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1 Abstract

2 Aims – Annually variable, but synchronous production of large seed crops (‘masting’) is a 

3 widespread phenomenon in temperate trees. Mounting concerns about the impacts of 

4 anthropogenic climate change (ACC) on plant reproduction, gives urgency to our need to 

5 understand better the role of climate on tree reproduction, and in particular, mast events. 

6 Unlike our understanding of reproductive phenology however, there is little consensus 

7 regarding how climate affects plant reproductive effort, or indeed the actual environmental 

8 triggers that underpin masting behaviour.

9 Methods - We used a 27-year record of acorn yield from a population of 12 Quercus robur 

10 trees located in southern England to compare masting frequency and post-dispersal acorn 

11 yield each year for each tree, with long-term weather data over the same period. We 

12 focussed on discrete or sequential climate cues (temperature, precipitation, and frost days) 

13 as likely predictors of oak reproduction.

14 Important Findings – Annual post-dispersal acorn crop varied greatly; i.e. no acorns in 14 

15 of the 27 years, but there was no sequential pattern of crop versus non-crop years indicating 

16 that weather, rather than resource limitation alone, dictated the timing of reproduction. 

17 Crop years were instead most closely associated with relatively cool late summer 

18 conditions in the preceding year, followed by anomalous summer warmth within crop year. 

19 Acorn yield increased following dry April and above average May and June temperatures 

20 within crop year. Although our results support a general association between warm late 

21 spring and summer conditions, and crop frequency and yield respectively, the influence of 
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22 cooler later summer conditions in the year prior to masting highlights how a combination of 

23 weather cues may dictate the occurrence of mast years. Consequently, our results 

24 corroborate not only the hypothesis that temperature differentials between consecutive 

25 years, not absolute temperatures, may be the better predictor of mast seeding events, but 

26 lend support also to the suggestion that reproductive failure and resource accumulation 

27 resulting from a climate-linked environmental veto, drives future reproductive 

28 synchronization in temperate tree species.

29 Keywords – Anthropogenic climate change; Environmental veto; Moran effect; Quercus 

30 robur; Reproductive effort

31
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32 INTRODUCTION

33 The synchronous production of seed crops by trees (‘masting’), whereby plants display 

34 variable between-, but similar within-year high seed yield, is described widely (Salisbury 

35 1942; Kelly 1994; Kelly and Sork 2002; Pearse et al. 2016). Its occurrence in nature has 

36 been ascribed to the adaptive benefit of economies of scale; i.e. plants investing heavily in 

37 reproduction in years when con-specifics do the same incur lower costs per surviving 

38 offspring (Norton and Kelly 1988, Kelly 1994). These so-called ‘Ultimate-level’ causes 

39 (Pearse et al. 2016) include predator satiation, whereby infrequent and unpredictable seed 

40 production limits putative predator populations (Janzen 1971); increased pollination 

41 efficiency, a consequence of synchronised flowering (Smith et al. 1990); and 

42 environmental prediction, common where large-scale disturbances (fire, hurricanes etc.) 

43 generate spatio-temporally limited recruitment opportunity (Kelly 1994). Of these, predator 

44 satiation is perhaps the most widely supported (Pearse et al. 2016), but whatever adaptive 

45 benefit underpins its evolution, successful seedling recruitment and community persistence 

46 is, for many long-lived tree species, limited to ‘mast’ years (Salisbury 1942; Tapper 1992; 

47 Crawley and Long 1995). Fluctuations in seed yield also have important cascading effects 

48 on ecosystem interactions (Ostfield and Keesing 2000; Pesendorfer and Koenig 2016; 

49 Lichti et al. 2017). Consequently, an understanding of the causes and consequences of 

50 reproductive behaviour is important from the perspectives of tree population biology, forest 

51 management, and conservation.
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52 While the actual environmental triggers and plant physiological processes underpinning 

53 masting remain unresolved, there is much evidence that climate is the key proximate cue 

54 (Koenig and Knops 2005; Pearse et al. 2016). Variations in temperature or precipitation do 

55 not necessarily signal better conditions for plant growth or development, but by virtue of a 

56 regional influence, synchronise individual reproductive activity within the wider population 

57 (Pearse et al. 2016). Consequently, and although reproductive allocation is often moderated 

58 by internal resource budgets (Pearse et al. 2016; Bogdziewicz et al. 2018), various climate 

59 triggers catalyse different developmental processes such as flower formation, pollen 

60 release, and/or fruit development that then confer adaptive benefits upon the individual and 

61 its progeny (Pearse et al. 2016).

62 Although there may be some phylogenetic conservation across species (Koenig et al. 2016), 

63 even with a single genus (e.g. Quercus), crop synchronicity has been associated with a 

64 variety of climate-triggers. For temperate oak species these include; cool summer 

65 temperatures (Q. macrocarpa), or warm spring temperatures 2 years prior to acorn maturity 

66 (Q. rubra) (Koenig and Knops 2014); cool, wet conditions in the early autumn (Q. robur) 

67 preceding the event (Crawley and Long 1995); and warm spring temperatures (Q. robur) 

68 within the crop year (Askeyev et al. 2005). For the Mediterranean species, Quercus ilex 

69 however, acorn crop was more closely associated with rainfall (Perez-Ramos et al. 2010) 

70 highlighting likely variation between climate triggers in temperate versus Mediterranean-

71 climate regions. Indeed, rather than a single proximate cause, there is consensus that for 

72 most plant species, seed crop yield most likely corresponds with a combination or sequence 

73 of climate cues (see Allen et al. 2014; Buechling et al. 2016). Kelly et al. (2013) for 
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74 instance report that for a wide variety of native New Zealand plants (i.e. 15 species from 

75 five families), reproductive effort was driven by a difference in temperatures between 

76 successive years rather than the absolute temperature within a particular year. Although 

77 there is mixed support for this so-called ‘Δt’ hypothesis (e.g. Koenig and Knops 2014; 

78 Pearse et al. 2014; Koenig et al. 2015; Moreira et al. 2015), climate nonetheless likely 

79 provides the main proximate cue for synchrony in reproductive timing and effort (Monks et 

80 al. 2016; Pearse et al. 2016).

81 Notwithstanding the view that climate variation does not explain the ultimate biological 

82 (adaptive) reasons for its evolution (Kelly 1994; Pearse et al. 2016), the strong link between 

83 climate and reproductive effort has important implications at a time of Anthropogenic 

84 Climate Change (ACC). A combination of a gradual increase in global temperatures and 

85 shifts in precipitation patterns, coupled with an increased incidence of extreme weather 

86 events (IPCC 2014), have been implicated widely as causes of observed individual tree 

87 mortality and forest dieback (Allen et al. 2010; Matusick et al. 2013). Although temporal 

88 (ontogenetic) ACC-linked mortality patterns are difficult to resolve (Allen et al. 2010), the 

89 fact that for most plant species the regeneration stage represents the most vulnerable life 

90 history phase (Fenner and Thompson 2005) suggests that any climate-linked impacts on 

91 reproduction are critical in understanding tree response to ACC. Despite a wealth of recent 

92 studies documenting the impact of ACC on plant ecophysiology, distributions, phenology, 

93 and plant community responses however, there remains a paucity of information on the 

94 influence of ACC on plant regeneration, and in particular, reproductive effort (Parmesan 

95 and Hanley 2015).
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96 Given the importance of masting events for tree population persistence and the likelihood 

97 that climate extremes will intensify and increase in frequency over coming decades (IPCC, 

98 2014), an understanding of the link between climate and key demographic processes like 

99 crop yield would seem to be particularly pressing (Clarke et al. 2011; Allen et al. 2014). 

100 Fenner (1991) was one of the first to draw attention to the importance of keeping long-term 

101 records of reproduction in trees to provide a simple bioassay of the effects of climate 

102 change. Remarkably, relatively few studies (see Allen et al. 2014; Richardson et al. 2015; 

103 Buechling et al. 2016; Gaignard et al. 2017) have however, looked at how tree crop yields 

104 respond to contemporary climate shifts as a basis to predict how future ACC scenarios will 

105 likely affect these events into coming decades. We use a 27-year long record of post-

106 dispersal annual acorn yield (1989-2015) in an even-aged population of 12 Quercus robur 

107 L. trees located in southern England to explore how climate variability affects oak 

108 reproductive behaviour. Specifically, we examine whether mast years (defined here as 

109 years where acorn yield exceeded pre- and post-dispersal seed predation) is associated 

110 with any specific individual, combination, or sequence of proximate climate cues.

111

112 METHODS

113 Study Population and annual assessment of acorn yield

114 In October 1989, twelve mature oaks growing on Southampton Common, Hampshire 

115 (50.9262oN, 1.4092oW) were chosen to record variation in annual acorn production. All 

116 were isolated specimens with an even branching structure, selected for their uniform size 
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117 (mean dbh = 341 cm (± 10.9 cm 1SE)) and ease with which the acorns could be observed 

118 and collected from the ground. While the age of the trees was not determined, they most 

119 likely date from the early 19th century when grazing ceased on the Common.

120 Recording occurred each year in the last week of October (21st to 26th), by which time the 

121 trees had shed the bulk of their acorns. Crop samples from each tree were taken from four 

122 50cm-wide transects following compass bearings north, south, east and west of the base of 

123 the trunk, extending as the canopy edge (mean length 8.28 m (±0.22)). On each sampling 

124 occasion, the acorns and other debris were raked together and collected in bags before 

125 samples were cleaned to leave only the acorns (including a small minority infested by gall-

126 wasps). The fresh weight of these samples was recorded and corresponding dry weight 

127 calculated by oven-drying sub-samples overnight at 105°C. We then used transect length to 

128 calculate acorn yield (Kg) per unit area (m2). By the end of the 27 years of the study, three 

129 trees were unusable, either through bramble incursion at the base, or because of branch loss 

130 (supplementary Table S1).

131 We did not attempt to exclude post-dispersal seed predators from our samples for two 

132 reasons; first, our study site precluded pan traps commonly used in isolated forests (Allen et 

133 al. 2014; Richardson et al. 2015; Buechling et al. 2016). Second we assumed that as the 

134 most likely ‘ultimate cause’ (Pearse et al. 2016), true mast years are by definition, those 

135 where acorn crop exceeded predator consumption. Although this meant we could not 

136 quantify acorn crops in the non-mast years, by definition these must have been low-acorn 

137 years, as even if acorns were produced, seed predators were able to remove the whole crop 

138 before collection. Moreover, even where previous studies have visually estimated pre-
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139 dispersal cone (Moreira et al. 2015; Zamorano et al. 2017) or seed numbers (Koenig and 

140 Knops 2014; Koenig et al. 2015), they are unable to draw strong conclusions regarding tree 

141 crop yield and post-dispersal predator satiation.

142 Acorn-Climate Analyses

143 To investigate climate influences on the occurrence and productivity of acorn mast years, 

144 we used monthly spring to autumn (i.e. nine months from February to October 

145 corresponding with the growth/reproductive season) observations of maximum and 

146 minimum temperatures, frost days, and rainfall. Climate data were obtained from a 

147 meteorological station located at 50.8997oN, 1.39556oW 

148 (www.southamptonweather.co.uk/sotonhist.php), 3 km from our oak population. For 

149 reproductive occurrence, we compared climate data between prior and current crop (n=13) 

150 and non-crop (n=14) years using a two-tailed Student’s t-test. Since we define ‘mast years’ 

151 as those where acorn crop satiated post-dispersal predation (i.e. acorns were left on the 

152 ground); all other events were considered to be zero crop years.

153 For reproductive effort, we compared monthly climate data against acorn yield (‘mast’ 

154 years only) using Spearman’s rank correlations. We recognize that the comparison of oak 

155 reproductive behavior with multiple climate variables, increases the likelihood of 

156 committing type I error. Nonetheless, we chose not to make the a priori assumption that 

157 weather for periods known to be strongly associated with reproductive effort in other 

158 species and studies, would be the sole drivers of acorn production in our oaks. Rather, we 

159 sought to eliminate all possibilities outside of the recognized pollination and seed 
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160 maturation times and then corroborate post-priori any significant (P < 0.05) relationships 

161 from the literature. Having done this, we then developed a linear regression model to 

162 predict acorn crop as a function of seasonal average climate.

163 RESULTS

164 Climate and Oak Reproductive Trends

165 Mast years (thirteen of the total 27 years of observation) occurred synchronously across all 

166 trees, except during 2001 when two failed to produce acorns (supplementary Table S1). 

167 The number of trees we were able to observe reduced over time: 12 trees from 1989-1998 

168 (4 events), 11 trees from 1999-2005 (4 events), 10 trees from 2006-2014 (5 events), and 

169 nine in 2015 (a crop year). Mean acorn production (Figure 1) ranged between a minimum 

170 of 0.018 kg m-2 in 2001 to a maximum of 0.446 kg m-2 in 1995. Only in 2001-2003 and 

171 2010 and 2011 did we record consecutive acorn years. Years 2001 and 2002 (0.053 kg m-2) 

172 were the two lowest yields recorded, and 2010 (0.124 kg m-2) was the sixth lowest, all 

173 below the mean yield calculated across all trees and mast years (0.196 kg m-2).

174 Within cropping years, there was a large spread in productivity across trees. For individual 

175 events, the largest range occurred in 1995 (0.807 kg m-2 difference between least and most 

176 productive trees) and the smallest in 2001 (0.063 kg m-2 difference between least and most 

177 productive trees). Since seed size is generally aplastic (Fenner and Thompson 2005), and 

178 for Q. robur in particular unlikely to vary by more than a factor of three (Brookes and 

179 Wigston 1979; Nikolić and Orlović 2002), we conclude that observed variation in crop 

180 yield was most closely associated with change in acorn number rather than individual size.
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181 Climate Influence on Mast Year Occurrence

182 The likelihood of masting occurrence in any given year depends on both favourable 

183 environmental conditions (e.g., climate) and internal resource dynamics (Pearse et al. 2016; 

184 Bogdziewicz et al. 2018). If the latter were the sole mechanism, crop and non-crop years 

185 would be expected to alternate, as a high reproductive effort in one year would exhaust 

186 resources such that a high acorn crop would be unlikely in the following year even if 

187 environmental conditions were favourable. To test whether masting/non-masting years 

188 alternate more than would be predicted from random, we conducted a Wald–Wolfowitz 

189 runs test by converting the masting data to a sequence of ones (masting, n=13) and zeros 

190 (non-masting, n=14). A ‘runs test’ evaluates the probability that a given sequence of events 

191 occurs randomly against the alternative hypotheses that events either tend to cluster 

192 together or alternate from one trial (year of observation) to the next. Results indicated that 

193 the null hypothesis that the sequencing of masting/non-masting events is random cannot be 

194 rejected (z = 1.5796, P = 0.11), suggesting that internal resource limitation was not the sole 

195 driver of mast events.

196 To investigate possible climate triggers for masting, we compared climate between crop- 

197 and non-crop years. Although temperature in the year prior to masting had no discernible 

198 influence, July conditions were on average, warmer during the actual mast year (Figure 2: 

199 left and centre columns). When recalculated as the difference between the current and 

200 previous year, however, the strongest potential triggers were maximum and mean 

201 temperatures during July (Tmax P = 0.028; Tmean P = 0.0364) and August (Tmax P = 

202 0.038; Tmean P = 0.007) (Figure 2: right column). This suggests mast years tend to occur 
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203 when cold summer conditions during previous year, were followed by anomalous warmth 

204 in the same months in the mast year. We found less association between mast seeding 

205 occurrence and either the number of frost days or rainfall (Figure 3), the only significant 

206 anomalous occurrence being April rainfall (P =  0.001) where mast years were more 

207 common in drier conditions.

208 Climate Influence on Acorn Yields

209 To estimate climate effects on acorn production while accounting for changes in the 

210 number of trees observed, we estimated an average per tree acorn yield in each mast year. 

211 Of all climate variables, concurrent year monthly mean temperatures were most strongly 

212 related to total acorn production. The strongest correlations were with May (Spearman’s r 

213 = 0.66; P = 0.01) and June (r = 0.75; P = 0.003) temperatures, indicating that warm 

214 conditions during these months were associated with larger acorn crops. Averaging mean 

215 temperatures together for May and June, we developed a simple linear regression model for 

216 acorn yield per tree (Figure 4). The regression was highly significant with large explanatory 

217 power (P = 0.002, r2 = 0.61) and corresponds with the peak pollination period for oak in 

218 southern England (Grime et al. 2007). From the slope of the regression, we estimate that 

219 acorn yield per tree increases by about 0.11 kg m-2 per °C of warming.

220

221 DISCUSSION

222 Despite observing the relatively large between-tree variation in acorn crops reported 

223 elsewhere (Herrera et al. 1998; Crawley and Long 1995; Koenig and Knops 2000; 
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224 Zamorano et al. 2017), our oaks exhibited uniform variation in seed crop yield across the 

225 population. For example, eight of the 13 mast years, including 2015, were followed by non-

226 mast years (i.e. no acorns survived post-dispersal predation) for all individuals. 

227 Nonetheless, we found no evidence that high reproductive allocation in one year was 

228 followed sequentially by a low acorn crop the next. Although at face value this may seem 

229 to contradict the view that internal resource dynamics prevent individuals from producing 

230 sequential mast crops (Herrera et al. 1998; Kelly and Sork 2002; Crone and Rapp 2014), a 

231 combination of internal resource dynamics and climate may nonetheless, together trigger 

232 masting behaviour.

233 Aside from dry April conditions, precipitation and the number of frost days had no 

234 detectable influence on acorn production; both phenomena can be relatively localised and 

235 consequently thought not to impose the uniform regional climate cue needed to ensure 

236 regional synchronisation (Norton and Kelly 1988; Kelly et al. 2013). Temperature signals 

237 in either the previous, or current, years alone were only weakly related to masting 

238 occurrence. Masting was, however, strongly associated with a combination of temperature 

239 cues across these years; specifically relatively cool conditions in the summer of the year 

240 before masting when followed by relatively warmer temperatures during the period of the 

241 actual mast year, together promoted mast occurrence. In addition, warm, dry May and June 

242 weather within the mast year were associated with relatively high acorn crops, results 

243 corroborating studies that associate warm late spring/early summer conditions to high tree 

244 seed yield. Askeyev et al. (2005), Bogdziewicz et al. (2017) and Caignard et al. (2017) for 

245 example, reported that ‘within-year’ warm spring and summer conditions promoted 
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246 increased acorn production in Russian, Polish, and French Q. robur populations 

247 respectively. Similar relationships were described for the Californian Q. lobata (Koenig et 

248 al. 2015), and Scandinavian Picea abies and Betula species (Zamorano et al. 2017). 

249 Consequently, it seems likely that our analyses identified bona fide biological relationships 

250 between reproductive effort and monthly weather data, rather than generating ‘significant’ 

251 correlations due simply to type I error (see Cabin & Mitchell 2000).

252 The long-accepted explanation for the link between warm, dry spring conditions and high 

253 reproductive output in temperate oak species is that this weather promotes pollen transfer in 

254 anemophilous trees (Norton and Kelly 1988; Smith, et al. 1990). This explanation 

255 underpins the Moran effect hypothesis; i.e. pollination success and thus reproductive 

256 output, is decoupled from mechanisms affecting flower production but is instead, 

257 associated with environmental conditions during flowering (Koenig 2012; Pearse et al. 

258 2016; Bogdziewicz et al. 2017). In addition to warm dry conditions favouring pollination, 

259 warm early summer growing conditions in July and August may also promote increased 

260 photosynthesis and so increase the resources available for reproductive allocation (Norton 

261 and Kelly 1988; Kelly and Sork 2002).

262 The apparent influence of the summer temperature difference anomaly on acorn crops, also 

263 highlights however, the potential importance of pollen coupling; i.e. pollination success and 

264 seed yield are functions of environmental and/or resource constraints that dictate the parent 

265 tree’s ability to produce flowers (Satake and Iwasa 2000; Kelly et al. 2001; Monks et al. 

266 2016). Bogdziewicz et al. (2018) developed this idea further by suggesting that the 

267 environment has a ‘veto’ effect on reproductive allocation. Put simply, reproductive failure 
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268 brought about by poor environmental conditions in one year, facilitates the accumulation of 

269 resources that plants can then allocate to subsequent (increased) reproductive output. 

270 Consequently, masting may not simply arise from the occurrence of favourable 

271 environmental conditions. Instead Bogdziewicz et al. (2018) argue that masting it is a 

272 combination of unfavourable environmental conditions (that limit reproduction), 

273 subsequent resource accumulation (more to spend on reproduction), and the environmental 

274 triggering of resource release to reproduction when weather conditions are favourable. The 

275 cool late summer conditions the year prior to mast (likely reducing seed development and 

276 maturation) may have facilitated resource accumulation and high reproductive output when 

277 coincidental with above-average summer conditions in mast year. Since a good summer 

278 does not predictably follow a bad one, resource accumulation alone cannot dictate acorn 

279 yield, and so explain why we failed to detect any sequential pattern of crop/non-crop years. 

280 Certainly, our results corroborate a growing consensus that the initiation of masting results 

281 from a combination or sequence of climate cues (Allen et al. 2014; Buechling et al. 2016).

282 Given the close association between oak masting (occurrence and amount), and spring and 

283 summer weather we elucidate here, the likely increased temperatures and shifts in 

284 precipitation associated with ACC would be expected to affect greatly reproductive timing 

285 and output. Our data and analysis suggest a 0.11 kg m-2 per tree increase in acorn yield per 

286 °C of warming; we recognise however, that a scenario of continual increased masting is 

287 highly unlikely to unfold. As Buechling et al. (2016) point out; positive climate/masting 

288 relationships must eventually be constrained by inherent physiological limitations. Indeed, 

289 there is an emerging consensus that in order to best understand masting behaviour, 
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290 predictive models based on environmental cues for flowering, pollination success and acorn 

291 production, must incorporate also a term for internal parental resource budgets (Koenig et 

292 al 2015; Pesnedorfer et al. 2016; Bogdziewicz et al. 2017, 2018). In addition, changes in 

293 the abundance and activity of seed and seedling predators, and extrinsic factors affecting 

294 germination and seedling dormancy (Newbold and Goldsmith 1981), are additional 

295 complexities that serve to highlight the fact that we still understand remarkably little 

296 regarding the impacts of ACC on plant regeneration biology (Parmesan and Hanley 2015).
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440

441

442

443 Figure 1. Acorn production (kg m-2) across individual trees during mast seeding events 

444 recorded from 1989 to 2015 for a population of Quercus robur trees growing in 

445 Southampton, southern England. Years without a box = zero acorns post-predation.

446
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447

448

449

450 Figure 2. Monthly minimum, maximum, and mean temperature anomalies (significance 

451 assessed with a two-sided Student’ t-test and indicated by black (P <0.05) dots) 

452 associated with mast and non-years for a population of Quercus robur trees growing 

453 in Southampton, southern England. Results are shown for years prior to the mast 
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454 year (left column); the mast year (centre column); the difference between the two 

455 (right column).
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456

457

458

459 Figure 3. Anomalies (assessed with a two-sided Student’ t-test and indicated by black (P 

460 <0.05) dots) in frost days and rainfall associated with mast and non-mast years for a 

461 population of Quercus robur trees growing in Southampton, southern England. 

462 Results are shown for years prior to the mast year (left column); the mast year 

463 (centre column); the difference between the two (right column).

464
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465

466

467

468

469

470 Figure 4. Relationship between average acorn yield (kg m-2) and local May-June average 

471 temperature for a population of Quercus robur trees growing in Southampton, 

472 southern England. Each dot represents one mast year.

473

474
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1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

1 0.304 0 0.109 0 0 0 0.156 0 0.416 0 0.153 0 0.005 0.016 0.169 0 0 0.063 0 0 0 0.029 0.490 0 0.379 0 0.464

2 0.435 0 0.102 0 0 0 0.131 0 0.288 0 0.289 0 0.000 0.275 0.076 0 0 0.106 0 0 0 0.039 0.146 0 0.094 0

3 0.376 0 0.349 0 0 0 0.193 0 0.029 0 0.144 0 0.062 0.004 0.021 0 0 0.021 0 0 0 0.274 0.371 0 0.149 0 0.608

4 0.310 0 0.013 0 0 0 0.233 0 0.022 0 0.015 0 0.002 0.025 0.037 0 0 0.002 0 0 0 0.002 0.174 0 0.000 0 0.041

5 0.347 0 0.199 0 0 0 0.432 0 0.410 0 0.187 0 0.033 0.042 0.126 0 0 0.287 0 0 0 0.125 0.124 0 0.207 0 0.319

6 0.292 0 0.010 0 0 0 0.502 0 0.087 0 0.083 0 0.007 0.013 0.085 0 0 0.044 0 0 0 0.097 0.041 0 0.162 0 0.403

7 0.710 0 0.023 0 0 0 0.647 0 0.236 0 0.234 0 0.014 0.028 0.085 0 0 0.019 0 0 0 0.166 0.214 0 0.183 0 0.218

8 0.674 0 0.273 0 0 0 0.938 0 0.419 0

9 0.516 0 0.204 0 0 0 0.392 0 0.218 0 0.333 0 0.063 0.046 0.543 0 0 0.402 0 0 0 0.346 0.192 0 0.497 0 0.563

10 0.289 0 0.142 0 0 0 0.295 0 0.211 0 0.284 0 0.010 0.002 0.011 0 0

11 0.139 0 0.009 0 0 0 0.545 0 0.674 0 0.105 0 0.000 0.094 0.156 0 0 0.445 0 0 0 0.209 0.083 0 0.124 0 0.117

12 0.319 0 0.107 0 0 0 0.439 0 0.260 0 0.106 0 0.008 0.038 0.051 0 0 0.106 0 0 0 0.070 0.132 0 0.070 0 0.090

Total (kg) 4.710 0 1.540 0 0 0 4.904 0 3.270 0 1.934 0 0.203 0.584 1.359 0 0 1.496 0 0 0 1.359 1.966 0 1.864 0 2.822

Mean (kg) 0.428 0 0.140 0 0 0 0.446 0 0.297 0 0.176 0 0.018 0.053 0.124 0 0 0.136 0 0 0 0.124 0.179 0 0.169 0 0.257

SE (kg) 0.048 0 0.032 0 0 0 0.067 0 0.054 0 0.029 0 0.007 0.023 0.043 0 0 0.048 0 0 0 0.033 0.039 0 0.043 0 0.061

Median (kg) 0.333 0 0.108 0 0 0 0.412 0 0.248 0 0.153 0 0.008 0.028 0.085 0 0 0.085 0 0 0 0.111 0.160 0 0.155 0 0.319

Year

Table S1 - Annual acorn yield (Kg m
-2

) for a population of 12 Quercus robur  trees growing on Southampton Common (50.9262
o
N, 1.4092

o
W), southern England. Acorn yield was quantified using four transects placed 

north, south, east and west extending from the base of the trunk to the edge of the canopy for each tree. Trees 8 and 10 became engulfed by brambles; tree 2 sufferred major branch damage. Acorn yield from each 

'sample' and the estimate for the 'total' for each individual tree (i.e. sample mass × 14.7) are shown. Hanley, Cook & Fenner (July 2017)

Tree 

Number
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