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ABSTRACT 1 

1. Alpine plants occurring at high elevation are vulnerable to ongoing climate change, 2 

yet relatively little is known about the potential for high-elevation species to adapt to 3 

changing environmental conditions. In particular, the extent to which high-elevation plants 4 

will be able to resist predicted increases in the intensity of biotic interactions, such as 5 

herbivory, remains unclear. 6 

2. Species distributed across broad elevational ranges provide an opportunity to 7 

investigate evolutionary mechanisms and traits involved in adaptation to varying abiotic 8 

and biotic environments. This study focused on the perennial alpine plant Arabis alpina and 9 

combined field surveys and climate-chamber experiments to test for intraspecific genetic 10 

divergence in traits related to growth and defence against herbivores. We screened multiple 11 

populations from low, intermediate and high elevations across a broad geographic area, 12 

characterising differences in growth form, leaf structural traits, palatability for herbivores 13 

and defensive chemistry. We then quantified the proportion of variation explained by 14 

elevation and population-level effects. 15 

3. Our results document within-species genetic divergence in multiple traits relevant 16 

for adaptation to the different abiotic and biotic pressures experienced at low and high 17 

elevations. Rates of herbivore damage declined with increasing elevation in the field, but 18 

plants from high- and intermediate-elevation populations were generally more palatable for 19 

specialist herbivores than those from low-elevation populations in feeding assays. 20 

Elevational clines were also observed in several glucosinolate defence compounds, and leaf 21 

herbivory more strongly induced glucosinolates in plants from high-elevation populations 22 

than in those from low-elevation populations. Leaf trichome density and growth form also 23 

diverged among populations contributing to growth-defence phenotypes associated with 24 

different elevations.  25 
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4. However, populations from similar elevations often differed significantly in both 26 

growth and defence-related traits, with trait variation often better explained by population-27 

level effects than by elevation alone.  28 

5. Synthesis: Arabis alpina exhibits patterns of genetic variation in growth and 29 

defence traits consistent with adaptation to different elevations. However, populations from 30 

similar elevations also diverged in many of these ecologically relevant traits. Together, the 31 

extent of the observed trait variation suggests that this alpine species has considerable 32 

potential to adapt to a changing biotic environment. 33 

 34 
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 39 

INTRODUCTION 40 

Despite increasing evidence that climate change is affecting the composition of local 41 

communities and altering interactions between species (e.g. Walther, Post et al. 2002, Pauli, 42 

Gottfried et al. 2012, Rasmann and Pellissier 2015), our understanding of the capacity for 43 

species to adapt to resulting changes in the frequency or intensity of biotic interactions 44 

remains limited (Lavergne, Mouquet et al. 2010, Hoffmann and Sgro 2011, Urban, Bocedi 45 

et al. 2016). One well-established approach to investigating species’ adaptive potential 46 

entails studying populations distributed along spatial environmental gradients (De Frenne, 47 

Graae et al. 2013, Urban, Bocedi et al. 2016). Furthermore, because the intensity of biotic 48 

interactions is predicted to decline with increasing elevation (Körner 2007, Rasmann, 49 

Pellissier et al. 2014), as well as latitude (Schemske, Mittelbach et al. 2009, De Frenne, 50 

Graae et al. 2013, Anstett, Nunes et al. 2016), species distributed along such gradients 51 
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provide promising systems for studying adaptation to varying biotic pressures (De Frenne, 52 

Graae et al. 2013, Helsen, Acharya et al. 2017). To date, however, the extent to which 53 

variation in traits relevant for adaptive responses to novel or changing biotic interactions is 54 

predictably distributed along such gradients remains unclear. 55 

Alpine environments hold particular promise for exploring such questions, as they are 56 

characterised by large changes in elevation and associated environmental conditions over 57 

relatively short geographic distances (Rasmann, Pellissier et al. 2014, Moreira, Petry et al. 58 

2018). In addition, high-elevation plant communities are thought to be particularly 59 

vulnerable to biotic challenges associated with climatic change (Walther, Post et al. 2002, 60 

Körner 2003), including increasing competition due to upward shifts of previously low-61 

elevation species (Pauli, Gottfried et al. 2012, Alexander, Diez et al. 2015, Rumpf, Hulber 62 

et al. 2018) and more frequent or novel interactions with invertebrate herbivores (Rasmann 63 

and Pellissier 2015). Because high-elevation species are often unable to disperse to more 64 

suitable (i.e., even higher elevation) environments, they often must adapt to such changes in 65 

situ or suffer significant population declines (e.g. Cotto, Wessely et al. 2017). However, we 66 

currently have limited empirical data regarding the potential for high-elevation plants to 67 

adapt to the predicted biotic challenges. 68 

Invertebrate herbivores represent an important and well-studied class of biotic plant 69 

antagonists, and a growing number of studies have examined variation in plant-herbivore 70 

interactions along elevation gradients (Rasmann, Pellissier et al. 2014). Most such studies 71 

have reported decreasing rates of herbivory with increasing elevation, giving rise to the 72 

prediction of corresponding elevational trends in plant defence investment (Rasmann, 73 

Pellissier et al. 2014, Moreira, Petry et al. 2018). Consistent with this prediction, several 74 

studies have found that plants from higher elevations are more palatable to generalist 75 

herbivores than those from lower elevations (Ereli, Ayres et al. 1998, Pellissier, Fiedler et 76 

al. 2012, Callis-Duehl, Vittoz et al. 2016, Descombes, Marchon et al. 2017). Moreover, 77 
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constitutive chemical and morphological defences have been observed to decline with 78 

increasing elevation (Løe, Toräng et al. 2007, Pellissier, Roger et al. 2014, Rasmann, Buri 79 

et al. 2014, Zhang, Tonsor et al. 2015). However, a recent review by Moreira et al. (2018) 80 

highlighted a significant number of studies showing increasing defence investment with 81 

elevation (Koptur 1985, Rasmann, Pellissier et al. 2014, Abdala-Roberts, Rasmann et al. 82 

2016, De Long, Sundqvist et al. 2016, Buckley, Pashalidou et al. 2019), as well as other 83 

studies reporting no or non-linear associations with elevation (Louda and Rodman 1983, 84 

Rasmann, Pellissier et al. 2014, Dostalek, Rokaya et al. 2016). Furthermore, several recent 85 

studies have shown that different defensive strategies, including tolerance and constitutive 86 

and induced defences, can exhibit contrasting elevational gradients (Abdala-Roberts, 87 

Rasmann et al. 2016, Dostalek, Rokaya et al. 2016, Pellissier, Moreira et al. 2016, 88 

Defossez, Pellissier et al. 2018). Such contrasting elevational trends in defence traits may 89 

partly reflect variation in herbivore pressure among species and populations that is itself 90 

independent of elevation (Moreira, Petry et al. 2018), but also suggest that herbivore 91 

pressure alone is often insufficient to explain variation in defence investment. Instead, 92 

adaptation to varying intensities of abiotic factors along elevation gradients may give rise to 93 

variation in plant defence investment that is independent of, or oppositional to, trends 94 

predicted by elevation alone (e.g. Abdala-Roberts, Rasmann et al. 2016, Pellissier, Moreira 95 

et al. 2016, Galmán, Abdala-Roberts et al. 2018). It is therefore important to consider both 96 

the biotic and abiotic selective forces that can shape patterns of defence investment along 97 

elevation gradients. 98 

Adaptive traits that help plants cope with harsh abiotic conditions at high elevations 99 

may also indirectly influence their ability to defend themselves against herbivores. For 100 

example, higher leaf trichome densities can increase plant resistance to UV-B radiation or 101 

arid conditions (Kessler, Siorak et al. 2007, Yan, Pan et al. 2012), which may be adaptive at 102 

high elevations, but could negatively impact herbivore feeding. On the other hand, plants at 103 
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higher elevations tend to exhibit reduced size and lower specific leaf area than those at 104 

lower elevations, which might facilitate survival under harsh abiotic conditions (Körner, 105 

Neumayer et al. 1989, Byars, Papst et al. 2007, Bello, Lavorel et al. 2013, Read, Moorhead 106 

et al. 2014, Halbritter, Fior et al. 2018), but in this case the effects on herbivores is not 107 

clear. Furthermore, declining resource availability with increasing elevation may impose 108 

more stringent trade-offs between investment in growth and defence (Coley, Bryant et al. 109 

1985, Herms and Mattson 1992, Hahn and Maron 2016). The interacting effects of these 110 

and other abiotic and biotic selective pressures across different elevations (Kergunteuil, 111 

Descombes et al. 2018) may explain the existence of growth-defence “syndromes” 112 

characteristic of species occurring at similar elevations (Defossez, Pellissier et al. 2018, 113 

Kergunteuil, Descombes et al. 2018, Moreira, Petry et al. 2018). Consequently, to 114 

understand the complex selective factors shaping elevational variation in defence 115 

investment, it is necessary to assess variation in multiple growth and defence traits along 116 

broad elevational gradients.  117 

In addition, assessing the potential for evolutionary change in these traits requires 118 

determining whether observed phenotypic variation has a genetic basis. Genetic 119 

contributions can be quantified via common-garden experiments, either in the greenhouse 120 

or field, and studies employing this approach have documented within-species genetic 121 

variation in defence traits distributed along elevation gradients (Garibaldi, Kitzberger et al. 122 

2011, Anderson, Perera et al. 2015, Pellissier, Moreira et al. 2016, Rokaya, Dostálek et al. 123 

2016). However, these studies have typically compared plants from pooled sets of high- 124 

and low-elevation populations, making it impossible to assess genetic variation among 125 

populations from similar elevations. Meanwhile, a handful of common-garden studies have 126 

screened population-level variation in chemical defence expression along elevation 127 

gradients (Dostalek, Rokaya et al. 2016, Rokaya, Dostálek et al. 2016), but these did not 128 

explicitly quantify the amounts of trait variation explained by population-level and 129 
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elevational effects. Indeed, while both elevation-driven and population-level effects on trait 130 

variation are important for understanding potential adaptive responses to biotic change, we 131 

are unaware of any previous study that estimated the relative contribution of each to 132 

variation in defence traits. 133 

In the current study, we sampled populations across the elevational range of the 134 

short-lived perennial alpine plant Arabis alpina (Brassicaceae) in Switzerland and tested for 135 

genetic variation in several traits related to leaf structure, growth and defence, which were 136 

selected because of their potential importance for resisting or tolerating herbivory. After 137 

assessing elevational trends in rates of herbivore damage in the field, we grew plants from 138 

different populations in a common garden to test for genetic variation in our selected traits. 139 

Specifically, we tested whether specialist invertebrate herbivores performed better on high-140 

elevation populations than on low-elevation populations, and whether growth and defensive 141 

traits differ among populations from different elevations under controlled growth chamber 142 

conditions. We then quantified the relative effects of elevation and population on variation 143 

in these different growth and defence traits. In addition, we used these data to explore 144 

whether high-elevation A. alpina populations exhibit consistent trait combinations that may 145 

influence their potential to adapt to increasing rates of herbivory predicted with ongoing 146 

climate warming.  147 

 148 

MATERIAL AND METHODS 149 

Study system background: Arabis alpina (Brassicaceae) 150 

Arabis alpina is a short-lived perennial species with a wide geographic distribution 151 

in alpine environments across Europe, having colonised the Alps from multiple 152 

Mediterranean refugia following the last glacial period (Koch, Kiefer et al. 2006, Ansell, 153 

Stenoien et al. 2011, Rogivue, Graf et al. 2017). Despite its emergence as a model perennial 154 

species for studying the genetic basis of variation in flowering time and the transition to 155 
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selfing (Bergonzi, Albani et al. 2013, Tedder, Carleial et al. 2015), relatively little is known 156 

about its interactions with natural herbivores and traits involved in adaptation to different 157 

elevations. Long-range reciprocal transplant experiments between Sweden and Spain have 158 

shown differential survival and reproductive effort consistent with local adaptation 159 

(Törang, Wunder et al. 2015). More recent studies involving transplants across different 160 

elevations at a finer spatial scale also found evidence for local adaptation, as well as strong 161 

plasticity in reproductive and growth traits (de Villemereuil, Mouterde et al. 2018).  162 

 163 

Field surveys of plant growth form and herbivore damage  164 

In the Summer of 2016, Arabis alpina populations at 19 field sites distributed across 165 

the Swiss Alps were surveyed for variation in leaf damage by herbivores (Table S1; Fig 166 

1a). Visits were timed to coincide with the ripening of fruits, in order to simultaneously 167 

collect data on cumulative leaf damage and collect seeds for use in subsequent experiments 168 

(numbers sampled given in Table S2). The field sites were distributed from 797m to 2866m 169 

above sea level and were visited between 23rd June 2016 and 4th Sept 2016.  170 

A. alpina populations at these field sites exist as a set of fragmented patches of 171 

plants. To avoid sampling related plants, we ran a transect through multiple patches per 172 

population, with a minimum distance of 2m between surveyed plants in a patch and a 173 

greater distance (tens of metres) between patches. Dispersal distances of up to 1km have 174 

been estimated for A. alpina using genetic markers, although just over a third of offspring 175 

were recorded less than 5m from a parental plant (Buehler, Graf et al. 2012). It is therefore 176 

possible some related plants have been sampled in the current study, but by sampling 177 

broadly across sites we minimised our sampling of related individuals. A small quadrat (18 178 

x 18cm) was placed over each surveyed plant, and the surface area occupied by A. alpina 179 

was recorded (a measure of plant size). Depending on local population size and plant 180 

accessibility, 7-27 plants per population (in total 316 plants; Table S2) were haphazardly 181 
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chosen along the transect for assessment of leaf herbivore damage. The total number of 182 

leaves and the number of damaged leaves were recorded. We based our damage estimates 183 

on the number of leaves damaged rather than percentage leaf area removed, as the compact 184 

rosettes and numerous small leaves of A. alpina made it challenging to accurately assess the 185 

latter metric in the field. Additionally, we noted the presence of different types of leaf 186 

damage on a patch (leaf holes, chewed edges, larval trails and pale spots; see Figure 1a and 187 

Figure S1 for photos). Finally, ripe fruits were collected in small paper envelopes and 188 

stored at room temperature in the dark until seeds were used in germination experiments. 189 

Plants derived from one maternal plant in the field are hereafter referred to as a maternal 190 

family. For populations AalN2 and Aal20, fruits collected from the field in 2015 were used. 191 

We tested the effects of population and elevation (metres above sea-level) on the 192 

different response variables in separate statistical models. Variation in number of leaves per 193 

plant and in leaf size was analysed using Generalised Linear Models (GLMs), with poisson 194 

and normal error distributions respectively, using R statistical software (R Development 195 

Core Team 2012). The proportion of damaged leaves and the presence or absence of the 196 

four different types of damage were analysed using binomial GLMs. The significance of 197 

population and elevation effects was tested by removing each factor from its respective 198 

model and assessing the significance of the change in model explanatory power using 199 

likelihood ratio tests. For each model, we estimated the proportion of variance explained by 200 

either population or elevation in the model.  201 

To explore whether geographic or climatic factors might explain elevational trends 202 

in the average proportion of leaves damaged (following arc-sine transformation), we 203 

conducted a linear regression using four explanatory factors: decimal degrees latitude, 204 

decimal degrees longitude, average annual temperature (1961-1990) and the average sum 205 

of annual precipitation (1961-1990). Data for the two climatic factors were estimated at a 206 

25m resolution for each population (Zimmermann and Kienast 1999). If a significant 207 
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elevation effect disappears when controlling for climatic variables, it suggests that those 208 

variables, rather than elevation per se, explains variation in rates of herbivory (Abdala-209 

Roberts, Rasmann et al. 2016, Galmán, Abdala-Roberts et al. 2018). 210 

 211 

Assessment of variation in growth-related traits, leaf structural traits and plant 212 

defensive traits in a common environment 213 

Experiment 1: Assessing variation in growth-related traits and herbivore performance 214 

Ripe seeds from 8 maternal families from each of the 16 study populations 215 

(representing 123 families in total) were germinated in 54-cell trays filled with pre-watered 216 

low nutrient soil (Alpine wildflower soil mix, see Supplementary Information for 217 

composition). Five seeds per family were placed 2-3mm below the soil surface in a cell, 218 

and families and populations were randomised across trays. The trays were stratified for 8 219 

days at 4ºC (8hrs:16hrs, light: dark) to synchronise germination, before being moved to a 220 

climate chamber set to 23ºC: 17ºC, 12hr light (15kLux): 12hr dark (0kLux). After most 221 

seeds had germinated, temperatures were reduced to 18ºC (light) and 15°C (dark) for the 222 

remainder of the experiment. After 3 weeks, one seedling per maternal family was 223 

individually transferred to a 5cm pot filled with the same soil mix. Pots were randomly 224 

positioned in the growth chamber and watered 3 times per week by hand. Seedlings 225 

remaining in the tray were thinned to leave one seedling per cell. These remaining 226 

seedlings were harvested to measure dry aboveground mass approximately 42 days after 227 

seeds were moved to germination conditions. The aboveground parts were dried at 65 ºC 228 

for 2 days and then weighed on a balance to the nearest 0.001g (Mettler AE240, Mettler 229 

Toledo, Greifensee, Switzerland). The length of the longest leaf of the remaining plants 230 

was measured to the nearest millimetre about 49 days after seeds were moved to 231 

germination conditions. Maximum leaf length was used as a proxy for rosette diameter, 232 
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which is difficult to measure in a standardised manner beyond the earliest growth stages in 233 

this species.  234 

Three populations from each of the three elevation classes (low: <1600m above sea 235 

level; intermediate: 1600-2300m; high: >2300-3000m) were then used for larval 236 

performance assays at the temperatures described previously (18ºC/15°C). This allowed us 237 

to estimate the variance explained by population and elevation class. Five first-instar Pieris 238 

brassicae larvae, from a lab colony reared on brussels sprout plants (Brassica oleracea), 239 

were added to each plant. The larvae were individually weighed after 8 days to the nearest 240 

0.001mg on a balance (Mettler Toledo MT5). General linear mixed effects models (lme4 R 241 

package; (Bates, Maechler et al. 2014) were constructed using either population or 242 

elevation class as a fixed effect, and a random effect of individual plant. Log 243 

transformations were used, where necessary, to improve model fit based on inspections of 244 

model residuals. 245 

 246 

Experiment 2: Assessing variation in growth-related traits, leaf structural traits and 247 

chemical defence induction  248 

We conducted a separate experiment with the same nine populations to explore variation in 249 

a greater number of morphological and growth traits, as well as variation in defence 250 

induction. Due to limited growth-chamber space, plants were grown in a greenhouse under 251 

slightly warmer conditions than those used in the previous experiment (20ºC: 17 ºC light: 252 

dark regime). Seeds from 10 maternal plants per population were germinated as described 253 

above, with seedlings then transplanted into 7cm clay pots and allowed to grow to two 254 

months of age. To identify traits that might explain variation in herbivore performance 255 

among populations, we added three first-instar P. brassicae larvae to each of the plants. 256 

After 6 days of feeding, larvae were weighed to the nearest 0.001mg. Due to space 257 

limitations, plants were divided into two experimental sets (5 genotypes per population per 258 
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set) for the larval performance assay, and assays on the two sets were conducted one week 259 

apart in the same chamber. After larval weighing, we measured maximum leaf lengths and 260 

the number of leaves greater than 0.5cm length (as a proxy for investment in leaf 261 

production). The number of leaves showing any sign of damage and the number showing 262 

more than 25% leaf area removed were also counted to assess variation in plant palatability. 263 

We also measured specific leaf area (SLA) and trichome density, as these traits may impact 264 

rates of herbivore feeding. Two 6mm diameter leaf discs were cut from each of two fully 265 

expanded leaves per experimental plant, avoiding the main leaf vein. Leaf discs were dried 266 

for 48hrs at 50°C and then weighed to the nearest 0.001mg to estimate specific leaf area 267 

(leaf disc area divided by dry mass). Trichomes were counted, using a cell counter plugin in 268 

the ImageJ software program (Schneider, Rasband et al. 2012), on one lower leaf disc per 269 

plant photographed using a microscope (Leica M420) and camera (Leica MC170 HD, 270 

Leica microsystems, Wetzlar, Germany). 271 

Variation among populations in average larval mass per plant (based on those alive 272 

at the end of the experiment) was regressed against variation in SLA, trichome density, leaf 273 

number and length of the longest leaf in a full linear model. The response variable was log-274 

transformed to improve model fit following inspection of the distribution of residuals. 275 

Experimental set was included as a fixed term in the model, and the effect of each variable 276 

tested sequentially removing non-significant terms from the full model. 277 

Separate GLMs with normal error distribution were used to test for effects of 278 

elevation class or population on maximum leaf length and seedling dry mass across all 17 279 

populations in experiment 1 and for maximum leaf length and trichome density in 280 

experiment 2. Log transformations were used, where necessary, to improve model fit based 281 

on inspection of model residuals. In experiment 2, the effect of elevation class and 282 

population on leaf number was analysed using a GLM with quasipoisson error (the model 283 

was overdispersed using just poisson error). Finally, variation in log-transformed SLA was 284 
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tested using a general linear mixed model with a random effect of plant genotype. The 285 

significance of the effect of elevation class or population was tested by removing the factor 286 

and comparing the change in model likelihood to the null model. 287 

To examine whether particular combinations of morphological and growth traits 288 

were associated with different elevations, we also conducted a Principal Components 289 

Analysis using measurements of longest leaf length, leaf number, trichome density and 290 

SLA for each plant in experiment 2. The first two principal components, and the loadings 291 

for each trait, were plotted to visualise trait divergence among plants from low, 292 

intermediate and high elevations. 293 

After being weighed, larvae were returned to each plant for 24hrs, and six plant 294 

genotypes from each of six populations (two low, two intermediate, and two high) were 295 

selected for screening of glucosinolate induction. Each genotype was represented by two 296 

individual plants: one used for herbivore induction and one control. Replication was 297 

therefore at the level of genotype for each population. Glucosinolates are expected to be a 298 

key chemical defence in A. alpina, as they are for many Brassicaceae species, but to our 299 

knowledge this species has not previously been screened for glucosinolate variation 300 

(Windsor, Reichelt et al. 2005). Two leaves from each induced and control plant were 301 

weighed, immediately frozen in liquid nitrogen and then stored at -80°C. Glucosinolate 302 

extractions were performed as described in a recent HPLC protocol (Grosser and van Dam 303 

2017), but with minor modifications. Columns were prepared using DEAE Sephadex A25 304 

(Sigma-Aldrich, St. Louis, Missouri, US). Leaves were freeze-dried and ground to a fine 305 

powder for 1 min at 1500rpm in a Geno/Grinder 2010 (SPEX sample prep, Metuchen, NJ, 306 

US) with three 0.3mm steel grinding balls. Samples were suspended in 1mL 70% methanol 307 

and heated to 85ºC for 15mins to denature the myrosinase enzyme. Following elution of 308 

samples incubated overnight with sulfatase, samples were dried down on a Savant Speed 309 

Vac Concentrator SPP1010 (Thermo Scientific, Reinach, Switzerland) and re-suspended in 310 
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150µl ultrapure MilliQ water (Merck, Darmstadt, Germany). Samples were run on an 311 

Agilent 6550 iFunnel Q-TOF LC/MS equipped with an Eclipse XDB-C18 column (4.6 x 312 

150mm, 5µm, 80Å) using a water (with 5mM ammonium formate) to acetonitrile gradient. 313 

The mobile phase conditions were as described by Grosser & van Dam (2017) and 314 

consisted of 98% water for 2 minutes, then a gradient to 65% water over 35 minutes, 315 

followed by a rapid gradient to 2% water over 8 minutes. Where possible, desulfo-316 

glucosinolates were identified using known laboratory standards (progoitrin, gluconapin 317 

and glucobrassicanapin). Alternatively, identification of putative desulfo-gluosinolates was 318 

based on the fragmentation pattern due to the loss of a hexose-derivative from a parent 319 

aglycone, demonstrated by a mass shift of 162 amu, and through formula matches 320 

identified using Agilent MassHunter qualitative software. The integration of the 229 nm 321 

UV spectrum was used for quantification of compounds based on a comparison to a 322 

sinigrin concentration curve and published response factors (again as described in Grosser 323 

& van Dam, 2017). Amounts of desulfo-glucosinolates were then converted to µmol g-1 324 

fresh tissue weight (FW). 325 

Using GLMs, we first tested whether total glucosinolate concentrations were 326 

significantly induced following the extended period of larval herbivory across all 327 

populations, then tested for the significance of induction within the low-, intermediate- and 328 

high-elevation classes. Next, we tested whether individual glucosinolates showed 329 

significant induction, using individual GLMs and a false discovery rate (FDR) of 10% to 330 

control for effects of multiple testing.  331 

 332 

Variation in constitutive glucosinolate concentrations with increasing elevation 333 

Given the observed decline in herbivore damage with increasing elevation in the 334 

field, we also tested whether constitutive chemical defences declined with increasing 335 

elevation. We germinated seeds from 5 families for each of 16 populations (6 low, 5 336 
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intermediate and 5 high elevation). Seeds were stratified and then moved to a climate 337 

chamber (19ºC day, 14ºC night) for 7 days before thinning down to one seedling per cell. 338 

Leaf number and length of the longest leaf were recorded after 5.5 weeks. One fully 339 

expanded leaf per plant was weighed, flash frozen and freeze-dried for glucosinolate 340 

analysis, and the mass of the remaining aboveground fresh plant tissue measured as 341 

described above. 342 

Glucosinolates were extracted, identified and quantified as described in the previous 343 

section. We tested for variation in total and individual glucosinolate concentrations with 344 

respect to a fixed effect of elevation (controlling for multiple testing using an FDR of 345 

10%), then repeated the analysis using a fixed effect of population (and a FDR 10%). Due 346 

to differences between extraction sets in total glucosinolate amounts, extraction set was 347 

included as a fixed effect in all analyses. Furthermore, to evaluate the prediction that 348 

investment in defence declines with increasing growth rates, we tested for associations 349 

between total glucosinolate production and total aboveground mass, leaf number and 350 

maximum leaf length. Square root transformation of the response variable was used to 351 

improve model fit if inspection of model residuals suggested deviations from expectations 352 

under normality. 353 

 354 

RESULTS 355 

Leaf damage in the field declines with increasing elevation 356 

Across the 16 field populations surveyed, we observed a decline in the proportion of 357 

leaves damaged with increasing elevation (Figure 1b), as well as in the proportion of plants 358 

showing different types of herbivore damage (p<0.001 for leaf holes, chewed edges and 359 

larval trails; Figure S1a-c). Molluscs and several specialist herbivores of Brassicaceae were 360 

observed feeding on A. alpina (see Figure S2). One damage type—pale leaf spots, which 361 

were difficult to attribute to a particular herbivore—displayed a significant increase with 362 
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increasing elevation (Figure S1d). Population-level effects explained 2.7x more variance in 363 

the proportion leaves damaged than did elevation alone (population = 26.2%; elevation = 364 

9.9%). Similarly, population explained 2.7-4.6x more variation in each damage type than 365 

elevation (Figure S1), suggesting that population-specific genetic and environmental 366 

influences account for the majority of variation in these traits. The average proportion of 367 

damaged leaves per population increased with long-term average yearly temperature (R2 368 

=0.229; F1,15 = 5.739, p=0.03), although temperature was correlated with elevation and both 369 

factors explained a similar amount of variation (elevation: R2 = 0.25, temperature: R2 = 370 

0.23). This suggests that temperature might be important for explaining the elevational 371 

gradient in herbivory. 372 
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Figure 1: (a) Photos of the three main types of herbivore-driven damage observed in populations and location of 19 study populations across Switzerland and 

their classification in to one of three elevation categories; (b) Decline in the average proportion of leaves damaged per population, with points weighted by 

sample size, a line indicating model fitted values (GLM binomial error) and the significance (and % explained variance) for elevation and population in separate 

GLMs. (c) Variation in average larval mass per plant (based on five larvae per plant after eight days and (d) proportion larvae surviving on nine populations 

(three low, three intermediate and three high). In (c) and (d) each population was represented by 8 plants. The base map of Switzerland in (a) was produced by 

Wikimedia commons users Eric Gaba and NordNordWest. 
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Populations from different elevations diverge in morphological and growth traits  395 

Our field surveys showed that elevation had contrasting effects on plant 396 

growth form, and that this variation persisted under a common environment (Figure 397 

S3). In the field, plant leaf number varied significantly among populations, 398 

independent of changes in elevation, with population explaining 28.6% variance in 399 

the number of leaves (F = 5.89, df = 16, p<0.0001; Figure S3a). In particular, two 400 

intermediate populations, AalSFH and AalPB, produced particularly high numbers of 401 

leaves. By contrast, there was a decline in plant surface area with elevation (F = 70.4, 402 

df = 1, p<0.0001; Figure S3b), consistent with plants having smaller size at high 403 

elevations. Elevation and population explained a similar proportion of variance in 404 

plant size (elevation = 21.3% and population = 30.0%). 405 

Experiments in which field-collected seeds from a subset of populations were 406 

grown in a common environment resulted in similar variation in plant growth form to 407 

that observed in the field. The number of leaves varied significantly among the nine 408 

populations (F = 16.40, df = 8, p<0.0001), but also between elevation classes (F = 409 

16.42, df = 2, p<0.0001), with intermediate-elevation populations (particularly 410 

AalSFH and AalPB) showing significantly higher leaf production (Figure S4a). 411 

Maximum leaf length (a proxy for rosette size) was significantly reduced for 412 

populations from high elevations relative to both the low and intermediate elevation 413 

classes (F = 25.54, df = 2, p<0.0001; Figure S4b). For both leaf number and leaf 414 

length, the proportion of variance explained by population alone was greater than that 415 

explained by elevation class (by 1.9x and 1.3x respectively), highlighting the 416 

importance of population-level effects in shaping variation in these traits under 417 

common growing conditions. In a separate experiment using all 17 populations, 418 

aboveground dry mass (at 1 month of age) did not decline with increasing elevation (F 419 

= 2.03, df = 1, p = 0.157) or show differences among populations (F = 0.85, df -= 15, 420 
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p = 0.619; Figure S3c); however, maximum leaf length clearly declined with 421 

increasing elevation (R2 = 0.36, F = 60.52, df = 1, p<0.0001; Figure S3d).  422 

When grown in a common environment, SLA (a proxy for leaf density) did 423 

not vary among populations or elevation classes (Figure S4c), although a high 424 

proportion of variance in SLA was associated with individual plants (genotypes) 425 

(population alone: R2 = 0.05, with random effect of family: R2 = 0.80). Trichome 426 

density varied significantly across populations (F = 16.3, df = 8, p<0.0001), but not  427 

among elevation classes (Χ2 = 5.839, df = 2, p = 0.054; Figure S4d). Both the highest 428 

mean trichome density (population AalDM = 448.4 trichomes per cm2) and the lowest 429 

mean density (Aal29 =164.1 trichomes per cm2; Figure S4d) were observed in high-430 

elevation populations. 431 

 Principal components analysis revealed evidence for genetic divergence 432 

among low-, intermediate- and high-elevation populations along a growth-433 

morphology spectrum (Figure 2). Principal component loadings for different traits 434 

showed that relative to high-elevation populations plants from intermediate-elevation 435 

populations had larger rosettes, lower trichome densities and higher rates of leaf 436 

production. Conversely, plants from high-elevation populations had smaller rosettes, 437 

variable trichome densities and lower rates of leaf production. Finally, low-elevation 438 

populations exhibited higher trichome densities and lower rates of leaf production 439 

than intermediate-elevation plants, yet larger rosettes than plants from high-elevation 440 

populations (Figure S4).  441 

 442 

Figure 2. PCA summarising growth and morphological trait variation among plants 443 

from the different elevation classes. The PCA is based on data on the number of 444 

leaves produced, length of the longest leaf, specific leaf area (cm mg-1) and number of 445 

trichomes on adaxial (lower) surface from the same set of individuals. The arrows 446 
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represent the coefficients of the four variables (traits) on the two principal 447 

components (PC1 and PC2), so point in the direction where values of that trait are 448 

maximised. Points are coloured by elevation class. 449 

 450 

 451 

Herbivore performance and survival is reduced on plants from low-elevation 452 

populations 453 

Herbivore performance assays with the specialist Pieris brassicae, conducted 454 

on nine populations, revealed a significant effect of elevation (R2 = 0.12, Χ2 = 12.77, 455 

df = 2, p = 0.002), with larvae showing significantly higher mass after 8 days feeding 456 

on plants from intermediate- and high-elevation populations than those feeding on 457 

plants from low-elevation populations (Figure 1c). Nevertheless, the proportion of 458 

variance in larval mass explained by population effects was 2.25x higher than that 459 

explained by elevation (R2 = 0.270; Χ2 = 31.23, df = 8, p<0.001). In particular, 460 

caterpillars feeding on the high-elevation populations Aal29 and AalDM exhibited 461 

very different mean (+/- S.E) larval masses (Aal29 = 4.56 +/-0.37mg and AalDM = 462 
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2.73 +/-0.37mg; Figure 1c). After 8 days on the plants, 64.2% of the larvae had 463 

survived. Survival was significantly lower on low-elevation plants (Binomial GLM: 464 

Χ2 = 7.00, df = 2, p = 0.03); however, the amount of variance explained by elevation 465 

was low (5.7%; Figure 1d). Two low-elevation populations had the lowest larval 466 

survival rates (Aal34c = 45% larvae, Aal12 = 50%), while one intermediate- and one 467 

high-elevation population showed the highest rates of survival (Aal36= 75% and 468 

Aal29 = 78%; Figure 1d). These results suggest that high-elevation plants were 469 

generally more favourable hosts than low-elevation plants, despite clear population-470 

level differences within elevation classes. 471 

When elevation was replaced by plant growth and morphological traits in the 472 

model, we found that only total number of leaves had a significant positive effect on 473 

variation in larval performance (R2 = 0.23; F = 24.2, df = 1, p<0.0001). This effect 474 

was partly due to the second experimental set of plants showing, on average, both 475 

more leaves and heavier larvae (due to space limitations, this set was assayed one 476 

week later than the first experimental set). However, separating the samples by 477 

experimental set confirmed a positive effect of number of leaves on larval mass in 478 

both groups (Figure 3; set A: F = 15.7, df = 1, p<0.001, R2 = 0.27; set B: F = 5.70, df 479 

= 1, p = 0.023, R2 = 0.12). Larvae did not eat all the tissue presented to them: on 480 

average only 18% of leaves had more than a quarter of leaf area removed for set A 481 

(maximum = 82% of leaves) or 12% for set B (maximum = 33% of leaves). However, 482 

there was variation among plants from different populations in the proportion of 483 

leaves showing any signs of damage (Figure S5a), and low-elevation populations 484 

showed a significantly lower proportion of leaves with >25% leaf area removed 485 

(Figure S5b). Together, these data suggest increased leaf production is associated with 486 

increased leaf quality for specialist herbivores. 487 

 488 



 22 

Figure 3: Regression of variation in larval performance (average mass of three larvae 489 

after six days feeding on one plant) on variation in the number of leaves per plant for 490 

(a) experimental set A and (b) experimental set B. Relevant statistics for the effect of 491 

leaf number on variance in larval mass, including the amount of variance (R2) 492 

explained by number of leaves, are reported above each graph. Colours represent 493 

different elevation classes (see key in Figure 2). 494 

 495 

 496 

Several glucosinolate compounds exhibit significant trends with elevation 497 

We identified 21 glucosinolates across all populations (Figure 4a, full details 498 

in Table S3), three of which (gluconapin, progoitrin and glucoarabin) accounted for 499 

more than 70% of total glucosinolate production (Figure 4a). Total constitutive 500 

glucosinolate levels showed no trend with increasing elevation (F = 1.11, df = 1, p = 501 

0.295; Figure 4b), despite a more than 2.9-fold difference in mean total glucosinolate 502 

production across populations (ranging from 1.48µmolg-1 FW for the high-elevation 503 

population Aal29 to 4.30µmolg-1 FW for the intermediate-elevation population 504 

AalSFH; average across individuals: 2.88µmolg-1 FW). Total glucosinolate levels 505 
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were weakly negatively correlated with aboveground biomass (R2 = 0.038; F = 5.90, 506 

df =1, p = 0.018; Figure 4c), and length of the longest leaf (R2 = 0.03; F = 4.32, df = 507 

1, p = 0.041). Leaf number at the time of sampling was not significantly associated 508 

with total glucosinolates (F = 1.78, df = 1, p = 0.186), suggesting no connection 509 

between variation in rates of leaf production and investment in constitutive defences.  510 

 511 

Figure 4: Variation in glucosinolate production across populations of A. alpina. (a) 512 

Average amounts across constitutive samples of individual glucosinolates ordered by 513 

increasing retention time (in micromoles per gram of fresh tissue, µmol g-1 FW, +/- 514 

one S.E.); Regression of variation in: (b) total glucosinolates on elevation; (c) total 515 

glucosinolates on aboveground mass; (d) levels of progoitrin on elevation; (e) levels 516 

of 4-(methylthio)butyl-glucosinolate on elevation. Regression lines are solid if 517 

relationship significant, and the adjusted R-squared and p-value are given. Vertical 518 

black lines connect samples from the same population in plots b, d and e, and 519 

different coloured points represent samples from low, intermediate and high elevation 520 

classes. Shorthand codes for glucosinolates are given in Table S3. 521 
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 522 

 523 

Because total glucosinolate amounts can obscure biologically relevant 524 

variation in individual compounds (Poelman, Galiart et al. 2008), we also tested 525 

whether individual glucosinolates varied with elevation. This analysis revealed 526 

significant trends with elevation for eight of the 21 compounds, with six declining 527 

with increasing elevation and two increasing (10% FDR; Table S4). Progoitrin (PG) 528 

showed the strongest decline with elevation (R2 = 0.28), being consistently low in 529 

high-elevation populations (Figure 4d), whereas 4-(methylthio)butyl glucosinolate 530 
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(4MTB) showed the strongest positive association (R2 = 0.08; Figure 4e). Despite 531 

screening just five individuals per population, we also observed significant 532 

population-level variation for 13 individual glucosinolates 10% FDR; Table S5), with 533 

a small number of populations driving these effects. For example, one low-elevation 534 

population (Aal04) showed higher levels of 4-(methylsulfinyl)butyl glucosinolate 535 

(4MSB) relative to other populations, while another low-elevation population 536 

(AalCdV) showed elevated levels of three different glucosinolates (5-537 

(methylthio)pentyl, 10-(methylthio)decyl, and glucobrassicanapin). Additionally, an 538 

intermediate-elevation population (AalSFH) showed elevated levels of two 539 

unidentified glucosinolates (GSL2 and GSL5), and one high-elevation population 540 

(Aal29) also showed an elevated frequency of 4-(methylthio)butyl glucosinolate 541 

(4MTB). These results thus reveal clear effects of elevation and population on 542 

individual glucosinolates, despite no such trends being observed for amounts of total 543 

glucosinolates. 544 

  545 

Glucosinolate induction is stronger in high- and intermediate-elevation populations 546 

than in low-elevation populations 547 

Total glucosinolates were significantly induced following feeding (for six 548 

days) by Pieris larvae (mean constitutive = 1.51 µmol g-1 FW; mean induced = 2.6 549 

µmol g-1 FW; p = 0.004, R2 = 0.11), with 12 of the 18 individual glucosinolates 550 

detected in this experiment showing significant induction (10% FDR; Table S6). 551 

When populations were grouped by elevation class, high- and intermediate-elevation 552 

populations showed significantly stronger total glucosinolate induction than low-553 

elevation populations (Figure 5), although the variance explained by this interaction 554 

was low (F = 3.28, df = 2, p = 0.045; R2 = 0.06). At the individual glucosinolate level, 555 

four of 18 glucosinolates showed significant elevation-by-induction interactions (10% 556 
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FDR; Table S6). On closer inspection, however, some of these differences were 557 

population-specific (e.g. strong induction in population Aal29 for 4MTB; Figure S6a). 558 

Interestingly, the unidentified glucosinolate GSL3 showed clear induction in both 559 

high-elevation populations (AalDM and Aal29; Figure S6b). By contrast, progoitrin 560 

(PG) showed no significant induction in any population (Figure S6c; Table S6) 561 

despite constitutive levels clearly declining in high-elevation populations (Figure 4d). 562 

Of the four individual glucosinolates that showed significant elevation-by-induction 563 

interactions, the two low-elevation populations consistently showed no effects of 564 

induction (e.g. Figure S6a,b). Taken together, these data support the hypothesis that 565 

chemical defence inducibility is stronger in higher elevation populations. 566 

 567 

 568 

Figure 5: Change in total glucosinolates (in micromoles per gram of fresh tissue, 569 

µmol g-1 FW,) following herbivory across low-, intermediate- and high-elevation 570 

classes, with individual data points given on the boxplots. Each elevation class 571 

consists of data from two populations. Control treatments and herbivory-induced 572 

treatments are marked, with the significance of the induction effect for each elevation 573 

class given, as analysed with separate linear models (ns = p>0.05, * = p<0.05, ** = 574 

p<0.001). 575 

 576 
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 577 

 578 

 579 

DISCUSSION 580 

Our results provide evidence for considerable genetic divergence in multiple 581 

growth and defence traits within an alpine plant species across its elevational range. 582 

Indeed, the patterns of trait variation we observed among Arabis alpina populations 583 

are comparable to divergent growth-defence “syndromes” previously described for 584 

species that occur at different elevations (Defossez, Pellissier et al. 2018, Kergunteuil, 585 

Descombes et al. 2018). This suggests that A. alpina can adapt to environmental 586 

conditions that vary with altitude; however, our findings also reveal extensive 587 

population-level variation in many growth and defence traits that is independent of 588 

elevation. In particular, our results reveal genetic divergence among high-elevation 589 

populations in traits associated with herbivore resistance and tolerance, suggesting 590 
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that this alpine plant might be able to adapt to predicted increases in herbivore 591 

pressure at high elevations due to climate change.   592 

 Consistent with the findings of many previous studies (e.g. Garibaldi, 593 

Kitzberger et al. 2011, Pellissier, Roger et al. 2014, Rokaya, Dostálek et al. 2016, 594 

Moreira, Petry et al. 2018), we observed reduced rates of herbivore damage at high 595 

elevations. This pattern could be explained by reduced herbivore pressure at these 596 

elevations—which might favour corresponding reductions in defence investment—597 

but could also arise if high-elevation plants suffer less herbivory because they are 598 

better defended (Rasmann, Pellissier et al. 2014). Larval performance assays in a 599 

common (climate-chamber) environment indicated that our intermediate- and high-600 

elevation populations were generally more palatable for herbivores than low-elevation 601 

populations, consistent with reduced defence investment in high-elevation 602 

populations. We did not observe a decline in total glucosinolate levels with increasing 603 

elevation, but did find significant elevational trends in several individual 604 

glucosinolate compounds, six of which exhibited significant declines with increasing 605 

elevation, while two exhibited significant increases. This pattern is generally 606 

consistent with an overall reduction in glucosinolate defences at high elevation, 607 

although additional experiments exploring how variation in these individual 608 

glucosinolates affects the performance of specialist and generalist herbivores would 609 

be necessary to confirm this. 610 

When the risk of herbivory is unpredictable—as is often the case at high 611 

elevations (Descombes, Marchon et al. 2017)—and the costs of continuously 612 

producing constitutive defences are high (e.g. Zangerl and Rutledge 1996), selection 613 

may favour investment in defences that are inducible upon herbivore attack (Moreira, 614 

Mooney et al. 2014, Pellissier, Roger et al. 2014, Defossez, Pellissier et al. 2018, 615 

Moreira, Petry et al. 2018). Alternatively, the limited resources available at high 616 
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elevations may favour greater investment in constitutive rather than induced defences 617 

to defend leaves that are costly to replace (Coley, Bryant et al. 1985, Moreira, 618 

Mooney et al. 2014, Pellissier, Moreira et al. 2016). While total constitutive 619 

glucosinolates did not decline with increasing elevation in our study, high-elevation 620 

A.alpina populations did show the strongest induction of total glucosinolates 621 

following herbivory. We also observed significant induction of many individual 622 

glucosinolates, yet found little evidence that the significant elevational trends 623 

observed for constitutive levels of individual glucosinolates were associated with 624 

differences in the strength of their inducibility among populations. Our observation of 625 

increased inducibility at high-elevations is consistent with findings from several 626 

recent studies (Rasmann, Buri et al. 2014, Galman, Petry et al. 2018), but notably 627 

differs from the pattern observed in the field among different Cardamine species (also 628 

members of the Brassicaceae family), where low-elevation species showed lower 629 

levels of constitutive glucosinolates and greater inducibility relative to high-elevation 630 

species (Pellissier, Moreira et al. 2016). Our glucosinolate data hints at the absence of 631 

a strong trade-off between constitutive and induced chemical defences in A. alpina; 632 

however, definitively establishing a trade-off between constitutive and induced 633 

defences would require measuring defence induction in a greater number of 634 

populations than used in the present study.  635 

In addition to the observed elevational trends in defence traits, populations at 636 

similar elevations exhibited significant divergence in many of these traits. Previous 637 

studies have also reported trait variation among populations independent of 638 

elevational gradients (Rokaya, Dostálek et al. 2016, Pfennigwerth, Bailey et al. 2017). 639 

However, our study design explicitly included replication at the population level 640 

within elevation classes, allowing us to estimate the relative contributions of 641 

population and elevation to trait variation. We found that population-level effects 642 
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explained 2.25x more variation in herbivore performance than elevation alone. 643 

Similarly, while total glucosinolate levels did not vary significantly among 644 

populations, variation in many individual glucosinolates was better explained by 645 

population-level effects than by elevation. Differences in local herbivore communities 646 

have previously been linked to among-population variation in glucosinolate defences 647 

over short geographic distances (Gols, Wagenaar et al. 2008, Newton, Bullock et al. 648 

2009), and in our study population effects explained 2.6x more variation in field leaf 649 

herbivore damage than elevation alone, suggesting that local variation in herbivore 650 

pressure, independent of elevation, might drive some of the observed variation in 651 

defence traits. However, to explicitly link population-level variation in defence traits 652 

with geographic variation in herbivore pressure it would be necessary to characterise 653 

herbivore communities and measure climatic variables at finer spatial and temporal 654 

scales than was possible in our study. We should also note that because our assays 655 

employed seeds collected directly from the field, we cannot exclude the possibility 656 

that maternal effects also contribute to the observed population-level variation. 657 

To better understand A. alpina adaptation to varying herbivore pressures 658 

across elevations, we also documented elevational trends in multiple traits associated 659 

with growth and morphology that might directly or indirectly affect plant interactions 660 

with invertebrate herbivores (Coley, Bryant et al. 1985, Herms and Mattson 1992). A 661 

principal components analysis combining data for two growth traits, trichome density 662 

and SLA, revealed syndromes associated with different elevations: low-elevation 663 

populations were characterised by high trichome densities, large rosette sizes, and low 664 

rates of leaf production compared to populations from other elevations; meanwhile, 665 

high-elevation populations had smaller rosettes than low-elevation populations and 666 

lower rates of leaf production than intermediate-elevation populations, but highly 667 

variable trichome densities; and intermediate-elevation populations were 668 
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characterised by generally low trichome densities, but larger rosette sizes and higher 669 

rates of leaf production than populations from other elevations. As our measurements 670 

were based on plants grown from seeds in a common environment, these results 671 

indicate a significant genetic contribution to these phenotypic syndromes. These 672 

patterns of trait divergence in A. alpina are broadly consistent with the growth-673 

defence syndromes previously described for Cardamine species from different 674 

elevations (Defossez, Pellissier et al. 2018), where smaller size was associated with 675 

high-elevation species, and increased biomass production with low- and intermediate-676 

elevation species. However, other aspects of these syndromes, including changes in 677 

leaf density and in constitutive chemical defences, were more pronounced in that 678 

system than in the current study, perhaps reflecting greater divergence in functional 679 

traits among vs within species, or the fact that their study sampled traits only under 680 

field conditions, while ours measured traits in a common environment.  681 

 Under both field and growth-chamber conditions, we found that A. alpina 682 

plants from the highest elevations produced smaller rosettes with fewer leaves than 683 

plants from lower elevations, consistent with evidence from a previous common-684 

garden experiment conducted in the field with French populations of Arabis alpina 685 

(de Villemereuil, Mouterde et al. 2018). Growth rates have also been linked to 686 

survival and reproductive effort in field populations of A. alpina (Andrello, de 687 

Villemereuil et al. 2016), so together these lines of evidence suggest an adaptive role 688 

of these growth traits in reducing exposure to local abiotic conditions at high 689 

elevations (Körner, Neumayer et al. 1989, Byars, Papst et al. 2007, Körner 2007, 690 

Read, Moorhead et al. 2014). By contrast, our observation of larger rosette sizes in 691 

low- and intermediate-elevation populations could reflect an adaptive response to 692 

increased competition from other plants under better growing conditions (see photos 693 

comparing low and high-elevation habitats in Figure S7). In contrast to low- and high-694 
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elevation populations, intermediate-elevation populations showed generally higher 695 

rates of leaf production under both field and common-garden conditions, suggesting a 696 

genetic basis for this trait. Based on similar observations of growth form variation 697 

across species at different elevations, Defossez et al. (2018) hypothesized that high 698 

rates of herbivory at intermediate-elevations may select for elevated leaf production 699 

as a form of herbivore-tolerance.  700 

The hypothesis that herbivore tolerance is favoured at intermediate-elevations 701 

also fits with our trichome data. We observed significant variation in trichome density 702 

among populations that was largely independent of elevation. However, plants from 703 

low-elevation populations were characterised by consistently high trichome densities, 704 

which could represent an adaptive response to an elevated frequency of encounters 705 

with herbivores (e.g. Løe, Toräng et al. 2007) or a response to abiotic factors such as 706 

increasing aridity (e.g. Kessler, Siorak et al. 2007). Meanwhile, intermediate-707 

elevation populations are also exposed to high rates of herbivory in the field, but 708 

showed generally low trichome densities. This low investment in physical defence 709 

combined with elevated levels of leaf production observed in these populations, is 710 

consistent with a strategy of herbivore tolerance. 711 

It is notable that many growth and morphological traits exhibited significant 712 

variation across populations even within the three elevation classes (low, intermediate 713 

and high). In particular, trichome density significantly varied among high-elevation 714 

populations, with population AalDM showing much higher trichome densities relative 715 

to the other populations (AalN2 and Aal29). Population-level variation in this putative 716 

defensive trait may partly explain the reduced herbivore performance on plants from 717 

AalDM relative to Aal29, where mean larval mass was 1.7x higher for larvae feeding 718 

on Aal29 than AalDM. Such genetic divergence in plant defences among populations 719 

at high elevations would not have been observed if populations from different 720 
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elevations were pooled for experimental testing, as has been done in some studies 721 

(e.g. Ereli, Ayres et al. 1998, Pellissier, Roger et al. 2014, Rasmann, Buri et al. 2014). 722 

These results suggest that high-elevation populations may not be consistently 723 

vulnerable to the predicted changes in herbivore pressure with ongoing climate 724 

change. 725 

As discussed, selection by abiotic and biotic factors may be responsible for 726 

population-level variation in anti-herbivore defence investment across the elevational 727 

range of this species. However, another potential explanation for the observed 728 

population-level effects in defence and growth/morphological traits is that A. alpina 729 

populations sampled from different areas of the Alps may derive from distinct genetic 730 

lineages. After the last glaciation the Alps were colonised by A. alpina from multiple 731 

glacial refugia around the Mediterranean (Koch, Kiefer et al. 2006, Rogivue, Graf et 732 

al. 2017), and it is unknown to what extent these distinct postglacial histories (and 733 

associated genetic drift) might have influenced the current composition of traits in this 734 

species. An interesting next step will therefore be to identify patterns of neutral 735 

genetic structure across our A. alpina samples to determine the extent to which 736 

divergence in defence, growth and morphological traits are reflected in patterns of 737 

neutral genetic structure.  738 

 739 

CONCLUSIONS 740 

This study documents genetic variation in multiple growth and defence-related 741 

traits that is likely important for adapting to spatially varying biotic conditions across 742 

the elevational range of an alpine plant. Importantly, while many traits showed 743 

significant elevational trends, population-level effects consistently explained more 744 

trait variation than elevation. Although, the precise selective forces driving these 745 

differences remain uncertain, the presence of genetic variation in growth and defence 746 
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traits across the range of this alpine species may facilitate evolutionary responses of 747 

this species to changes in biotic interactions associated with climate warming. Indeed, 748 

recent theoretical and empirical work suggests that local adaptation can have 749 

implications for the response of species to rapid environmental change (Pelini, Keppel 750 

et al. 2010, Valladares, Matesanz et al. 2014), and understanding the extent of 751 

intraspecific variation in key traits is predicted to be important for accurately 752 

forecasting the response of individual species to such changes (Urban, Bocedi et al. 753 

2016). In particular, our assessment of variation both within and across elevation 754 

classes suggests that high-elevation populations of A. alpina are not consistently more 755 

vulnerable to herbivores than intermediate- and low-elevation populations. Future 756 

work should test whether population-level genetic variation in similar sets of traits 757 

exists within species with more restricted elevational distributions, as such species are 758 

predicted to be particularly vulnerable to ongoing environmental change.  759 
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