™ |

Check for
updates

Research Article Vol. 10, No. 8 | 1 Aug 2019 | BIOMEDICAL OPTICS EXPRESS 3875 I

Biomedical Optics EXPRESS -~

Identifying crossing collagen fibers in human
corneal tissues using pSHG images

M. ALizADEH,""?” D. MERINO,%>*" G. LOMBARDO,*° M. LOMBARDO,’ R.
MeNncuccl,® M. GHoTBl,! AND P. LozA-ALVAREZ?

!Department of Physics, University of Kurdistan, Pasdaran St., 66177-15177, Sanandaj, Iran
ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology,
Castelldefels, 08860, Barcelona, Spain

3UOC, Universitat Oberta de Catalunya, Barcelona, 08018, Barcelona, Spain

4CNR-1PCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158, Messina,

(Italy)
’Vision Engineering Italy srl, Via Livenza 3, 00198 Rome, Italy

SEye Clinic, Department of Surgery and Translational Medicine, University of Florence, 50121,
Florence, Italy

”Authors contributed equally to this paper.

*pablo.loza@jicfo.eu

Abstract: Polarization sensitive second harmonic generation (pSHG) microscopy has been
used previously to characterize the structure of collagen fibers in corneal samples. Due to the
typical organization of the corneal stroma, the information that pSHG provides may be
misleading in points where two different collagen fiber bundles orient along different
direction crossings. Here, a simulation that illustrates the problem is presented, along with a
novel method that is capable of identifying these crossing points. These results can be used to
improve the evaluation of corneal collagen structure, and it has been applied to analyze pSHG
data acquired from healthy and keratoconic human corneal samples.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The shape and transparency of the optical media of the eye, like the cornea or the crystalline
lens, play an important role in the quality of image formation on the retina. The microscopic
structure of these biological tissues is closely related to their optomechanical characteristics.
In the case of cornea, its shape and transparency are provided by this structure. The corneal
stroma is formed by a number of stacked lamellae of type I collagen fibrils, although type VI
collagen and proteoglycans can also be found in its structure [1-4]. Any alteration of this
structure, caused by either trauma or disease, can lead to changes in the physical and optical
characteristics of the cornea, and result in vision loss [2].

Different techniques have been used to characterize the microstructure of the human
cornea in the past. X-ray microscopy and scanning electron microscopy have been proposed
to precisely characterize molecular structure of the corneal collagen, such as the calculation of
its helical pitch angle [2,4,5]. However, these techniques require sample preparation protocols
that are not compatible with in vivo measurements. Recently, multiphoton (MP) microscopy
has been used to study the microscopic structure of different types of biological tissue,
including human corneal samples. MP microscopy has a great potential for in vivo studies due
to the following three main reasons: firstly, different molecules present in a biological tissue
can be observed by means of MP microscopy without the requirement of any exogenous
contrast agents [6]. Secondly, MP signal is usually generated by means of ultrashort laser
pulses at intensity values that are safe for in vivo experiments. Furthermore, the applied
excitation wavelength is usually close to the infrared, and exhibits high tissue penetration.
Thirdly, MP microscopy features intrinsic axial depth discrimination and reduced
photodamage.
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From all of the different MP microscopy techniques, second harmonic generation (SHG)
microscopy has become very popular for studies of the cornea. This is due to the fact that
corneal collagen is packed in the tissue in such a way that it behaves like an SHG active
polycrystalline lattice [7-10]. This characteristic has been used in the past to observe the
orientation of the collagen fibers using different theoretical models [9,11-15]. In particular,
the application of polarization sensitive SHG (pSHG) has been reported for the classification
of human corneal images according to the depth in the tissue at which they were acquired
[16]. In these experiments, the polarization direction of the excitation beam is changed,
resulting in a modulation in the intensity of the SHG signal obtained from the tissue. This
modulation is related to the angle between the polarization of the excitation beam and the
orientation of SHG active molecules. However, in this model it is assumed that all of the SHG
active molecules within a pixel volume, or voxel, are oriented along the same direction. This
requirement can produce misleading results in the study of corneal collagen tissue, since the
corneal collagen fibers usually intertwine and are oriented along different directions. This
situation is found especially in the anterior portion of the stroma, which plays the most
important role in bearing stress and maintaining corneal shape [3,14—16].

In this work, the effects that collagen fiber crossings can have on the results of the pSHG
model are illustrated. A method that is aimed at improving the information that can be
generated by means of this pPSHG biophysical model is also presented. This method is able to
detect the pixels of the pSHG images that include the contribution of bundles of collagen
fibers oriented along different directions. Once these pixels are detected, they can be filtered
out, providing more reliable information related to the orientation and molecular structure of
the collagen fiber bundles. These results have been experimentally tested on starch samples
and also on healthy and keratoconic corneas.

2. Materials and methods
2.1. Biophysical model

The biophysical model used in this work has been described extensively in previous studies
[17-22]. This model can predict the intensity of SHG signal, /sy, generated by an active
supramolecular assembly with cylindrical symmetry depending on the excitation beam
polarization orientation, a, and also the orientation of the SHG active molecule, ¢, as follows
[17]:

I,.(@,0)=a,+a,cos2(p—0a)+a, cosdp—a), (D

where ay, a, and a, are coefficients that will be described in more detail in the following
paragraphs. By taking the Fourier Transform (FT) of Eq. (1) with respect to a the following
expression is reached [11]:

(@, Q) =a,6(0)+a, exp(i20)6(1 - Q) + a, exp(i49)6(2 - Q) + c.c, 2)

where Q is the spatial frequency in the Fourier domain, and c.c. indicates the complex
conjugate.

From Eq. (2), it is possible to calculate two different quantities related to the molecular
structure of the SHG active assembly: the orientation of the supramolecular assembly, ¢, and
the orientation of the hyperpolarizability tensor dominant axis, 6,. In the case of corneal
collagen, ¢ is usually related to the orientation of the collagen fiber bundles, and 8, has been
previously related to the helical pitch angle of the collagen triple helix. These identifications
will be assumed from now on in this text. However, the general meaning of ¢ and 6, should
be considered when extending this model to other types of tissue.

The helical pitch angle, 6,, can be calculated from the parameters in Eq. (2) as follows

[11]:
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In the case of the orientation of the collagen fibers, ¢, it can be determined by computing the
complex argument of the second coefficient in Eq. (2) as:

tan’ 0 =

@ = arg[a, exp(i2¢)]/ 2. 4)
At this point, it is worth noting that, according to Eq. (2), the same information can also be
extracted from the third component in that equation:

@ = arg[a, exp(i4p)]/ 4. &)
It has also been detailed in previous studies that the values of the coefficients ay, a, and a, can

be calculated from 6, [11,23], and their explicit expressions are:
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Note that 4 is a proportionality constant that appears in all of the components and here it will
be set to 1, since it won’t affect the calculations in Egs. (3), (4) or (5).

According to this, for any given value of ¢ and 8,, the intensity of the SHG signal can be
determined for a particular value of a using Eq. (1). However, the described model assumes
that the orientation of the SHG active molecules is well defined, and therefore all the
molecules are oriented in a particular direction. As already mentioned, this may not be
accurate for collagen fibers in different lamellae of the cornea.

Previous reports have shown that the overall SHG intensity at a pixel where two collagen
fiber bundles cross can be described as the sum of the signals generated by each of the
isolated fibers [14,15]. This can be expressed as:

ITUT (a) = ISH(],I + ISH(],Z = ISHG (a’ ¢I ) + ISH(] (a’ ¢2 )’ (9)

where I7pr(0) is the total SHG signal intensity generated at a particular point in the sample,
illuminated by a laser beam polarized along the direction o, while Isy; and Igyg, are the
SHG intensities generated on the fibers 1 and 2 respectively when considered independently.
To evaluate the error incurred by the pSHG model used when collagen fibers oriented
along different directions are considered to be aligned along one specific and well-defined
direction, we generated a set of numeric data. Two different matrices with 512x512 elements
were generated, each matrix representing the orientation of a collagen fiber, ¢, on each pixel.
These matrices are shown in Fig. 1. The values of ¢;, showing the orientations of collagen
fiber 1 from the first matrix relative to the horizontal axis, are shown in Fig. 1(a). The value
of ¢; changes between —90° and 90°. The second matrix with the values of ¢,, is shown in
Fig. 1(b). It has been divided into two halves: in the left half, ¢, was kept constant at a value
of 0°, while in the right half, the value of ¢, was changed as the angle with the horizontal
axis, in the same way as ¢;. The values of ¢; and ¢, have been used to calculate /gy, and
Isyc ; respectively, in Eq. (9). For that, we chose a value of 6, = 45° close to the existing data
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for collagen [13,18,24] and by applying this value in Egs. (6), (7) and (8) the values for the
coefficients a) = 2.875, a, = 1.5 and a, = —0.375 were calculated. Similar to the actual pSHG
experiment, which will be described in following sections, nine different values of o (from 0°
to 180° with steps of 20°) were used to calculate /gy ; and Igyc . using Eq. (1). Finally, 9
different matrices of Iror(a) were calculated, one for each a value, as the sum of /gy ; and
Isyc.2, according to Eq. (9). In this way, a simulation was designed to study the behavior of
the pSHG model when two crossing collagen bundles are considered. A 3D set of I7or(a) data
was generated with a resulting matrix of 512 x 512 x 9 elements. In this data set, it will be
possible to differentiate two different situations: on the right half of the images the overall
intensity will be the contribution of two collagen fiber bundles aligned in the same
orientation, while on its left half the overall intensity will be the sum of the contributions of
two fiber bundles oriented along different directions. Since ¢, is kept constant on the left half
of the image, while ¢, is varying along the horizontal axis, all the possible angles between the
two different sets of collagen fiber bundle orientations can be easily visualized in the result.

50 50
G0 50
40 40
20 20
0 0

-20 -20
-40 -40
60 60
-80 a0

a) b)

Fig. 1. The values of the orientation data for collagen fibers, a) ¢; and b) ¢,, used as input to
generate the theoretical data set of two crossing collagen fibers.

Once this theoretical data set was generated, the FT of Irpr(a) was taken along the
polarization direction, a, and Eqgs. (3) and (4) were used to recover ¢ and 8, [11]. The results
of these calculations are shown in Fig. 2, and the recovered values will be referred to as ¢,

and 6,,, from this point on.
b)

.

Fig. 2. The results of the pPSHG model used with the theoretical data simulating two crossing
collagen fibers generated as described. a) Values of ¢,., and b) Values of 6,.,.

In the case of ¢,., shown in Fig. 2(a), these values have been calculated using Eq. (4). As
already explained, on the right half of the image, the results correspond to two collagen fiber
bundles oriented along the same orientation, and this orientation is correctly recovered in ¢,.
In the left half of the image, the results correspond to two collagen fibers oriented along
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different directions crossing. As it can be seen, on the horizontal line along the center of the
image, the two collagen fiber bundles are oriented along the same axis. However, when the
angle ¢, is different to ¢,, the resulting value of ¢,., becomes different from both ¢; and ¢,. A
similar situation occurs in Fig. 2(b), which shows the results for 6,,,, calculated using Eq. (3) .
As already mentioned, we used 6, = 45° in Eq. (1), which corresponds to the result obtained
in the right half of the image. However, on the left half, the contributions from the two fiber
bundles with different orientations result in an increase in the value of 6, as the difference
between ¢; and ¢, increases.

As explained previously, ¢,.; can be calculated in two different ways, using Egs. (4) and
(5). It should be noted that the arg() function returns values between + 180°, therefore the
resulting values of ¢,,, calculated from Eq. (4) will be phase wrapped between + 90°, because
¢ is multiplied by a factor of 2 in the exponential function. This is consistent with the
situation that is presented in this work, since the orientation of a fiber along 90° is equivalent
to that of —90°.

Similarly, the value of ¢, calculated using Eq. (5) is phase wrapped between + 45°,
because the value of ¢ in the exponential term is multiplied by a factor of 4. For clarity, the
values of ¢, calculated from the a, term in Eq. (4), are referred to as ¢,.,, while those
calculated from the a, term in Eq. (5), are referred to as ¢, 4.

The values of ¢, and ¢,.,, can be observed in Fig. 3(a) and (b), respectively. The figures
show that the values of ¢,, , present greater noise than those of ¢,,,,. This can be explained
by the fact that the a, component of the FT is usually much smaller than the one for a,. In
particular, in our simulation, the average value of the component a;, in Eq. (2) over the whole
image is 3.37, and for the component a, it is 1.36 x 107", This last value is comparable to the
accuracy of double type floating data in Matlab (which is in order of 107'%), and hence the
higher levels of noise in the results.
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Fig. 3. The values of ¢, calculated by our simulation using a) Eq. (4), @ =
argfaexp(i2@)]/2, and b) Eq. (5), @ress = arglaexp(i4@)]/4. c) The values of ¢ ., calculated
by phase wrapping the values of ¢,.,» between £ 45°. d) The values of A¢,es = (¢ o5, 2-Pres4)-

9

At this point it is interesting to compare the values obtained for ¢,., > and ¢, 4. Since @4
values range from —45° to 45°, it would seem necessary to unwrap them to values between
—90° and 90°. However, this operation can be difficult, and it seems more convenient to phase
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wrap the values of ¢,.,, between + 45° instead. The values of ¢,.;, wrapped between + 45°
will be referred to as ¢ ., from now on, and they are shown in Fig. 3(c). In order to show the
similarity between ¢ .., and ¢, the difference between these two quantities, which is
called 4¢,.;, was calculated and is shown in Fig. 3(d). It should be noted that the values of
these results range from —90° to 90°, since the maximum difference between two quantities
comprised between —45° and 45° can have an absolute value of 90°.

The results in Fig. 3(d) are interesting, and to better explain them, we have displayed them
in a different way in Fig. 4. Figure 4(a) shows the data of 4¢,., shown in Fig. 3(d), and in Fig.
4(b) the histogram Fig. 4(a) is presented. This histogram shows 5 different peaks: one peak
around 0°, two peaks close to values of = 90° and two more close to values of = 45°. To
understand what these peaks are related to, let us concentrate on the histograms of the left and
right halves of the image separately.

Let’s first consider the data of the right half of the image in Fig. 4(a). In this part of the
image, all the molecules are oriented along the same direction, and it is expected that A,
would be close to zero. These are the data in Fig. 4(¢). In the corresponding histogram, Fig.
4(f), it can be seen that the most repeated values for Ag,,, are around 0°, which correspond to
the pixels where the values of ¢, and ¢,., are very similar. However, there are also
smaller peaks close to values of = 90°. In the image, Fig. 4(e), the pixels with values of 4¢,.,
close to + 90° (these are the pixels in maroon and dark blue) are found along the directions +
45°. These peaks come from the noise introduced by the calculation itself. To illustrate this,
let us consider a point with ¢,,, , = 44°, and assume that the noise changes the expected value
of @,.54 by a 5% to a different amount of 46°. After phase wrapping, the new value of ¢, 4
would be —44°, which once subtracted from ¢, will produce a value of A¢p,., = 88°. As
mentioned above, this situation will mainly arise around the values of ¢ close to the phase
wrapping angle limit, which is indeed observed in Fig. 4(e).

a) . ¢ e)

§ o0

b) | d ‘ f)

I} 20 40 60 B8O 60 40 20 0 20 40 60 an -80  -60 40 -20 o 20 40 B0 8O0

Fig. 4. a) Values of 4¢,., identical to those in Fig. 3(d). b) Histogram of the values in a). c)
Values of 4¢,., only for the left-hand side (pixels with crossing fibers) of the data in a). d)
Histogram of the values in c). e) Values of 4¢,., only for the right-hand side (pixels with
parallel fibers) of the data in a). f) Histogram of the values in e).

In Fig. 4(c), the results for the left half of the A¢,., image are shown. This data presents
crossing collagen fibers along different directions. The largest values of 4¢,.; appear when the
crossing fibers form angles of + 90° (orange and blue pixels). In the corresponding histogram,
Fig. 4(d), there is also a main peak around 0° as in the previous case. However, there are also
peaks in 4¢,,, histogram around the values ~ + 45°. These values correspond to the pixels
where the two collagen fibers are not aligned and, they form a certain angle instead. In Fig.
4(c) it can be seen that these pixels correspond to those positions where the difference
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between the input values ¢; and ¢, is larger than 45°, which is where blue and orange pixels
can be found.

After this consideration, it can be seen that the histogram in Fig. 4(b) shows all of the
peaks described above: one large peak around 0°, two peaks at + 90° and two more at + 45°.
Using the data in the histogram of Fig. 4(b) we can determine the pixels with crossing fibers,
which would be those included in the peaks around + 45°. These pixels have values of 4¢,. in
the ranges of (—53.11°, —22.92°) and (22.92°, 53.11°). This information can be used to
identify and filter out the pixels with crossing fibers in order to obtain the collagen fiber
orientations more reliably.

In the following sections, these results will be validated using the data acquired from
different biological samples.

2.2 pSHG microscopy imaging

The results obtained with the simulation described in the previous section have been tested
using the experimental data from real samples. To do this, the pSHG microscopy images have
been acquired using a setup that has been fully described previously [13,21,23]. A Kerr lens
modelocked Ti:sapphire laser (MIRA 900f, Coherent) was used as the excitation source. This
pulsed laser source was operated at a central wavelength of 810 nm with a pulse duration of
160 fs (measured at the sample plane) and a repetition rate of 76 MHz. A water immersion
1.05 NA 25x objective (Plan Apochromat LWD*, Nikon) was applied to focus the light on
the sample, while another 1.05 NA 25x water immersion objective (XLPlan N, Olympus) was
used to collect the signal generated in the forward direction. The theoretical axial resolution
of the system was 1 pm [25]. Typical frame acquisition time for a single 512x512 pixels
image was about ~1.5 s. The effect of depolarization of the fundamental beam introduced by
the different optical components was also measured at the sample plane, as previously
described [13].

In a first approach, a starch granule was studied as a representative case for the pSHG
model. It has been previously reported that the amylopectin molecules in a starch granule are
SHG active, and that they are radially oriented within the granule, without any crossing
between them [26]. The results obtained will be analyzed in detail in the following section.

Ex-vivo samples of healthy and keratoconic human corneas were also analyzed using our
system and method. The samples were obtained in compliance with the guidelines of the
Declaration of Helsinki for research involving the use of human tissue and the experimental
protocol was approved by the local ethical committee (Clinic Barcelona, Hospital
Universitari, Barcelona, Spain). The healthy corneas were provided by the Veneto Eye Bank
Foundation (Zelarino Venezia, Italy) with the request of endothelial cell density = 2000
cells/mm™ They were stored in 15% dextran-enriched corneal medium storage solution [16].
The corneas affected by keratoconus were harvested from patients undergoing penetrating
keratoplasty at the Department of Ophthalmology of the University of Florence (Italy).
Immediately after surgery, the corneas were immersed in 2.5% glutaraldehyde solution and
shipped to the laboratory via express air courier for pPSHG imaging.

For imaging, each corneal sample was placed in a custom-made chamber filled with 15%
dextran. The sample was mounted on the microscope between two different #1 cover-slips
(0.13 to 0.16 mm thick), with its anterior surface parallel to the scanning plane. Z-stacks of
images of the whole depth of the sample were acquired. These images were taken at 5 um
intervals. Imaging was performed on several areas of the central 2 mm of each cornea. The
optical power after the objective was measured to be ~15 mW and it was adjusted with
imaging depth to compensate for signal attenuation. The power was increased up to 50% in
deeper planes in order to cover the full dynamic range of the detector. We made sure that no
damage occurred to the tissue during measurements; any alteration would have been observed
clearly as a consequence of photodisruption [27].
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Nine different pPSHG images for each plane of focus were obtained by exciting the corneal
lenticule with the same number of different linear polarizations [13,19]. Polarization of the
excitation beam reaching the sample was changed using a rotating half wave plate. SHG
images were obtained for the polarization values ranging from 0° to 180° at 20° steps. These
images were stored for post-processing. In an attempt to reduce the noise in the images, each
polarization experiment was repeated four times and then averaged. The overall acquisition
time of a pSHG experiment was 1.5 minutes for each focal plane.

3. Results

In this section, the results obtained from the images of real samples are discussed. The section
is divided into two parts: the analysis of the images of starch granules, and the same analysis
for the excised corneal samples.

3.1 pSHG imaging of starch granules

Figure 5 shows some representative images of the pSHG images obtained from starch
granules. Figure 5(a) shows the average of the 9 SHG intensity images with rotated
polarizations acquired as described in the previous section. Figure 5(b) shows ¢, ), the
orientation of the pSHG active molecules in each pixel of the image, obtained using Eq. (4).
A radial distribution is observed, as expected [26]. To test the validity of the model, 4¢,., was
also calculated for the sample. The pixels with A4¢,, values laying between (—53.11°,
—22.92°) and (22.92°, 53.11°) were identified. This information was used to generate a mask
to reject these pixels from the data set, since the simulations show that these are the pixels
with SHG active molecules oriented along different directions. The resulting image after
these pixels were rejected is shown in Fig. 5(c). By comparing this image with the image in
Fig. 5(b), it can be seen that only a few pixels of the data set are rejected. These rejected
pixels correspond to molecules oriented close to ¢ = = 45°. As explained before, these are
special values of ¢ because they are the limit angles for the phase wrapping of ¢,.,, values,
where noise plays an important role. These results indicate that, except for the particular
orientations ¢ = £ 45°, our method is not affected by the orientation of the SHG active
molecules. Figure 5(d) shows the histogram of 6, values. These data have been fitted to a
lognormal function. In the plot, 8, values have been normalized to the peak value of the fitted
curve. The mode of the fitted lognormal function, 8, = 36.7°, is in a good agreement with the
values of the helical pitch angle for starch granules reported in previous works [24]. Since in
this case very few points are rejected by the proposed analysis, these results for 8, do not
change considerably when using the described mask.
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Fig. 5. a) Average intensity of the 9 pSHG images acquired from a starch granule. Scale bar is
10 pm. b) Values of ¢, calculated from the image in a). ¢) The same image as in b) after
applying a mask calculated using 4¢,. as explained in the text. d) The histogram of 6, values.

3.2 pSHG imaging of human corneal samples

As already mentioned, the use of the method described here has been extended to the study of
the collagen fiber structure of healthy and keratoconic excised human corneal samples. Figure
6 shows some representative results, obtained from an excised healthy human cornea at a
depth of 220 um. Figure 6(a) shows the pSHG intensity image of the stroma calculated as the
average of the pSHG images acquired for the 9 different polarization directions of the
excitation beam, as described in section 2.2. In this image, the structure of the collagen fibers
oriented along different directions can be clearly observed. Figure 6(b) shows the results of
®res,2 Obtained for this particular set of images using the pSHG model described in the
previous studies. In these calculations, noisy pixels have been filtered out in a first approach
by considering appropriate values for signal to noise ratio (SNR) of the SHG signal, and
appear in black [16]. In the image, the collagen fibers appear in different colors, depending on
their orientation calculated using the method described. The main components of the
orientation of the fibers appear in the image in orange-yellow, which corresponds to the
orientation angles of 25° to 35°. In addition, some dark blue fibers can be identified,
corresponding to the angular range of —60° to —80°. These two main directional bands seem
to be clearly represented in Fig. 6(a). However, the white circle in Fig. 6(b) shows some
fibers in red, which correspond to the orientation of ~70°. Similarly, the red circle shows
some fibers in green, which correspond to the orientation of ~0°. This image illustrates the
problem that we discussed earlier, since these orientations do not correspond to those
observed in Fig. 6(a).
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Fig. 6. pSHG data acquired from a normal cornea at a depth of 220 pm. a) Average intensity of
the 9 pSHG images acquired. Scale bar is 10 pm. b) Collagen fiber orientations (¢,es2)
calculated using the pSHG model, Eq. (4). The circle highlights an area where the results of
®res,2 do not correspond with apparent orientations of the fibers in a). In particular, in the white
circle, a fiber in red (70°) appears to be aligned at around 30°-40°. Also, in the red circle, a
fiber in green (0°) seems aligned along —70°. ¢) The same results as in b) after rejecting the
pixels where crossing fibers have been identified, including these conflicting fibers.

Figure 6(c) shows the orientation data after the pixels with crossing fibers have been
detected and filtered out using Ag,., information. As explained before, the values of A,
have been used to identify pixels with crossing fibers and mask them out. Visual inspection of
the results shows that the red and green collagen fibers in Fig. 6(b) have been mostly removed
from the data set after applying our method. However, the obtained collagen fiber orientations
seem consistent with those shown in Fig. 6(a).

We have compared our results with those generated using methods based on the
measurement of the SHG anisotropy parameter proposed in previous studies [14,15]. Figure
7(a) shows the pixels of the healthy cornea data set shown in Fig. 6 that have been identified
as generated in a single collagen fiber using the SHG anisotropy parameter. In Fig. 7(b) the
same result using our new method based on A4¢,., measurement is shown. Figure 7(c) shows
the pixels that have been identified only by one of the two methods. The number of pixels
identified in Fig. 7(c) correspond to only ~4% of the pixels in the whole image.

Fig. 7. Comparison of the pixels where pSHG signal has been identified as generated from a
single collagen fiber using a) anisotropy parameter information, and b) our method based on
Ap,.s information. c) Pixels that have been identified by only one of the methods. This image is
used as a way to determine the differences between the two methods.

As in the case of starch granules, the values of 6, have also been calculated using the data
from Fig. 6. These data were also masked using the results in Fig. 7(b) (similar to the
procedure followed with ¢ detailed before). Figure 8(a) and b show the values of 8, calculated
before and after applying the mask. The histograms of the 6, values in Fig. 8(a) and (b) are
shown in Fig. 8(c). As in the case of the starch images, a lognormal function has been fitted to
the data in order to estimate the peak value of the distribution. The number of pixels used for
these two histograms is not the same, since the pixels where crossing fibers have been
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identified in Fig. 8(a) were rejected and not considered in Fig. 8(b). Therefore, for easier
comparison of the two histograms, the data have been normalized to the peak of the fitted
lognormal function, i.e. the values of the number of pixels for each 6, value in the histogram
have been divided by the maximum height of the fitted lognormal function. The results are
shown in Fig. 8(c). The dashed and solid lines in the picture show the plot of the fitted curves
of 6, values in Fig. 8(a) and b respectively. The modes of these lognormal distributions are
48.1° when considering all pixels (Fig. 8(a)), and it is reduced to a value of 46.4° after
rejecting pixels with crossing fibers (Fig. 8(b)). These values are compatible with previous
experimentally measured reports of the helical pitch angle for collagen [13,18,24]. A shift of
~1.5° is observed in the modes of the fitted curves. This result is consistent with what was
found in the simulation detailed in section 2.1, where one of the effects of crossing fibers in
the pixels was the overestimation of 6, value (Fig. 2(b)).

T T T T T
.

+  Helical pitch angle histogram of a)
09+ —=—-—-Lognormal fit to data from a)

Helical pitch angle histogram of b)
Lognormal fit to data from b)
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Fig. 8. Helical pitch angle of collagen fibers in normal cornea, a) before and b) after detecting
and rejecting pixels with crossing fibers. Scale bar in a) is 10 um. c) Helical pitch angle
distribution and the resulting fit based on a lognormal function for the data in figures a) and b).

Data acquired from keratoconic corneas have also been studied using the method
described in this article. Figure 9 shows some representative data for this sample. Figure 9(a)
shows an average pSHG intensity image, where the characteristic collagen structure at a depth
of 45 um can be seen. The structure shown is similar to that in Fig. 6. Figure 9(b) shows the
results of ¢,., obtained using the pSHG model described. The white circle in the image
shows an area including alternating blue and red colored areas, corresponding to ~-70° and ~
+ 70° approximately. However, in the SHG intensity image, Fig. 9(a), these fibers seem to be
oriented along a direction of approximately —40°. Another interesting case corresponds to the
fibers inside the red circle. The colors in these fibers indicate that they are oriented between
angles from ~ + 20 to + 40°, while their orientations in the intensity picture seem to be closer
to ~ + 75°. In Fig. 9(c), the pixels where crossing collagen fibers have been identified are
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rejected using the method described in this paper. The pixels with conflicting orientation
values have been automatically identified and masked out. Visual inspection of the results
show that the remaining collagen fiber orientations are consistent with the corresponding ones
shown in Fig. 9(a). The values of 6§, have also been calculated. The modes of the lognormal
distributions are 49.97° before rejecting the erroneous pixels and 49.39° after rejecting them.
The shift in these values is ~0.6° for this image.

Fig. 9. pSHG data acquired from a keratoconic cornea at a depth of 45 um. a) Average
intensity of the 9 pSHG images acquired. Scale bar is 10 pm. b) Collagen fiber orientations
(¢res,2) calculated using the pSHG model. ¢) The same results as in b) after rejecting the pixels
where crossing fibers have been identified.

These results illustrate that the method is effective to detect the pixels of pSHG images
where collagen fiber bundles are crossing, both in the case of healthy and keratoconic
corneas.

4. Discussion

In this work, a new method to analyze pSHG data acquired from images of excised human
corneal tissues is presented. This model considers the possibility of different collagen fibers
contributing to the overall pPSHG image intensity in a single pixel. The method is based on a
theoretical model that takes into account the variation of the pSHG intensity image with
respect to the excitation beam polarization to calculate the orientation of collagen fibers. The
main assumption for this model is that the overall pSHG signal in a pixel where two fibers
with different orientations cross is the sum of the contribution from each of the two isolated
fibers. The model has shown that failure to consider this effect can be a source of error in the
estimation of the orientations of fibers containing the pSHG active molecules, and their
helical pitch angle, which may be overestimated. The simulation has also provided an
estimation for the values of the parameters, i.e. the range of 4¢,., values, needed to evaluate
the probability to have crossing fibers in a particular pixel of a pSHG image.

The newly developed model has been validated on starch granules. The results have
confirmed that the pSHG active molecules in the starch granule are generally not oriented
along different directions in the same pixel.

The primary interest was to apply the new model to the human cornea, and data has been
acquired from ex-vivo healthy and keratoconic human corneal samples. The results obtained
show that the model is able to automatically identify pixels of the image where crossing
collagen fibers contribute to the overall pSHG signal. By masking these values, it has been
possible to automatically discard pixels that showed orientation values that conflicted with
visual observation. Also, after discarding these pixels, a shift toward lower values has been
observed on the estimation of the helical pitch angle of the corneal collagen images. The
results are in good agreement with the performed simulation, and have consistently provided
values of 6, that are compatible with the values reported in the bibliography [13,18,24].

It is worth noting here that using a system with higher axial resolution may be considered
as a way to reduce the number of pixels with crossing fibers in pSHG images. However, this
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translates on a hardware configuration change to increase the numerical aperture of the
objective used. This can be a limit to the performance of the system. Nevertheless, even with
optimized axial resolution, misalignments between the image plane and the orientation of the
lamellae in the cornea can occur, and this can lead to areas in the image including intersection
between different lamellae and therefore the problem may still arise. In this sense, it seems
appropriate to have a method that can determine the pixels that may detect conflicting results
in an automated way.

We have therefore presented and tested a new method to determine the pixels in pSHG
images which may contain information generated at different crossing collagen fibers, and the
obtained results are in good agreement with similar methods available in the literature. The
presented model has great potential in the study of the collagen structure in the human cornea,
especially in its characterization to determine the differences between healthy corneas and
those affected by disease known to have an impact on the collagen distribution, such as in the
case of keratoconus. Future studies will aim at developing pSHG-based imaging biomarkers
for identifying the number and density of crossing collagen fiber bundles in order to assess
the structural integrity of cornea tissue.
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