
1 
 

Winter temperature and forest cover have shaped red deer distribution in Europe and 1 

the Ural Mountains since the Late Pleistocene 2 

 3 

 4 

Short title: Deer distribution since Late Pleistocene 5 

 6 

Magdalena Niedziałkowska1,*, Karolina Doan2,3, Marcin Górny1,4, Maciej Sykut1, Krzysztof 7 

Stefaniak5, Natalia Piotrowska6, Bogumiła Jędrzejewska1,  Bogdan Ridush7, Sławomira 8 

Pawełczyk6, Paweł Mackiewicz8, Ulrich Schmölcke9, Pavel Kosintsev10,11, Daniel 9 

Makowiecki12 , Maxim Charniauski13, Dariusz Krasnodębski14, Eve Rannamäe15, Urmas 10 

Saarma16, Marine Arakelyan17, Ninna Manaseryan18, Vadim V. Titov19, Pavel Hulva20, Adrian 11 

Bălășescu21,22, Ralph Fyfe 23, Jessie Woodbridge23, Katerina Trantalidou24, Vesna 12 

Dimitrijevic25, Oleksandr Kovalchuk26,27, Jarosław Wilczyński28, Theodor Obadă29, Grzegorz 13 

Lipecki28, Alesia Arabey30, †Ana Stanković31,32,33 14 

 15 

* corresponding author: mniedz@ibs.bialowieza.pl 16 

 17 

1Mammal Research Institute, Polish Academy of Sciences, Stoczek 1c, 17-230 Białowieża,  18 

Poland 19 

2 College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University 20 

of Warsaw, S. Banacha 2C, 02-097 Warsaw, Poland 21 

3Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-671 Warsaw, 22 
Poland 23 

 24 
4South Atlantic Environmental Research Institute (SAERI),  25 

PO Box 609, Stanley Cottage, Stanley, FIQQ 1ZZ, Falkland Islands 26 
 27 

5 Department of Palaeozoology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, 28 

Poland 29 

6Radiocarbon Laboratory Institute of Physics – Center for Science and Education, Silesian 30 

University of Technology, Konarskiego 22b, 44-100 Gliwice, Poland 31 



2 
 

7 Department of Physical Geography, Geomorphology and Paleogeography, Yuriy Fedkovych 32 

Chernivtsi National University, Kotsubynskogo 2, Chernivtsi 58012, Ukraine 33 

8 Department of Genomics, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 34 

14a, 50-383 Wrocław, Poland 35 

9Centre for Baltic and Scandinavian Archaeology (ZBSA), Schloss Gottorf D-24837 36 

Schleswig, Germany 37 

10Ural Federal University, 51 Lenin St., Yekaterinburg, 620002, Russia 38 

11Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 39 

Marta str. 202, Yekaterinburg 620144, Russia 40 

12Nicolaus Copernicus University, Institute of Archaeology, Department of Historical 41 

Sciences, Szosa Bydgoska 44/48, 87-100 Toruń, Poland 42 

13Institute of History of National Academy of Sciences of Belarus, Academic str., 1, 220072 43 

Minsk, Belarus 44 

14Institute of Archaeology and Ethnology Polish Academy of Sciences, Al. Solidarności 105, 45 

00-140 Warsaw, Poland 46 

15Department of Archaeology, Institute of History and Archaeology, University of Tartu, 47 

Jakobi 2, 51005 Tartu, Estonia 48 

16Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 49 

Vanemuise 46,  51003 Tartu, Estonia 50 

17Yerevan State University, Faculty of Biology, Department of Zoology, Alex Manoogian 1, 51 

0025 Yerevan, Republic of Armenia 52 



3 
 

18The Scientific Center of Zoology and Hydroecology of National Academy of Science of 53 

Armenia, 7 P. Sevak st., Yerevan 0014, Republic of Armenia 54 

19Southern Scientific Centre RAS, Chekhov str, 41, Rostov-on-Don 344006, Russia 55 

20Charles University in Prague, Department of Zoology, Viničná 1594/7, 128 00 Nové Město, 56 

Prague, Czech Republic 57 

21University of Ostrava, Department of Biology and Ecology, Chittussiho 10,  710 00 Slezská 58 

Ostrava, Czech Republic 59 

22“Vasile Pârvan” Institute of Archaeology, Romanian Academy, 11 Henri Coandă street, 60 

Bucarest, Romania 61 

23School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake 62 

Circus, Plymouth, Devon PL4 8AA, UK 63 

24Ephorate of Palaeoanthropology-Speleology 34b Ardittou str., 11636 Athens, Greece 64 

25 Laboratory for Bioarchaeology, Department of Archaecology, Faculty of Philosophy,  65 

      University of Belgrade, Čika Ljubina 18-20, 11000 Belgrade, Serbia 66 

26Department of Aquaculture, National University of Life and Environmental Sciences of  67 

      Ukraine, 19 General Rodimtsev str., Kyiv 03041, Ukraine 68 

27Department of Paleontology, National Museum of Natural History, National Academy of 69 

Sciences of Ukraine, 15 B. Khmelnytsky str., Kyiv 01030, Ukraine 70 

28Institute of Systematics and Evolution of Animals, Polish Academy of Sciences,  71 

      Sławkowska 17, 31-016 Cracow, Poland 72 

29Institute of Zoology, Str. Academiei 1, MD-2028, Chişinău, Republic of Moldova 73 

30Department of Archaeology, Numismatics and Weaponry, National Historical Museum of  74 

 the Republic of Belarus, K. Marx str., 12 220005 Minsk, Belarus 75 

31Institute of Genetics and Biotechnology, University of Warsaw, Pawińskiego 5a, 76 

02-106 Warsaw, Poland 77 



4 
 

32Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 78 

02-106 Warsaw, Poland  79 

33The Antiquity of Southeastern Europe Research Centre, University of Warsaw, Krakowskie 80 

Przedmieście 32, 00-927 Warsaw, Poland 81 

† In memory to the late of Professor Ana Stanković (1971 - 2015), who had initiated this 82 

project. 83 

 84 

Acknowledgements 85 

The study was financed by the National Science Centre (grant no. UMO-86 

2013/11/B/NZ8/00888), the Mammal Research Institute, Polish Academy of Sciences in 87 

Białowieża and the Institute of Environmental Biology, University of Wrocław, grant no. 88 

0410/2990/18. KD was supported in part by the EU through the European Social Fund, 89 

contract number UDA-POKL.04.01.01-00-072/09-00. The archaeozoological research 90 

conducted by AB was supported by the Romanian National Authority for Scientific Research, 91 

UEFISCDI (PN‐IIIP4‐ID‐PCE‐2016‐0676). JW was supported by the National Science 92 

Centre (grant no. UMO-2016/23/B/HS3/00387). We thank John Stewart for the Faunal 93 

Database of the Stage Three Project. The land cover reconstruction of Fyfe et al. (2015) 94 

resulted from a project funded by the Leverhulme Trust (F00568W), which made use of 95 

pollen datasets from the European Pollen Database (EPD) 96 

(http://www.europeanpollendatabase.net/); the work of the data contributors and the EPD 97 

community is gratefully acknowledged. Data from FAMOUS climate model simulations was 98 

provided by Robin S. Smith through the National Centre for Atmospheric Science and the 99 

Centre for Environmental Data Analysis, UK. We are grateful to Aleksandr Pisarenko 100 

(Museum of Zoology, Faculty of Biology, Belarusian State University, Mińsk, Belarus), G. 101 

Timonina (Azov Museum-Reserve, Azov, Russia), L. Yavorskaya (Institute of Archeology, 102 

Moscow, Russia) for the provision of samples. We are thankful to colleagues and 103 

http://www.europeanpollendatabase.net/


5 
 

archaeological institutions in Poland for sharing samples that were used in this study: T. 104 

Sawicki (Museum of the Origins of the Polish State in Gniezno), W. Chudziak (Institute of 105 

Archaeology, Nicolaus Copernicus University, Toruń), B. Gruszka (Institute of Archaeology 106 

and Ethnology, Polish Academy of Sciences, Warsaw), A. Koperkiewicz (Institute of 107 

Archaeology and Ethnology Gdańsk University), M. Rybicka (Instytut of Archaeology, 108 

Rzeszów University). We thank Emilia Hofman-Kamińska and Rafał Kowalczyk (Mammal 109 

Research Institute PAS, Białowieża, Poland) and Alena Kaleczyc (Institute of History 110 

National Academy of Sciences, Mińsk, Belarus) for their help in the collection of materials 111 

for this study. We thank Frank Zachos for the provision of samples from the Natural History 112 

Museum in Vienna (Austria) and comments on the manuscript. We are grateful to Tomasz 113 

Borowik and Michał Żmichorski for their help in statistical analyses.  114 

Key words: environmental niche modelling, expansion-contraction model, forest habitat, 115 

Holocene, January temperature, Last Glacial Maximum refugia, paleoecology, radiocarbon 116 

dating, temperate climatic zone, ungulates 117 

 118 

  119 

Abstract 120 

Aim: The Expansion-Contraction model has been used to explain the responses of species to 121 

climatic changes. During periods of unfavorable climatic conditions, species retreat to refugia 122 

from where they may later expand. This paper focuses on the paleoecology of red deer over 123 

the past 54 ka across Europe and the Urals, to reveal patterns of change in their range and 124 

explore the role of environmental conditions in determining their distribution.  125 

Location: Europe and western Asia to 63o E. 126 

Taxon: Red deer (Cervus elaphus)   127 

Methods: We collected 984 records of radiocarbon-dated red deer subfossils from the Late 128 

Pleistocene and the Holocene, including 93 original dates. For each deer sample we compiled 129 

climatic and biome type data for the corresponding time intervals.   130 
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Results: During the last 54 ka changes in red deer range in Europe and the Urals were 131 

asynchronous and differed between western and eastern Europe and western Asia due to 132 

different environmental conditions in those regions. The range of suitable areas for deer 133 

during the Last Glacial Maximum (LGM) was larger than previously thought and covered 134 

vast regions not only in southern but also in western and eastern Europe. Throughout the 135 

period investigated the majority of specimens  inhabited forests in the temperate climatic 136 

zone. The contribution of forests in deer localities significantly decreased during the last 4 ka, 137 

due to deforestation of Europe caused by humans. Mean January temperature was the main 138 

limiting factor for species distribution. Over 90% of the samples were found in areas where 139 

mean January temperature was above -10o C.  140 

Main conclusions: Red deer response to climatic oscillations are in agreement with the 141 

Expansion-Contraction model but in contradiction to the statement of only the southernmost 142 

LGM refugia of the species. During the last 54 ka red deer occurred mostly in forests of the 143 

temperate climatic zone.  144 

 145 

1. Introduction 146 

Climatic oscillations during the Pleistocene, involving alternating periods of glacial and 147 

interglacial cycles with irregular intervals of varying durations, had a major impact on 148 

demographic changes and the distribution of plant and animal species in Europe (Hewitt, 149 

2004). Many European temperate species survived the unfavorable environmental conditions 150 

in refugial areas (Hewitt, 1999, 2004; Provan & Bennett 2008). According to the expansion-151 

contraction model (EC), the ranges of temperate species shrank to cover Mediterranean 152 

regions, and during postglacial periods the species recolonized temperate and boreal areas 153 

(Hewitt 1999, 2000, and references therein; Sommer & Zachos 2009). However, in the case of 154 

some temperate mammals, archaeozoological evidence has revealed that they also existed 155 

during glaciations outside the Mediterranean refugia e.g. around the Carpathian Mountains 156 
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(Davison et al., 2011; Deffontaine et al., 2005; Herman et al., 2016).  In addition to latitudinal 157 

changes, there were also range expansions in east-west directions, or changes in body forms, 158 

as species adapted to different environmental conditions related to climatic humidity 159 

(Matosiuk et al., 2014; Stewart, Lister, Barnes, & Dalen, 2010 and reference therein;).  160 

The red deer (Cervus elaphus) is a widely distributed game species in Europe (Milner 161 

et al., 2006; Zachos and Hartl, 2011), which can survive in diverse habitats such as 162 

woodlands, moorlands, meadows, and at different altitudes, including mountains (Dolan, 163 

1988; Geist, 1998; Heptner, Nasimovich, & Bannikov, 1961). The current distribution of red 164 

deer is assumed to be strongly influenced primarily by colonization history during the Late 165 

Pleistocene and the early Holocene (Sommer et al., 2008) and also by human activities (e.g. 166 

Carden et al., 2012; Doan et al., 2017; Fernández-Garcia et al. 2014). The red deer is also one 167 

of the most abundant large mammal species in archaeological sites dated to the Late 168 

Pleistocene across Europe (Sommer & Nadachowski, 2006). According to Geist (1998), the 169 

European red deer is a savannah-type deer with a mixed feeding strategy, but the majority of 170 

present-day red deer populations in Europe inhabit forests rather than open areas (Apollonio, 171 

Andersen, & Putman, 2010 and references therein). The EC model of species response to 172 

long-term environmental changes assumes a high degree of niche conservationism (i.e. the 173 

tendency of species to retain their niche-related ecological traits over time), especially with 174 

regards to the abiotic, climate-related dimension of a species niche (Wiens et al., 2010 and 175 

references therein). 176 

The history of red deer may have been more complex than explained by a simplistic 177 

EC model. Studies by Sommer et al. (2008), Meiri et al. (2013) and Queiros et al. (2019) 178 

suggest that red deer could have also survived during glacial times outside southern European 179 

peninsular refugia, especially in northern areas of western Europe. Furthermore, the 180 

distribution of western (European) and eastern (Asian) genetic lineages of red deer shifted 181 
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alongside climatic changes, as indicated by studies on ancient Crimean red deer populations 182 

(Doan et al., 2018; Stanković et al., 2011).  After the LGM when the climate became warmer, 183 

western red deer populations expanded in Europe. The eastern lineage – a more cold-adapted 184 

open-country grazer (Geist, 1998) – disappeared from previously occupied areas (Doan et al., 185 

2018). 186 

In addition to natural environmental change, human wildlife management over recent 187 

centuries has affected red deer populations via selective hunting, translocations, isolation of 188 

deer in enclosures, and through the creation of barriers resulting in habitat fragmentation 189 

(Carden et al., 2012; Hartl, Zachos, & Nadlinger, 2003; Niedziałkowska, Jędrzejewska, 190 

Wójcik, & Goodman, 2012). From a biogeographic perspective, translocations and 191 

introductions may be the main factors that could have led to erroneous conclusions about 192 

postglacial recolonization routes of the red deer. 193 

In this study, we analysed Late Pleistocene and Holocene red deer samples to 194 

investigate the complex population history of this species across Europe and the Ural 195 

Mountains since 54 ka. There are still many questions and hypotheses that need to be verified, 196 

as previous studies mainly concentrated on the southern and western parts of the continent 197 

(Meiri et al., 2013; Queiros et al., 2019; Sommer et al., 2008). During the Last Glacial 198 

Maximum (LGM), glacial extent reached its southern limit in western Europe much earlier 199 

(about 23 ka cal BP) and extended further south than in eastern Europe (Patton, Hubbard, 200 

Andreassen, Winsborrow, & Stroeven, 2016; Patton et al., 2017). Therefore, larger areas were 201 

available for boreal and temperate species in eastern Europe and western Asia than in western 202 

Europe. Using fossil records and paleobotanical data Markova, Simakova, & Puzachenko 203 

(2009) showed that during the LGM there were large areas of land with environmental 204 

conditions suitable for many boreal and temperate species including red deer in eastern and 205 

south-eastern Europe. However, until now few studies have demonstrated that eastern parts of 206 
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Europe could have played important roles as LGM refugia for temperate and boreal species 207 

(Korbut, Rusin, Neumann, & Banaszek, 2019; Niedziałkowska 2017; Sommer et al., 2009).  208 

We expect that, although the changes in distribution of red deer in Europe and the Urals 209 

during the last 50 ka years can be explained to large extent by EC model, the species survived 210 

the LGM in larger areas than previously thought. We suppose that the the potentially suitable 211 

areas for deer included not only the well-known southern refugia but also vast regions of 212 

eastern Europe and western Asia. We also put a hypothesis that although the European red 213 

deer is ecologically flexible species, it has been best adapted to temperate climate conditions 214 

and forested habitats.  215 

The aims of this study were to: (i) describe changes in red deer distribution before and 216 

after the LGM, (ii) identify potentially suitable areas for deer during the LGM in eastern 217 

Europe and the Ural Mountains, and (iii) analyse the response of red deer to changes in 218 

climate and habitat availability during the last 54 ka.These aims were addressed by collating 219 

existing geolocated radiocarbon dates from the literature and supplementing them with new 220 

measurements on previously undated red deer material. These were used to assess the climatic 221 

conditions and habitats occupied by red deer through the last 54 ka and investigate the 222 

species’ ecological flexibility, alongside environmental niche modelling to assess the potential 223 

niche for red deer through time in Europe and the Urals.  224 

 225 

2. Methods 226 

2.1. Sampling 227 

We obtained red deer subfossil teeth and fragments of bones from zoological and 228 

archeological collections in Europe and the Ural Mountains in agreement with the collection 229 

owners. Species identification was based on comparative macroscopic and morphometric 230 

analyses and confirmed by genetic analyses (sequencing of cytochrome b of mtDNA, see 231 

Doan et al., 2017 for details). In the next step, 93 samples were radiocarbon-dated using 232 
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accelerator mass spectrometry (AMS) at the Gliwice Absolute Dating Methods Centre 233 

(GADAM, Poland).  234 

Literature searches were performed to source additional data on red deer distribution 235 

in the Late Pleistocene and Holocene in Europe and western Asia. Records analysed in this 236 

study also derive from the Faunal Database of the Stage Three Project 237 

(https://www.esc.cam.ac.uk/research/research-groups/research-projects/stage-three-238 

project/stage-three-project-database-downloads) and data collected by the authors of this 239 

manuscript during their earlier scientific projects. We focused specifically on records that 240 

have been radiocarbon-dated either directly or indirectly, i.e. dates derived from charcoal, 241 

humus, or bones of other animals found in the same layer as red deer fossils. Samples that 242 

were not radiocarbon-dated, were excluded from the analysis.  243 

All radiocarbon dates were calibrated using OxCal v. 4.2 (Bronk Ramsey, 2009) and 244 

the IntCal13 calibration curve (Reimer et al., 2013). Hereafter, the ages are provided as cal 245 

BP, i.e. calibrated age in years before AD 1950, using  medians of the calibrated radiocarbon 246 

dates. 247 

2.2. Spatial and temporal analyses 248 

The radiocarbon dataset used in this study (N = 984, including 93 new measurements, 249 

Appendix 1: Table S1) covers Europe as well as western Asia up to 63o E (Figure 1, Appendix 250 

2: Figure S1) and extends from the Late Pleistocene (54 000 calibrated years BP – 54 ka cal 251 

BP) until modern times (0 cal BP).  The largest number of records originated from the periods 252 

>34-26 ka cal BP (253 samples) and 54-34 ka cal BP (239 samples). The smallest number of 253 

samples were dated to the most recent time period (>4 - 0 ka cal BP; 98 samples) and the 254 

LGM (>26-18 ka cal BP; 99 samples). The chosen time periods reflect episodes when 255 

significant climatic and environmental changes occurred (Figure 2). The first period 256 

represents the time prior to the LGM, the second represents the pre-LGM period, when 257 

https://www.esc.cam.ac.uk/research/research-groups/research-projects/stage-three-project/stage-three-project-database-downloads
https://www.esc.cam.ac.uk/research/research-groups/research-projects/stage-three-project/stage-three-project-database-downloads
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temperature started to decrease, the third spans the LGM, the fourth represents the time after 258 

the LGM, when temperature started to increase, the fifth covers the early Holocene, and the 259 

sixth period corresponds to the time period with clear signs of human-caused deforestation 260 

across Europe (Fyfe, Woodbridge, & Roberts, 2015). The approximate northern limits of red 261 

deer in different time periods were determined based on the distribution of red deer samples in 262 

the above mentioned time intervals. The present red deer range was created based on IUCN 263 

data (Lovari et al., 2018), published data on red deer distribution (Albayrak, Pamukoğlu, & 264 

Kaya 2007; GBIF.org 2020; Loggers, Thévenot, & Aulagnier, 1992; Milner et al., 2006; 265 

Niedziałkowska et al., 2011) and the Atlas of Mammals in Russia 266 

(http://rusmam.ru/atlas/map). 267 

We tested the latitudinal shifts of the northern edge of red deer range among the 268 

studied periods with the Generalized Linear Model (GLM) using Gamma error structure. 269 

Before modelling, for each considered period, we selected the most northern localities 270 

(sample sites ≥ 0.9 quantile), which represented the northern limit of the species range. In the 271 

GLM sample site latitude was set as a continuous response variable, while the studied period 272 

(categorical variable) served as explanatory factor. The analysis was done in R ver. 3.5.2 (R 273 

Core Team, 2018). 274 

 Sea level and the shape of coast lines in each of the defined time periods were mapped 275 

based on data published by Waelbroeck et al. (2002) and applying GEBCO bathymetric 276 

model of the World's oceans (Weatherall et al., 2015). Changes inthe Baltic Sea level were 277 

mapped based on Bjӧrck (1995) for the period 13-8 ka BP and Lambeck, Purcell, Zhao, & 278 

Svensson (2010) for the period before the LGM. The extent of the Fennoscandian Ice Sheet 279 

was drawn based on the database of Hughes, Gyllencreutz, Lohne, Mangerud, & Svendsen 280 

(2016; 10-30 ka BP) and Lambeck et al. (2010; 39 ka and 49 ka BP). 281 

2.3. Climatic and environmental analyses 282 

http://rusmam.ru/atlas/map
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Climatic (mean annual, mean January, mean July temperatures, and mean annual 283 

precipitation) and biome data were obtained from the FAMOUS database (FAst Met. Office 284 

and UK Universities Simulator) (Smith & Gregory, 2012, Appendix 1: Table S2). The 285 

FAMOUS database was downscaled to the spatial resolution of 2.5’ using the WorldClim 286 

database (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) as a baseline (current climate 287 

data). Biome data were used in their original resolution (5.00° × 7.50°). In our analyses, we 288 

merged the biome categories from the FAMOUS database into the following categories 289 

(Appendix 1: Table S2): Tundra (Tun), Forest (coniferous, mixed, deciduous, montane – For), 290 

Sclerophyl woodland (Scl wood), Xerophytic shrub (Xer shr), Grassland and Desert (Grass 291 

Des). More details on the methods used to extract climatic and biome data are given in 292 

Appendix 3.  293 

Additional information on the relative abundance of different land cover types 294 

throughout the Holocene (for the period 11-0 ka BP) was obtained from a pollen-inferred land 295 

cover change database (after Fyfe et al., 2015, Appendix 1: Table S3). This database contains 296 

pan-European land cover classification for the last 11 ka years at 200-year temporal resolution 297 

and was created by applying the pseudobiomization (PBM) method (Fyfe et al. 2010) to 298 

almost 1000 fossil pollen records from across Europe. Land cover types were extracted 299 

around the red deer data points, similarly to the approach taken to extract climatic data, using 300 

ArcGIS 10.3.1 software (ESRI 2015, Appendix 3). To determine the potential distribution of 301 

red deer in the six time periods, we created environmental niche models using Maxent 302 

software (Phillips, Anderson, & Schapire, 2006) using deer records as occurrence data and 303 

mean January temperature as an environmental variable (for more details concerning the 304 

modelling approach see Appendix 3). All statistical analyses were performed in 305 

STATISTICA 7.1. (StatSoft, 2005).  306 

3. Results 307 

3.1. Changes in red deer distribution since the Late Pleistocene 308 
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In general, the range of red deer shrank during the colder periods (54-18 ka cal BP) and 309 

expanded after the LGM (18-0 ka cal BP), when the climate became warmer (Figures 2, S1 310 

and 3). The changes in the northern limits of deer occurrence (statistically significant in most 311 

cases; Table S4) were in agreement with the predictions of the EC model.  312 

However, the scale of these changes was different in western and eastern parts of the 313 

continent (Figures 2 and S1). For the earliest studied time period (54-34 ka cal BP), the 314 

northernmost deer records were found above 60 N latitude in the Urals and above 52 N in 315 

western Europe (present-day Ireland). Between 54 and 26 ka cal BP the red deer disappeared 316 

from their northern areas moving about 200 km in a southerly direction (on average about 14 317 

km ka-1) in western Europe (distance measured along longitude 0o WE) and 950 km (on 318 

average about 68 km ka-1) in western Asia (along longitude 60o E) (Figures 2 and S1). Before 319 

and during the LGM (> 34-18 ka cal BP) red deer became extinct in large areas of Europe and 320 

the species’ range shifted 750-800 km (on average about 100 km ka-1) further to the south in 321 

western Europe, but remained stable in the eastern part of the continent and the Urals. During 322 

the LGM (>26-18 ka cal BP) the species range was at its minimum covering areas up to about 323 

44 N latitude in present-day France and Italy, 48 N latitude in Moldova, 55o N in the Urals 324 

(Figures 2 and S1).  325 

After the LGM, red deer started to recolonize the European continent in a northerly 326 

direction (Figures 2, 3, S1, Appendix 2: Table S4). However, the recolonization was notably 327 

faster in the western than in the eastern part of the continent. Red deer started to expand from 328 

the south-west towards the north and north-east. Between the end of the LGM and 11 ka BP 329 

the range edge moved 1500 km northward (measured along the longitude 0oE, on average 200 330 

km ka-1) and 1800 km north-east (on average 240 km ka-1, measured along a line from 0oWE, 331 

50oN to 20oE, 60oN) in western Europe. In the eastern part of the continent and the Urals, the 332 

range expansion of deer (measured longitudinally between 30oE and 60oE and along lines 333 
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from 30oE, 50oN to 50oE, 60oN and from 40oE, 50oN to 60oE, 60oN) was smaller (0-250 km; 334 

rate 0-33 km ka-1). After the LGM red deer rapidly surpassed the northern limits from the pre-335 

LGM period (54-26 ka cal BP, comp. Figures 2 (upper and middle panels), 3, S1 and Table 336 

S4).   337 

In the Holocene (between 11-2 ka cal BP, prior to human translocations of red deer), 338 

the range of red deer continued to shift significantly (Figures 2,3, S1, Table S4) in a northerly 339 

direction. The edge of species occurrence moved from 350 km to 1450 km (rate 64-264 km 340 

ka-1) to the north (measured along 40oE and 0oWE respectively) and 400-2000 km (rate 73-341 

364 km ka-1) to the north-east (measured from 20oE, 50oN to 40oE, 60oN and from 40oE, 50oN 342 

to 60oE, 60oN, respectively). In both Europe and the Urals red deer crossed 60oN (Figures 2 343 

and S.1). In comparison to the contemporary red deer range, the range recorded around 2 ka 344 

cal BP extended much further to the east, north-east and south (comp. Figures 1, 2 and S1). 345 

Around 400 cal BP red deer still occurred in the Urals (Table S1). The present-day eastern 346 

border of the continuous red deer distribution ends in the west of the European part of Russia 347 

(Figures 1, S1).  348 

3.2. Climatic conditions in red deer sample locations 349 

We compared climatic variables in the red deer record site locations for the six time 350 

periods. Mean annual and mean July temperatures were significantly different among the 351 

studied periods, especially between the Late Pleistocene and the Holocene periods (Figures 4 352 

and S.2). Median annual temperatures varied between 7.8 and 9.5oC and those of July 353 

temperatures between 14.4 and 18.2oC. Annual temperature in the earlier periods (54 - 26 ka) 354 

was lower than in more recent times, especially when compared with the period prior to 11-0 355 

ka (Figure S2). Median July temperature in deer sample locations decreased from > 54-34 ka 356 

reaching a minimum at the LGM, and then increased until the present (Figure 3, upper panel). 357 

However, we found no statistical differences in the mean January temperatures among the 358 
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study periods (Figure 4, upper panel). Median January temperatures were between -1 and 359 

1C in all six time periods (Figure 4, upper panel). As many as 67% of all deer records were 360 

found in locations with mean January temperature between -5 and 5C (Figure 4, lower panel) 361 

and more than 90% of samples occurred in locations where mean January temperature range 362 

was above -10C (Figure 4, lower panel).  363 

Annual precipitation in deer sample locations varied through time (Figure S2). During 364 

the LGM and postglacial periods (>18-11 ka BP) it was significantly higher than in earlier 365 

periods (54-34 ka BP) and the Holocene (Figure S2). Median annual precipitation was highest 366 

during the LGM (720 mm) and lowest in the period 54 - 34 ka BP (about 600 mm) and the 367 

Holocene (Figure S2). 368 

 369 

3.3. Habitat niche of red deer in Europe  370 

The biome type identified around each of the dated deer records are presented in Figure S1. 371 

The majority of all samples (57%) were located in forests of different types (coniferous, 372 

mixed and deciduous) (Figures 4 lower panel, S1 and S3). The second biome most frequently 373 

occupied by red deer was sclerophyllous woodland (29% of samples) in southern and western 374 

Europe. Less than 10% of samples were found in other categories of biomes such as tundra, 375 

xerophytic shrub, grassland or desert (Figures 4 lower panel, S2 and S3). The combination of 376 

different biomes, to which the samples were assigned, varied among time periods (Figure S3). 377 

The share of forest was lowest (about 35%) in the pre-LGM period (>34-26 ka cal BP) and 378 

highest in the Holocene (77% to 84%). The pre-LGM and postglacial (>18-11 ka cal BP) 379 

samples were slightly more often assigned to sclerophyll woodland than to forest. 380 

Based on more detailed data on forest cover in Europe during the Holocene (Fyfe et al., 381 

2015) derived from fossil pollen data, we identified that mean forest cover ± SE (standard 382 

error) was 62% ± 0.8 (range 37-80) in locations of red deer records before 4 ka BP (11-4 ka 383 
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BP) and 46 % ± 1.5 (range 27-71) after 4 ka BP (4-0 ka BP). These differences in forest cover 384 

between the two periods were statistically significant (Mann-Whitney test, U = 2299, p < 385 

0.0001).  386 

All environmental niche models (Figure S4) generally had good predictive ability with 387 

AUC values (explained in Appendix 3) for training data between 0.8 and 0.9 (the lowest 388 

AUC=0.809 for 0-4 ka BP and the highest AUC=0.896 for 18-26 ka BP). The results of 389 

modelling showed that during the LGM the most suitable conditions for red deer occurred in 390 

western and southern Europe, in areas surrounding the Black See and in Asia Minor. The 391 

model for the most recent time period (4-0 ka BP) corresponds very well with the 392 

contemporary geographic range of European red deer (comp. Figure 1 and the last panel in 393 

Figure S4). The only outliers consistently located in the unsuitable modelled habitat were deer 394 

specimens found in easternmost Europe and the Urals (Figure S4). 395 

4. Discussion 396 

 397 

4.1. Contraction and expansion of deer range 398 

During the last 54 ka the range of red deer has shifted according to the EC model, which 399 

reveals range contraction during colder period and expansion during warmer episodes 400 

(Sommer et al., 2008; Meiri et al., 2013). However, the scale of red deer range oscillations 401 

were different in western Europe in comparison with eastern Europe and western Asia. This 402 

pattern is still evident when uncertainty in the distribution of red deer in eastern parts of 403 

Europe due to lower sample coverage (less material available) in that region is taken into 404 

account. 405 

During the oldest time period investigated (between 54 ka BP and 34 ka BP), the northern 406 

boundary of the red deer range was located more northwards in the eastern part of the 407 

continent than in western regions. Although, just before and during the LGM, a much greater 408 

loss of red deer range occurred in western Europe, where the southern extent of the ice sheet 409 
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about 23 ka cal BP crossed 50 N latitude. In the eastern part, the ice sheet extended from 53 410 

N in eastern Poland to 75 N to the north of the Urals (Patton et al., 2017) and it reached its 411 

southern limit much later than in central and western Europe (Patton et al., 2016).  412 

The northernmost remains of red deer dated to the LGM were found in Moldova (48 N 413 

latitude) and in western Asia (up to 55 N in the Urals), but not further than 44 N in western 414 

Europe. This indicates that large previously unrecognized refugial areas of red deer existed in 415 

eastern Europe. Markova et al. (2009) also identified that during the LGM large areas 416 

provided suitable habitats for many mammal species in this region. However, analyses of 417 

ancient DNA (aDNA) of red deer from eastern Europe and western Asia, dated to the LGM, 418 

are necessary to answer questions concerning phylogenetic assignment of those animals and 419 

their contribution to the contemporary deer populations.  420 

 Radiocarbon dated subfossil remains (Sommer et al., 2008; this study), genetic data 421 

from red deer and a climatic suitability model for this species indicated that during the LGM 422 

the species also occurred in south-western and western regions of France and possibly even in 423 

southern Ireland (Meiri et al., 2013; Queiros et al., 2019). After the LGM, red deer started to 424 

recolonize western Europe rather fast, which may be due to the fact that prior to17.8 ka BP 425 

deglaciation was more rapid in the western margins of the ice sheet than in its central and 426 

eastern parts (Patton et al., 2017). Furthermore, sea level was much lower, so in the early 427 

Holocene more land was available to terrestrial animals in western and northern Europe than 428 

is available today. This recolonization process is evident in the contemporary distribution of 429 

mtDNA lineages of red deer: the majority of individuals inhabiting western, northern and 430 

central parts of Europe belong to the western mtDNA clade (called haplogroup A, 431 

Niedziałkowska et al. 2011; Skog et al., 2009). During the Holocene, red deer extended their 432 

range to almost the whole of western and central Europe (excluding the very most northern 433 

parts).  434 
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Red deer in eastern Europe underwent rather different process. In the mid-Holocene a 435 

clear disjunction is apparent in their eastern range (comp. Figures 2 and S1). Firstly in the 436 

lower and middle Volga River region, where the most recent deer remains were dated (by 437 

archaeological context) to 5 ka BP (P. Kosintsev, pers. communication). By 1.5 ka BP red 438 

deer disappeared from the Ufa region, west of the southern Ural Mountains (Sungatov & 439 

Levchenko, 2014). It was only in the Urals and Western Siberia that red deer survived until 440 

the 18th − mid 19th century (Kirikov, 1959). The most likely causes for such a large-scale 441 

extinction of red deer from its eastern most range during the Holocene were changes in 442 

climate (towards more continental) and habitats (aridization) (Bolikhovskaya & Kasimov, 443 

2010; Khokhlova, Morgunova, Khokhlov, & Golyeva, 2019). Furthermore, the contemporary 444 

eastern border of the European red deer range, stretching from the Baltic States to the 445 

Caucasus Mountains, runs parallel to the isoline of mean January temperature between -10o 446 

and -15oC (see e.g. DWD, 2019), which is consistent with the 50-ka-long climatic limits 447 

(mean January temperature below -10C) of red deer found in this study. 448 

The results of our study confirmed our hypothesis that the species survived the LGM 449 

not only in the well-known southern European refugia, but also in more northern areas of 450 

western and eastern Europe and in the Urals. The environmental niche modelling was to a 451 

large extent in agreement with these results, yet the model indicated that the environmental 452 

conditions in the easternmost Europe and in the Urals, where several red deer samples were 453 

found, were unsuitable for the species. This apparent discrepancy can be explained by the fact 454 

that in the easternmost Europe two major lineages of deer, the western (European) and the 455 

eastern (wapiti C. el. canadensis), co-occurred in the past (Doan et al., 2018; Meiri, et al. 456 

2018). Results of an ancient DNA study performed by Doan (2017) showed that 11 out of 15 457 

red deer samples analysed in our paper belonged to the wapiti mtDNA lineage. According to 458 

Geist (1998) the eastern red deer has been better adapted to cold and dry climate than the 459 
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western  lineage. This was also supported by the study of Stepanova (2010), who indicated 460 

that the wapiti deer occurred in Yakutia (Eastern Siberia), where mean January temperature 461 

was -36.8°C. The EC model for the more cold-tolerant eastern red deer would probably be 462 

different than the model for the western red deer, however, a more detailed study is needed to 463 

recognize the pattern of occurrence of wapiti in the Late Pleistocene and Holocene.  464 

4.2. Ecological niche of red deer during the last 54 ka years 465 

According to the Köppen-Geiger climate classification (e.g. Peel, Finlayson, & 466 

McMahon, 2007), since the Late Pleistocene red deer have occurred mainly in the temperate 467 

and partly also in the cold climate zones. The reconstructed measures of precipitation, annual 468 

and July temperatures in red deer sampling sites strongly varied among the studied periods, 469 

especially between the Late Pleistocene and the Holocene, thus testifying to high tolerance of 470 

red deer to those climatic variables. The truly limiting factor for the species was mean January 471 

temperature, the only climatic index which was generally stable in all time periods 472 

investigated and throughout the highly variable deer range. The majority of red deer samples 473 

(92%) were found in areas where mean January temperature was not lower than -10C. The 474 

optimal winter temperature (indicated by the largest proportion of red deer samples found) 475 

was between 0 and 5C, which means that the temperate zone was most suitable for red deer 476 

for at least the last 54 ka. Also, the study by Borowik, Cornulier, & Jędrzejewska (2013) 477 

showed that mean January temperature is one of the most important factors limiting 478 

contemporary red deer abundance in Poland.  479 

The majority of the analysed red deer samples were found in sites where mean July 480 

temperature was above 10C. The isotherm 10C of the warmest month is an indicator for the 481 

treeline extent (Tuhkanen, 1993), which is consistent with the results of biome analyses in our 482 

study. The majority of deer records occurred in places where different types of forest were 483 

modelled in a given period. This is also consistent with the habitat preferences of 484 
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contemporary red deer, which is a forest-dwelling species (Borowik et al,. 2013; Heptner et 485 

al., 1961). Although red deer are able to exist in open areas, e.g. in the Scottish Highlands 486 

(Perez-Espona et al., 2008), in most of its European range the species inhabits forests 487 

(Apollonio et. al., 2010) and its abundance positively correlates with forest cover (Borowik et 488 

al., 2013; Wawrzyniak et al., 2010;). Forest played an important role in enhancing gene flow 489 

among populations of this species in the lowlands of north-east Poland (Niedziałkowska, 490 

Fontaine, & Jędrzejewska, 2012).  491 

Biome types inhabited by red deer in some periods studied (e.g. sclerophyllous 492 

woodland before and after the LGM) were probably connected with the availability of 493 

different biomes during those times, as determined by temperature and precipitation. 494 

Generally, the representation of forest biomes was much higher in deer sites dated to the 495 

Holocene than in those from the Late Pleistocene. Interestingly, among deer samples dated to 496 

the Late Pleistocene, the largest proportion of records were found in forests during the LGM, 497 

when red deer range was restricted to the warmest parts of Europe and western Asia. In the 498 

Holocene, forest cover represented at deer sites significantly declined after 4 ka BP, which 499 

reflects the human-induced deforestation of Europe (Fyfe et al., 2015).  500 

The results of our study showed that during the last 54 ka the range of European red deer 501 

was restricted mainly to the temperate climatic zone with -10oC January temperature as the 502 

limiting factor. Forests were the preferred habitats of deer.  Within the context of large-scale 503 

and long-term changes in climate and habitat availability, the European red deer tracked the 504 

environmental characteristics to which it has been well adapted. 505 

5. Conclusions 506 

During the last 54 ka, the range of red deer in Europe and the Ural Mountains changed 507 

in response to climate oscillations, generally decreasing in cooler periods and expanding in 508 

warmer periods to a large extent in agreement with the EC model. However, these processes 509 
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were asynchronous and differed in western and central regions when compared to eastern 510 

parts of Europe and the Ural Mountains. In all analysed time periods the results of 511 

environmental niche modelling were in concordance with the distribution of radiocarbon 512 

dated red deer samples in most of Europe, except its easternmost parts and the Urals, where 513 

more cold-tolerant subspecies of C. elaphus – wapiti deer - had occurred. In the LGM, the 514 

range of red deer was more extensive than previously thought and included large areas north 515 

and east of the southern European peninsulas. A major limiting factor for European red deer 516 

distribution was mean January temperature (below -10oC). Throughout the entire study 517 

period, the majority of deer records were found in forests. The temperate climate zone with 518 

mean January temperature between -5oC and 0oC, and forests as the dominating vegetation 519 

type, has been the optimal habitat for European red deer throughout the last 54 thousand 520 

years. The results of this study will be valuable in modeling changes in the spatial distribution 521 

of deer in relation to present and future climate changes.  522 

 523 

Data availability statement 524 

Data used in the analyses are provided in the Supporting Information.  525 
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Figure 1. Spatial distribution of radiocarbon-dated red deer (Cervus elaphus) samples from 725 

the Late Pleistocene and Holocene covering Europe and the Urals. Mercator projection. 726 

 727 

Figure 2. Changes in the northern limits of red deer (Cervus elaphus) ranges in the given time 728 

intervals before and during the Last Glacial Maximum (upper panel) and during and after the 729 

LGM (middle panel) in Europe and the Urals. The extent of the ice sheet for given time 730 

periods (ka BP). Lower panel: Antarctic (data from the Vostok ice core) temperature 731 

oscillations in the study period (source: FAMOUS database; Smith and Gregory 2012). See 732 

Figure S1 for maps of deer records in each time period. Maps in Mercator projection. 733 

 734 

 735 

Figure 3. Mean (+/- SE) latitudes of the most northern red deer (Cervus elaphus) study sites 736 

(localities ≥ 0.9 quantile) reflects the contraction (before the LGM) and expansion (after the 737 

LGM) of red deer range. N from 6 to 10 localities. Time periods as in Figure 2. See Table 4 738 

for the statistics. 739 

 740 

Figure 4. Upper panel: Mean January (left) and mean July (right) temperatures for the red 741 

deer (Cervus elaphus) sample locations across Europe and the Urals  in the six periods 742 

investigated. Significant differences among time periods are marked by horizontal lines with 743 

asterisks: ***p < 0.001, **** p < 0.0001 (Kruskal-Wallis test). N from 98 to 255 deer 744 

samples. Lower panel, left: Numbers and percentages of red deer samples (N = 984) in 745 

relation to reconstructed mean January temperature and the radiocarbon date of each deer 746 

sample in Europe and the Urals; Lower panel, right: Percentages of red deer records in 747 

different reconstructed biomes in Europe and the Urals, which have been assigned to each 748 

sample location and radiocarbon date (N = 984 samples). 749 
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