
A
cc

ep
te

d
 A

rt
ic

le

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process, which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1111/mec.14045 
This article is protected by copyright. All rights reserved. 

DR. ALEJANDRA  RODRÍGUEZ-VERDUGO (Orcid ID : 0000-0002-2048-129X)  Received Date : 04-Nov-2016 Revised Date   : 22-Jan-2017 Accepted Date : 25-Jan-2017 Article type      : Meeting Review   
The genomic basis of eco-evolutionary dynamics  

 Alejandra Rodríguez-Verdugo1,2, James Buckley1 and Jessica Stapley1,3 

 

1Adaptation to a Changing Environment, ETH Zurich, 8092 Zürich, Switzerland 

2Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland 

3e-mail for correspondence: jessica.stapley@env.ethz.ch 

 

Abstract: 

Recent recognition that ecological and evolutionary processes can operate on similar time 

scales has led to a rapid increase in theoretical and empirical studies on eco-evolutionary 

dynamics. Progress in the fields of evolutionary biology, genomics, and ecology is greatly 

enhancing our understanding of rapid adaptive processes, the predictability of adaptation 

and the genetics of ecologically important traits. However, progress in these fields has 

proceeded largely independently of one another. In an attempt to better integrate these fields 

the center for ‘Adaptation to a Changing Environment’ organized a conference entitled ‘The 

genomic basis of eco-evolutionary change’ and brought together experts in ecological 

genomics and eco-evolutionary dynamics. In this review, we use the work of the invited 

speakers to summarize eco-evolutionary dynamics and discuss how they are relevant for 
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understanding and predicting responses to contemporary environmental change. Then we 

show how recent advances in genomics are contributing to our understanding of eco-

evolutionary dynamics. Finally, we highlight the gaps in our understanding of eco-

evolutionary dynamics, and recommend future avenues of research in eco-evolutionary 

dynamics. 

 

Keywords: adaptation, rapid evolution, ecologically relevant traits, community structure, 

ecosystem function, eco-evolutionary feedback loops, genome scans, environmental change  
Ecology and evolution are undeniably connected (Figure 1). Ecological factors, such 

as species interactions and environmental variation, can drive evolutionary change in 

genetically-determined phenotypic characters, enabling organisms to adapt to their 

environment (Darwin 1859). In turn, evolutionary change can modify the way species interact 

with their environment, competitors and predators influencing ecological dynamics (Levins 

1968). Despite their obvious connection, the fields of ecology and evolution have proceeded 

largely independently of one another. This is partly due to the common belief that ecological 

and evolutionary processes operate on different time scales: that evolution is too slow to 

influence contemporary ecological dynamics, which we now know is not always true (see 

Hairston et al. 2005; Schoener 2011; Thompson 1998). Evolution can be fast − within a few 

generations − and can influence ecological dynamics (Thompson 1998). In turn, ecological 

dynamics can feedback to alter evolutionary processes, completing an ‘eco-evolutionary’ 
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feedback loop (e.g. Turcotte et al. 2013). These reciprocal interactions between ecological 

and evolutionary processes over short (contemporary) time-scales are broadly defined as 

eco-evolutionary dynamics (Hendry 2016; Pelletier et al. 2009; Post & Palkovacs 2009; 

Schoener 2011). Although eco-evolutionary dynamics have been the focus of theoretical 

investigation for decades (Schoener 2011), they are now increasingly the subjects of 

empirical study. As a result the focus of this growing field has changed; the question is no 

longer do eco-evolutionary dynamics exist, but how common are they, how important are 

they and can we predict them (Hendry 2016; Hersch-Green et al. 2011). Addressing these 

issues requires, in part, a greater capacity to track evolutionary change in the field and to 

improve our understanding of the rate and predictability of adaptation. To this end, the 

rapidly growing field of genomics promises to be extremely useful. In an attempt to better 

integrate the fields of ecology, evolution and genomics the center for ‘Adaptation to a 

Changing Environment’ (ACE) from ETH Zürich organized a conference entitled ‘The 

genomic basis of eco-evolutionary change’, at the Conference Center CSF Monte Verità in 

Ascona, Switzerland from the 5-9th of June 2016. The goal of the conference was to highlight 

recent developments in ecological genomics and eco-evolutionary dynamics and promote 

greater interactions between researchers in these fields. The conference involved a mix of 

talks by invited speakers and ACE members, followed by small group discussions focusing 

on key questions in eco-evolutionary dynamics. In the evenings poster sessions were held 

where all other participants and ACE PhD students could showcase their research. 

Participants presenting posters also highlighted their research in one-minute speed talks at 

the beginning of the conference. 

 

Eco-evolutionary dynamics 

One important goal for many ecologists and evolutionary biologists is improving predictions 

about how organisms will respond to environmental change. This remains a challenging task 

(Urban et al. 2016), but better predictions can be made using: i) a detailed understanding of 

ecological and evolutionary responses to environmental change (Hoffmann & Sgro 2011), ii) 
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models that consider more realistic parameters (Débarre et al. 2015) and iii) a better 

understanding of the repeatability of eco-evolutionary dynamics (Hendry 2013). In the next 

sections, we consider each of these in turn. 

 

i) detailed understanding of ecological and evolutionary responses to environmental change 

Andrew Hendry presented the example of evolutionary change in beak size and 

shape in Darwin’s Finches in response to variability in rainfall (Figure 1a) and described an 

eco-evolutionary framework that focuses on identifying interactions between different levels 

of ecology and evolution: genomes, phenotypes, populations, communities and ecosystems 

(Hendry 2016). Previous work on Darwin’s finches has established that periods of drought in 

the Galapagos can, via changes in the plant communities and therefore seed food 

availability, drive the evolution of beak morphology in finches and alter population growth 

rates for species with different beak morphologies (Boag & Grant 1981; Grant & Grant 

1995). In his talk Andrew presented new work showing variation among islands in the 

responses of different finch species to selection, as well as the results of ongoing work 

exploring how the evolution of finch beaks might influence plant community structure. Recent 

genomic work has demonstrated that beak size and shape is controlled by a large effect 

locus (Lamichhaney et al. 2015), providing insight into the genetic architecture of these eco-

evolutionary dynamics. The body of work in this system is ongoing and Andrew emphasized 

that they are still missing information on how evolution is shaping community structure and 

higher order ecosystem processes. 

 

An interesting example of rapid evolution in response to human-induced 

environmental change was discussed by Ole Seehausen. He described how human induced 

lake eutrophication was responsible for reduced reproductive isolation between species of 

whitefish, resulting in ‘reverse speciation’ and a reduction in species and functional diversity 

within the freshwater lake fish community (Vonlanthen et al. 2012). The altered environment 

changed population dynamics and reduced species-level genetic variance in the lakes, this 
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loss of genetic diversity contributed to a loss of functional diversity in the lake community 

(Figure 1b). Ole also discussed the implications of whitefish trait evolution for fish 

productivity: evolution in gill-raker number in response to eutrophication is tightly correlated 

with lower fishery yield (Alexander et al. 2017). This work clearly demonstrates how eco-

evolutionary dynamics can have important impacts on fisheries and their management.  

 

Although periods of environmental change offer excellent opportunities for exploring 

eco-evolutionary dynamics, we can also gain insight into eco-evolutionary processes by 

simply studying existing adaptive variation in key phenotypes shaped by spatial variation in 

the environment. Patrik Nosil described work demonstrating how camouflage in the colour 

polymorphic Timema species (walking sticks) can drive variation in local predation pressure 

on other arthropods species (Figure 1d) (Farkas et al. 2013). The colour morphs are 

genetically determined and experienced differential survival on different host plants 

(Comeault et al. 2016; Comeault et al. 2015). Using reciprocal transplants, Patrik and 

colleagues linked variation in colour matching between the walking sticks and host plant to 

the insect’s population growth on different host plants (Farkas et al. 2013). In addition, 

maladaptation of walking sticks to their host plants was shown to attract more bird predators, 

which altered arthropod species richness and abundance, and reduced herbivore pressure 

on the associated host plants (Farkas et al. 2013). This observation demonstrates how 

adaptive variation in a phenotype with a genetic basis can alter population dynamics of other 

species in the community and can potentially alter selection pressures on a host plant 

(Figure 1d). 

 

The influence of ecology on evolution (eco-evo) is well established, but fewer studies 

have explored how contemporary evolution leads to ecological change (evo-eco). A powerful 

approach to reveal these dynamics is to capitalize on laboratory manipulations of organisms 

with short generation times (e.g. microorganisms), and run multiple parallel experiments, 

with and without evolution. Nelson Hairston used this setup to show that in a predator-prey 
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system it is possible to obtain different population dynamics in the presence or absence of 

evolution, i.e. with or without genetic variation (Yoshida et al. 2007). When cultures were 

initiated with a single algal genotype, rotifer and algal densities oscillated in classical 

predator-prey cycles (Yoshida et al. 2003). However, when cultures were initiated by multiple 

algal genotypes, only the rotifer density oscillated while the prey density remained nearly 

constant. This pattern was explained by contrasting population dynamics of defended and 

undefended prey genotypes that counterbalanced each other, resulting in a fairly stable prey 

density over time (Fussmann et al. 2003). The ecological dynamics of this system could 

therefore not be understood without knowledge of the evolutionary processes involved. 

 

Another evo-eco example was presented by Jonathan Levine, one of the initiators of 

ACE, who presented the results of greenhouse experiments exploring the influence of 

evolution on colonization success by Arabidopsis thaliana (Williams et al. 2016). To test for 

an effect of evolution, some populations were allowed to set seed and thus evolve whilst 

colonizing new patches, whereas others were restarted in each generation using seeds from 

the starting population to exclude evolution. The results showed that evolving populations 

can spread faster than non-evolving populations in continuous landscapes, but much faster 

(up to 3x) across the most fragmented landscapes (Williams et al. 2016). 

 

These studies show that ecological change can drive evolution and they also confirm 

the important role of evolution in shaping ecological dynamics (at least in the lab-based 

systems highlighted). Despite such advances, there are still few examples of how eco-

evolutionary dynamics shape the higher-levels of community structure and ecosystem-level 

processes. Some notable exceptions include classic studies that demonstrate how fish traits 

can drive zooplankton community structure, primary-producer biomass and nutrient cycling, 

or how genetic variation in leaf chemistry can affect soil decomposition and microbial 

community composition in forests (reviewed in Hendry 2016; Post & Palkovacs 2009). Rarer 

still, are examples of complete feedback loops between ecological and evolutionary 
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processes. One notable example was presented by Martin Turcotte, an ACE fellow, whose 

work has demonstrated how population density of clonal aphids can influence the outcome 

and rate of evolution, and subsequently impact population growth rates (Turcotte et al. 

2013). Eco-evolutionary feedbacks have also been shown in the context of more complex 

population structure. For example, variation at a genetic locus associated with dispersal 

ability (physiological phenotype) in the Glanville fritillary butterfly is associated with 

colonization-extinction (population) dynamics of a well-studied metapopulation (Hanski 

2011). Accounting for the complex spatial structure of natural populations is critical to better 

understanding and predicting the eco-evolutionary dynamics of wild species. 

 

ii) incorporating more realistic parameters in predictive models 

A direct approach to improving predictions for species’ responses to environmental 

change involves extending existing models to include more ecologically and evolutionarily 

realistic scenarios. Fréderic Guillaume provided an overview of how genetic architecture can 

impact the rate and direction of responses to environmental change and how population 

subdivision can influence the response to selection in heterogeneous environments (Débarre 

et al. 2015). He also presented ongoing modeling work to forecast changes in the 

distribution of alpine plants under climate change using an eco-evolutionary simulation 

framework (Guillaume & Rougemont 2006).  

   

Understanding the factors that might influence evolution on timescales relevant for 

ecological change is also critical (Carroll et al. 2007), and one factor; the role of sex, was 

discussed by Hanna Kokko. She highlighted the diversity of sexual systems in nature (Aanen 

et al. 2016), and discussed possible drivers of spatial variation in reproductive strategies and 

how such variation can shape the evolutionary dynamics of populations (e.g. Tilquin & Kokko 

2016). The influence of spatial variation in reproductive strategies on evolution was also 

considered by Yvonne Willi. She discussed the causes of range-wide variation in the 

genotypes, phenotypes and population dynamics of North American Arabidopsis lyrata and 
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described how at broad spatial scales selfing was more common in range edge populations 

during postglacial expansion and colonization (Griffin & Willi 2014). Spatial variation in 

selection driven by changes in population density (e.g. during distributional change or 

invasion) is a clear case where feedbacks between eco-evolutionary dynamics are expected 

to be highly relevant. Understanding interactions between ecological and evolutionary 

processes in the context of a spatially varying environment is important to develop more 

ecologically realistic models (Hanski 2011; Kokko et al. 2017). 

 

iii) conducting experiments to test the repeatability of eco-evolutionary dynamics.  

Another way to improve predictions for eco-evolutionary dynamics is to test parallel evolution 

experimentally in the lab, asking the question: how repeatable are eco-evolutionary 

dynamics? Lutz Becks discussed empirical work done in collaboration with Nelson Hairston 

that addressed this question (Figure 1c, Becks et al. 2012). The study investigated predator 

(rotifer) – prey (algae) dynamics: rotifer predation selects for an increase in algal prey 

defense (clumping), this increase in prey defense in turn reduces predator density and 

predation pressure, which in turn increases prey density and competition. Defended prey 

have reduced competitive ability and thus they experience reduced fitness, and as a result 

the proportion of vulnerable prey increases with a subsequent increase in predator density 

and predation pressure – and the cycle continues. Prey defense involved expression 

changes in many genes, but most interestingly in a subsequent cycle when the same 

defense phenotype evolved again different genes were differentially expressed. Phenotypic 

parallelism in consecutive cycles was not driven by parallel genetic changes.  

 

The absence of repeatability in evolution at the genetic level, observed in Lutz’s work 

raises many interesting questions about the stochasticity of evolutionary processes and how 

past selection may influence future responses. Investigating how evolutionary history and 

the rate of environmental change influences ongoing adaptation was the focus of Ben Kerr’s 

talk. He presented work on Escherichia coli populations experiencing different rates of 
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environmental change (varying antibiotic concentration in the environment over time) and 

showed that evolving under gradual environmental change can provide greater opportunities 

to explore different mutational pathways for antibiotic resistance, resulting in higher long-

term population growth rates (Lindsey et al. 2013). In contrast, when change was sudden 

many mutational pathways to resistance were inaccessible. This work is important because 

it emphasizes how the repeatability and rate of evolution at the genetic level is contingent 

both on the rate of ongoing environmental change, but also on the selection pressures that 

populations or species have previously experienced. 

 

Genetics and genomics of ecologically relevant traits 

Advances in DNA sequencing have revolutionized many fields in biology and invited talks at 

the ACE conference clearly demonstrated that this ‘genomics’ revolution has also begun to 

contribute a great deal to understanding eco-evolutionary dynamics. Here we highlight three 

important advances that the genomics era has enabled: i) knowledge of the genes and 

genetic architecture of adaptive traits in natural populations, ii) greater capacity to track 

genotypes and allele frequencies in natural populations through time, and iii) a better 

understanding of the role of adaptive and non-adaptive processes in shaping genetic 

variation, adaptive divergence and speciation. 

  

i) knowledge of the genes and genetic architecture of adaptive traits in natural populations 

A real advantage of the genomics era has been the ability to link phenotype to genotype and 

identify the underlying genetic architecture of key ecological traits in natural populations. The 

invited talks provided examples of how to do this in a diverse range of taxa and across 

multiple scales; from microbes to long lived trees, and from chemostats to landscapes. The 

talks demonstrated how researchers can identify the genetic architecture (Chaves et al. 

2016; Comeault et al. 2014), the genes (Becks et al. 2012; Goldman-Huertas et al. 2015; 

Whiteman et al. 2012) and even causal mutations (Prasad et al. 2012) of ecologically 

relevant traits in both model and non-model taxa. Talks provided an overview of the different 
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approaches used to link phenotypes to genotypes and demonstrated how information at 

different genomic resolutions (from genomic islands to causal mutations) provides insight 

into evolutionary ecology.  

  

Linking phenotypes and genotypes in the field has enabled researchers to study 

adaptive evolution in natural populations and in a broader range of non-model taxa, for 

example Victoria Sork’s work on the ecological genomics of long-lived oak trees. She 

provided a comprehensive introduction to several approaches that enable researchers to link 

climatic variation with genetic and epigenetic variation in natural populations across a 

landscape (Sork et al. 2013). This can help to identify genomic regions or candidate genes 

that might underlie adaptation, even in long lived non-model species (e.g. Gugger et al. 

2016). Another example of linking genotype to phenotype in non-model systems came from 

Patrik Nosil and colleagues’ work on Timema walking stick insects, highlighted earlier. 

Ecological and evolutionary processes can clearly interact across a landscape to influence 

patterns of gene flow and genetic variation, and these processes can be readily studied 

using population samples and high throughput sequencing in a diverse range of study 

systems. 

  

Another useful approach to linking phenotype and genotype, adopted by Tom 

Mitchell-Olds and Noah Whiteman, is to develop ‘ecological’ model systems in taxa closely 

related to traditional genetic model species like Arabidopsis and Drosophila. Using close 

relatives of model organisms has enabled researchers to leverage the wealth of genomic 

data and state-of-the-art experimental techniques, like transgenics and gene editing, with 

knowledge of phenotypes and ecological interactions to study adaptation in ecologically 

relevant traits and natural populations. Noah Whiteman presented work using newly 

developed genomic resources for Scaptomyza flies that demonstrated how the flies’ leaf 

mining lifestyle evolved recently from a saprophagous ancestor, and which genes and 
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genomic changes accompanied this ecological transition (Goldman-Huertas et al. 2015; 

Whiteman et al. 2012).  

 The power of studying a close relative of a genetic model species was also demonstrated in 

Tom Mitchell-Olds’ talk. For many evolutionary geneticists working with non-model species, 

identifying the candidate genes or genetic regions underlying ecologically relevant traits is 

realistically the upper limit of their research program. In most cases researchers do not know 

the causal mutation, only a SNP variant nearby, and even if they can identify the likely 

mutation, they often do not know the phenotypic or fitness effects of this mutation. This is 

where Tom’s work is distinct. In an extensive body of work (see Prasad et al. 2012) the 

authors showed that a quantitative trait locus (QTL) for insect resistance in Boechera stricta 

conferred a fitness advantage in the field and identified genotype-by-environment 

interactions. Using transgenic Arabidopsis plants and natural variation in B. stricta they could 

also demonstrate that different gene variants conferred resistance against different enemies.  

 

ii) greater capacity to track genotypes and allele frequencies in natural populations through 

time 

The genomics era provides us with a greater capacity to track changes in genotype and 

allele frequencies through time and thus effectively observe evolutionary change and its 

influence on ecological parameters. Genomic data collected across longer temporal scales is 

extremely valuable for the study of eco-evolutionary dynamics, a point made by Daniel 

Wegmann in his talk, where he described new methods for inferring key population genetic 

parameters using such data. He introduced a method to infer heterozygosity from low 

coverage sequence data, which is often all we can get from ancient or degraded DNA 

samples (Kousathanas et al. 2016). This method will be valuable for utilizing museum 

specimens and detecting adaptive changes over longer time periods. He also described a 

new method to accurately infer population size with locus specific selection coefficients from 

temporal allele frequency data (Ferrer-Admetlla et al. 2016). On the other hand, genomic 

samples collected over shorter time periods are also important for detecting rapid adaption 
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and can reveal cryptic population dynamics that can be missed if the genotypic composition 

of a population is not considered (Kinnison et al. 2015; Yoshida et al. 2007). Nelson Hairston 

demonstrated how important the genotypic composition of the population is to species 

interactions and community dynamics. For example, genetic differences in fish can influence 

the phenotypic composition of the population, which in turn can influence the selection 

pressure on, and gene frequencies of, interacting heterospecifics (i.e. prey, competitors) 

leading to changes in communities and ecosystems (Kinnison et al. 2015).  

  

iii) better understanding of the role of adaptive and non-adaptive processes in shaping 

genetic variation, adaptive divergence and speciation. 

Within the eco-evolutionary framework we naturally focus on adaptive evolution and the 

interaction between ecology and genetic variation. However, non-adaptive processes, such 

as drift and constraints related to genetic architecture or genome organization, also have a 

pervasive role in shaping genetic variation and can influence a species’ response to 

selection. The impact of drift and the importance of genetic covariation between multiple 

traits was shown by Yvonne Willi during her talk on A. lyrata populations. Yvonne’s work 

demonstrates how drift has contributed to reduced genetic variation for ecologically relevant 

traits in edge populations (Paccard et al. 2016) and increased mutational load in small 

populations (Willi 2013). These findings have important implications for species facing the 

demands of a changing environment. Drift impacts not only the standing genetic variation, 

but also can alter the covariation of multiple traits, that is the G-matrix, and a population’s 

response to selection (Paccard et al. 2016). Yvonne’s talk, as well as those of others, nicely 

introduced the audience to the polygenic nature of adaptive traits and highlighted 

quantitative genetic concepts that are integral to understanding adaptive evolution in nature. 
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Synthesis and future directions 

The conference bought together people working in eco-evolutionary dynamics and 

evolutionary genomics, providing a great opportunity for each group to hear about recent 

progress, but also ongoing challenges, in each field. During the conference it became clear 

that these two fields are still very distinct, and only one talk covered both eco-evolutionary 

dynamics and genomics (Becks et al. 2012). Nevertheless, the conference definitely helped 

to bridge the gap between the two fields. One ecologist commented “I now know what FST 

and GWAS are” and one geneticist stated “I now understand what Ecologists mean when 

they talk about ecological dynamics and I can see how these interact with evolutionary 

processes”. In this section we first emphasise why genomics is useful for understanding eco-

evolutionary dynamics, we then highlight some key problems in ecology and evolution that 

could be tackled more effectively by incorporating eco-evolutionary dynamics and finally 

identify clear gaps in our knowledge about eco-evolutionary dynamics and possible 

directions for future research in this field.  

 

How can genomics increase our understanding of eco-evolutionary feedbacks? 

Genomics can help understand eco-evolutionary dynamics in at least two important 

ways: 1) revealing the evolutionary processes that underlie puzzling ecological patterns and 

2) by improving our ability to predict eco-evolutionary dynamics. 

 

1) Genomics provides unprecedented opportunities to identify the genetic basis of traits and 

observe changes in allele frequencies though time to reveal cryptic evolutionary dynamics. 

Talks at the conference demonstrated how knowledge of the evolutionary processes can 

explain unexpected population dynamics of interacting species (e.g. Kinnison et al. 2015; 

Yoshida et al. 2007). Observations at the phenotypic level can conceal processes at the 

genetic level, and these cryptic evolutionary processes may be quite widespread and 

influence eco-evolutionary dynamics. In countergradient variation, for example, genetic and 

environmental influences work in opposite directions, as their effects cancel each other out 
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no change in the phenotype is observed despite a strong environmental gradient (Conover 

et al. 2009). In another example in Soay sheep, based on phenotypic-fitness covariance we 

predict that the proportion of dark coat coloured sheep should be increasing, but at the 

population level researchers observe the opposite (Gratten et al. 2008). Genetic and 

genomic analysis revealed that the coat colour gene was genetically linked to another loci 

that had antagonistic effects on fitness, as a result heterozygote dark sheep were fitter than 

their phenotypically indistinguishable homozygote dark sheep (Gratten et al. 2008). These 

examples illustrate that evolutionary adaptation is not always apparent simply by observing 

the phenotype, and without genetic and genomic information we may make incorrect 

inferences of the role of evolution in eco-evolutionary dynamics. Combing genomics, with 

common garden experiments and population sampling at appropriate spatial and temporal 

scales, can reveal cryptic evolutionary dynamics that may underlie eco-evolutionary 

dynamics. 

 

2) Genomics research also helps us to predict responses to selection and evolutionary 

dynamics by: i) elucidating the genetic architecture and loci underlying ecologically important 

traits, ii) providing insights into the processes that maintain adaptive genetic variation in 

populations and iii) providing information on the repeatability of evolution at the genetic level. 

To date, only a handful of studies have identified the genetic change central to eco-

evolutionary dynamics (e.g. Becks et al. 2012), and more work is needed before we can 

make any generalizations about the genomics of eco-evolutionary dynamics. It is likely that 

many traits involved in eco-evolutionary dynamics will have complex polygenic genetic 

architectures (Rockman 2011; Travisano & Shaw 2013). As such, future work should aim to 

use genomics to better understand the evolution of truly quantitative traits, identify loci of 

small effect, and also consider how genetic constraints (i.e. genetic linkage, epistasis and 

pleiotropy) can influence the evolution of phenotypic traits (Kokko et al. 2017). 
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What lies ahead in the field of eco-evolutionary dynamics? 

As eco-evolutionary dynamics are the reciprocal interactions between ecological and 

evolutionary processes over contemporary timescales, they are likely to be important in 

systems experiencing rapid environmental change, such as species expanding their range 

and local communities adapting to invasive species (Box 1). Such systems provide natural 

experiments in which the direct effect of environmental change on eco-evolutionary 

dynamics can be observed. To better understand and predict the outcomes of these different 

scenarios, it is clear that we need to understand the feedback and interactions between 

ecology and evolution and not just consider each discipline separately. This is a challenging 

task, but genomics provides the tools to understand evolutionary dynamics beyond what can 

be understood when only considering interactions at the phenotypic level. If genomic 

resources exist for the focal species then the task is a little easier, but this is not essential as 

evidenced by the talks at the conference. In non-model species using population-based 

sampling it is possible to examine genetic variation across the genome and address many 

evolutionary questions relevant to eco-evolutionary dynamics.  

 

In addition to incorporating genomics, there are several key areas of the eco-

evolutionary framework that require additional experimental work. There is good evidence 

that ecological change can drive evolution (eco-evo). However, there are fewer examples, 

especially in the field, that demonstrate how evolution can drive ecological dynamics (evo-

eco) and fewer still that demonstrate a complete feedback loop between ecology and 

evolution. Future work should focus on identifying feedback loops and understanding their 

complexity, particularly in natural systems, in order to better understanding the general 

importance of eco-evolutionary dynamics. Finally, it is less well understood how eco-

evolutionary dynamics shape the higher-levels of community structure and ecosystem-level 

processes (Hendry 2016). Although there is evidence that adaptive divergence in species 

traits (e.g. predator avoidance) can drive community assembly and ecosystem functioning in 

semi-natural mesocosms (Bassar et al. 2010) or lakes (Post et al. 2008), these studies are 
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still restricted to relatively few systems. The impact of eco-evolutionary dynamics in nature 

on ecosystem-level processes is still far from clear and worthy of focused research in 

coming years. This is particularly true given the ongoing threats to biodiversity through 

climate change, invasive species, habitat destruction and pollution (to name but a few). 

Generally, given that ecology and evolution are so intimately linked, much greater integration 

between ecologists, evolutionary biologists and geneticists is needed to tackle the 

challenging field of eco-evolutionary dynamics, but also more generally to advance our 

understanding of how organisms will respond to changing environments in the future. 

 

BOX 1. Eco-evolutionary dynamics and environmental change: three case-studies 

1) How do ecological and evolutionary processes interact during range expansion? 

Range expansions, either by invasions of introduced species or driven by climate change, 

are characterised by complex interactions between ecological and evolutionary processes 

(Chuang & Peterson 2016). For example, selection initially plays a key role during range 

expansions by favouring traits related to increased dispersal ability and often reduced 

fecundity, but as populations become established in new areas then selection can switch to 

favour reduced dispersal and increased fecundity (Hill et al. 2011; Williams et al. 2016). In 

addition to such evolutionary trade-offs, neutral evolutionary processes (particularly the 

interaction between genetic drift and mutations) can interact with demographic changes to 

produce patterns similar to that produced by adaptive evolution alone (Excoffier et al. 2009). 

Finally, colonising species will also interact with new organisms to which they must also 

adapt, in addition to the previously described selection pressures. Range expansions 

therefore offer an opportunity to explore how evolutionary processes can affect local 

ecological dynamics, as well as how species will respond to the new species interactions 

they encounter (see below). 
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2) How will local communities adapt to the spread of invasive species? 

The spread of species across the globe by human introductions has been frequently 

associated with rapid evolution of the invasive species both in response to local climatic 

conditions and new species interactions (see Moran & Alexander 2014). In addition, 

adaptation of invasive species to the local environment can also drive evolutionary (and 

ecological change) in local native species (Benzemer et al. 2014; Lau 2006). For example, 

native plants have adapted to maintain fitness in the presence of invasive species, despite 

the subsequent invasion of an associated herbivore offsetting this advantage under field 

conditions (Lau 2006). Similarly, native insects (both herbivores and pollinators) have 

adapted to invasive hosts, and this has also altered interactions between native insects and 

native host plants (reviewed in Benzemer et al. 2014). However, despite increasing evidence 

for evolutionary change in individual invasive and native species, there are also potentially 

interesting, and relatively unexplored, ecological and evolutionary consequences for entire 

communities (Benzemer et al. 2014). The community-scale impact of recent invasions is 

therefore likely to be a fruitful system for future eco-evolutionary research.  

 

3) How will populations respond to rapid environmental change? 

The successful response of a population to environmental change is contingent on multiple 

different factors, which have been explored in a range of theoretical models (e.g. Chevin & 

Lande 2011). Both ecological factors, such as the rate of environmental change, and 

evolutionary factors, such as genetic variation and mutation rates, are critical in determining 

whether a population can persist and adapt to a rapid change in the environment. For 

example, in microbial populations slower rates of environmental change allow for a greater 

range of evolutionary paths to resistance to be explored (Lindsey et al. 2013). Another 

example using experimental evolution of yeast populations exposed to increasing salt stress 

also highlighted the role of initial population size in the likelihood of adaptation and 

probability of extinction (Bell & Gonzalez 2009). In addition to understanding the rates of 

evolutionary change possible in populations, it may be critical to consider phenotypic 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

plasticity in key traits, which may enhance the response of populations to environmental 

change (e.g. Chevin & Lande 2011). More empirical research is necessary to test the 

ecological and evolutionary factors that are theoretically predicted to affect responses of 

populations to environmental change. 
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Figure 1. The eco-evolutionary framework attempts to understand the reciprocal interactions 

between evolutionary (blue) and ecological (green) processes on contemporary timescales. 

Although these two fields are connected, research in each has largely progressed in 

isolation, partly because they were often thought to happen on different timescales 
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(evolution was too slow to influence ecological dynamics). Recent examples of rapid 

evolution of genetically determined phenotypic characters has demonstrated that evolution 

can occur over short-timescales, and this has ignited interest into quantifying how 

contemporary evolution modifies ecological dynamics. Here we illustrate some examples of 

eco-evolutionary dynamics that were discussed by invited speakers at the ACE conference. 

The colours highlight the cyclical interactions between ecology and evolution. Blue highlights 

the aspects of the study that would traditionally have been the focus of evolutionary 

biologists (i.e. phenotypic trait evolution, genetic differentiation and speciation), the green 

those aspects traditionally the focus of ecologists (population dynamics, communities and 

ecosystems). 

 

References: a) Grant and Grant 1995, Lamichhaney et al 2015, Hendry 2016, b) Vonlanthen 

et al 2012, c) Becks et al 2012, and d) Comeault et al 2014, Farkas et al 2013.     



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyrig

  

ght. All rights reserved. 


