procedure follows these steps:

1. draw S samples {εs}S1 ∼ q(ε),

2. evaluate the argument of the expectation using {εs}S1 , and

3. compute the empirical mean of the evaluated quantities.

A Monte Carlo estimate of the gradient is then

∇λ ELBO(λ) ≈ 1

S

S∑
s=1

[
∇λ
(

log p(x, z(εs ; λ))− log q(z(εs ; λ) ; λ)
)]
.

This is an unbiased estimate of the actual gradient of the elbo. Empirically, it exhibits lower variance

than the score function gradient, leading to faster convergence in a large set of problems (Tran et al.,

2016b).

1.1.7 Model Criticism

We can never validate whether a model is true. In practice, “all models are wrong” (Box, 1976).

However, we can try to uncover where the model goes wrong. Model criticism helps justify the model

as an approximation or point to good directions for revising the model.
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Model criticism typically analyzes the posterior predictive distribution,

p(xnew | x) =

∫
p(xnew | z)p(z | x)dz.

The model’s posterior predictive can be used to generate new data given past observations and can also

make predictions on new data given past observations. It is formed by calculating the likelihood of

the new data, averaged over every set of latent variables according to the posterior distribution.

Scoring rules. A scoring rule is a scalar-valued metric for assessing trained models (Winkler, 1994;

Gneiting and Raftery, 2007). For example, we can assess models for classification by predicting

the label for each observation in the data and comparing it to their true labels. Formally, given two

distributions p and q over a space of events x,

S(p, q) =

∫
q(x)S(p, x)dx,

where S(p, x) is a real-valued function of a density p over x such as the logarithmic scoring rule

(log p(x)). It is common practice to criticize models with data held-out from training. In machine

learning, benchmark datasets involve a train and test split.

Posterior predictive checks. Posterior predictive checks (PPCs) analyze the degree to which data

generated from the model deviate from data generated from the true distribution. They can be used

either numerically to quantify this degree, or graphically to visualize this degree. PPCs can be thought

of as a probabilistic generalization of scoring rules, providing a distribution rather than a single value

(Box, 1980; Rubin, 1984; Meng, 1994; Gelman et al., 1996).

The simplest PPC works by applying a test statistic on replicated datasets generated from the posterior

predictive, such as T (xnew) = max(xnew). Applying T (xnew) to new datasets over many data

replications induces a distribution. We compare this distribution to the test statistic on the real data

T (x).

In Figure 1.2, T (x) falls in a low probability region of this reference distribution: if the model were

true, the probability of observing the test statistic is very low. This indicates that the model fits the

data poorly according to this check; this suggests an area of improvement for the model.

10



Figure 1.2: Distribution of test statistic replicated over generated datasets, along with the test statistic
applied to the observed dataset.

More generally, the test statistic can be a function of the model’s latent variables T (x, z), known as a

discrepancy function. Examples of discrepancy functions are the metrics used for scoring rules. We

can now interpret the scoring rule as a special case of PPCs: it simply calculates T (x, z) over the

real data and without a reference distribution in mind. A reference distribution allows us to make

probabilistic statements about the point, in reference to an overall distribution.

PPCs are an excellent tool for revising models—simplifying or expanding the current model as one

examines its fit to data. They are inspired by classical hypothesis testing such as goodness-of-fit-tests;

these methods criticize models under the frequentist perspective of large sample assessment.

PPCs can also be applied to tasks such as hypothesis testing, model comparison, model selection,

and model averaging. It’s important to note that while PPCs can be applied as a form of Bayesian

hypothesis testing, hypothesis testing is generally not recommended: binary decision making from a

single test is not as common a use case as the broader process of assimilating this information into

future model revisions and diagnostics.

1.2 History of probabilistic systems

For examples of probabilistic software systems, we point to two early threads. The first is in artificial

intelligence. Expert systems were designed from human expertise, which in turn enabled larger

reasoning steps according to existing knowledge (Buchanan et al., 1969; Minsky, 1975). With

connectionist models, the design focused on neuron-like processing units, which learn from experience;

this drove new applications of artificial intelligence (Hopfield, 1982; Rumelhart et al., 1988).

As a second thread, we point to early work in statistical computing, where interest grew broadly

out of efficient computation for problems in statistical analysis. The S language, developed by John

Chambers and colleagues at Bell Laboratories (Becker and Chambers, 1984; Chambers and Hastie,
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1992), focused on an interactive environment for data analysis, with simple yet rich syntax to quickly

turn ideas into software. It is a predecessor to the R language (Ihaka and Gentleman, 1996). More

targeted environments such as BUGS (Spiegelhalter et al., 1995), which focuses on Bayesian analysis

of statistical models, helped launch the emerging field of probabilistic programming.

We are motivated to build on these early works in probabilistic systems—where in modern applications,

new challenges arise in their design and implementation. We highlight two challenges. First, statistics

and machine learning have made significant advances in the methodology of probabilistic models

and their inference (e.g., Hoffman et al. (2013); Ranganath et al. (2014); Rezende et al. (2014)).

For software systems to enable fast experimentation, we require rich abstractions that can capture

these advances: it must encompass both a broad class of probabilistic models and a broad class of

algorithms for their efficient inference. Second, researchers are increasingly motivated to employ

complex probabilistic models and at an unprecedented scale of massive data (Bengio et al., 2013;

Ghahramani, 2015; Lake et al., 2016). Thus we require an efficient computing environment that

supports distributed training and integration of hardware such as (multiple) GPUs.

A core theme in probabilistic programming is automated inference, used in systems such as BUGS

(Spiegelhalter et al., 1995) with a Gibbs sampler to more recent work such as Stan (Carpenter et al.,

2015) with the No-U-Turn Sampler (Hoffman and Gelman, 2014) and Automatic Differentiation

Variational Inference (Kucukelbir et al., 2017). In this thesis, we examine effectively the opposite

theme: flexible, composable inference for research on the algorithms themselves. This use case fits

well with machine learning research, where the challenge is to devise better models and algorithms

that work on a variety of domains and scale—ultimately toward the goal of more intelligent systems.

The theme of automated inference is useful for a separate audience: applied scientists and practioners.

These purposes could fit well as a higher-level abstraction built on top of what we describe here in

developing more composable and flexible systems.
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Chapter 2: Deep Probabilistic Programming

2.1 Introduction

The nature of deep neural networks is compositional. Users can connect layers in creative ways,

without having to worry about how to perform testing (forward propagation) or inference (gradient-

based optimization, with back propagation and automatic differentiation).

In this chapter, we design compositional representations for probabilistic programming. Probabilistic

programming lets users specify generative probabilistic models as programs and then “compile” those

models down into inference procedures. Probabilistic models are also compositional in nature, and

much work has enabled rich probabilistic programs via compositions of random variables (Goodman

et al., 2012; Ghahramani, 2015; Lake et al., 2016).

Less work, however, has considered an analogous compositionality for inference. Rather, many

existing probabilistic programming languages treat the inference engine as a black box, abstracted away

from the model. These cannot capture probabilistic inferences that reuse the model’s representation—

a key idea in recent advances in variational inference (Kingma and Welling, 2014b; Rezende and

Mohamed, 2015; Tran et al., 2016b), generative adversarial networks (Goodfellow et al., 2014), and

also in more classic inferences (Dayan et al., 1995; Gutmann and Hyvärinen, 2010).

We propose Edward1, a Turing-complete probabilistic programming language which builds on two

compositional representations—one for random variables and one for inference. By treating inference

as a first class citizen, on a par with modeling, we show that probabilistic programming can be

as flexible and computationally efficient as traditional deep learning. For flexibility, we show how

Edward makes it easy to fit the same model using a variety of composable inference methods, ranging

from point estimation to variational inference to mcmc. For efficiency, we show how to integrate
1See Tran et al. (2016a) for details of the API. A companion webpage for this paper is available at http://edwardlib.

org/iclr2017. It contains more complete examples with runnable code.
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Edward into existing computational graph frameworks such as TensorFlow (Abadi et al., 2016).

Frameworks like TensorFlow provide computational benefits like distributed training, parallelism,

vectorization, and GPU support “for free.” For example, we show on a benchmark task that Edward’s

Hamiltonian Monte Carlo is many times faster than existing software. Further, Edward incurs no

runtime overhead: it is as fast as handwritten TensorFlow.

2.2 Compositional Representations for Probabilistic Models

We first develop compositional representations for probabilistic models. We desire two criteria: (a)

integration with computational graphs, an efficient framework where nodes represent operations on

data and edges represent data communicated between them (Culler, 1986); and (b) invariance of the

representation under the graph, that is, the representation can be reused during inference.

Edward defines random variables as the key compositional representation. They are class objects

with methods, for example, to compute the log density and to sample. Further, each random variable

x is associated to a tensor (multi-dimensional array) x∗, which represents a single sample x∗ ∼ p(x).

This association embeds the random variable onto a computational graph on tensors.

The design’s simplicity makes it easy to develop probabilistic programs in a computational graph

framework. Importantly, all computation is represented on the graph. This enables one to compose

random variables with complex deterministic structure such as deep neural networks, a diverse set of

math operations, and third party libraries that build on the same framework. The design also enables

compositions of random variables to capture complex stochastic structure.

As an illustration, we use a Beta-Bernoulli model, p(x, θ) = Beta(θ | 1, 1)
∏50
n=1 Bernoulli(xn | θ),

where θ is a latent probability shared across the 50 data points x ∈ {0, 1}50. The random variable x
is 50-dimensional, parameterized by the random tensor θ∗. Fetching the object x runs the graph: it

simulates from the generative process and outputs a binary vector of 50 elements.

theta = Beta(a=1.0, b=1.0)
x = Bernoulli(p=tf.ones(50) * theta)

θ
θ∗

tf.ones(50)

x
x∗

Figure 2.1: Beta-Bernoulli program (left) alongside its computational graph (right). Fetching x
from the graph generates a binary vector of 50 elements.
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# Probabilistic model
z = Normal(mu=tf.zeros([N, d]), sigma=tf.ones([N, d]))
h = Dense(256, activation='relu')(z)
x = Bernoulli(logits=Dense(28 * 28, activation=None)(h))

# Variational model
qx = tf.placeholder(tf.float32, [N, 28 * 28])
qh = Dense(256, activation='relu')(qx)
qz = Normal(mu=Dense(d, activation=None)(qh),

sigma=Dense(d, activation='softplus')(qh))

Figure 2.2: Variational auto-encoder for a data set of 28× 28 pixel images: (left) graphical model,
with dotted lines for the inference model; (right) probabilistic program, with 2-layer neural networks.

All computation is registered symbolically on random variables and not over their execution. Sym-

bolic representations do not require reifying the full model, which leads to unreasonable memory

consumption for large models (Tristan et al., 2014). Moreover, it enables us to simplify both de-

terministic and stochastic operations in the graph, before executing any code (Ścibior et al., 2015;

Zinkov and Shan, 2016).

With computational graphs, it is also natural to build mutable states within the probabilistic program.

As a typical use of computational graphs, such states can define model parameters; in TensorFlow,

this is given by a tf.Variable. Another use case is for building discriminative models p(y |x),

where x are features that are input as training or test data. The program can be written independent

of the data, using a mutable state (tf.placeholder) for x in its graph. During training and testing,

we feed the placeholder the appropriate values.

In Appendix A.1, we provide examples of a Bayesian neural network for classification (A.2), latent

Dirichlet allocation (A.3), and Gaussian matrix factorization (A.4). We present others below.

2.2.1 Example: Variational Auto-encoder

Figure 3.4 implements a vae (Kingma and Welling, 2014b; Rezende et al., 2014) in Edward. It

comprises a probabilistic model over data and a variational model designed to approximate the

former’s posterior. Here we use random variables to construct both the probabilistic model and the

variational model; they are fit during inference (more details in Section 5.3).

There are N data points xn ∈ {0, 1}28·28 each with d latent variables, zn ∈ Rd. The program uses

Keras (Chollet, 2015) to define neural networks. The probabilistic model is parameterized by a 2-layer
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neural network, with 256 hidden units (and ReLU activation), and generates 28× 28 pixel images.

The variational model is parameterized by a 2-layer inference network, with 256 hidden units and

outputs parameters of a normal posterior approximation.

The probabilistic program is concise. Core elements of the vae—such as its distributional assumptions

and neural net architectures—are all extensible. With model compositionality, we can embed it into

more complicated models (Gregor et al., 2015; Rezende et al., 2016) and for other learning tasks

(Kingma et al., 2014). With inference compositionality (which we discuss in Section 5.3), we can

embed it into more complicated algorithms, such as with expressive variational approximations

(Rezende and Mohamed, 2015; Tran et al., 2016b; Kingma et al., 2016) and alternative objectives

(Ranganath et al., 2016a; Li and Turner, 2016; Dieng et al., 2016).

2.2.2 Example: Bayesian Recurrent Neural Network with Variable Length

Random variables can also be composed with control flow operations. As an example, Figure 2.3

implements a Bayesian recurrent neural network (rnn) with variable length. The data is a sequence

of inputs {x1, . . . ,xT } and outputs {y1, . . . , yT } of length T with xt ∈ RD and yt ∈ R per time

step. For t = 1, . . . , T , a rnn applies the update

ht = tanh(Whht−1 + Wxxt + bh),

where the previous hidden state is ht−1 ∈ RH . We feed each hidden state into the output’s likelihood,

yt ∼ Normal(Wyht + by, 1), and we place a standard normal prior over all parameters {Wh ∈

RH×H ,Wx ∈ RD×H ,Wy ∈ RH×1,bh ∈ RH ,by ∈ R}. Our implementation is dynamic: it differs

from a rnn with fixed length, which pads and unrolls the computation.

2.2.3 Stochastic Control Flow and Model Parallelism

Random variables can also be placed in the control flow itself, enabling probabilistic programs with

stochastic control flow. Stochastic control flow defines dynamic conditional dependencies, known in

the literature as contingent or existential dependencies (Mansinghka et al., 2014; Wu et al., 2016).

See Figure 2.4, where x may or may not depend on a for a given execution. In Appendix A.5, we

use stochastic control flow to implement a Dirichlet process mixture model. Tensors with stochastic
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def rnn_cell(hprev, xt):
return tf.tanh(tf.dot(hprev, Wh) + tf.dot(xt, Wx) + bh)

Wh = Normal(mu=tf.zeros([H, H]), sigma=tf.ones([H, H]))
Wx = Normal(mu=tf.zeros([D, H]), sigma=tf.ones([D, H]))
Wy = Normal(mu=tf.zeros([H, 1]), sigma=tf.ones([H, 1]))
bh = Normal(mu=tf.zeros(H), sigma=tf.ones(H))
by = Normal(mu=tf.zeros(1), sigma=tf.ones(1))

x = tf.placeholder(tf.float32, [None, D])
h = tf.scan(rnn_cell, x, initializer=tf.zeros(H))
y = Normal(mu=tf.matmul(h, Wy) + by, sigma=1.0)

Figure 2.3: Bayesian rnn: (left) graphical model; (right) probabilistic program. The program has
an unspecified number of time steps; it uses a symbolic for loop (tf.scan).

p
p∗

tf.while_loop(...)a∗

a

x
x∗

Figure 2.4: Computational graph for a probabilistic program with stochastic control flow.

shape are also possible: for example, tf.zeros(Poisson(lam=5.0)) defines a vector of zeros

with length given by a Poisson draw with rate 5.0.

Stochastic control flow produces difficulties for algorithms that use the graph structure because the

relationship of conditional dependencies changes across execution traces. The computational graph,

however, provides an elegant way of teasing out static conditional dependence structure (p) from

dynamic dependence structure (a). We can perform model parallelism (parallel computation across

components of the model) over the static structure with GPUs and batch training. We can use more

generic computations to handle the dynamic structure.

2.3 Compositional Representations for Inference

We described random variables as a representation for building rich probabilistic programs over

computational graphs. We now describe a compositional representation for inference. We desire two

criteria: (a) support for many classes of inference, where the form of the inferred posterior depends

on the algorithm; and (b) invariance of inference under the computational graph, that is, the posterior

can be further composed as part of another model.

To explain our approach, we will use a simple hierarchical model as a running example. Figure 2.5
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displays a joint distribution p(x, z, β) of data x, local variables z, and global variables β. The ideas

here extend to more expressive programs.

β

zn xn

N

N = 10000 # number of data points
D = 2 # data dimension
K = 5 # number of clusters

beta = Normal(mu=tf.zeros([K, D]), sigma=tf.ones([K, D]))
z = Categorical(logits=tf.zeros([N, K]))
x = Normal(mu=tf.gather(beta, z), sigma=tf.ones([N, D]))

Figure 2.5: Hierarchical model: (left) graphical model; (right) probabilistic program. It is a mixture
of Gaussians overD-dimensional data {xn} ∈ RN×D. There areK latent cluster means β ∈ RK×D.

2.3.1 Inference as Stochastic Graph Optimization

The goal of inference is to calculate the posterior distribution p(z, β | xtrain;θ) given data xtrain,

where θ are any model parameters that we will compute point estimates for.2 We formalize this as

the following optimization problem:

min
λ,θ
L(p(z, β | xtrain;θ), q(z, β;λ)), (2.1)

where q(z, β;λ) is an approximation to the posterior p(z, β |xtrain;θ), and L is a loss function with

respect to p and q.

The choice of approximation q, loss L, and rules to update parameters {θ,λ} are specified by an

inference algorithm. (Note q can be nonparametric, such as a point or a collection of samples.)

In Edward, we write this problem as follows:

inference = ed.Inference({beta: qbeta, z: qz}, data={x: x_train})

Inference is an abstract class which takes two inputs. The first is a collection of latent random

variables beta and z, associated to their “posterior variables” qbeta and qz respectively. The

second is a collection of observed random variables x, which is associated to their realizations

x_train.

The idea is that Inference defines and solves the optimization in Equation 2.1. It adjusts parameters
2For example, we could replace x’s sigma argument with tf.exp(tf.Variable(0.0))*tf.ones([N, D]). This

defines a model parameter initialized at 0 and positive-constrained.
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qbeta = Normal(
mu=tf.Variable(tf.zeros([K, D])),
sigma=tf.exp(tf.Variable(tf.zeros([K, D]))))

qz = Categorical(
logits=tf.Variable(tf.zeros([N, K])))

inference = ed.VariationalInference(
{beta: qbeta, z: qz}, data={x: x_train})

T = 10000 # number of samples
qbeta = Empirical(

params=tf.Variable(tf.zeros([T, K, D])))
qz = Empirical(

params=tf.Variable(tf.zeros([T, N])))

inference = ed.MonteCarlo(
{beta: qbeta, z: qz}, data={x: x_train})

Figure 2.6: (left) Variational inference. (right) Monte Carlo.

of the distribution of qbeta and qz (and any model parameters) to be close to the posterior.

Class methods are available to finely control the inference. Calling inference.initialize()
builds a computational graph to update {θ,λ}. Calling inference.update() runs this computation

once to update {θ,λ}; we call the method in a loop until convergence. Importantly, no efficiency is

lost in Edward’s language: the computational graph is the same as if it were handwritten for a specific

model. This means the runtime is the same; also see our experiments in Section 2.4.2.

A key concept in Edward is that there is no distinct “model” or “inference” block. A model is simply

a collection of random variables, and inference is a way of modifying parameters in that collection

subject to another. This reductionism offers significant flexibility. For example, we can infer only

parts of a model (e.g., layer-wise training (Hinton et al., 2006)), infer parts used in multiple models

(e.g., multi-task learning), or plug in a posterior into a new model (e.g., Bayesian updating).

2.3.2 Classes of Inference

The design of Inference is very general. We describe subclasses to represent many algorithms

below: variational inference, Monte Carlo, and generative adversarial networks.

Variational inference posits a family of approximating distributions and finds the closest member in

the family to the posterior (Jordan et al., 1999a). In Edward, we build the variational family in the

graph; see Figure 2.6 (left). For our running example, the family has mutable variables as parameters

λ = {π, µ, σ}, where q(β;µ, σ) = Normal(β;µ, σ) and q(z;π) = Categorical(z;π).

Specific variational algorithms inherit from the VariationalInference class. Each defines its

own methods, such as a loss function and gradient. For example, we represent map estimation with

an approximating family (qbeta and qz) of PointMass random variables, i.e., with all probability
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εn

θ

xn

N

def generative_network(eps):
h = Dense(256, activation='relu')(eps)
return Dense(28 * 28, activation=None)(h)

def discriminative_network(x):
h = Dense(28 * 28, activation='relu')(x)
return Dense(h, activation=None)(1)

# Probabilistic model
eps = Normal(mu=tf.zeros([N, d]), sigma=tf.ones([N, d]))
x = generative_network(eps)

inference = ed.GANInference(data={x: x_train},
discriminator=discriminative_network)

Figure 2.7: Generative adversarial networks: (left) graphical model; (right) probabilistic program.
The model (generator) uses a parameterized function (discriminator) for training.

mass concentrated at a point. MAP inherits from VariationalInference and defines the negative

log joint density as the loss function; it uses existing optimizers inside TensorFlow. In Section 2.4.1,

we experiment with multiple gradient estimators for black box variational inference (Ranganath

et al., 2014). Each estimator implements the same loss (an objective proportional to the divergence

KL(q ‖ p)) and a different update rule (stochastic gradient).

Monte Carlo approximates the posterior using samples (Robert and Casella, 1999). Monte Carlo is an

inferencewhere the approximating family is an empirical distribution, q(β; {β(t)}) = 1
T

∑T
t=1 δ(β, β

(t))

and q(z; {z(t)}) = 1
T

∑T
t=1 δ(z, z

(t)). The parameters are λ = {β(t), z(t)}. See Figure 2.6 (right).

Monte Carlo algorithms proceed by updating one sample β(t), z(t) at a time in the empirical ap-

proximation. Specific mc samplers determine the update rules: they can use gradients such as in

Hamiltonian Monte Carlo (Neal, 2011) and graph structure such as in sequential Monte Carlo (Doucet

et al., 2001).

Edward also supports non-Bayesian methods such as generative adversarial networks (gans) (Good-

fellow et al., 2014). See Figure 2.7. The model posits random noise eps over N data points, each

with d dimensions; this random noise feeds into a generative_network function, a neural network

that outputs real-valued data x. In addition, there is a discriminative_network which takes

data as input and outputs the probability that the data is real (in logit parameterization). We build

GANInference; running it optimizes parameters inside the two neural network functions. This

approach extends to many advances in gans (e.g., Denton et al. (2015); Li et al. (2015)).
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qbeta = PointMass(params=tf.Variable(tf.zeros([K, D])))
qz = Categorical(logits=tf.Variable(tf.zeros([N, K])))

inference_e = ed.VariationalInference({z: qz}, data={x: x_train, beta: qbeta})
inference_m = ed.MAP({beta: qbeta}, data={x: x_train, z: qz})
...
for _ in range(10000):
inference_e.update()
inference_m.update()

Figure 2.8: Combining inference algorithms to perform variational EM.

Finally, one can design algorithms that would otherwise require tedious algebraic manipulation. With

symbolic algebra on nodes of the computational graph, we can uncover conjugacy relationships

between random variables. Users can then integrate out variables to automatically derive classical

Gibbs (Gelfand and Smith, 1990), mean-field updates (Bishop, 2006), and exact inference. These

algorithms are being currently developed in Edward.

2.3.3 Composing Inferences

Core to Edward’s design is that inference can be written as a collection of separate inference programs.

Below we demonstrate variational EM, with an (approximate) E-step over local variables and an

M-step over global variables. We instantiate two algorithms, each of which conditions on inferences

from the other, and we alternate with one update of each (Neal and Hinton, 1993), This extends to

many other cases such as exact EM for exponential families, contrastive divergence (Hinton, 2002),

pseudo-marginal methods (Andrieu and Roberts, 2009), and Gibbs sampling within variational

inference (Wang and Blei, 2012; Hoffman and Blei, 2015). We can also write message passing

algorithms, which solve a collection of local inference problems (Koller and Friedman, 2009). For

example, classical message passing uses exact local inference and expectation propagation locally

minimizes the Kullback-Leibler divergence, KL(p ‖ q) (Minka, 2001).

2.3.4 Data Subsampling

Stochastic optimization (Bottou, 2010) scales inference to massive data and is key to algorithms

such as stochastic gradient Langevin dynamics (Welling and Teh, 2011) and stochastic variational

inference (Hoffman et al., 2013). The idea is to cheaply estimate the model’s log joint density in an

unbiased way. At each step, one subsamples a data set {xm} of sizeM and then scales densities with
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respect to local variables,

log p(x, z, β) = log p(β) +
N∑
n=1

[
log p(xn | zn, β) + log p(zn |β)

]
≈ log p(β) +

N

M

M∑
m=1

[
log p(xm | zm, β) + log p(zm |β)

]
.

To support stochastic optimization, we represent only a subgraph of the full model. This prevents

reifying the full model, which can lead to unreasonable memory consumption (Tristan et al., 2014).

During initialization, we pass in a dictionary to properly scale the arguments. See Figure 2.9.

β

zm xm

M

beta = Normal(mu=tf.zeros([K, D]), sigma=tf.ones([K, D]))
z = Categorical(logits=tf.zeros([M, K]))
x = Normal(mu=tf.gather(beta, z), sigma=tf.ones([M, D]))

qbeta = Normal(mu=tf.Variable(tf.zeros([K, D])),
sigma=tf.nn.softplus(tf.Variable(tf.zeros([K, D]))))

qz = Categorical(logits=tf.Variable(tf.zeros([M, D])))

inference = ed.VariationalInference({beta: qbeta, z: qz}, data={x: x_batch})
inference.initialize(scale={x: float(N)/M, z: float(N)/M})

Figure 2.9: Data subsampling with a hierarchical model. We define a subgraph of the full model,
forming a plate of sizeM rather than N . We then scale all local random variables by N/M .

Conceptually, the scale argument represents scaling for each random variable’s plate, as if we had seen

that random variable N/M as many times. As an example, Appendix A.6 shows how to implement

stochastic variational inference in Edward. The approach extends naturally to streaming data (Doucet

et al., 2000; Broderick et al., 2013; McInerney et al., 2015), dynamic batch sizes, and data structures in

which working on a subgraph does not immediately apply (Binder et al., 1997; Johnson and Willsky,

2014; Foti et al., 2014).

2.4 Experiments

In this section, we illustrate two main benefits of Edward: flexibility and efficiency. For the former,

we show how it is easy to compare different inference algorithms on the same model. For the latter,

we show how it is easy to get significant speedups by exploiting computational graphs.
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Inference method Negative log-likelihood

vae (Kingma and Welling, 2014b) ≤ 88.2
vae without analytic KL ≤ 89.4
vae with analytic entropy ≤ 88.1
vae with score function gradient ≤ 87.9
Normalizing flows (Rezende and Mohamed, 2015) ≤ 85.8
Hierarchical variational model (Ranganath et al., 2016b) ≤ 85.4
Importance-weighted auto-encoders (K = 50) (Burda et al., 2016b) ≤ 86.3
hvm with iwae objective (K = 5) ≤ 85.2
Rényi divergence (α = −1) (Li and Turner, 2016) ≤ 140.5

Table 2.1: Inference methods for a probabilistic decoder on binarized MNIST. The Edward proba-
bilistic programming language (ppl) is a convenient research platform, making it easy to both develop
and experiment with many algorithms.

2.4.1 Recent Methods in Variational Inference

We demonstrate Edward’s flexibility for experimenting with complex inference algorithms. We

consider the vae setup from Figure 3.4 and the binarized MNIST data set (Salakhutdinov and Murray,

2008). We use d = 50 latent variables per data point and optimize using ADAM. We study different

components of the vae setup using different methods; Appendix A.8 is a complete script. After

training we evaluate held-out log likelihoods, which are lower bounds on the true value.

Table 4.1 shows the results. The first method uses the vae from Figure 3.4. The next three methods

use the same vae but apply different gradient estimators: reparameterization gradient without an

analytic KL; reparameterization gradient with an analytic entropy; and the score function gradient

(Paisley et al., 2012a; Ranganath et al., 2014). This typically leads to the same optima but at different

convergence rates. The score function gradient was slowest. Gradients with an analytic entropy

produced difficulties around convergence: we switched to stochastic estimates of the entropy as it

approached an optima. We also use hierarchical variational models (hvms) (Ranganath et al., 2016b)

with a normalizing flow prior; it produced similar results as a normalizing flow on the latent variable

space (Rezende and Mohamed, 2015), and better than importance-weighted auto-encoders (iwaes)

(Burda et al., 2016b).

We also study novel combinations, such as hvms with the iwae objective, gan-based optimization

on the decoder (with pixel intensity-valued data), and Rényi divergence on the decoder. gan-based

23



Probabilistic programming system Runtime (s)

Handwritten NumPy (1 CPU) 534
PyMC3 (12 CPU) (Salvatier et al., 2015) 30.0
Edward (12 CPU) 8.2
Handwritten TensorFlow (GPU) 5.0
Edward (GPU) 4.9

Table 2.2: hmc benchmark for large-scale logistic regression. Edward (GPU) is significantly faster
than other systems. In addition, Edward has no overhead: it is as fast as handwritten TensorFlow.

optimization does not enable calculation of the log-likelihood; Rényi divergence does not directly

optimize for log-likelihood so it does not perform well. The key point is that Edward is a convenient

research platform: they are all easy modifications of a given script.

2.4.2 GPU-accelerated Hamiltonian Monte Carlo

β

ynxn

N

# Model
x = tf.Variable(x_data, trainable=False)
beta = Normal(mu=tf.zeros(D), sigma=tf.ones(D))
y = Bernoulli(logits=tf.dot(x, beta))

# Inference
qbeta = Empirical(params=tf.Variable(tf.zeros([T, D])))
inference = ed.HMC({beta: qbeta}, data={y: y_data})
inference.run(step_size=0.5 / N, n_steps=10)

Figure 2.10: Edward program for Bayesian logistic regression with hmc.

We benchmark runtimes for a fixed number of Hamiltonian Monte Carlo (hmc; Neal, 2011) iterations

on modern hardware: a 12-core Intel i7-5930K CPU at 3.50GHz and an NVIDIA Titan X (Maxwell)

GPU. We apply logistic regression on the Covertype dataset (N = 581012, D = 54; responses were

binarized) using Edward and PyMC3 (Salvatier et al., 2015). We ran 100 hmc iterations, with 10

leapfrog updates per iteration, a step size of 0.5/N , and single precision. Figure 2.10 illustrates the

program in Edward.

Table 2.2 displays the runtimes.Edward (GPU) features a dramatic and 6x speedup over PyMC3 (12

CPU). This showcases the value of building a ppl on top of computational graphs. The speedup stems

from fast matrix multiplication when calculating the model’s log-likelihood; GPUs can efficiently

parallelize this computation. We expect similar speedups for models whose bottleneck is also matrix

multiplication, such as deep neural networks.

There are various reasons for the speedup. For PyMC3, we note Edward’s speedup is not a result of
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PyMC3’s Theano backend compared to Edward’s TensorFlow. Rather, PyMC3 does not use Theano

for all its computation, so it experiences communication overhead with NumPy. (PyMC3 was actually

slower when using the GPU.) We predict that porting Edward’s design to Theano would feature

similar speedups.

In addition to these speedups, we highlight that Edward has no runtime overhead: it is as fast as

handwritten TensorFlow. Following Section 2.3.1, this is because the computational graphs for

inference are in fact the same for Edward and the handwritten code.

2.5 Discussion

We described Edward, a Turing-complete ppl with compositional representations for probabilistic

models and inference. Edward expands the scope of probabilistic programming to be as flexible

and computationally efficient as traditional deep learning. For flexibility, we showed how Edward

can use a variety of composable inference methods, capture recent advances in variational inference

and generative adversarial networks, and finely control the inference algorithms. For efficiency, we

showed how Edward leverages computational graphs to achieve fast, parallelizable computation,

scales to massive data, and incurs no runtime overhead over handwritten code.

As with any language design, Edward makes tradeoffs in pursuit of its flexibility and speed for research.

For example, an open challenge in Edward is to better facilitate programs with complex control flow

and recursion. While possible to represent, it is unknown how to enable their flexible inference

strategies. In addition, it is open how to expand Edward’s design to dynamic computational graph

frameworks—which provide more flexibility in their programming paradigm—but may sacrifice

performance. A crucial next step for probabilistic programming is to leverage dynamic computational

graphs while maintaining the flexibility and efficiency that Edward offers. We discuss such advances

in the next chapter.
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Chapter 3: Simple, Distributed, and Accelerated Probabilistic Programming

3.1 Introduction

Many developments in deep learning can be interpreted as blurring the line between model and com-

putation. Some have even gone so far as to declare a new paradigm of “differentiable programming,”

in which the goal is not merely to train a model but to perform general program synthesis.1 In this

view, attention (Bahdanau et al., 2015) and gating (Hochreiter and Schmidhuber, 1997) describe

boolean logic; skip connections (He et al., 2016) and conditional computation (Bengio et al., 2015;

Graves, 2016) describe control flow; and external memory (Giles et al., 1990; Graves et al., 2014)

accesses elements outside a function’s internal scope. Learning algorithms are also increasingly

dynamic: for example, learning to learn (Hochreiter et al., 2001), neural architecture search (Zoph

and Le, 2017), and optimization within a layer (Amos and Kolter, 2017).

The differentiable programming paradigm encourages modelers to explicitly consider computational

expense: one must consider not only a model’s statistical properties (“how well does the model capture

the true data distribution?”), but its computational, memory, and bandwidth costs (“how efficiently

can it train and make predictions?”). This philosophy allows researchers to engineer deep-learning

systems that run at the very edge of what modern hardware makes possible.

By contrast, the probabilistic programming community has tended to draw a hard line between model

and computation: first, one specifies a probabilistic model as a program; second, one performs an

“inference query” to automatically train the model given data (Spiegelhalter et al., 1995; Pfeffer, 2007;

Carpenter et al., 2016). This design choice makes it difficult to implement probabilistic models at

truly large scales, where training multi-billion parameter models requires splitting model computation

across accelerators and scheduling communication (Shazeer et al., 2017). Recent advances such as
1Recent advocates of this trend include Tom Dietterich (https://twitter.com/tdietterich/

status/948811925038669824) and Yann LeCun (https://www.facebook.com/yann.lecun/posts/
10155003011462143). It is a classic idea in the programming languages field (Baydin et al., 2015).

26

https://twitter.com/tdietterich/status/948811925038669824
https://twitter.com/tdietterich/status/948811925038669824
https://www.facebook.com/yann.lecun/posts/10155003011462143
https://www.facebook.com/yann.lecun/posts/10155003011462143


Edward (Tran et al., 2017) have enabled finer control over inference procedures in deep learning

(see also (Mansinghka et al., 2014; Bingham et al., 2018)). However, they all treat inference as a

closed system: this makes them difficult to compose with arbitrary computation, and with the broader

machine learning ecosystem, such as production platforms (Baylor et al., 2017).

In this paper, we describe a simple approach for embedding probabilistic programming in a deep learn-

ing ecosystem; our implementation is in TensorFlow and Python, named Edward2. This lightweight

approach offers a low-level modality for flexible modeling—one which deep learners benefit from

flexible prototyping with probabilistic primitives, and one which probabilistic modelers benefit from

tighter integration with familiar numerical ecosystems.

Contributions. We distill the core of probabilistic programming down to a single abstraction—the

random variable. Unlike existing languages, there is no abstraction for learning: algorithms may for

example be functions taking a model as input (another function) and returning tensors.

This low-level design has two important implications. First, it enables research flexibility: a re-

searcher has freedom to manipulate model computation for training and testing. Second, it enables

bigger models using accelerators such as tensor processing units (tpus) (Jouppi et al., 2017): tpus

require specialized ops in order to distribute computation and memory across a physical network

topology.

We illustrate three applications: a model-parallel variational auto-encoder (vae) (Kingma andWelling,

2014a) with tpus; a data-parallel autoregressive model (Image Transformer (Parmar et al., 2018))

with tpus; and multi-GPU No-U-Turn Sampler (nuts) (Hoffman and Gelman, 2014). For both

a state-of-the-art vae on 64x64 ImageNet and Image Transformer on 256x256 CelebA-HQ, our

approach achieves an optimal linear speedup from 1 to 256 tpuv2 chips. With nuts, we see a 37x

over PyMC3 (Salvatier et al., 2016).

3.2 Random Variables Are All You Need

We outline probabilistic programs in Edward2. They require only one abstraction: a random variable.

We then describe how to perform flexible, low-level manipulations using tracing.

3.2.1 Probabilistic Programs, Variational Programs, and Many More
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def model():
p = ed.Beta(1., 1., name="p")
x = ed.Bernoulli(probs=p,

sample_shape=50,
name="x")

return x
Figure 3.1: Beta-Bernoulli program. In ea-
ger mode, model() generates a binary vector
of 50 elements. In graph mode, model() re-
turns an op to be evaluated in a TensorFlow
session.

import neural_net_negative, neural_net_positive

def variational(x):
eps = ed.Normal(0., 1., sample_shape=2)
if eps[0] > 0:

return neural_net_positive(eps[1], x)
else:

return neural_net_negative(eps[1], x)
Figure 3.2: Variational program (Ranganath et al.,
2016a), available in eager mode. Python control
flow is applicable to generative processes: given a
coin flip, the program generates from one of two
neural nets. Their outputs can have differing shape
(and structure).

Edward2 reifies any computable probability distribution as a Python function (program). Typically,

the function executes the generative process and returns samples.2 Inputs to the program—along

with any scoped Python variables—represent values the distribution conditions on.

To specify random choices in the program, we use RandomVariables from Edward (Tran et al.,

2016a), which has similarly been built on by Zhusuan (Shi et al., 2017) and Probtorch (Probtorch

Developers, 2017). Random variables provide methods such as log_prob and sample, wrapping
TensorFlow Distributions (Dillon et al., 2017). Further, Edward random variables augment a compu-

tational graph of TensorFlow operations: each random variable x is associated to a sampled tensor

x∗ ∼ p(x) in the graph.

Figure 3.1 illustrates a toy example: a Beta-Bernoulli model, p(x,p) = Beta(p | 1, 1)
∏50
n=1 Bernoulli(xn |p),

where p is a latent probability shared across the 50 data points x ∈ {0, 1}50. The random variable x
is 50-dimensional, parameterized by the tensor p∗ ∼ p(p). As part of TensorFlow, Edward2 supports

two execution modes. Eager mode simultaneously places operations onto the computational graph

and executes them; here, model() calls the generative process and returns a binary vector of 50

elements. Graph mode separately stages graph-building and execution; here, model() returns a

deferred TensorFlow vector; one may run a TensorFlow session to fetch the vector.

Importantly, all distributions—regardless of downstream use—are written as probabilistic programs.

Figure 3.2 illustrates an implicit variational program, i.e., a variational distribution which admits

sampling but may not have a tractable density. In general, variational programs (Ranganath et al.,

2016a), proposal programs (Cusumano-Towner and Mansinghka, 2018), and discriminators in ad-
2Instead of sampling, one can also represent a distribution in terms of its density; see Section 3.3.1.
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versarial training (Goodfellow et al., 2014) are computable probability distributions. If we have a

mechanism for manipulating these probabilistic programs, we do not need to introduce any additional

abstractions to support powerful inference paradigms. Below we demonstrate this flexibility using a

model-parallel vae.

3.2.2 Example: Model-Parallel VAE with TPUs

Figure 3.4 implements a model-parallel variational auto-encoder (vae), which consists of a decoder,

prior, and encoder. The decoder generates 16-bit audio (a sequence of T values in [0, 216 − 1]

normalized to [0, 1]); it employs an autoregressive flow, which for training efficiently parallelizes

over sequence length (Papamakarios et al., 2017). The prior posits latents representing a coarse 8-bit

resolution over T/2 steps; it is learnable with a similar architecture. The encoder compresses each

sample into the coarse resolution; it is parameterized by a compressing function.

A tpu cluster arranges cores in a toroidal network, where for example, 512 cores may be arranged

as a 16x16x2 torus interconnect. To utilize the cluster, the prior and decoder apply distributed

autoregressive flows (Figure 3.3). They split compute across a virtual 4x4 topology in two ways:

“across flows”, where every 2 flows belong on a different core; and “within a flow”, where 4 independent

flows apply layers respecting autoregressive ordering (for space, we omit code for splitting within a

flow). The encoder splits computation via compressor; for space, we also omit it.

The probabilistic programs are concise. They capture recent advances such as autoregressive flows

and multi-scale latent variables, and they enable never-before-tried architectures where with 16x16

tpuv2 chips (512 cores), the model can split across 4.1TB memory and utilize up to 1016 FLOPS. All

elements of the vae—distributions, architectures, and computation placement—are extensible. For

training, we use typical TensorFlow ops; we describe how this works next.

3.2.3 Tracing

We defined probabilistic programs as arbitrary Python functions. To enable flexible training, we apply

tracing, a classic technique used across probabilistic programming (e.g., Mansinghka et al., 2014;

Tolpin et al., 2016; Ritchie et al., 2016; Ge et al., 2018; Bingham et al., 2018) as well as automatic

differentiation (e.g., Maclaurin et al., 2015). A tracer wraps a subset of the language’s primitive

operations so that the tracer can intercept control just before those operations are executed.
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import SplitAutoregressiveFlow, masked_network
tfb = tf.contrib.distributions.bijectors

class DistributedAutoregressiveFlow(tfb.Bijector):
def __init__(flow_size=[4]*8):

self.flows = []
for num_splits in flow_size:
flow = SplitAutoregressiveFlow(masked_network, num_splits)
self.flows.append(flow)

self.flows.append(SplitAutoregressiveFlow(masked_network, 1))
super(DistributedAutoregressiveFlow, self).__init__()

def _forward(self, x):
for l, flow in enumerate(self.flows):
with tf.device(tf.contrib.tpu.core(l//2)):

x = flow.forward(x)
return x

def _inverse_and_log_det_jacobian(self, y):
ldj = 0.
for l, flow in enumerate(self.flows[::-1]):
with tf.device(tf.contrib.tpu.core(l//2)):

y, new_ldj = flow.inverse_and_log_det_jacobian(y)
ldj += new_ldj

return y, ldj

Figure 3.3: Distributed autoregressive flows. (right) The default length is 8, each with 4 independent
flows. Each flow transforms inputs via layers respecting autoregressive ordering. (left) Flows are
partitioned across a virtual topology of 4x4 cores (rectangles); each core computes 2 flows and is
locally connected; a final core aggregates. The virtual topology aligns with the physical tpu topology:
for 4x4 tpus, it is exact; for 16x16 tpus, it is duplicated for data parallelism.

import upsample, compressor

def prior():
"""Uniform noise to 8-bit latent, [u1,...,u(T/2)] -> [z1,...,z(T/2)]"""
dist = ed.Independent(ed.Uniform(low=tf.zeros([batch_size, T/2])))
return ed.TransformedDistribution(dist, DistributedAutoregressiveFlow(flow_size))

def decoder(z):
"""Uniform noise + latent to 16-bit audio, [u1,...,uT], [z1,...,z(T/2)] -> [x1,...,xT]"""
dist = ed.Independent(ed.Uniform(low=tf.zeros([batch_size, T])))
dist = ed.TransformedDistribution(dist, tfb.Affine(shift=upsample(z)))
return ed.TransformedDistribution(dist, DistributedAutoregressiveFlow(flow_size))

def encoder(x):
"""16-bit audio to 8-bit latent, [x1,...,xT] -> [z1,...,z(T/2)]"""
loc, log_scale = tf.split(compressor(x), 2, axis=-1)
return ed.Normal(loc=loc, scale=tf.exp(log_scale))

Figure 3.4: Model-parallel vae with tpus, generating 16-bit audio from 8-bit latents. The prior
and decoder split computation according to distributed autoregressive flows. The encoder may split
computation according to compressor; we omit it for space.
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STACK = [lambda f, *a, **k: f(*a, **k)]

@contextmanager
def trace(tracer):
STACK.append(tracer)
yield
STACK.pop()

def traceable(f):
def fwrapped(*a, **k):

STACK[-1](f, *a, **k)
return fwrapped

Figure 3.5: Minimal implementation of trac-
ing. trace defines a context; any traceable
ops executed during it are replaced by calls to
tracer. traceable registers these ops; we
register Edward random variables.
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def make_log_joint_fn(model):
def log_joint_fn(**model_kwargs):

def tracer(rv_call, *args, **kwargs):
name = kwargs.get("name")
kwargs["value"] = model_kwargs.get(name)
rv = rv_call(*args, **kwargs)
log_probs.append(tf.sum(rv.log_prob(rv)))
return rv

log_probs = []
with trace(tracer):
model(**model_kwargs)

return sum(log_probs)
return log_joint_fn

Figure 3.7: A higher-order function which takes a
model program as input and returns its log-joint
density function.

def mutilate(model, **do_kwargs):
def mutilated_model(*args, **kwargs):

def tracer(rv_call, *args, **kwargs):
name = kwargs.get("name")
if name in do_kwargs:

return do_kwargs[name]
return rv_call(*args, **kwargs)

with trace(tracer):
return model(*args, **kwargs)

return mutilated_model
Figure 3.8: A higher-order function which
takes a model program as input and returns
its causally intervened program. Intervention
differs from conditioning: it does not change
the sampled value but the distribution.
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Figure 3.5 displays the core implementation: it is 10 lines of code.3 trace is a context manager

which, upon entry, pushes a tracer callable to a stack, and upon exit, pops tracer from the stack.

traceable is a decorator: it registers functions so that they may be traced according to the stack.

Edward2 registers random variables: for example, Normal = traceable(edward1.Normal).
The tracing implementation is also agnostic to the numerical backend. Appendix B.1 applies Figure 3.5

to implement Edward2 on top of SciPy.

3.2.4 Tracing Applications

Tracing is a common tool for probabilistic programming. However, in other languages, tracing

primarily serves as an implementation detail to enable inference “meta-programming” procedures. In

our approach, we promote it to be a user-level technique for flexible computation. We outline two

examples; both are difficult to implement without user access to tracing.

Figure 3.7 illustrates a make_log_joint factory function. It takes a model program as input and

returns its joint density function across a trace. We implement it using a tracer which sets random

variable values to the input and accumulates its log-probability as a side-effect. Section 3.3.3 applies

make_log_joint in a variational inference algorithm.

Figure 3.8 illustrates causal intervention (Pearl, 2003): it “mutilates” a program by setting random

variables indexed by their name to another random variable. Note this effect is propagated to any

descendants while leaving non-descendants unaltered: this is possible because Edward2 implicitly

traces a dataflow graph over random variables, following a “push” model of evaluation. Other

probabilistic operations more naturally follow a “pull” model of evaluation: mean-field variational

inference requires evaluating energy terms corresponding to a single factor; we do so by reifying a

variational program’s trace (e.g., Figure 3.6) and walking backwards from that factor’s node in the

trace.

3.3 Examples: Learning with Low-Level Functions

We described probabilistic programs and how to manipulate their computation with low-level tracing

functions. Unlike existing ppls, there is no abstraction for learning. Below we provide examples of
3Rather than implement tracing, one can also reuse the pre-existing one in an autodiff system. However, our purposes

require tracing with user control (tracer functions above) in order to manipulate computation. This is not presently available
in TensorFlow Eager or Autograd (Maclaurin et al., 2015)—which motivated our implementation.
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import get_channel_embeddings, add_positional_embedding_nd, local_attention_1d

def image_transformer(inputs, hparams):
x = get_channel_embeddings(3, inputs, hparams.hidden_size)
x = tf.reshape(x, [-1, 32*32*3, hparams.hidden_size])
x = tf.pad(x, [[0, 0], [1, 0], [0, 0]])[:, :-1, :] # shift pixels right
x = add_positional_embedding_nd(x, max_length=32*32*3+3)
x = tf.nn.dropout(x, keep_prob=0.7)
for _ in range(hparams.num_layers):

y = local_attention_1d(x, hparams, attention_type="local_mask_right",
q_padding="LEFT", kv_padding="LEFT")

x = tf.contrib.layers.layer_norm(tf.nn.dropout(y, keep_prob=0.7) + x, begin_norm_axis=-1)
y = tf.layers.dense(x, hparams.filter_size, activation=tf.nn.relu)
y = tf.layers.dense(y, hparams.hidden_size, activation=None)
x = tf.contrib.layers.layer_norm(tf.nn.dropout(y, keep_prob=0.7) + x, begin_norm_axis=-1)

logits = tf.layers.dense(x, 256, activation=None)
return ed.Categorical(logits=logits).log_prob(inputs)

loss = -tf.reduce_sum(image_transformer(inputs, hparams)) # inputs has shape [batch,32,32,3]
train_op = tf.contrib.tpu.CrossShardOptimizer(tf.train.AdamOptimizer()).minimize(loss)
Figure 3.9: Data-parallel Image Transformer with tpus (Parmar et al., 2018). It is a neural autore-
gressive model which computes the log-probability of a batch of images with self-attention. Our
lightweight design enables representing and training the model as a log-probability function; this
is more efficient than the typical representation of programs as a generative process. Embedding
and self-attention functions are assumed in the environment; they are available in Tensor2Tensor
(Vaswani et al., 2018).

how this works and its implications.

3.3.1 Example: Data-Parallel Image Transformer with TPUs

All ppls have so far focused on a unifying representation of models, typically as a generative process.

However, this can be inefficient in practice for certain models. Because our lightweight approach has

no required signature for training, it permits alternative model representations.4

For example, Figure 3.9 represents the Image Transformer (Parmar et al., 2018) as a log-probability

function. The Image Transformer is a state-of-the-art autoregressive model for image generation,

consisting of a Categorical distribution parameterized by a batch of right-shifted images, embeddings,

a sequence of alternating self-attention and feedforward layers, and an output layer. The function

computes log_prob with respect to images and parallelizes over pixel dimensions. Unlike the

log-probability, sampling requires programming the autoregressivity in serial, which is inefficient

and harder to implement.5 With the log-probability representation, data parallelism with tpus is
4The Image Transformer provides a performance reason for when density representations may be preferred. Another

compelling example are energy-based models p(x) ∝ exp{f(x)}, where sampling is not even available in closed-form; in
contrast, the unnormalized density is.

5In principle, one can reify any model in terms of sampling and apply make_log_joint to obtain its density. However,
make_log_joint cannot always be done efficiently in practice, such as in this example. In contrast, the reverse program
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def nuts(...):
samples = []
for _ in range(num_samples):

state = set_up_trajectory(...)
depth = 0
while no_u_turn(state):

state = extend_trajectory(depth, state)
depth += 1

samples.append(state)
return samples

def extend_trajectory(depth, state):
if depth == 0:

state = one_leapfrog_step(state)
else:

state = extend_trajectory(depth-1, state)
if no_u_turn(state):
state = extend_trajectory(depth-1, state)

return state
Figure 3.10: Core logic in No-U-Turn Sampler (Hoff-
man and Gelman, 2014). This algorithm has data-
dependent non-tail recursion.

Figure 3.11: Learning often involves
matching two execution traces such as a
model program’s (left) and a variational
program’s (right), or a model program’s
with data tensors (bottom). Red arrows
align prior and variational variables. Blue
arrows align observed variables and data;
edges from data to variational variables
represent amortization.

also immediate by cross-sharding the optimizer. The train op can be wrapped in a TF Estimator, or

applied with manual tpu ops in order to aggregate training across cores.

3.3.2 Example: No-U-Turn Sampler

Figure 3.10 demonstrates the core logic behind the No-U-Turn Sampler (nuts), a Hamiltonian Monte

Carlo algorithm which adaptively selects the path length hyperparameter during leapfrog integration.

Its implementation uses non-tail recursion, following the pseudo-code in Hoffman and Gelman

(2014, Alg 6); both CPUs and GPUs are compatible. See source code for the full implementation;

Appendix B.2 also implements a grammar vae (Kusner et al., 2017) using a data-dependent while

loop.

The ability to integrate nuts requires interoperability with eager mode: nuts requires Python control

flow, as it is difficult to implement recursion natively with TensorFlow ops. (nuts is not available,

e.g., in Edward 1.) However, eager execution has tradeoffs (not unique to our approach). For example,

it incurs a non-negligible overhead over graph mode, and it has preliminary support for tpus. Our

lightweight design supports both modes so the user can select either.

transformation from density to sampling can be done efficiently: in this example, sampling can at best compute in serial
order; therefore it requires no performance optimization.
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3.3.3 Example: Alignment of Probabilistic Programs

Learning algorithms often involve manipulating multiple probabilistic programs. For example, a

variational inference algorithm takes two programs as input—the model program and variational

program—and computes a loss function for optimization. This requires specifying which variables

refer to each other in the two programs.

We apply alignment (Figure 3.11), which is a dictionary of key-value pairs, each from one string

(a random variable’s name) to another (a random variable in the other program). This dictionary

provides flexibility over how random variables are aligned, independent of their specifications in each

program. For example, this enables ladder vaes (Sønderby et al., 2016) where prior and variational

topological orderings are reversed; and VampPriors (Tomczak and Welling, 2018) where prior and

variational parameters are shared.

Figure 3.12 shows variational inference with gradient descent using a fixed preconditioner. It applies

make_log_joint_fn (Figure 3.7) and assumes model applies a random variable with name ’x’
(such as the vae in Section 3.2.2). Note this extends alignment from Edward 1 to dynamic programs

(Tran et al., 2017): instead of aligning nodes in static graphs at construction-time, it aligns nodes

in execution traces at runtime. It also has applications for aligning model and proposal programs

in Metropolis-Hastings; model and discriminator programs in adversarial training; and even model

programs and data infeeding functions (“programs”) in input-output pipelines.

3.3.4 Example: Learning to Learn by Variational Inference by Gradient Descent

A lightweight design is not only advantageous for flexible specification of learning algorithms but

flexible composability: here, we demonstrate nested inference via learning to learn. Recall Figure 3.12

performs variational inference with gradient descent. Figure 3.13 applies gradient descent on the

output of that gradient descent algorithm. It finds the optimal preconditioner (Andrychowicz et al.,

2016). This is possible because learning algorithms are simply compositions of numerical operations;

the composition is fully differentiable. This differentiability is not possible with Edward, which

manipulates inference objects: taking gradients of one is not well-defined.6 See also Appendix B.3

which illustrates Markov chain Monte Carlo within variational inference.
6Unlike Edward, Edward2 can also specify distributions over the learning algorithm.

35



import model, variational, align, x

def train(precond):
def loss_fn(x):
qz = variational(x)
log_joint_fn = make_log_joint_fn(model)
kwargs = {align[rv.name]: rv

for rv in toposort(qz)}
energy = log_joint_fn(x=x, **kwargs)
entropy = sum([tf.reduce_sum(rv.entropy())

for rv in toposort(qz)])
return -energy - entropy

grad_fn = tfe.implicit_gradients(loss_fn)
optimizer = tf.train.AdamOptimizer(0.1)
for _ in range(500):
grads = tf.tensordot(precond, grad_fn(x), [[1], [0]])
optimizer.apply_gradients(grads)

return loss_fn(x)
Figure 3.12: Variational inference with precondi-
tioned gradient descent. Edward2 offers writing the
probabilistic program and performing arbitrary Ten-
sorFlow computation for learning.

grad_fn = tfe.gradients_function(train)
optimizer = tf.train.AdamOptimizer(0.1)
for _ in range(100):

optimizer.apply_gradients(grad_fn())
Figure 3.13: Learning-to-learn. It finds the
optimal preconditioner for train (Figure 3.12)
by differentiating the entire learning algorithm
with respect to the preconditioner.

3.4 Experiments

We introduced a lightweight approach for embedding probabilistic programming in a deep learning

ecosystem. Here, we show that such an approach is particularly advantageous for exploiting modern

hardware for multi-tpu vaes and autoregressive models, and multi-GPU nuts. CPU experiments

use a six-core Intel E5-1650 v4, GPU experiments use 1-8 NVIDIA Tesla V100 GPUs, and TPU

experiments use 2nd generation chips under a variety of topology arrangements. The TPUv2 chip

comprises two cores: each features roughly 22 teraflops on mixed 16/32-bit precision (it is roughly

twice the flops of a NVIDIA Tesla P100 GPU on 32-bit precision). In all distributed experiments, we

cross-shard the optimizer for data-parallelism: each shard (core) takes a batch size of 1. All numbers

are averaged over 5 runs.

3.4.1 High-Quality Image Generation

We evaluate models with near state-of-the-art results (“bits/dim”) for non-autoregressive generation

on 64x64 ImageNet (Oord et al., 2016) and autoregressive generation on 256x256 CelebA-HQ (Karras

et al., 2018). We evaluate wall clock time of the number of examples (data points) processed per

second.
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Figure 3.14: Vector-Quantized VAE on
64x64 ImageNet.
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Figure 3.15: Image Transformer on 256x256
CelebA-HQ.

System Runtime (ms)

PyMC3 (CPU) 74.8
Handwritten TF (CPU) 66.2
Edward2 (CPU) 68.4
Handwritten TF (1 GPU) 9.5
Edward2 (1 GPU) 9.7
Edward2 (8 GPU) 2.3

Table 3.1: Time per leapfrog step for No-U-Turn Sampler in Bayesian logistic regression. Edward2
(GPU) achieves a 37x speedup over PyMC3 (CPU); dynamism is not available in Edward. Edward2
also incurs negligible overhead over handwritten TensorFlow code.

For 64x64 ImageNet, we use a vector-quantized variational auto-encoder trained with soft EM (Roy

et al., 2018). It encodes a 64x64x3 pixel image into a 8x8x10 tensor of latents, with a codebook size

of 256 and where each code vector has 512 dimensions. The prior is an Image Transformer (Parmar

et al., 2018) with 6 layers of local 1D self-attention. The encoder applies 4 convolutional layers with

kernel size 5 and stride 2, 2 residual layers, and a dense layer. The decoder applies the reverse of a

dense layer, 2 residual layers, and 4 transposed convolutional layers.

For 256x256 CelebA-HQ, we use a relatively small Image Transformer (Parmar et al., 2018) in order

to fit the model in memory. It applies 5 layers of local 1D self-attention with block length of 256,

hidden sizes of 128, attention key/value channels of 64, and feedforward layers with a hidden size of

256.

Figure 3.14 and Figure 3.15 show that for both models, Edward2 achieves an optimal linear scaling

over the number of tpuv2 chips from 1 to 256. In experiments, we also found the larger batch sizes

drastically sped up training.
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3.4.2 No-U-Turn Sampler

We use the No-U-Turn Sampler (nuts, (Hoffman and Gelman, 2014)) to illustrate the power of

dynamic algorithms on accelerators. nuts implements a variant of Hamiltonian Monte Carlo in

which the fixed trajectory length is replaced by a recursive doubling procedure that adapts the length

per iteration.

We compare Bayesian logistic regression using nuts implemented in PyMC3 (Salvatier et al., 2016)

to our eager-mode TensorFlow implementation. The model’s log joint density is implemented as

“handwritten” TensorFlow code and by a probabilistic program in Edward2; see code in Appendix B.4.

We use the Covertype dataset (581,012 data points, 54 features, outcomes are binarized). Since

adaptive sampling may lead nuts iterations to take wildly different numbers of leapfrog steps, we

report the average time per leapfrog step, averaged over 5 full nuts trajectories (in these experiments,

that typically amounted to about a thousand leapfrog steps total).

Table 3.1 shows that Edward2 (GPU) has up to a 37x speedup over PyMC3 with multi-threaded

CPU. 7 In addition, while Edward2 in principle introduces overhead in eager mode due to its tracing

mechanism, the speed differential between Edward2 and handwritten TensorFlow code is neligible

(smaller than between-run variation). This demonstrates that the power of the ppl formalism comes

with negligible overhead.

3.5 Discussion

We described a simple, low-level approach for embedding probabilistic programming in a deep

learning ecosystem. For both a state-of-the-art vae on 64x64 ImageNet and Image Transformer on

256x256 CelebA-HQ, we achieve an optimal linear speedup from 1 to 256 tpuv2 chips. For nuts, we

see up to 100x speedups over other systems.

As current work, we are pushing on this design as a stage for fundamental research in generative

models and Bayesian neural networks (e.g., (Tran and Blei, 2018; Wen et al., 2018; Hafner et al.,

2018)). We describe some examples in the next chapters. In addition, our experiments relied on

data parallelism to show massive speedups. Recent work has improved distributed programming
7PyMC3 is actually slower with GPU than CPU; its code frequently communicates between Theano on the GPU and

NumPy on the CPU.
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of neural networks for both model parallelism and parallelism over large inputs such as super-high-

resolution images (Shazeer et al., 2018). Combined with this work, we hope to push the limits

of giant probabilistic models with over 1 trillion parameters and over 4K resolutions (50 million

dimensions).
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Chapter 4: Applications in Variational Inference

In Chapter 2 and Chapter 3, we described the design of deep probabilistic programming systems. In

this chapter and the next, we will delve into the development of new variational inference algorithms

and probabilistic models, whose research was explicitly made possible with Edward.

4.1 Introduction

Variational inference is a powerful tool for approximate posterior inference. The idea is to posit a

family of distributions over the latent variables and then find the member of that family closest to

the posterior. Originally developed in the 1990s (Hinton and van Camp, 1993; Waterhouse et al.,

1996; Jordan et al., 1999a), variational inference has enjoyed renewed interest around developing

scalable optimization for large datasets (Hoffman et al., 2013), deriving generic strategies for easily

fitting many models (Ranganath et al., 2014), and applying neural networks as a flexible parametric

family of approximations (Kingma and Welling, 2014b; Rezende et al., 2014). This research has

been particularly successful for computing with deep Bayesian models (Neal, 1990; Ranganath et al.,

2015a), which require inference of a complex posterior distribution (Hinton et al., 2006).

Classical variational inference typically uses the mean-field family, where each latent variable is

independent and governed by its own variational distribution. While convenient, the strong inde-

pendence limits learning deep representations of data. Newer research aims toward richer families

that allow dependencies among the latent variables. One way to introduce dependence is to con-

sider the variational family itself as a model of the latent variables (Lawrence, 2000; Ranganath

et al., 2015b). These variational models naturally extend to Bayesian hierarchies, which retain the

mean-field “likelihood” but introduce dependence through variational latent variables.

In this chapter we develop a powerful new variational model—the variational Gaussian process (vgp).

The vgp is a Bayesian nonparametric variational model; its complexity grows efficiently and towards
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any distribution, adapting to the inference problem at hand. We highlight three main contributions of

this chapter:

1. We prove a universal approximation theorem: under certain conditions, the vgp can capture

any continuous posterior distribution—it is a variational family that can be specified to be as

expressive as needed.

2. We derive an efficient stochastic optimization algorithm for variational inference with the vgp.

Our algorithm can be used in a wide class of models. Inference with the vgp is a black box

variational method (Ranganath et al., 2014).

3. We study the vgp on standard benchmarks for unsupervised learning, applying it to perform

inference in deep latent Gaussian models (Rezende et al., 2014) and DRAW (Gregor et al.,

2015), a latent attention model. For both models, we report the best results to date.

4.2 Variational Gaussian Process

Variational models introduce latent variables to the variational family, providing a rich construction

for posterior approximation (Ranganath et al., 2015b). Here we introduce the variational Gaussian

process (vgp), a Bayesian nonparametric variational model that is based on the Gaussian process. The

Gaussian process (gp) provides a class of latent variables that lets us capture downstream distributions

with varying complexity.

We first review variational models and Gaussian processes. We then outline the mechanics of the vgp

and prove that it is a universal approximator.

4.2.1 Variational models

Let p(z |x) denote a posterior distribution over d latent variables z = (z1, . . . , zd) conditioned

on a data set x. For a family of distributions q(z;λ) parameterized by λ, variational inference

seeks to minimize the divergence KL(q(z;λ) ‖ p(z |x)). This is equivalent to maximizing the

elbo (Wainwright and Jordan, 2008). The elbo can be written as a sum of the expected log likelihood
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of the data and the KL divergence between the variational distribution and the prior,

L = Eq(z;λ)[log p(x | z)]−KL(q(z;λ)‖p(z)). (4.1)

Traditionally, variational inference considers a tractable family of distributions with analytic forms

for its density. A common specification is a fully factorized distribution
∏
i q(zi;λi), also known

as the mean-field family. While mean-field families lead to efficient computation, they limit the

expressiveness of the approximation.

The variational family of distributions can be interpreted as a model of the latent variables z, and it

can be made richer by introducing new latent variables. Hierarchical variational models consider

distributions specified by a variational prior of the mean-field parameters q(λ;θ) and a factorized

“likelihood”
∏
i q(zi | λi). This specifies the variational model,

q(z;θ) =

∫ [∏
i

q(zi | λi)
]
q(λ;θ) dλ, (4.2)

which is governed by prior hyperparameters θ. Hierarchical variational models are richer than

classical variational families—their expressiveness is determined by the complexity of the prior q(λ).

Many expressive variational approximations can be viewed under this construct (Saul and Jordan,

1996; Rezende and Mohamed, 2015; Tran et al., 2015).

4.2.2 Gaussian Processes

We now review the Gaussian process (gp) (Rasmussen and Williams, 2006). Consider a data set

of m source-target pairs D = {(sn, tn)}mn=1, where each source sn has c covariates paired with a

multi-dimensional target tn ∈ Rd. We aim to learn a function over all source-target pairs, tn = f(sn),

where f : Rc → Rd is unknown. Let the function f decouple as f = (f1, . . . , fd), where each

fi : Rc → R. gp regression estimates the functional form of f by placing a prior,

p(f) =

d∏
i=1

GP(fi; 0,Kss),

42



where Kss denotes a covariance function k(s, s′) evaluated over pairs of inputs s, s′ ∈ Rc. In this

paper, we consider automatic relevance determination (ard) kernels

k(s, s′) = σ2ard exp
(
− 1

2

c∑
j=1

ωj(sj − s′j)2
)
, (4.3)

with parameters θ = (σ2ard, ω1, . . . , ωc). The weights ωj tune the importance of each dimension.

They can be driven to zero during inference, leading to automatic dimensionality reduction.

Given data D, the conditional distribution of the gp forms a distribution over mappings which

interpolate between input-output pairs,

p(f | D) =
d∏
i=1

GP(fi; KξsK
−1
ss ti,Kξξ −KξsK

−1
ss K>ξs). (4.4)

Here, Kξs denotes the covariance function k(ξ, s) for an input ξ and over all data inputs sn, and ti

represents the ith output dimension.

4.2.3 Variational Gaussian Processes

We describe the variational Gaussian process (vgp), a Bayesian nonparametric variational model that

admits arbitrary structures to match posterior distributions. The vgp generates z by generating latent

inputs, warping them with random non-linear mappings, and using the warped inputs as parameters to

a mean-field distribution. The random mappings are drawn conditional on “variational data,” which

are variational parameters. We will show that the vgp enables samples from the mean-field to follow

arbitrarily complex posteriors.

The vgp specifies the following generative process for posterior latent variables z:

1. Draw latent input ξ ∈ Rc: ξ ∼ N (0, I).

2. Draw non-linear mapping f : Rc → Rd conditioned on D: f ∼
∏d
i=1 GP(0,Kξξ) | D.

3. Draw approximate posterior samples z ∈ supp(p): z = (z1, . . . , zd) ∼
∏d
i=1 q(fi(ξ)).

Figure 4.1 displays a graphical model for the vgp. Here, D = {(sn, tn)}mn=1 represents variational

data, comprising input-output pairs that are parameters to the variational distribution. Marginalizing
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Figure 4.1: (a) Graphical model of the variational Gaussian process. The vgp generates samples of
latent variables z by evaluating random non-linear mappings of latent inputs ξ, and then drawing
mean-field samples parameterized by the mapping. These latent variables aim to follow the posterior
distribution for a generative model (b), conditioned on data x.

over all latent inputs and non-linear mappings, the vgp is

qvgp(z;θ,D) =

∫∫ [ d∏
i=1

q(zi | fi(ξ))

][
d∏
i=1

GP(fi; 0,Kξξ) | D

]
N (ξ; 0, I) df dξ. (4.5)

The vgp is parameterized by kernel hyperparameters θ and variational data.

As a variational model, the vgp forms an infinite ensemble of mean-field distributions. A mean-field

distribution is given in the first term of the integrand above. It is conditional on a fixed function

f(Dot) and input ξ; the d outputs fi(ξ) = λi are the mean-field’s parameters. The vgp is a form

of a hierarchical variational model (Equation 4.2) (Ranganath et al., 2015b). It places a continuous

Bayesian nonparametric prior over mean-field parameters.

Unlike the mean-field, the vgp can capture correlation between the latent variables. The reason is that

it evaluates the d independent gp draws at the same latent input ξ. This induces correlation between

their outputs, the mean-field parameters, and thus also correlation between the latent variables.

Further, the vgp is flexible. The complex non-linear mappings drawn from the gp allow it to capture

complex discrete and continuous posteriors.

We emphasize that the vgp needs variational data. Unlike typical gp regression, there are no observed

data available to learn a distribution over non-linear mappings of the latent variables z. Thus the

"data" are variational parameters that appear in the conditional distribution of f in Equation 4.4.

They anchor the random non-linear mappings at certain input-ouput pairs. When optimizing the vgp,

the learned variational data enables finds a distribution of the latent variables that closely follows the

posterior.
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4.2.4 Universal approximation theorem

To understand the capacity of the vgp for representing complex posterior distributions, we analyze the

role of the Gaussian process. For simplicity, suppose the latent variables z are real-valued, and the vgp

treats the output of the function draws from the gp as posterior samples. Consider the optimal function

f∗, which is the transformation such that when we draw ξ ∼ N (0, I) and calculate z = f∗(ξ), the

resulting distribution of z is the posterior distribution.

An explicit construction of f∗ exists if the dimension of the latent input ξ is equal to the number of

latent variables. Let P−1 denote the inverse posterior CDF and Φ the standard normal CDF. Using

techniques common in copula literature (Nelsen, 2006), the optimal function is

f∗(ξ) = P−1(Φ(ξ1), . . . ,Φ(ξd)).

Imagine generating samples z using this function. For latent input ξ ∼ N (0, I), the standard normal

CDF Φ applies the probability integral transform: it squashes ξi such that its output ui = Φ(ξi)

is uniformly distributed on [0, 1]. The inverse posterior CDF then transforms the uniform random

variables P−1(u1, . . . , ud) = z to follow the posterior. The function produces exact posterior

samples.

In the vgp, the random function interpolates the values in the variational data, which are optimized to

minimize the KL divergence. Thus, during inference, the distribution of the gp learns to concentrate

around this optimal function. This perspective provides intuition behind the following result.

Theorem 1 (Universal approximation). Let q(z;θ,D) denote the variational Gaussian process.

Consider a posterior distribution p(z |x) with a finite number of latent variables and continuous

quantile function (inverse CDF). There exists a sequence of parameters (θk,Dk) such that

lim
k→∞

KL(q(z;θk,Dk) ‖ p(z |x)) = 0.

See Appendix C.2 for a proof. Theorem 1 states that any posterior distribution with strictly posi-

tive density can be represented by a vgp. Thus the vgp is a flexible model for learning posterior

distributions.
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Figure 4.2: Sequence of domain mappings during inference, from variational latent variable spaceR
to posterior latent variable spaceQ to data space P . We perform variational inference in the posterior
space and auxiliary inference in the variational space.

4.3 Black box inference

We derive an algorithm for black box inference over a wide class of generative models.

4.3.1 Variational objective

The original elbo (Equation 4.1) is analytically intractable due to the log density, log qvgp(z)

(Equation 4.5). To address this, we present a tractable variational objective inspired by auto-

encoders (Kingma and Welling, 2014b).

A tractable lower bound to the model evidence log p(x) can be derived by subtracting an expected

KL divergence term from the elbo,

log p(x) ≥ Eqvgp [log p(x | z)]−KL(qvgp(z)‖p(z))− Eqvgp

[
KL(q(ξ, f | z)‖r(ξ, f | z))

]
,

where r(ξ, f | z) is an auxiliary model (we describe r in the next subsection). Various versions of this

objective have been considered in the literature (Agakov and Barber, 2004), and it has been recently

revisited by Salimans et al. (2015) and Ranganath et al. (2015b). We perform variational inference in

the posterior latent variable space, minimizing KL(q‖p) to learn the variational model; for this to

occur we perform auxiliary inference in the variational latent variable space, minimizing KL(q‖r) to

learn an auxiliary model. See Figure 4.2.
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Unlike previous approaches, we rewrite this variational objective to connect to auto-encoders:

L̃(θ,φ) = Eqvgp [log p(x | z)]− Eqvgp

[
KL(q(z | f(ξ))‖p(z))

]
− Eqvgp

[
KL(q(f | ξ;θ)‖r(f | ξ, z;φ)) + log q(ξ)− log r(ξ | z)

]
,

(4.6)

where the KL divergences are now taken over tractable distributions (see Appendix C.3). In auto-

encoder parlance, we maximize the expected negative reconstruction error, regularized by two terms:

an expected divergence between the variational model and the original model’s prior, and an expected

divergence between the auxiliary model and the variational model’s prior. This is simply a nested

instantiation of the variational auto-encoder bound (Kingma and Welling, 2014b): a divergence

between the inference model and a prior is taken as regularizers on both the posterior and variational

spaces. This interpretation justifies the previously proposed bound for variational models; as we shall

see, it also enables lower variance gradients during stochastic optimization.

4.3.2 Auto-encoding variational models

An inference network provide a flexible parameterization of approximating distributions as used

in Helmholtz machines (Hinton and Zemel, 1994), deep Boltzmann machines (Salakhutdinov and

Larochelle, 2010), and variational auto-encoders (Kingma and Welling, 2014b; Rezende et al., 2014).

It replaces local variational parameters with global parameters coming from a neural network. For

latent variables zn (which correspond to a data point xn), an inference network specifies a neural

network which takes xn as input and its local variational parameters λn as output. This amortizes

inference by only defining a set of global parameters.

To auto-encode the vgp we specify inference networks to parameterize both the variational and

auxiliary models:

xn 7→ q(zn |xn;θn), xn, zn 7→ r(ξn, fn |xn, zn;φn).

Formally, the output of these mappings are the parameters θn and φn respectively. We write the

output as distributions above to emphasize that these mappings are a (global) parameterization of

the variational model q and auxiliary model r. The local variational parameters θn for q are the
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variational data Dn. The auxiliary model r is specified as a fully factorized Gaussian with local

variational parameters φn = (µn ∈ Rc+d, σ2
n ∈ Rc+d). 1

4.3.3 Stochastic optimization

We maximize the variational objective L̃(θ,φ) over both θ and φ, where θ newly denotes both

the kernel hyperparameters and the inference network’s parameters for the vgp, and φ denotes the

inference network’s parameters for the auxiliary model. Following black box methods, we write the

gradient as an expectation and apply stochastic approximations (Robbins and Monro, 1951), sampling

from the variational model and evaluating noisy gradients.

First, we reduce variance of the stochastic gradients by analytically deriving any tractable expectations.

The KL divergence between q(z | f(ξ)) and p(z) is commonly used to reduce variance in traditional

variational auto-encoders: it is analytic for deep generative models such as the deep latent Gaussian

model (Rezende et al., 2014) and deep recurrent attentive writer (Gregor et al., 2015). The KL

divergence between r(f | ξ, z) and q(f | ξ) is analytic as the distributions are both Gaussian. The

difference log q(ξ)− log r(ξ | z) is simply a difference of Gaussian log densities. See Appendix C.3

for more details.

To derive black box gradients, we can first reparameterize the vgp, separating noise generation of

samples from the parameters in its generative process (Kingma and Welling, 2014b; Rezende et al.,

2014). The gp easily enables reparameterization: for latent inputs ξ ∼ N (0, I), the transformation

f(ξ;θ) = Lξ + KξsK
−1
ss ti is a location-scale transform, where LL> = Kξξ − KξsK

−1
ss K>ξs.

This is equivalent to evaluating ξ with a random mapping from the gp. Suppose the mean-field

q(z | f(ξ)) is also reparameterizable, and let ε ∼ w such that z(ε; f) is a function of ε whose output

z ∼ q(z | f(ξ)). This two-level reparameterization is equivalent to the generative process for z

outlined in Section 4.2.3.
1We let the kernel hyperparameters of the vgp be fixed across data points. Note also that unique from other auto-encoder

approaches, we let r’s inference network take both xn and zn as input: this avoids an explicit specification of the conditional
distribution r(ε, f | z), which may be difficult to model.
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Algorithm 1: Black box inference with a variational Gaussian process

Input: Model p(x, z), Mean-field family
∏
i q(zi | fi(ξ)).

Output: Variational and auxiliary parameters (θ,φ).

Initialize (θ,φ) randomly.

while not converged do
Draw noise samples ξ ∼ N (0, I), ε ∼ w.
Parameterize variational samples z = z(ε; f(ξ)), f(ξ) = f(ξ;θ).

Update (θ,φ) with stochastic gradients ∇θL̃, ∇φL̃.
end

We now rewrite the variational objective as

L̃(θ,φ) = EN (ξ)

[
Ew(ε)

[
log p(x | z(ε; f))

]
−KL(q(z | f)‖p(z))

]
(4.7)

− EN (ξ)

[
Ew(ε)

[
KL(q(f | ξ;θ)‖r(f | ξ, z(ε; f);φ)) + log q(ξ)− log r(ξ | z(ε; f))

]]
.

Equation 4.7 enables gradients to move inside the expectations and backpropagate over the nested

reparameterization. Thus we can take unbiased stochastic gradients, which exhibit low variance due

to both the analytic KL terms and reparameterization. The gradients are derived in Appendix C.4,

including the case when the first KL is analytically intractable.

We outline the method in Algorithm 1. For massive data, we apply subsampling on x (Hoffman et al.,

2013). For gradients of the model log-likelihood, we employ convenient differentiation tools such as

those in Stan and Theano (Carpenter et al., 2015; Bergstra et al., 2010). For non-differentiable latent

variables z, or mean-field distributions without efficient reparameterizations, we apply the black box

gradient estimator from Ranganath et al. (2014) to take gradients of the inner expectation.

4.3.4 Computational and storage complexity

The algorithm has O(d+m3 + LH2) complexity, where d is the number of latent variables,m is

the size of the variational data, and L is the number of layers of the neural networks with H the

average hidden layer size. In particular, the algorithm is linear in the number of latent variables,

which is competitive with other variational inference methods. The number of variational and
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auxiliary parameters has O(c + LH) complexity; this complexity comes from storing the kernel

hyperparameters and the neural network parameters.

Unlike most gp literature, we require no low rank constraints, such as the use of inducing variables

for scalable computation (Quiñonero-Candela and Rasmussen, 2005). The variational data serve a

similar purpose, but inducing variables reduce the rank of a (fixed) kernel matrix; the variational data

directly determine the kernel matrix and thus the kernel matrix is not fixed. Although we haven’t

found it necessary in practice, see Appendix C.5 for scaling the size of variational data.

4.4 Experiments

Following standard benchmarks for variational inference in deep learning, we learn generative models

of images. In particular, we learn the deep latent Gaussian model (dlgm) (Rezende et al., 2014),

a layered hierarchy of Gaussian random variables following neural network architecures, and the

recently proposed draw (Gregor et al., 2015), a latent attention model that iteratively constructs

complex images using a recurrent architecture and a sequence of variational auto-encoders (Kingma

and Welling, 2014b).

For the learning rate we apply a version of RMSProp (Tieleman and Hinton, 2012), in which we

scale the value with a decaying schedule 1/t1/2+ε for ε > 0. We fix the size of variational data

to be 500 across all experiments and set the latent input dimension equal to the number of latent

variables.

4.4.1 Binarized MNIST

The binarized MNIST data set (Salakhutdinov and Murray, 2008) consists of 28x28 pixel images with

binary-valued outcomes. Training a dlgm, we apply two stochastic layers of 100 random variables

and 50 random variables respectively, and in-between each stochastic layer is a deterministic layer

with 100 units using tanh nonlinearities. We apply mean-field Gaussian distributions for the stochastic

layers and a Bernoulli likelihood. We train the vgp to learn the dlgm for the cases of one stochastic

layer and two stochastic layers.

For draw (Gregor et al., 2015), we augment the mean-field Gaussian distribution originally used to
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Model − log p(x) ≤

DLGM + VAE [1] 86.76
DLGM + HVI (8 leapfrog steps) [2] 85.51 88.30
DLGM + NF (k = 80) [3] 85.10
EoNADE-5 2hl (128 orderings) [4] 84.68
DBN 2hl [5] 84.55
DARN 1hl [6] 84.13
Convolutional VAE + HVI [2] 81.94 83.49
DLGM 2hl + IWAE (k = 50) [1] 82.90
DRAW [7] 80.97

DLGM 1hl + vgp 84.79
DLGM 2hl + vgp 81.32
DRAW + vgp 79.88

Table 4.1: Negative predictive log-likelihood for binarizedMNIST. Previous best results are [1] (Burda
et al., 2016a), [2] (Salimans et al., 2015), [3] (Rezende and Mohamed, 2015), [4] (Raiko et al., 2014),
[5] (Murray and Salakhutdinov, 2009), [6] (Gregor et al., 2014), [7] (Gregor et al., 2015).

generate the latent samples at each time step with the vgp, as it places a complex variational prior

over its parameters. The encoding recurrent neural network now outputs variational data (used for

the variational model) as well as mean-field Gaussian parameters (used for the auxiliary model). We

use the same architecture hyperparameters as in Gregor et al. (2015).

After training we evaluate test set log likelihood, which are lower bounds on the true value. See

Table 4.1 which reports both approximations and lower bounds of log p(x) for various methods. The

vgp achieves the highest known results on log-likelihood using draw, reporting a value of -79.88

compared to the original highest of -80.97. The vgp also achieves the highest known results among

the class of non-structure exploiting models using the dlgm, with a value of -81.32 compared to the

previous best of -82.90 reported by Burda et al. (2016a).

4.4.2 Sketch

As a demonstration of the vgp’s complexity for learning representations, we also examine the Sketch

data set (Eitz et al., 2012). It consists of 20,000 human sketches equally distributed over 250 object

categories. We partition it into 18,000 training examples and 2,000 test examples. We fix the

architecture of draw to have a 2x2 read window, 5x5 write attention window, and 64 glimpses—these

values were selected using a coarse grid search and choosing the set which lead to the best training
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Model Epochs ≤ − log p(x)

draw 100 526.8
200 479.1
300 464.5

draw + vgp 100 460.1
200 444.0
300 423.9

Table 4.2: Negative predictive log-likelihood
for Sketch, learned over hundreds of epochs
over all 18,000 training examples.

Figure 4.3: Generated images from draw with a
vgp (top), and draw with the original variational
auto-encoder (bottom). The vgp learns texture and
sharpness, able to sketch more complex shapes.

log likelihood. For inference we use the original auto-encoder version as well as the augmented

version with the vgp.

See Table 4.2. draw with the vgp achieves a significantly better lower bound, performing better than

the original version which has seen state-of-the-art success in many computer vision tasks. (Until the

results presented here, the results from the original draw were the best reported performance for this

data set.). Moreover, the model inferred using the vgp is able to generate more complex images than

the original version—it not only performs better but maintains higher visual fidelity.

4.5 Discussion

We present the variational Gaussian process (vgp), a variational model which adapts its shape to match

complex posterior distributions. The vgp draws samples from a tractable distribution, and posits

a Bayesian nonparametric prior over transformations from the tractable distribution to mean-field

parameters. The vgp learns the transformations from the space of all continuous mappings—it is a

universal approximator and finds good posterior approximations via optimization.
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Chapter 5: Applications in Deep Probabilistic Models

5.1 Introduction

Consider a model of coin tosses. With probabilistic models, one typically posits a latent probability,

and supposes each toss is a Bernoulli outcome given this probability (Murphy, 2012; Gelman et al.,

2013). After observing a collection of coin tosses, Bayesian analysis lets us describe our inferences

about the probability.

However, we know from the laws of physics that the outcome of a coin toss is fully determined by its

initial conditions (say, the impulse and angle of flip) (Keller, 1986; Diaconis et al., 2007). Therefore

a coin toss’ randomness does not originate from a latent probability but in noisy initial parameters.

This alternative model incorporates the physical system, better capturing the generative process.

Furthermore the model is implicit, also known as a simulator: we can sample data from its generative

process, but we may not have access to calculate its density (Diggle and Gratton, 1984; Hartig et al.,

2011).

Coin tosses are simple, but they serve as a building block for complex implicit models. These models,

which capture the laws and theories of real-world physical systems, pervade fields such as population

genetics (Pritchard et al., 1999), statistical physics (Anelli et al., 2008), and ecology (Beaumont,

2010); they underlie structural equation models in economics and causality (Pearl, 2003); and they

connect deeply to gans (Goodfellow et al., 2014), which use neural networks to specify a flexible

implicit density (Mohamed and Lakshminarayanan, 2016).

Unfortunately, implicit models, including gans, have seen limited success outside specific domains.

There are two reasons. First, it is unknown how to design implicit models for more general applications,

exposing rich latent structure such as priors, hierarchies, and sequences. Second, existing methods

for inferring latent structure in implicit models do not sufficiently scale to high-dimensional or large

data sets. In this paper, we design a new class of implicit models and we develop a new algorithm for
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accurate and scalable inference.

For modeling, Section 5.2 describes hierarchical implicit models, a class of Bayesian hierarchical

models which only assume a process that generates samples. This class encompasses both simulators

in the classical literature and those employed in gans. For example, we specify a Bayesian gan, where

we place a prior on its parameters. The Bayesian perspective allows gans to quantify uncertainty and

improve data efficiency. We can also apply them to discrete data; this setting is not possible with

traditional estimation algorithms for gans (Kusner and Hernández-Lobato, 2016).

For inference, Section 5.3 develops likelihood-free variational inference (lfvi), which combines

variational inference with density ratio estimation (Sugiyama et al., 2012; Mohamed and Lakshmi-

narayanan, 2016). Variational inference posits a family of distributions over latent variables and then

optimizes to find the member closest to the posterior (Jordan et al., 1999b). Traditional approaches

require a likelihood-based model and use crude approximations, employing a simple approximat-

ing family for fast computation. lfvi expands variational inference to implicit models and enables

accurate variational approximations with implicit variational families: lfvi does not require the

variational density to be tractable. Further, unlike previous Bayesian methods for implicit models,

lfvi scales to millions of data points with stochastic optimization.

This work has diverse applications. First, we analyze a classical problem from the approximate

Bayesian computation (abc) literature, where the model simulates an ecological system (Beaumont,

2010). We analyze 100,000 time series which is not possible with traditional methods. Second, we

analyze a Bayesian gan, which is a gan with a prior over its weights. Bayesian gans outperform

corresponding Bayesian neural networks with known likelihoods on several classification tasks. Third,

we show how injecting noise into hidden units of recurrent neural networks corresponds to a deep

implicit model for flexible sequence generation.

5.2 Hierarchical Implicit Models

Hierarchical models play an important role in sharing statistical strength across examples (Gelman

and Hill, 2006). For a broad class of hierarchical Bayesian models, the joint distribution of the hidden

54



xn

znβ

N

xn

zn

εn

β

N

Figure 5.1: (left) Hierarchical model, with local variables z and global variables β. (right) Hierar-
chical implicit model. It is a hierarchical model where x is a deterministic function (denoted with a
square) of noise ε (denoted with a triangle).

and observed variables is

p(x, z, β) = p(β)

N∏
n=1

p(xn | zn, β)p(zn |β), (5.1)

where xn is an observation, zn are latent variables associated to that observation (local variables),

and β are latent variables shared across observations (global variables). See Figure 5.1 (left).

With hierarchical models, local variables can be used for clustering in mixture models, mixed

memberships in topic models (Blei et al., 2003), and factors in probabilistic matrix factorization

(Salakhutdinov and Mnih, 2008). Global variables can be used to pool information across data points

for hierarchical regression (Gelman and Hill, 2006), topic models (Blei et al., 2003), and Bayesian

nonparametrics (Teh and Jordan, 2010).

Hierarchical models typically use a tractable likelihood p(xn | zn, β). But many likelihoods of interest,

such as simulator-based models (Hartig et al., 2011) and generative adversarial networks (Goodfellow

et al., 2014), admit high fidelity to the true data generating process and do not admit a tractable

likelihood. To overcome this limitation, we develop hierarchical implicit models (hims).

Hierarchical implicit models have the same joint factorization as Equation 5.1 but only assume that

one can sample from the likelihood. Rather than define p(xn | zn, β) explicitly, hims define a function

g that takes in random noise εn ∼ s(·) and outputs xn given zn and β,

xn = g(εn | zn, β), εn ∼ s(·).
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The induced, implicit likelihood of xn ∈ A given zn and β is

P(xn ∈ A | zn, β) =

∫
{g(εn | zn,β)=xn∈A}

s(εn) dεn.

This integral is typically intractable. It is difficult to find the set to integrate over, and the integration

itself may be expensive for arbitrary noise distributions s(·) and functions g.

Figure 5.1 (right) displays the graphical model for hims. Noise (εn) are denoted by triangles;

deterministic computation (xn) are denoted by squares. We illustrate two examples.

Example: Physical Simulators. Given initial conditions, simulators describe a stochastic process that

generates data. For example, in population ecology, the Lotka-Volterra model simulates predator-prey

populations over time via a stochastic differential equation (Wilkinson, 2011). For prey and predator

populations x1, x2 ∈ R+ respectively, one process is

dx1
dt

= β1x1 − β2x1x2 + ε1, ε1 ∼ Normal(0, 10),

dx2
dt

= −β2x2 + β3x1x2 + ε2, ε2 ∼ Normal(0, 10),

where Gaussian noises ε1, ε2 are added at each full time step. The simulator runs for T time steps

given initial population sizes for x1, x2. Lognormal priors are placed over β. The Lotka-Volterra

model is grounded by theory but features an intractable likelihood. We study it in Section 5.4.

Example: Bayesian Generative Adversarial Network. Generative adversarial networks (gans)

define an implicit model and a method for parameter estimation (Goodfellow et al., 2014). They are

known to perform well on image generation (Radford et al., 2016). Formally, the implicit model for a

gan is

xn = g(εn;θ), εn ∼ s(·), (5.2)

where g is a neural network with parameters θ, and s is a standard normal or uniform. The neural

network g is typically not invertible; this makes the likelihood intractable.

The parameters θ in gans are estimated by divergence minimization between the generated and real
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data. We make gans amenable to Bayesian analysis by placing a prior on the parameters θ. We call

this a Bayesian gan. Bayesian gans enable modeling of parameter uncertainty and are inspired by

Bayesian neural networks, which have been shown to improve the uncertainty and data efficiency

of standard neural networks (MacKay, 1992; Neal, 1994). We study Bayesian gans in Section 5.4;

Appendix B provides example implementations in the Edward probabilistic programming language

(Tran et al., 2016a).

5.3 Likelihood-Free Variational Inference

We described hierarchical implicit models, a rich class of latent variable models with local and

global structure alongside an implicit density. Given data, we aim to calculate the model’s poste-

rior p(z, β |x) = p(x, z, β)/p(x). This is difficult as the normalizing constant p(x) is typically

intractable. With implicit models, the lack of a likelihood function introduces an additional source of

intractability.

We use variational inference (Jordan et al., 1999b). It posits an approximating family q ∈ Q and

optimizes to find the member closest to p(z, β |x). There are many choices of variational objectives

that measure closeness (Ranganath et al., 2016a; Li and Turner, 2016; Dieng et al., 2016). To choose

an objective, we lay out desiderata for a variational inference algorithm for implicit models:

1. Scalability. Machine learning hinges on stochastic optimization to scale to massive data (Bottou,

2010). The variational objective should admit unbiased subsampling with the standard technique,

N∑
n=1

f(xn) ≈ N

M

M∑
m=1

f(xm),

where some computation f(·) over the full data is approximated with a mini-batch of data {xm}.

2. Implicit Local Approximations. Implicit models specify flexible densities; this induces very

complex posterior distributions. Thus we would like a rich approximating family for the per-data

point approximations q(zn |xn, β). This means the variational objective should only require that

one can sample zn ∼ q(zn |xn, β) and not evaluate its density.

One variational objective meeting our desiderata is based on the classical minimization of the kl
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divergence. (Surprisingly, Appendix C details how the kl is the only possible objective among a

broad class.)

5.3.1 KL Variational Objective

Classical variational inference minimizes the kl divergence from the variational approximation q to

the posterior. This is equivalent to maximizing the elbo,

L = Eq(β,z |x)[log p(x, z, β)− log q(β, z |x)]. (5.3)

Let q factorize in the same way as the posterior,

q(β, z |x) = q(β)
N∏
n=1

q(zn |xn, β),

where q(zn |xn, β) is an intractable density and since the data x is constant during inference, we

drop conditioning for the global q(β). Substituting p and q’s factorization yields

L = Eq(β)[log p(β)− log q(β)] +
N∑
n=1

Eq(β)q(zn |xn,β)[log p(xn, zn |β)− log q(zn |xn, β)].

This objective presents difficulties: the local densities p(xn, zn |β) and q(zn |xn, β) are both in-

tractable. To solve this, we consider ratio estimation.

5.3.2 Ratio Estimation for the KL Objective

Let q(xn) be the empirical distribution on the observations x and consider using it in a “variational

joint” q(xn, zn |β) = q(xn)q(zn |xn, β). Now subtract the log empirical log q(xn) from the elbo

above. The elbo reduces to

L ∝ Eq(β)[log p(β)− log q(β)] +
N∑
n=1

Eq(β)q(zn |xn,β)

[
log

p(xn, zn |β)

q(xn, zn |β)

]
. (5.4)

(Here the proportionality symbol means equality up to additive constants.) Thus the elbo is a function

of the ratio of two intractable densities. If we can form an estimator of this ratio, we can proceed

with optimizing the elbo.
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We apply techniques for ratio estimation (Sugiyama et al., 2012). It is a key idea in gans (Mohamed

and Lakshminarayanan, 2016; Uehara et al., 2016), and similar ideas have rearisen in statistics and

physics (Gutmann et al., 2014; Cranmer et al., 2015). In particular, we use class probability estimation:

given a sample from p(·) or q(·) we aim to estimate the probability that it belongs to p(·). We model

this using σ(r(·;θ)), where r is a parameterized function (e.g., neural network) taking sample inputs

and outputting a real value; σ is the logistic function outputting the probability.

We train r(·;θ) by minimizing a loss function known as a proper scoring rule (Gneiting and Raftery,

2007). For example, in experiments we use the log loss,

Dlog = Ep(xn,zn |β)[− log σ(r(xn, zn, β;θ))] +Eq(xn,zn |β)[− log(1− σ(r(xn, zn, β;θ)))]. (5.5)

The loss is zero if σ(r(·;θ)) returns 1 when a sample is from p(·) and 0 when a sample is from

q(·). (We also experiment with the hinge loss; see Section 5.4.) If r(·;θ) is sufficiently expressive,

minimizing the loss returns the optimal function (Mohamed and Lakshminarayanan, 2016),

r∗(xn, zn, β) = log p(xn, zn |β)− log q(xn, zn |β).

As we minimize Equation 5.5, we use r(·;θ) as a proxy to the log ratio in Equation 5.4. Note r

estimates the log ratio; it’s of direct interest and more numerically stable than the ratio.

The gradient of Dlog with respect to θ is

Ep(xn,zn |β)[∇θ log σ(r(xn, zn, β;θ))] + Eq(xn,zn |β)[∇θ log(1− σ(r(xn, zn, β;θ)))]. (5.6)

We compute unbiased gradients with Monte Carlo.

5.3.3 Stochastic Gradients of the KL Objective

To optimize the elbo, we use the ratio estimator,

L = Eq(β |x)[log p(β)− log q(β)] +
N∑
n=1

Eq(β |x)q(zn |xn,β)[r(xn, zn, β)]. (5.7)

59



All terms are now tractable. We can calculate gradients to optimize the variational family q. Below

we assume the priors p(β), p(zn |β) are differentiable. (We discuss methods to handle discrete global

variables in the next section.)

We focus on reparameterizable variational approximations (Kingma and Welling, 2014b; Rezende

et al., 2014). They enable sampling via a differentiable transformation T of random noise, δ ∼ s(·).

Due to Equation 5.7, we require the global approximation q(β;λ) to admit a tractable density. With

reparameterization, its sample is

β = Tglobal(δglobal;λ), δglobal ∼ s(·),

for a choice of transformation Tglobal(·;λ) and noise s(·). For example, setting s(·) = N (0, 1) and

Tglobal(δglobal) = µ+ σδglobal induces a normal distribution N (µ, σ2).

Similarly for the local variables zn, we specify

zn = Tlocal(δn,xn, β;φ), δn ∼ s(·).

Unlike the global approximation, the local variational density q(zn |xn;φ) need not be tractable:

the ratio estimator relaxes this requirement. It lets us leverage implicit models not only for data but

also for approximate posteriors. In practice, we also amortize computation with inference networks,

sharing parameters φ across the per-data point approximate posteriors.

The gradient with respect to global parameters λ under this approximating family is

∇λL = Es(δglobal)[∇λ(log p(β)− log q(β))]] +

N∑
n=1

Es(δglobal)sn(δn)[∇λr(xn, zn, β)]. (5.8)

The gradient backpropagates through the local sampling zn = Tlocal(δn,xn, β;φ) and the global

reparameterization β = Tglobal(δglobal;λ). We compute unbiased gradients with Monte Carlo. The

gradient with respect to local parameters φ is

∇φL =
N∑
n=1

Eq(β)s(δn)[∇φr(xn, zn, β)]. (5.9)
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Algorithm 2: Likelihood-free variational inference (lfvi)

Input :Model xn, zn ∼ p(· |β), p(β)
Variational approximation zn ∼ q(· |xn, β;φ), q(β |x;λ),
Ratio estimator r(·;θ)

Output
:

Variational parameters λ, φ

Initialize θ, λ, φ randomly.
while not converged do

Compute unbiased estimate of∇θD (Equation 5.6),∇λL (Equation 5.8),∇φL
(Equation 5.9).
Update θ, λ, φ using stochastic gradient descent.

end

where the gradient backpropagates through Tlocal.1

5.3.4 Algorithm

Algorithm 2 outlines the procedure. We call it likelihood-free variational inference (lfvi). lfvi is

black box: it applies to models in which one can simulate data and local variables, and calculate

densities for the global variables. lfvi first updates θ to improve the ratio estimator r. Then it uses r

to update parameters {λ,φ} of the variational approximation q. We optimize r and q simultaneously.

The algorithm is available in Edward (Tran et al., 2016a).

lfvi is scalable: we can unbiasedly estimate the gradient over the full data set with mini-batches

(Hoffman et al., 2013). The algorithm can also handle models of either continuous or discrete data.

The requirement for differentiable global variables and reparameterizable global approximations can

be relaxed using score function gradients (Ranganath et al., 2014).

Point estimates of the global parameters β suffice for many applications (Goodfellow et al., 2014;

Rezende et al., 2014). Algorithm 2 can find point estimates: place a point mass approximation q on

the parameters β. This simplifies gradients and corresponds to variational EM.
1The ratio r indirectly depends on φ but its gradient w.r.t. φ disappears. This is derived via the score function identity

and the product rule (see, e.g., Ranganath et al. (2014, Appendix)).
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Figure 5.2: (top)Marginal posterior for first two parameters. (bot. left) ABC methods over tolerance
error. (bot. right) Marginal posterior for first parameter on a large-scale data set. Our inference
achieves more accurate results and scales to massive data.

5.4 Experiments

We developed new models and inference. For experiments, we study three applications: a large-

scale physical simulator for predator-prey populations in ecology; a Bayesian gan for supervised

classification; and a deep implicit model for symbol generation. In addition, Appendix F, provides

practical advice on how to address the stability of the ratio estimator by analyzing a toy experiment.

We initialize parameters from a standard normal and apply gradient descent with ADAM.

Lotka-Volterra Predator-Prey Simulator. We analyze the Lotka-Volterra simulator of Section 5.2

and follow the same setup and hyperparameters of Papamakarios and Murray (2016). Its global

variables β govern rates of change in a simulation of predator-prey populations. To infer them,

we posit a mean-field normal approximation (reparameterized to be on the same support) and run

Algorithm 2 with both a log loss and hinge loss for the ratio estimation problem; Appendix D details

the hinge loss. We compare to rejection ABC, MCMC-ABC, and SMC-ABC (Marin et al., 2012).

MCMC-ABC uses a spherical Gaussian proposal; SMC-ABC is manually tuned with a decaying

epsilon schedule; all ABC methods are tuned to use the best performing hyperparameters such as the

tolerance error.

Figure 5.2 displays results on two data sets. In the top figures and bottom left, we analyze data
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Test Set Error
Model + Inference Crabs Pima Covertype MNIST

Bayesian GAN + VI 0.03 0.232 0.154 0.0136
Bayesian GAN + MAP 0.12 0.240 0.185 0.0283
Bayesian NN + VI 0.02 0.242 0.164 0.0311
Bayesian NN + MAP 0.05 0.320 0.188 0.0623

Table 5.1: Classification accuracy of Bayesian gan and Bayesian neural networks across small to
medium-size data sets. Bayesian gans achieve comparable or better performance to their Bayesian
neural net counterpart.

consisting of a simulation for T = 30 time steps, with recorded values of the populations every 0.2

time units. The bottom left figure calculates the negative log probability of the true parameters over

the tolerance error for abc methods; smaller tolerances result in more accuracy but slower runtime.

The top figures compare the marginal posteriors for two parameters using the smallest tolerance for

the abc methods. Rejection ABC, MCMC-ABC, and SMC-ABC all contain the true parameters in

their 95% credible interval but are less confident than our methods. Further, they required 100, 000

simulations from the model, with an acceptance rate of 0.004% and 2.990% for rejection ABC and

MCMC-ABC respectively.

The bottom right figure analyzes data consisting of 100, 000 time series, each of the same size as the

single time series analyzed in the previous figures. This size is not possible with traditional methods.

Further, we see that with our methods, the posterior concentrates near the truth. We also experienced

little difference in accuracy between using the log loss or the hinge loss for ratio estimation.

Bayesian Generative Adversarial Networks. We analyze Bayesian gans, described in Section 5.2.

Mimicking a use case of Bayesian neural networks (Blundell et al., 2015; Hernández-Lobato et al.,

2016), we apply Bayesian gans for classification on small to medium-size data. The gan defines a

conditional p(yn |xn), taking a feature xn ∈ RD as input and generating a label yn ∈ {1, . . . ,K},

via the process

yn = g(xn, εn |θ), εn ∼ N (0, 1), (5.10)

where g(· |θ) is a 2-layer multilayer perception with ReLU activations, batch normalization, and is

parameterized by weights and biases θ. We place normal priors, θ ∼ N (0, 1).

We analyze two choices of the variational model: one with a mean-field normal approximation for
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q(θ |x), and another with a point mass approximation (equivalent to maximum a posteriori). We

compare to a Bayesian neural network, which uses the same generative process as Equation 5.10 but

draws from a Categorical distribution rather than feeding noise into the neural net. We fit it separately

using a mean-field normal approximation and maximum a posteriori. Table 5.1 shows that Bayesian

gans generally outperform their Bayesian neural net counterpart.

Note that Bayesian gans can analyze discrete data such as in generating a classification label. Tradi-

tional gans for discrete data is an open challenge (Kusner and Hernández-Lobato, 2016). In Appendix

E, we compare Bayesian gans with point estimation to typical gans. Bayesian gans are also able to

leverage parameter uncertainty for analyzing these small to medium-size data sets.

One problem with Bayesian gans is that they cannot work with very large neural networks: the

ratio estimator is a function of global parameters, and thus the input size grows with the size of the

neural network. One approach is to make the ratio estimator not a function of the global parameters.

Instead of optimizing model parameters via variational EM, we can train the model parameters by

backpropagating through the ratio objective instead of the variational objective. An alternative is to use

the hidden units as input which is much lower dimensional (Tran and Blei, 2017, Appendix C).

Injecting Noise into Hidden Units. In this section, we show how to build a hierarchical implicit

model by simply injecting randomness into hidden units. We model sequences x = (x1, . . . ,xT )

with a recurrent neural network. For t = 1, . . . , T ,

zt = gz(xt−1, zt−1, εt,z), εt,z ∼ N (0, 1),

xt = gx(zt, εt,x), εt,x ∼ N (0, 1),

where gz and gx are both 1-layer multilayer perceptions with ReLU activation and layer normalization.

We place standard normal priors over all weights and biases. See Figure 5.3a.

If the injected noise εt,z combines linearly with the output of gz , the induced distribution p(zt |xt−1, zt−1)

is Gaussian parameterized by that output. This defines a stochastic rnn (Bayer and Osendorfer, 2014;

Fraccaro et al., 2016), which generalizes its deterministic connection. With nonlinear combinations,

the implicit density is more flexible (and intractable), making previous methods for inference not

applicable. In our method, we perform variational inference and specify q to be implicit; we use the
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· · · · · ·

xt−1 xt xt+1

zt−1 zt zt+1

(a) A deep implicit model for sequences. It is a rnn
with noise injected into each hidden state. The hidden
state is now an implicit latent variable. The same occurs
for generating outputs.

-x+x/x**x*//x*x+
x/x*x+x*x/x+x+x+
/+x*x+x*x/x/x+x+
/x+*x+x*x/x+x-x+
x/x*x/x*x+x+x+x-
x+x+x/x*x*x+x/x+

(b) Generated symbols from the implicit model. Good
samples place arithmetic operators between the variable
x. The implicit model learned to follow rules from
the context free grammar up to some multiple operator
repeats.

same architecture as the probability model’s implicit priors.

We follow the same setup and hyperparameters as Kusner and Hernández-Lobato (2016) and generate

simple one-variable arithmetic sequences following a context free grammar,

S → x‖S + S‖S − S‖S ∗ S‖S/S,

where ‖ divides possible productions of the grammar. We concatenate the inputs and point estimate

the global variables (model parameters) using variational EM. Figure 5.3b displays samples from the

inferred model, training on sequences with a maximum of 15 symbols. It achieves sequences which

roughly follow the context free grammar.

5.5 Discussion

We developed a class of hierarchical implicit models and likelihood-free variational inference, merging

the idea of implicit densities with hierarchical Bayesian modeling and approximate posterior inference.

This expands Bayesian analysis with the ability to apply neural samplers, physical simulators, and

their combination with rich, interpretable latent structure.

More stable inference with ratio estimation is an open challenge. This is especially important when

we analyze large-scale real world applications of implicit models. Recent work for genomics offers a

promising solution (Tran and Blei, 2017).
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Appendix A: Deep Probabilistic Programming

A.1 Model Examples

There are many examples available at http://edwardlib.org, including models, inference

methods, and complete scripts. Below we describe several model examples; Appendix A.6 describes

an inference example (stochastic variational inference); Appendix A.7 describes complete scripts.

All examples in this paper are comprehensive, only leaving out import statements and fixed values.

See the companion webpage for this paper (http://edwardlib.org/iclr2017) for examples in

a machine-readable format with runnable code.

A.2 Bayesian Neural Network for Classification

A Bayesian neural network is a neural network with a prior distribution on its weights.

Define the likelihood of an observation (xn, yn) with binary label yn ∈ {0, 1} as

p(yn |W0,b0,W1,b1 ; xn) = Bernoulli(yn |NN(xn ; W0,b0,W1,b1)),

whereNN is a 2-layer neural networkwhoseweights and biases form the latent variablesW0,b0,W1,b1.

Define the prior on the weights and biases to be the standard normal. See Figure A.1. There are N

data points, D features, and H hidden units.

A.3 Latent Dirichlet Allocation

See Figure A.2. Note that the program is written for illustration. We recommend vectorization in

practice: instead of storing scalar random variables in lists of lists, one should prefer to represent few

random variables, each which have many dimensions.
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W0 b0 W1 b1

ynxn

N

W_0 = Normal(mu=tf.zeros([D, H]), sigma=tf.ones([D, H]))
W_1 = Normal(mu=tf.zeros([H, 1]), sigma=tf.ones([H, 1]))
b_0 = Normal(mu=tf.zeros(H), sigma=tf.ones(H))
b_1 = Normal(mu=tf.zeros(1), sigma=tf.ones(1))

x = tf.placeholder(tf.float32, [N, D])
y = Bernoulli(logits=tf.matmul(tf.nn.tanh(tf.matmul(x, W_0) + b_0), W_1) + b_1)

Figure A.1: Bayesian neural network for classification.

φk

θd zd,n wd,n

N
D

K

D = 4 # number of documents
N = [11502, 213, 1523, 1351] # words per doc
K = 10 # number of topics
V = 100000 # vocabulary size

theta = Dirichlet(alpha=tf.zeros([D, K]) + 0.1)
phi = Dirichlet(alpha=tf.zeros([K, V]) + 0.05)
z = [[0] * N] * D
w = [[0] * N] * D
for d in range(D):

for n in range(N[d]):
z[d][n] = Categorical(pi=theta[d, :])
w[d][n] = Categorical(pi=phi[z[d][n], :])

Figure A.2: Latent Dirichlet allocation (Blei et al., 2003).

A.4 Gaussian Matrix Factorizationn

See Figure A.3.

Um

Yn,m

Vn

M N

N = 10
M = 10
K = 5 # latent dimension

U = Normal(mu=tf.zeros([M, K]), sigma=tf.ones([M, K]))
V = Normal(mu=tf.zeros([N, K]), sigma=tf.ones([N, K]))
Y = Normal(mu=tf.matmul(U, V, transpose_b=True), sigma=tf.ones([N, M]))

Figure A.3: Gaussian matrix factorization.

A.5 Dirichlet Process Mixture Model

See Figure A.4.
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A Dirichlet process mixture model is written as follows:
mu = DirichletProcess(alpha=0.1, base_cls=Normal, mu=tf.zeros(D), sigma=tf.ones(D), sample_n=N)
x = Normal(mu=mu, sigma=tf.ones([N, D]))
where mu has shape (N, D). The DirichletProcess random variable returns sample_n=N draws,
each with shape given by the base distribution Normal(mu, sigma). The essential component
defining the DirichletProcess random variable is a stochastic while loop. We define it below.
See Edward’s code base for a more involved version with a base distribution.
def dirichlet_process(alpha):
def cond(k, beta_k):

flip = Bernoulli(p=beta_k)
return tf.equal(flip, tf.constant(1))

def body(k, beta_k):
beta_k = beta_k * Beta(a=1.0, b=alpha)
return k + 1, beta_k

k = tf.constant(0)
beta_k = Beta(a=1.0, b=alpha)
stick_num, stick_beta = tf.while_loop(cond, body, loop_vars=[k, beta_k])
return stick_num

Figure A.4: Dirichlet process mixture model.

A.6 Inference Example: Stochastic Variational Inference

In the subgraph setting, we do data subsampling while working with a subgraph of the full model.

This setting is necessary when the data and model do not fit in memory. It is scalable in that both the

algorithm’s computational complexity (per iteration) and memory complexity are independent of the

data set size.

For the code, we use the running example, a mixture model described in Figure 2.5.

N = 10000000 # data set size

D = 2 # data dimension

K = 5 # number of clusters

The model is

p(x, z, β) = p(β)

N∏
n=1

p(zn | β)p(xn | zn, β).

To avoid memory issues, we work on only a subgraph of the model,

p(x, z, β) = p(β)

M∏
m=1

p(zm | β)p(xm | zm, β)

M = 128 # mini-batch size
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beta = Normal(mu=tf.zeros([K, D]), sigma=tf.ones([K, D]))
z = Categorical(logits=tf.zeros([M, K]))
x = Normal(mu=tf.gather(beta, z), sigma=tf.ones([M, D]))

Assume the variational model is

q(z, β) = q(β;λ)
N∏
n=1

q(zn | β; γn),

parameterized by {λ, {γn}}. Again, we work on only a subgraph of the model,

q(z, β) = q(β;λ)

M∏
m=1

q(zm | β; γm).

parameterized by {λ, {γm}}. Importantly, onlyM parameters are stored in memory for {γm} rather

than N .

qbeta = Normal(mu=tf.Variable(tf.zeros([K, D])),
sigma=tf.nn.softplus(tf.Variable(tf.zeros[K, D])))

qz_variables = tf.Variable(tf.zeros([M, K]))
qz = Categorical(logits=qz_variables)

We use KLqp, a variational method that minimizes the divergence measure KL(q ‖ p) (Jordan et al.,

1999a). We instantiate two algorithms: a global inference over β given the subset of z and a local

inference over the subset of z given β. We also pass in a TensorFlow placeholder x_ph for the data,

so we can change the data at each step.

x_ph = tf.placeholder(tf.float32, [M])
inference_global = ed.KLqp({beta: qbeta}, data={x: x_ph, z: qz})
inference_local = ed.KLqp({z: qz}, data={x: x_ph, beta: qbeta})

We initialize the algorithms with the scale argument, so that computation on z and x will be scaled

appropriately. This enables unbiased estimates for stochastic gradients.

inference_global.initialize(scale={x: float(N) / M, z: float(N) / M})
inference_local.initialize(scale={x: float(N) / M, z: float(N) / M})

We now run the algorithm, assuming there is a next_batch function which provides the next batch
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of data.

qz_init = tf.initialize_variables([qz_variables])
for _ in range(1000):
x_batch = next_batch(size=M)
for _ in range(10): # make local inferences

inference_local.update(feed_dict={x_ph: x_batch})

# update global parameters

inference_global.update(feed_dict={x_ph: x_batch})
# reinitialize the local factors

qz_init.run()

After each iteration, we also reinitialize the parameters for q(z | β); this is because we do inference

on a new set of local variational factors for each batch. This demo readily applies to other inference

algorithms such as SGLD (stochastic gradient Langevin dynamics): simply replace qbeta and qz
with Empirical random variables; then call ed.SGLD instead of ed.KLqp.

Note that if the data and model fit in memory but you’d still like to perform data subsampling for fast

inference, we recommend not defining subgraphs. You can reify the full model, and simply index the

local variables with a placeholder. The placeholder is fed at runtime to determine which of the local

variables to update at a time. (For more details, see the website’s API.)

A.7 Complete Examples

A.8 Variational Auto-encoder

See Figure A.5.

A.9 Probabilistic Model for Word Embeddings

See Figure A.6. This example uses data subsampling (Section 2.3.4). The priors and conditional

likelihoods are defined only for a minibatch of data. Similarly the variational model only models the

embeddings used in a given minibatch. TensorFlow variables contain the embedding vectors for the

entire vocabulary. TensorFlow placeholders ensure that the correct embedding vectors are used as

variational parameters for a given minibatch.
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import edward as ed
import tensorflow as tf

from edward.models import Bernoulli, Normal
from scipy.misc import imsave
from tensorflow.contrib import slim
from tensorflow.examples.tutorials.mnist import input_data

M = 100 # batch size during training
d = 2 # latent variable dimension

# Probability model (subgraph)
z = Normal(mu=tf.zeros([M, d]), sigma=tf.ones([M, d]))
h = Dense(256, activation='relu')(z)
x = Bernoulli(logits=Dense(28 * 28, activation=None)(h))

# Variational model (subgraph)
x_ph = tf.placeholder(tf.float32, [M, 28 * 28])
qh = Dense(256, activation='relu')(x_ph)
qz = Normal(mu=Dense(d, activation=None)(qh),

sigma=Dense(d, activation='softplus')(qh))

# Bind p(x, z) and q(z | x) to the same TensorFlow placeholder for x.
mnist = input_data.read_data_sets("data/mnist", one_hot=True)
data = {x: x_ph}

inference = ed.KLqp({z: qz}, data)
optimizer = tf.train.RMSPropOptimizer(0.01, epsilon=1.0)
inference.initialize(optimizer=optimizer)

tf.initialize_all_variables().run()

n_epoch = 100
n_iter_per_epoch = 1000
for _ in range(n_epoch):
for _ in range(n_iter_per_epoch):

x_train, _ = mnist.train.next_batch(M)
info_dict = inference.update(feed_dict={x_ph: x_train})

# Generate images.
imgs = x.value().eval()
for m in range(M):

imsave("img/%d.png" % m, imgs[m].reshape(28, 28))

Figure A.5: Complete script for a vae (Kingma and Welling, 2014b) with batch training. It generates
MNIST digits after every 1000 updates.

The Bernoulli variables y_pos and y_neg are fixed to be 1’s and 0’s respectively. They model whether

a word is indeed the target word for a given context window or has been drawn as a negative sample.

Without regularization (via priors), the objective we optimize is identical to negative sampling.
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import edward as ed
import tensorflow as tf

from edward.models import Bernoulli, Normal, PointMass

N = 581238 # number of total words
M = 128 # batch size during training
K = 100 # number of factors
ns = 3 # number of negative samples
cs = 4 # context size
L = 50000 # vocabulary size

# Prior over embedding vectors
p_rho = Normal(mu=tf.zeros([M, K]),

sigma=tf.sqrt(N) * tf.ones([M, K]))
n_rho = Normal(mu=tf.zeros([M, ns, K]),

sigma=tf.sqrt(N) * tf.ones([M, ns, K]))

# Prior over context vectors
ctx_alphas = Normal(mu=tf.zeros([M, cs, K]),

sigma=tf.sqrt(N)*tf.ones([M, cs, K]))

# Conditional likelihoods
ctx_sum = tf.reduce_sum(ctx_alphas, [1])
p_eta = tf.expand_dims(tf.reduce_sum(p_rho * ctx_sum, -1),1)
n_eta = tf.reduce_sum(n_rho * tf.tile(tf.expand_dims(ctx_sum, 1), [1, ns, 1]), -1)
y_pos = Bernoulli(logits=p_eta)
y_neg = Bernoulli(logits=n_eta)

# placeholders for batch training
p_idx = tf.placeholder(tf.int32, [M, 1])
n_idx = tf.placeholder(tf.int32, [M, ns])
ctx_idx = tf.placeholder(tf.int32, [M, cs])

# Variational parameters (embedding vectors)
rho_params = tf.Variable(tf.random_normal([L, K]))
alpha_params = tf.Variable(tf.random_normal([L, K]))

# Variational distribution on embedding vectors
q_p_rho = PointMass(params=tf.squeeze(tf.gather(rho_params, p_idx)))
q_n_rho = PointMass(params=tf.gather(rho_params, n_idx))
q_alpha = PointMass(params=tf.gather(alpha_params, ctx_idx))

inference = ed.MAP(
{p_rho: q_p_rho, n_rho: q_n_rho, ctx_alphas: q_alpha},
data={y_pos: tf.ones((M, 1)), y_neg: tf.zeros((M, ns))})

inference.initialize()
tf.initialize_all_variables().run()

for _ in range(inference.n_iter):
targets, windows, negatives = next_batch(M) # a function to generate data
info_dict = inference.update(feed_dict={p_idx: targets, ctx_idx: windows, n_idx: negatives})
inference.print_progress(info_dict)

Figure A.6: Exponential family embedding for binary data (Rudolph et al., 2016). Here, map is used
to maximize the total sum of conditional log-likelihoods and log-priors.
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Appendix B: Simple, Distributed, and Accelerated Probabilistic Programming

B.1 Edward2 on SciPy

We illustrate the broad applicability of our tracing implementation by applying SciPy as a back-

end.

The implementation wraps scipy.stats distributions and registers each rvs method as traceable.

Variables private from the namescope are explicitly prepended with underscore. Unlike Edward2 on

TensorFlow Distributions, generative processes are recorded by calling rvs and wrapping Python

functions, not Python classes. This is a result of scipy.stats’s functional API, which differs from

TensorFlow Distributions’ object-oriented one.

from scipy import stats

_globals = globals()
for _name in sorted(dir(stats)):

_candidate = getattr(stats, _name)
if isinstance(_candidate, (stats._multivariate.multi_rv_generic,

stats.rv_continuous,
stats.rv_discrete,
stats.rv_histogram)):

_candidate.rvs = traceable(_candidate.rvs)
_globals[_name] = _candidate
del _candidate

Below is an Edward2 linear regression program on SciPy.

from edward2.scipy import stats as ed # assuming rvs decorated here

def linear_regression(features):
coeffs = ed.norm.rvs(loc=0.0, scale=0.1, size=features.shape[1], name="coeffs")
loc = np.einsum('ij,j->i', features, coeffs)
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labels = ed.norm.rvs(loc=loc, scale=1., size=1, name="labels")
return labels

log_joint = ed.make_log_joint_fn(linear_regression)

features = np.random.normal(size=[3, 2])
coeffs = np.random.normal(size=[2])
labels = np.random.normal(size=[3])
out = log_joint(features, coeffs=coeffs, labels=labels)

See the link to source code for more details.

B.2 Grammar Variational Auto-Encoder

Below implements a grammar vae (Kusner et al., 2017). It consists of a probabilistic encoder and

decoder. It extends probabilistic context-free grammars with neural networks, latent codes, and an

encoder for learning representations of discrete structures. The decoder’s logits is 3-dimensional

with shape [batch_size, max_timesteps, num_production_rules].

The encoder takes a string as input and applies parse_to_one_hot, a preprocessing step which
parses it into a parse tree, extracts production rules from the tree, and converts each production rule

into a one-hot vector; it then applies a neural net and outputs a normally-distributed latent code.

The decoder takes a latent code as input and maps it to a sequence of production rules representing the

generated string. It applies an RNN followed by a masking step so that the result is a valid sequence

of production rules in the grammar. The production rules may then be converted to a string.

import parse_to_one_hot

class ProbabilisticGrammarVariational(tf.keras.Model):
"""Amortized variational posterior for a probabilistic grammar."""

def __init__(self, latent_size):
"""Constructs a variational posterior for a probabilistic grammar."""

super(ProbabilisticGrammarVariational, self).__init__()
self.latent_size = latent_size
self.encoder_net = tf.keras.Sequential([
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tf.keras.layers.Conv1D(64, 3, padding="SAME"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Activation(tf.nn.elu),
tf.keras.layers.Conv1D(128, 3, padding="SAME"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Activation(tf.nn.elu),
tf.keras.layers.Dropout(0.1),
tf.keras.layers.GlobalAveragePooling1D(),
tf.keras.layers.Dense(latent_size * 2, activation=None),

])

def call(self, inputs):
"""Runs the model forward to return a stochastic encoding."""

net = tf.cast(parse_to_one_hot(inputs), dtype=tf.float32)
net = self.encoder_net(net)
return ed.MultivariateNormalDiag(

loc=net[..., :self.latent_size],
scale_diag=tf.nn.softplus(net[..., self.latent_size:]),
name="latent_code_posterior")

class ProbabilisticGrammar(tf.keras.Model):
"""Deep generative model over productions which follow a grammar."""

def __init__(self, grammar, latent_size, num_units):
"""Constructs a probabilistic grammar."""

super(ProbabilisticGrammar, self).__init__()
self.grammar = grammar
self.latent_size = latent_size
self.lstm = tf.nn.rnn_cell.LSTMCell(num_units)
self.output_layer = tf.keras.layers.Dense(len(grammar.production_rules))

def call(self, inputs):
"""Runs the model forward to generate a sequence of productions."""

del inputs # unused

latent_code = ed.MultivariateNormalDiag(loc=tf.zeros(self.latent_size),
sample_shape=1,

91



name="latent_code")
state = self.lstm.zero_state(1, dtype=tf.float32)
t = 0
productions = []
stack = [self.grammar.start_symbol]
while stack:
symbol = stack.pop()
net, state = self.lstm(latent_code, state)
logits = self.output_layer(net) + self.grammar.mask(symbol)
production = ed.OneHotCategorical(logits=logits,

name="production_" + str(t))
_, rhs = self.grammar.production_rules[tf.argmax(production, axis=1)]
for symbol in rhs:
if symbol in self.grammar.nonterminal_symbols:

stack.append(symbol)
productions.append(production)
t += 1

return tf.stack(productions, axis=1)

See the link to source code for more details.

B.3 Markov chain Monte Carlo within Variational Inference

We demonstrate another level of composability: inference within a probabilistic program. Namely,

we apply MCMC to construct a flexible family of distributions for variational inference (Salimans

et al., 2015; Hoffman, 2017). We apply a chain of transition kernels specified by nuts (nuts) in
Section 3.3.2 and the variational inference algorithm specified by train in Figure 3.12.

import nuts, train

IMAGE_SHAPE = (32, 32, 3, 256)

def model():
"""Generative model of 32x32x3 8-bit images."""

decoder_net = tf.keras.Sequential([
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dense(np.prod(IMAGE_SHAPE), activation=None),

92



tf.keras.layers.Reshape(IMAGE_SHAPE),
])

z = ed.Normal(loc=tf.zeros([FLAGS.batch_size, FLAGS.latent_size]),
scale=tf.ones([FLAGS.batch_size, FLAGS.latent_size]),
name="z")

x = ed.Categorical(logits=decoder_net(z), name="x")
return x

def variational(x):
"""Variational model given 32x32x3 8-bit images."""

encoder_net = tf.keras.Sequential([
tf.keras.layers.Reshape(np.prod(IMAGE_SHAPE)),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dense(FLAGS.latent_size * 2, activation=None),

])

net = encoder_net(x)
qz = ed.Normal(loc=net[..., :FLAGS.latent_size],

scale=tf.nn.softplus(net[..., FLAGS.latent_size:]),
name="qz")

for _ in range(FLAGS.mcmc_iterations):
qz = nuts(current_state=qz,

target_log_prob_fn=lambda z: ed.make_log_joint(model)(x=x, z=z))
return qz

align_fn = lambda name: {'z': 'qz'}.get(name)
loss = train(0.1) # uses model, variational, align_fn, x in scope

B.4 No-U-Turn Sampler

We implement an Edward2 program for Bayesian logistic regression with nuts.

import build_dataset

def logistic_regression(features):
"""Bayesian logistic regression for labels given features."""

coeffs = ed.MultivariateNormalDiag(loc=tf.zeros(features.shape[1]), name="coeffs")
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labels = ed.Bernoulli(logits=tf.tensordot(features, coeffs, [[1], [0]]))
return labels

def make_target_log_prob_fn():
"""Make target density with log-joint function anchored at data."""

log_joint_fn = ed.make_log_joint_fn(model)
def target_log_prob_fn(coeffs):

return log_joint_fn(features=features, coeffs=coeffs, labels=labels)
return target_log_prob_fn

features, labels = build_dataset()
coeffs = tf.random_normal(features.shape[1]) # initial state

samples = ed.nuts(current_state=coeffs,
target_log_prob_fn=make_target_log_prob_fn())

See the link to source code for more details.
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Appendix C: Applications in Variational Inference

C.1 Special cases of the variational Gaussian process

We now analyze two special cases of the vgp: by limiting its generative process in various ways, we

recover well-known models. This provides intuition behind the vgp’s complexity. We show many

recently proposed models can also be viewed as special cases of the vgp.

Example 1. A mixture of mean-field distributions is a vgp without a kernel.

A discrete mixture of mean-field distributions (Bishop et al., 1998; Lawrence, 2000) is a classically

studied variational model with dependencies between latent variables. Instead of a mapping which

interpolates between inputs of the variational data, suppose the vgp simply performs nearest-neighbors

for a latent input ξ—selecting the output tn tied to the nearest variational input sn. This induces

a multinomial distribution of outputs, which samples one of the variational outputs’ mean-field

parameters.1 Thus, with a gp prior that interpolates between inputs, the vgp can be seen as a kernel

density smoothing of the nearest-neighbor function.

Example 2. Variational factor analysis is a vgp with linear kernel and no variational data.

Consider factor analysis (Tipping and Bishop, 1999) in the variational space: 2

ξ ∼ N (0, I), zi ∼ N (w>ξ, I).

Marginalizing over the latent inputs induces linear dependence in z, q(z; w) = N (z; 0,ww>).
1Formally, given variational input-output pairs {(sn, tn)}, the nearest-neighbor function is defined as f(ξ) = tj ,

such that ‖ξ − sj‖ < ‖ξ − sk‖ for all k. Then the output’s distribution is multinomial with probabilities P (f(ξ) = tj),
proportional to areas of the partitioned nearest-neighbor space.

2 For simplicity, we avoid discussion of the vgp’s underlying mean-field distribution, i.e., we specify each mean-field
factor to be a degenerate point mass at its parameter value.
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Consider the dual interpretation

ξ ∼ N (0, I), fi ∼ GP(0, k(·, ·)), k(s, s′) = s>s′, zi = fi(ξ),

with q(z | ξ) = N (z; 0, ξξ>). The maximum likelihood estimate of w in factor analysis is the

maximum a posteriori estimate of ξ in the gp formulation. More generally, use of a non-linear kernel

induces non-linear dependence in z. Learning the set of kernel hyperparameters θ thus learns the set

capturing the most variation in its latent embedding of z (Lawrence, 2005).

C.2 Proof of Theorem 1

Theorem 1. Let q(z;θ,D) denote the variational Gaussian process. Consider a posterior distribution

p(z |x) with a finite number of latent variables and continuous quantile function (inverse CDF).

There exists a sequence of parameters (θk,Dk) such that

lim
k→∞

KL(q(z;θk,Dk) ‖ p(z |x)) = 0.

Proof. Let the mean-field distribution be given by degenerate delta distributions

q(zi | fi) = δfi(zi).

Let the size of the latent input be equivalent to the number of latent variables c = d and fix σ2ard = 1

and ωj = 1. Furthermore for simplicity, we assume that ξ is drawn uniformly on the d-dimensional

hypercube. Then as explained in Section 4.2.4, if we let P−1 denote the inverse posterior cumulative

distribution function, the optimal f denoted f∗ such that

KL(q(z;θ) ‖ p(z |x)) = 0

is

f∗(ξ) = P−1(ξ1, ..., ξd).
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Define Ok to be the set of points j/2k for j = 0 to 2k, and define Sk to be the d-dimensional product

of Ok. Let Dk be the set containing the pairs (si, f
∗(si)), for each element si in Sk. Denote fk as

the gp mapping conditioned on the dataset Dk, this random mapping satisfies fk(si) = f∗(si) for

all si ∈ Sk by the noise free prediction property of Gaussian processes (Rasmussen and Williams,

2006). Then by continuity, as k →∞, fk converges to f∗.

A broad condition under which the quantile function of a distribution is continuous is if that distribution

has positive density with respect to the Lebesgue measure.

The rate of convergence for finite sizes of the variational data can be studied via posterior contraction

rates for gps under random covariates (Van Der Vaart and Van Zanten, 2011). Only an additional

assumption using stronger continuity conditions for the posterior quantile and the use of Matern

covariance functions is required for the theory to be applicable in the variational setting.

C.3 Variational objective

We derive the tractable lower bound to the model evidence log p(x) presented in Equation 4.6. To do

this, we first penalize the elbo with an expected KL term,

log p(x) ≥ L = Eqvgp [log p(x | z)]−KL(qvgp(z)‖p(z))

≥ Eqvgp [log p(x | z)]−KL(qvgp(z)‖p(z))− Eqvgp

[
KL(q(ξ, f | z)‖r(ξ, f | z))

]
.

We can combine all terms into the expectations as follows:

L̃ = Eq(z,ξ,f)
[

log p(x | z)− log q(z) + log p(z)− log q(ξ, f | z) + log r(ξ, f | z)
]

= Eq(z,ξ,f)
[

log p(x | z)− log q(z | f(ξ)) + log p(z)− log q(ξ, f) + log r(ξ, f | z)
]
,

where we apply the product rule q(z)q(ξ, f | z) = q(z | f(ξ))q(ξ, f). Recombining terms as KL

divergences, and written with parameters (θ,φ), this recovers the auto-encoded variational objective
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in Section 4.3:

L̃(θ,φ) = Eqvgp [log p(x | z)]− Eqvgp

[
KL(q(z | f(ξ))‖p(z))

]
− Eqvgp

[
KL(q(f | ξ;θ)‖r(f | ξ, z;φ)) + log q(ξ)− log r(ξ | z)

]
.

The KL divergence between the mean-field q(z | f(ξ)) and the model prior p(z) is analytically

tractable for certain popular models. For example, in the deep latent Gaussian model (Rezende et al.,

2014) and draw (Gregor et al., 2015), both the mean-field distribution and model prior are Gaussian,

leading to an analytic KL term: for Gaussian random variables of dimension d,

KL(N (x; m1,Σ1)‖N (x; m2,Σ2)) =

1

2

(
(m1 −m2)

>Σ−11 (m1 −m2) + tr(Σ−11 Σ2 + log Σ1 − log Σ2)− d
)
.

In general, when the KL is intractable, we combine the KL term with the reconstruction term, and

maximize the variational objective

L̃(θ,φ) = Eqvgp [log p(x, z)− log q(z | f(ξ))]

− Eqvgp

[
KL(q(f | ξ;θ)‖r(f | ξ, z;φ)) + log q(ξ)− log r(ξ | z)

]
.

(C.1)

We expect that this experiences slightly higher variance in the stochastic gradients during optimiza-

tion.

We now consider the second term. Recall that we specify the auxiliary model to be a fully fac-

torized Gaussian, r(ξ, f | z) = N ((ξ, f(ξ))> | z; m,S), where m ∈ Rc+d, S ∈ Rc+d. Further,

the variational priors q(ξ) and q(f | ξ) are both defined to be Gaussian. Therefore it is also a KL

divergence between Gaussian distributed random variables. Similarly, log q(ξ)− log r(ξ | z) is simply

a difference of Gaussian log densities. The second expression is simple to compute and backpropagate

gradients.
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C.4 Gradients of the variational objective

We derive gradients for the variational objective (Equation 4.7). This follows trivially by backpropa-

gation:

∇θL̃(θ,φ) = EN (ξ)[Ew(ε)[∇θf(ξ)∇fz(ε)∇z log p(x | z)]]

− EN (ξ)

[
Ew(ε)

[
∇θ KL(q(z | f(ξ;θ))‖p(z))

]]
− EN (ξ)

[
Ew(ε)

[
∇θ KL(q(f | ξ;θ)‖r(f | ξ, z;φ))

]]
,

∇φL̃(θ,φ) = −EN (ξ)[Ew(ε)[∇φ KL(q(f | ξ;θ)‖r(f | ξ, z;φ))−∇φ log r(ξ | z;φ)]],

where we assume the KL terms are analytically written from Appendix C.3 and gradients are prop-

agated similarly through their computational graph. In practice, we need only be careful about

the expectations, and the gradients of the functions written above are taken care of with automatic

differentiation tools.

We also derive gradients for the general variational bound of Equation C.1—it assumes that the first KL

term, measuring the divergence between q and the prior for p, is not necessarily tractable. Following

the reparameterizations described in Section 4.3.3, this variational objective can be rewritten as

L̃(θ,φ) = EN (ξ)

[
Ew(ε)

[
log p(x, z(ε; f))− log q(z(ε; f) | f)

]]
− EN (ξ)

[
Ew(ε)

[
KL(q(f | ξ;θ)‖r(f | ξ, z(ε; f);φ)) + log q(ξ)− log r(ξ | z(ε; f))

]]
.

We calculate gradients by backpropagating over the nested reparameterizations:

∇θL̃(θ,φ) = EN (ξ)[Ew(ε)[∇θf(ξ)∇fz(ε)[∇z log p(x, z)−∇z log q(z | f)]]]

− EN (ξ)

[
Ew(ε)

[
∇θ KL(q(f | ξ;θ)‖r(f | ξ, z;φ))

]]
∇φL̃(θ,φ) = −EN (ξ)[Ew(ε)[∇φ KL(q(f | ξ;θ)‖r(f | ξ, z;φ))−∇φ log r(ξ | z;φ)]].
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C.5 Scaling the size of variational data

If massive sizes of variational data are required, e.g., when its cubic complexity due to inversion

of am×m matrix becomes the bottleneck during computation, we can scale it further. Consider

fixing the variational inputs to lie on a grid. For stationary kernels, this allows us to exploit Toeplitz

structure for fast m ×m matrix inversion. In particular, one can embed the Toeplitz matrix into

a circulant matrix and apply conjugate gradient combined with fast Fourier transforms in order to

compute inverse-matrix vector products inO(m logm) computation andO(m) storage (Cunningham

et al., 2008). For product kernels, we can further exploit Kronecker structure to allow fastm×m

matrix inversion in O(Pm1+1/P ) operations and O(Pm2/P ) storage, where P > 1 is the number

of kernel products (Osborne, 2010). The ard kernel specifically leads to O(cm1+1/c) complexity,

which is linear inm.
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Appendix D: Applications in Probabilistic Models

D.1 Noise versus Latent Variables

Hims have two sources of randomness for each data point: the latent variable zn and the noise εn;

these sources of randomness get transformed to produce xn. Bayesian analysis infers posteriors on

latent variables. A natural question is whether one should also infer the posterior of the noise.

The posterior’s shape—and ultimately if it is meaningful—is determined by the dimensionality of

noise and the transformation. For example, consider the gan model, which has no local latent variable,

xn = g(εn;θ). The conditional p(xn | εn) is a point mass, fully determined by εn. When g(·;θ) is

injective, the posterior p(εn |xn) is also a point mass,

p(εn |xn) = I[εn = g−1(xn)],

where g−1 is the left inverse of g.This means for injective functions of the randomness (both noise

and latent variables), the “posterior” may be worth analysis as a deterministic hidden representation

(Donahue et al., 2017), but it is not random.

The point mass posterior can be found via nonlinear least squares. Nonlinear least squares yields the

iterative algorithm

ε̂n = ε̂n − ρt∇ε̂nf(ε̂n)>(f(ε̂n)− xn),

for some step size sequence ρt. Note the updates will get stuck when the gradient of f is zero.

However, the injective property of f allows the iteration to be checked for correctness (simply check

if f(ε̂n) = xn).

101



D.2 Implicit Model Examples in Edward

We demonstrate implicit models via example implementations in Edward (Tran et al., 2016a).

Figure D.1 implements a 2-layer deep implicit model. It uses tf.layers to define neural networks:

tf.layers.dense(x, 256) applies a fully connected layer with 256 hidden units and input x;

weight and bias parameters are abstracted from the user. The program generates N data points xn ∈

R10 using two layers of implicit latent variables zn,1, zn,2 ∈ Rd and with an implicit likelihood.

Figure D.2 implements a Bayesian gan for classification. It manually defines a 2-layer neural network,

where for each data index, it takes features xn ∈ R500 concatenated with noise εn ∈ R as input.

The output is a label yn ∈ {−1, 1}, given by the sign of the last layer. We place a standard normal

prior over all weights and biases. Running this program while feeding the placeholder X ∈ RN×500

generates a vector of labels y ∈ {−1, 1}N .

import tensorflow as tf
from edward.models import Normal

# random noise is Normal(0, 1)
eps2 = Normal(tf.zeros([N, d]), tf.ones([N, d]))
eps1 = Normal(tf.zeros([N, d]), tf.ones([N, d]))
eps0 = Normal(tf.zeros([N, d]), tf.ones([N, d]))

# alternate latent layers z with hidden layers h
z2 = tf.layers.dense(eps2, 128, activation=tf.nn.relu)
h2 = tf.layers.dense(z2, 128, activation=tf.nn.relu)
z1 = tf.layers.dense(tf.concat([eps1, h2], 1), 128, activation=tf.nn.relu)
h1 = tf.layers.dense(z1, 128, activation=tf.nn.relu)
x = tf.layers.dense(tf.concat([eps0, h1], 1), 10, activation=None)

Figure D.1: Two-layer deep implicit model for data points xn ∈ R10. The architecture alternates
with stochastic and deterministic layers. To define a stochastic layer, we simply inject noise by
concatenating it into the input of a neural net layer.

D.3 KL Uniqueness

An integral probability metric measures distance between two distributions p and q,

d(p, q) = sup
f∈F
|Epf − Eqf |.

Integral probability metrics have been used for parameter estimation in generative models (Dziugaite

et al., 2015) and for variational inference in models with tractable density (Ranganath et al., 2016b).
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import tensorflow as tf
from edward.models import Normal

# weights and biases have Normal(0, 1) prior
W1 = Normal(tf.zeros([501, 256]), tf.ones([501, 256]))
W2 = Normal(tf.zeros([256, 1]), tf.ones([256, 1]))
b1 = Normal(tf.zeros(256), tf.ones(256))
b2 = Normal(tf.zeros(1), tf.ones(1))

# set up inputs to neural network
X = tf.placeholder(tf.float32, [N, 500])
eps = Normal(tf.zeros([N, 1]), tf.ones([N, 1]))

# y = neural_network([x, eps])
input = tf.concat([X, eps], 1)
h1 = tf.nn.relu(tf.matmul(input, W1) + b1)
h2 = tf.matmul(h1, W2) + b2
y = tf.reshape(tf.sign(h2), [-1]) # take sign, then flatten

Figure D.2: Bayesian gan for classification, taking X ∈ RN×500 as input and generating a vector of
labels y ∈ {−1, 1}N . The neural network directly generates the data rather than parameterizing a
probability distribution.

In contrast to models with only local latent variables, to infer the posterior, we need an integral

probability metric between it and the variational approximation. The direct approach fails because

sampling from the posterior is intractable.

An indirect approach requires constructing a sufficiently broad class of functions with posterior

expectation zero based on Stein’s method (Ranganath et al., 2016b). These constructions require

a likelihood function and its gradient. Working around the likelihood would require a form of

nonparametric density estimation; unlike ratio estimation, we are unaware of a solution that sufficiently

scales to high dimensions.

As another class of divergences, the f divergence is

d(p, q) = Eq
[
f

(
p

q

)]
.

Unlike integral probability metrics, f divergences are naturally conducive to ratio estimation, enabling

implicit p and implicit q. However, the challenge lies in scalable computation. To subsample data in

hierarchical models, we need f to satisfy up to constants f(ab) = f(a)+f(b), so that the expectation

becomes a sum over individual data points. For continuous functions, this is a defining property of

the log function. This implies the KL-divergence from q to p is the only f divergence where the
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subsampling technique in our desiderata is possible.

D.4 Hinge Loss

Let r(xi, zi, β; θ) output a real value, as with the log loss in Section 4. The hinge loss is

Dhinge = Ep(xn,zn |β)[max(0, 1− r(xn, zn, β;θ))]+

Eq(xn,zn |β)[max(0, 1 + r(xn, zn, β;θ))].

We minimize this loss function by following unbiased gradients. The gradients are calculated

analogously as for the log loss. The optimal r∗ is the log ratio.

D.5 Comparing Bayesian GANs with MAP to GANs with MLE

In Section 4, we argued that MAP estimation with a Bayesian gan enables analysis over discrete

data, but gans—even with a maximum likelihood objective (Goodfellow, 2014)—cannot. This is a

surprising result: assuming a flat prior for MAP, the two are ultimately optimizing the same objective.

We compare the two below.

For gans, assume the discriminator outputs a logit probability, so that it’s unconstrained instead of

on [0, 1]. gans with MLE use the discriminative problem

max
θ

Eq(x)[log σ(D(x;θ))] + Ep(x;w)[log(1− σ(D(x;θ)))].

They use the generative problem

min
w

Ep(x;w)[− exp(D(x))].

Solving the generative problem with reparameterization gradients requires backpropagating through

data generated from the model, x ∼ p(x; w). This is not possible for discrete x. Further, the

exponentiation also makes this objective numerically unstable and thus unusable in practice.

Contrast this with Bayesian gans with MLE (MAP and a flat prior). This applies a point mass
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variational approximation q(w′) = I[w′ = w]. It maximizes the elbo,

max
w

Eq(w)[log p(w)− log q(w)] +
N∑
n=1

r(xn,w).

The first term is zero for a flat prior p(w) ∝ 1 and point mass approximation; the problem reduces

to

max
w

N∑
n=1

r(xn,w).

Solving this is possible for discrete x: it only requires backpropagating gradients through r(x,w)

with respect to w, all of which is differentiable. Further, the objective does not require a numerically

unstable exponentiation.

Ultimately, the difference lies in the role of the ratio estimators. Recall for Bayesian gans, we use the

ratio estimation problem

Dlog = Ep(x;w)[− log σ(r(x,w;θ))]+

Eq(x)[− log(1− σ(r(x,w;θ)))].

The optimal ratio estimator is the log-ratio r∗(x,w) = log p(x |w)− log q(x). Optimizing it with

respect to w reduces to optimizing the log-likelihood log p(x |w). The optimal discriminator for

gans with MLE has the same ratio, D∗(x) = log p(x; w) − log q(x); however, it is a constant

function with respect to w. Hence one cannot immediately substituteD∗(x) as a proxy to optimizing

the likelihood. An alternative is to use importance sampling; the result is the former objective

(Goodfellow, 2014).

D.6 Stability of Ratio Estimator

With implicit models, the difference from standard KL variational inference lies in the ratio estimation

problem. Thus we would like to assess the accuracy of the ratio estimator. We can check this by

comparing to the true ratio under a model with tractable likelihood.

We apply Bayesian linear regression. It features a tractable posterior which we leverage in our analysis.
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Figure D.3: (left) Difference of ratios over steps of q. Low variance on y-axis means more stable.
Interestingly, the ratio estimator is more accurate and stable as q converges to the posterior. (middle)
Difference of ratios over steps of r; q is fixed at random initialization. The ratio estimator doesn’t
improve even after many steps. (right) Difference of ratios over steps of r; q is fixed at the posterior.
The ratio estimator only requires few steps from random initialization to be highly accurate.

We use 50 simulated data points {yn ∈ R2,xn ∈ R}. The optimal (log) ratio is

r∗(x, β) = log p(x |β)− log q(x).

Note the log-likelihood log p(x |β)minus r∗(x, β) is equal to the empirical distribution
∑

n log q(xn),

a constant. Therefore if a ratio estimator r is accurate, its difference with log p(x |β) should be a

constant with low variance across values of β.

See Figure D.3. The top graph displays the estimate of log q(x) over updates of the variational

approximation q(β); each estimate uses a sample from the current q(β). The ratio estimator r is more

accurate as q exactly converges to the posterior. This matches our intuition: if data generated from

the model is close to the true data, then the ratio is more stable to estimate.

An alternative hypothesis for Figure D.3 is that the ratio estimator has simply accumulated information

during training. This turns out to be untrue; see the bottom graphs. On the left, q is fixed at a random

initialization; the estimate of log q(x) is displayed over updates of r. After many updates, r still

produces unstable estimates. In contrast, the right shows the same procedure with q fixed at the

posterior. r is accurate after few updates.

Several practical insights appear for training. First, it is not helpful to update r multiple times before

updating q (at least in initial iterations). Additionally, if the specified model poorly matches the data,

training will be difficult across all iterations.

The property that ratio estimation is more accurate as the variational approximation improves is
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because q(xn) is set to be the empirical distribution. (Note we could subtract any density q(xn) from

the elbo in Equation 4.) Likelihood-free variational inference finds q(β) that makes the observed

data likely under p(xn |β), i.e., p(xn |β) gets closer to the empirical distribution at values sampled

from q(β). Letting q(xn) be the empirical distribution means the ratio estimation problem will be

less trivially solvable (thus more accurate) as q(β) improves.

Note also this motivates why we do not subsume inference of p(β |x) in the ratio in order to enable

implicit global variables and implicit global variational approximations. Namely, estimation requires

comparing samples between the prior and the posterior; they rarely overlap for global variables.
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