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Online division of labour: emergent 
structures in Open Source Software
María J. Palazzi1, Jordi Cabot   1,2, Javier Luis Cánovas Izquierdo1, Albert Solé-Ribalta1 & 
Javier Borge-Holthoefer   1

The development Open Source Software fundamentally depends on the participation and commitment 
of volunteer developers to progress on a particular task. Several works have presented strategies to 
increase the on-boarding and engagement of new contributors, but little is known on how these diverse 
groups of developers self-organise to work together. To understand this, one must consider that, on 
one hand, platforms like GitHub provide a virtually unlimited development framework: any number 
of actors can potentially join to contribute in a decentralised, distributed, remote, and asynchronous 
manner. On the other, however, it seems reasonable that some sort of hierarchy and division of labour 
must be in place to meet human biological and cognitive limits, and also to achieve some level of 
efficiency. These latter features (hierarchy and division of labour) should translate into detectable 
structural arrangements when projects are represented as developer-file bipartite networks. Thus, 
in this paper we analyse a set of popular open source projects from GitHub, placing the accent on 
three key properties: nestedness, modularity and in-block nestedness –which typify the emergence 
of heterogeneities among contributors, the emergence of subgroups of developers working on 
specific subgroups of files, and a mixture of the two previous, respectively. These analyses show that 
indeed projects evolve into internally organised blocks. Furthermore, the distribution of sizes of such 
blocks is bounded, connecting our results to the celebrated Dunbar number both in off- and on-line 
environments. Our conclusions create a link between bio-cognitive constraints, group formation and 
online working environments, opening up a rich scenario for future research on (online) work team 
assembly (e.g. size, composition, and formation). From a complex network perspective, our results 
pave the way for the study of time-resolved datasets, and the design of suitable models that can mimic 
the growth and evolution of OSS projects.

Open Source Software (OSS) is a key actor in the current software market, and a major factor in the consistent 
growth of the software economy. The promise of OSS is better quality, higher reliability, more flexibility, lower 
cost, and an end to predatory vendor lock-in, according to the Open Source initiative1. These goals are achieved 
thanks to the active participation of the community2: indeed, OSS projects depend on contributors to progress3,4.

The emergence of GitHub and other platforms as prominent public repositories, together with the availability 
of APIs to access comprehensive datasets on most projects’ history, has opened up the opportunities for more 
systematic and inclusive analyses of how OSS communities operate. In the last years, research on OSS has left 
behind a rich trace of facts. For example, we now know that the majority of code contributions are highly skewed 
towards a small subset of projects5,6, with many projects quickly losing community interest and being abandoned 
at very early stages7. Moreover, most projects have a low truck factor, meaning that a small group of developers 
is responsible for a large set of code contributions8–10. This pushes projects to depend more and more on their 
ability to attract and retain occasional contributors (also known as “drive-by” commits11) that can complement 
the few core developers and help them to move the project forward. Along these lines, several works have focused 
on strategies to increase the on-boarding and engagement of such contributors (e.g., by using simple contribution 
processes12, extensive documentation13, gamification techniques14 or ad hoc on-boarding portals15, among oth-
ers16). Other social, economic, and geographical factors affecting the development of OSS have been scrutinised 
as well, see Cosentino et al.17 for a thorough review.

Parallel to these macroscopic observations and statistical analyses, social scientists and complex network 
researchers have focused, in relatively much fewer papers, on analysing how a diverse group of (distributed) 
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contributors work together, i.e. the structural features of projects. Most often, these works pivot on the interac-
tions between developers, building explicit or implicit collaborative networks, e.g. email exchanges18,19 and unipa-
rtite projections from the contributor-file bipartite network20, respectively. These developer social networks have 
been analysed to better understand the hierarchies that emerge among contributors, as well as to identify topical 
clusters, i.e. cohesive subgroups that manifest strongly in technical discussions. However, the behaviour of OSS 
communities cannot be fully understood only accounting for the relations between project contributors, since 
their interactions are mostly mediated through the edition of project files (no direct communication is present 
between group members). To overcome this limitation, here we focus on studying the structural organisation of 
OSS projects as contributor-file bipartite graphs. On top of technical and methodological adaptations, the con-
sideration of these two elements composing the OSS system allows retaining valuable information (as opposed to 
collapsing it on a unipartite network) and, above all, recognising both classes as co-evolutionary units that place 
mutual constraints on each other.

Our interest on the structural features of OSS projects departs from some obvious, but worth highlighting, 
observations. First, public collaborative repositories place no limits, in principle, to the number of developers 
(and files) that a project should host. In this sense, platforms like GitHub resemble online social networks (e.g. 
Twitter or Facebook), in which the number of allowed connections is virtually unbounded. However, we know 
that other factors –biological, cognitive– set well-defined limits to the amount of active social connections an 
individual can have21, also online22. But, do these limits apply in collaborative networks, where contributors 
work remotely and asynchronously? Does a division of labour arise, even when interaction among developers 
is mostly indirect (that is, via the files that they edit in common)? And, even if specialised subgroups emerge (as 
some evidence already suggests, at least in developer social networks20), do these exhibit some sort of internal 
organisation?

To answer these questions, we will look at three structural arrangements which have been identified as sig-
natures of self-organisation in both natural and artificial systems: nestedness23,24, modularity25–27, and in-block 
nestedness28–30. The first one, nestedness, is a suitable measure to quantify and visualise how the mentioned 
low truck factor, and the existence of core/drive-by developers31, translates into a project’s network structure. 
As for modularity, it provides a natural way to check whether OSS projects split in identifiable compartments, 
suggesting specialisation, and whether such compartments are subject to size limitations, along the mentioned 
bio-cognitive limits. Finally, since modularity and nestedness are, to some extent, incompatible in the same net-
work32,33, in-block nestedness (or the lack of it) can help to determine how projects solve the tension between the 
emergence of nested (hierarchy, asymmetry) and modular (specialisation, division of labour, bounds to social 
connections) patterns.

Results
The projects that we analyse in the following were selected according to their popularity (quantified as the num-
ber of stars these projects had received on GitHub, at the time of collection in 2016). This criterium mainly 
responds to two arguments: maturity and success. That is, here we purposefully pay attention to projects which 
have reached a reasonable degree of evolution, regardless of the absence (or presence) of any given structural 
organisation at the initial stages.

After pre-processing, formatting and discarding some of the top 100 public OSS projects hosted on GitHub, 
we ended up retaining 65 of them, see Materials and Methods for details. As can be seen in Table 1, we have a suf-
ficiently broad distribution of project sizes and age. Note also that popularity (number of stars) is not necessarily 
related to their size (Pearson coefficient r = −0.03) nor age (r = −0.1).

Each of these projects have been represented as a bipartite unweighted graph, where inter-class links (between 
contributors c and files f) are allowed, but intra-class links are forbidden. This bipartite network is thus encoded 
as an N × M rectangular binary matrix A, where N is the number of contributors, and M is the number of files. An 
entry acf = 1 if contributor c edited the file f at least once, and 0 otherwise. The total size of a project is S = N + M; 
the smallest project considered here is resume.github.com, with S = 82, and the largest one is foundation-sites, 
with S = 13,382. Since we are focusing on the bipartite representation of OSS projects, we first have explored the 
existence of any relationship between both elements (contributors and files) that compose the projects. We com-
puted the Pearson correlation coefficient between the number of files and contributors, and found a rather weak 
positive correlation between them (r = 0.34). Surprisingly, some projects exhibit strong imbalances between both 
quantities, see Materials and Methods for details.

# Contributors # Files # Commits # Stars Project age

Largest project 1,061 12,321 75,757 27,500 4 years 11 months

Smallest project 55 27 444 36,900 5 years 6 months

Average 422 3,247 33,936 46,334 4 years 9 months

Most popular project 516 2,833 34,666 293,000 2 years 10 months

Least popular project 117 103 4,057 21,700 5 years 5 months

Oldest project 1,434 10,413 174,452 35,000 11 years 3 months

Youngest project 43 51 210 31,600 0 years 3 months

Table 1.  Statistics of our dataset.
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Preliminary observations.  Before we focus on the structural arrangements of interest (nested-
ness, modularity, in-block nestedness), we explore whether a potentially unbounded interaction capability 
is mirrored in actual OSS projects across 4 orders of magnitude in size. To do so, we work on the projected 
contributor-contributor network, to measure the developer’s implicit average degree 〈k〉, i.e. the average amount 
of contributors with whom an individual shares at least one file. Figure 1(a) shows a scatter plot of 〈k〉 against S 
(note the semi-log scaling). Panels (b) and (c) in Fig. 1 shows the scatter plots of 〈k〉 against N and M, respectively. 
Despite the changes in the x−axis scale (which affects the order in which projects are represented), there are no 
significant differences in the results. Such results indicate that, besides the initial fluctuating pattern, 〈k〉 presents 
an almost flat trajectory suggesting that, on average, a contributor indirectly interacts with ~70 peers, regardless 
of the size of the project. As visual aid, we have added a vertical red line in panel (b) at N = 70, to differentiate 
those networks with N < 70 and for which it is not possible to exhibit 〈k〉 ≈ 70. The stable behaviour of this aver-
age was statistically validated with the Augmented Dickey-Fuller (ADF) test for stationarity of time series (see 
Materials and Methods for details).

The stationary pattern for the developers implicit average degree in Fig. 1 is interesting in two aspects. First, it 
points to an inherent limitation to the number of connections (even indirect ones) that a contributor to a project 
can sustain. Notably, such limitation is below (but not far) from the Dunbar number (somewhere between 100 
and 300), which is echoed as well in digital environments22. Second, the result is an indication of the existence of 
some sort of mesoscale organisation in the projects. In Bird et al.19, the authors find that developers in the same 
community have more files in common than pairs of developers from different communities. Reversing the argu-
ment, one may say that relatively small contributor neighbourhoods are indicative, though not a guarantee, of the 
presence of well-defined subgroups in OSS projects.

Mesoscale patterns.  From the previous encouraging result, we move on to the analysis of a comprehensive 
view of projects. The specificities of the methods to calculate nestedness  , and to optimise modularity Q and 
in-block nestedness   are detailed in the Materials and Methods section. For the sake of illustration, Fig. 2 (top 
row) shows idealised examples of nestedness (left), modular (middle) and in-block nested (right) arrangements. 
The bottom row of the figure presents actual adjacency matrices of three projects with high values of each struc-
tural measure. In this Figure, rows and columns have been rearranged to highlight the different properties.

We start out with a general overview of the results for the three measures of interest. Figure 3 plots the 
obtained values for  , Q, and   over all the projects considered in this work. To ease visualisation, and consider-
ing that nestedness and modularity are antagonistic organisations33, projects are sorted to maximise the difference 
between   and Q. In general, nestedness is the lowest of the three values at stake, and in-block nestedness is, 
more often than not, the highest. It can be safely said, thus, that a tendency to self-organise as a block structure is 
present: 90% of the projects exhibit either Q or   above 0.4, and values beyond 0.5 are not rare. This evidence is 
compatible with previous results regarding the division of labour: indeed, be them modular or in-block nested, 
most projects can be split into communities of developers and files, forming subgroups around product-related 
activities19.

Just like there is virtually no technical limit to the overall size of a project, there is not either an explicit bound 
to the size that a sub-group should have. And yet, previous theory and evidence suggests that larger communities 
come at an efficiency cost: the dynamics of a group change fundamentally when they exceed the Dunbar number, 
which is estimated around 150. While most often the number refers to personal acquaintances, it has been (and 
still is) applied in the industrial sphere34. Applied to the OSS environment, exceedingly small working sub-groups 
might hamper a project’s advance; while too many contributors may not allow the group to converge towards a 
solution35,36. We explore whether, indeed, size limitations arise in developers sub-groups, as they emerge from 

Figure 1.  Contributor-contributor network: scatter plots of the developers implicit average degree 〈k〉 against 
project size S = N + M (panel (a)), number of contributors (panel (b)) and number of files (panel (c)). The 
shadowed grey area represents one standard deviation above and below the average, while circles represent each 
individual project. The red line in panel (b) indicates N = 70 contributors. Inset tables in all panels show the 
results of the ADF stationarity test. All plots are presented in semi-log axes.
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either Q or   optimisation procedures. Although partitions are hybrid, i.e. a community has both developers and 
files, in the following, we will report the community sizes in terms of developers.

Figure 4 provides a global overview of the 65 projects studied here, with the distribution of their largest sub-
group sizes as they are identified via Q (panel (a)) or   (panel (b)). In both cases the average (dashed orange 
vertical line) is below 200, and the histogram is evenly distributed around 100: most communities belong in the 
range from 80 to 200. Given the obvious similarity between both distributions, we perform a Mann-Whitney U 
test, so as to find out whether these two distributions are actually compatible (the null hypothesis cannot be 
rejected, p-value = 0.3). In other words, block sizes are independent from the optimisation strategy adopted. 
Indeed, the test indicates that both size distributions can be regarded as drawn from populations having the same 
distribution, and the combined distribution is shown in panel (c). The solid red line represents a log-normal fit 
(notice the logarithmic scale in the x-axis), and the insets in all panels show the QQ plots, to compare both theo-
retical and empirical distributions revealing that the fit is accurate.

Although Fig. 4(c) evidences, on average, a well-defined maximum community size (at 169.7 users, and 95% 
confidence interval [139.4,206.7] as measured for log-normal distributions37), we must ensure that the size of the 

Figure 2.  Top row: left: Nestedness  , middle: Modularity Q, bottom: In-block nestedness  . Bottom row: 
Interaction matrices for three projects with high values for each one the structural patterns of interest.

Figure 3.   , Q, and   obtained values, for each project of our dataset. The projects were sorted to maximise 
the difference between   and Q.
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largest communities detected for each project is independent of the size of the project, in order to validate such 
organisational limit. That is, we need to test that the largest blocks (far right in panel (c)) do not necessarily cor-
respond to the largest projects. To do so, we go down to the project level. Figure 5 reports average (panels (a) and 
(b)) and maximum (panels (c) and (d)) subgroup sizes for both community identification strategies, as a function 
of the project size S. In general, results point at the existence of upper bounds to community size. This impression 
is confirmed statistically, as the ADF test for stationarity indicates (see p-values in insets) that subgroup sizes, 
after a fluctuating behaviour when S < 2000, remain stable across S in panels (b) to (d). This is not so in panel 
(a): average Q-communities exhibit a subtle growth with respect to project size, and the ADF test signals such 
non-stationarity. Nonetheless, it is apparent that in all cases –even in panel (a), despite its increasing trend– the 
size of communities is compatible with the limits described by Dunbar’s number: in panel (c), largest community 
size is slightly above 200. In panel (d), even the largest projects reflect that the maximum size of a community is 
between 100 and 200.

These results are surprising, since such trend towards the compartmentalisation of the workload is not only 
decentralised, in the sense that it does not emerge from a predefined plan, but also implicit, because the interac-
tion between developers is most often indirect.

Co-existing architectures and project maturity.  As it has been suggested33, empirical evidence indi-
cates that more than one structural pattern may concur within a network, each evincing different properties of the 
system. We take the same stance here: a network is not regarded, for example, as completely modular or completely 
nested; rather, it may combine structural features that reflect the evolutionary history of the system, or the fact 
that the system evolves under different dynamical pressures that favour competing arrangements.

A convenient way to grasp this mixture is a ternary plot (or simplex), see Fig. 6. In the ternary plot, each pro-
ject is located with three coordinates f , fQ and f , which are simply calculated from the original scores, e.g. 

= + +f Q/( )N N IN  (note that the three quantities are, by definition, in the [0, 1) range). The simplex can be 
partitioned according to “dominance regions”, bounded by the three angle bisectors. These regions intuitively tell 
us which of the three patterns is more prominent for any given project. Note that certain areas of the simplex (in 
grey in Fig. 6) are necessarily empty, see Materials and Methods, and Palazzi et al.33 for further details. Figure 6 
reveals that most projects lie in the nested regions, while the predominantly modular region is relatively empty.

Together with their dominant architecture, points in Fig. 6 are colour-coded according to the total number 
of commits that each project has received. We take this number as a proxy to the level of development or matu-
rity of the project (note that a project’s age may be misleading due to periods of inactivity). The distribution of 
colour on the simplex suggests that more mature projects tend to exhibit nested or in-block nested structures, 
whereas predominantly modular projects appear to be relatively immature (with exceptions, admittedly). Such 
result is resonant to the fact that topical conversations in online social networks (“information ecosystems”) 
evolve through different stages –modular when the discussion is still brewing in a scattered way; nested when the 
discussion becomes mainstream to the group of interest32. More relevant to OSS development, Fig. 6 reconciles 
the idea of workload compartmentalisation (sub-communities forming around product-related activities)19, and 
the emergence of hierarchies8 or a rich club18 of developers, at least in well-developed projects. This partial picture 
is however complemented by the fact that hierarchies emerge as well on the code class: the presence of generalists 
and specialists applies to both developers and files in a nested or in-block nested scenario.

Figure 4.  Frequency distribution of the largest community size for each project obtained after optimisation 
of modularity (panel a) and in-block nestedness (panel b). The distribution of largest community size when 
combining both opmtimization strategies is shown in panel c. In the three panels, the solid red line corresponds 
to the log-normal fit performed to each distribution, which are centred around 100. The dashed orange 
line indicates the average values of our dataset, and inset panels show the QQ plots of the empirical versus 
theoretical quantiles from the log-normal distribution fit.
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Figure 5.  The evolution of the average community size as a function of S presents differences for Q- and  
 -optimised partitions (panels (a) and (b), respectively). Regarding the size, average Q-communities are in 
general larger than  -communities. Furthermore, the scaling behaviour is also different: an average community 
size for Q-optimised partitions moderately grows with S, while it remains almost constant for   beyond 
S > 2000. Turning from average to maximum community size, Q- and  -optimised partitions (panels (c,d), 
respectively) present very similar bounds, from 30 to 300 contributors. Again, the largest Q-community slightly 
tends to grow with S, while this size stabilises around 100 for the case of  . Inset tables in all panels show the 
results of the ADF stationarity test, confirming the presence of bounded values for the maximum subgroup sizes 
(panels (c) and (d), respectively). Note semi-log scaling.

Figure 6.  Distribution of the three architectural patterns for each the projects across a ternary plot. The 
colourbar indicates the number of commits received by each project, normalised by the size of it.

https://doi.org/10.1038/s41598-019-50463-y
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Discussion
In summary, our analyses have unveiled that OSS projects evolve into a relatively narrow set of structural arrange-
ments. At the mesoscale, we observe that projects tend to form blocks, a fact that can be related to the need of 
contributors to distribute coding efforts, allowing a project to develop steadily and in a balanced way. Focusing 
on the file class, the emergence of blocks is interesting as well, since a modular architecture (understood now as 
a software design principle) is a desired feature in any complex software project. Furthermore, those blocks or 
subgroups have a relatively stable size no matter how large a project is. Remarkably, such size is compatible with 
the Dunbar number.

Previous research reported that OSS projects are largely heterogeneous, in the sense that developers 
self-organise into hierarchical structures. This conclusion is reinforced here, as we find evidence of nested 
arrangements in OSS bipartite networks. And yet, such statement may seem to clash with a modular arrange-
ment, to the extent that modularity Q does not make any assumption regarding the internal organisation of the 
subgroups. Our findings, however, point at the fact that more mature projects tend to present a nested organisa-
tion inside modules. Thus, the presence of workload compartmentalisation is compatible with the emergence of 
hierarchies, with generalists and specialists throughout a project. Paradoxically, a more evolved and structured 
architecture does not imply better overall performance here: the nested arrangement inside blocks can hamper 
a project’s progress, since the occasional and least committed contributors (those acting upon a small part of the 
code) tend to edit precisely the most generalist files, neglecting the least developed ones –a fact that has been 
observed from very different methodologies8–10,17.

These findings open up a rich scenario, with many questions lying ahead. On the OSS environment side, our 
results contribute to an understanding of how successful projects self-organise towards a modular architecture: 
large and complex tasks, involving hundreds (and even thousands) of files appear to be broken down, presum-
ably for the sake of efficiency and task specialisation (division of labour). Within this compartmentalisation, 
mature projects exhibit even further organisation, arranging the internal structure of subgroups in a nested way 
–something that is not grasped by modularity optimisation only. More broadly, our results demand further inves-
tigation, to understand their connection with the general topic of work team assembly (size, composition, and 
formation), and to the (urgent) issue of software sustainability38. OSS is a prominent example of the “tragedy of 
the commons”: companies and services benefit from the software, but there is a grossly disproportionate imbal-
ance between those consuming the software and those building and maintaining it. Indeed, by being more aware 
of the internal self-organisation of their projects, owners and administrators may design strategies to optimise the 
collaborative efforts of the limited number (and availability) of project contributors. For instance, they can place 
efforts to drive the actual project’s block decomposition towards a pre-defined software architectural pattern; or 
ensure that, despite the nested organisation within blocks, all files in a block receive some minimal attention. 
More research on the derivation of effective project management leadership strategies from the current division 
of labour in a project is clearly needed and impactful.

Closer to the complex networks and data analysis tradition, our results leave room to widen the scope of this 
research. First, the present analysis could be complemented with weighted information. On first thought, this 
is within reach –one should just adapt the techniques and measurements to a weighted scenario. However, the 
problem is not so much a methodological one, but semantic: the number of times that a contributor interacts with 
a file (commits, in Git jargon) is not necessarily an accurate measure of the amount of information allocated in 
the file. Second, future research should tackle a larger and more heterogeneous set of projects, and even across 
different platforms such as Bitbucket. Admittedly, this work has focused on successful projects, inasmuch we 
only consider a few dozens among the most popular. Other sampling criteria could be discussed and considered 
in the future, to ensure richer and more diverse project collection. Beyond the richness of the analysed dataset, 
the relationship between maturity and structural arrangement (specially in regard to the internal organisation 
of subgroups) clearly demands further work. Two obvious –and intimately related– lines of research are related 
to time-resolved datasets, and the design of a suitable model that can mimic the growth and evolution of OSS 
projects. Regarding a temporal account of OSS projects, some challenges emerge due to the bursty development 
of projects in git-like environments. For example, a fixed sliding-window scheme would probably harm, rather 
than improve, possible insights into software development. On the modelling side, further empirical knowledge 
is needed to better grasp the cooperative-competitive interactions within these type of projects, which in turn 
determine the dynamical rules for both contributors and files which, presumably, differ largely.

Material and Methods
Data.  Our open source projects dataset was collected from GitHub39, a social coding platform which provides 
source code management and collaboration features such as bug tracking, feature requests, tasks management 
and wiki for every project. Given that GitHub users can star a project (to show interest in its development and fol-
low its advances), we chose to measure the popularity of a GitHub project in terms of its number of stars (i.e. the 
more stars the more popular the project is considered) and selected the 100 most popular projects. Other possible 
criteria –number of forks, open issues, watchers, commits and branches– are positively correlated with stars17, 
and so our proxy to mature, successful and active projects probably overlaps with other sampling procedures. The 
construction of the dataset involved three phases, namely: (1) cloning, (2) import, and (3) enrichment.

Cloning and import.  After collecting the list of 100 most popular projects in GitHub (at the moment of collect-
ing the data) via its API40, we cloned them to collect 100 Git repositories. We analysed the cloned repositories and 
discarded those ones not involving the development of a software artifact (e.g. collection of links or questions), 
rejecting 15 projects out of the initial 100. We then imported the remaining Git repositories into a relational 
database using the Gitana41 tool to facilitate the query and exploration of the projects for further analysis. In the 
Gitana database, Git repositories are represented in terms of users (i.e. contributors with a name and an email); 
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files; commits (i.e. changes performed to the files); references (i.e. branches and tags); and file modifications. For 
two projects, the import process failed to complete due missing or corrupted information in the source GitHub 
repository.

Enrichment.  Our analysis needs a clear identification of the author of each commit so that we can properly link 
contributors and files they have modified. Unfortunately, Git does not control the name and email contributors 
indicate when pushing commits resulting on clashing and duplicate problems in the data. Clashing appears when 
two or more contributors have set the same name value (in Git the contributor name is manually configured), 
resulting in commits actually coming from different contributors appearing with the same commit name (e.g., 
often when using common names such as “mike”). In addition, duplicity appears when a contributor has several 
emails, thus there are commits that come from the same person, but are linked to different emails suggesting 
different contributors. We found that, on average, around 60% of the commits in each project were modified by 
contributors that involved a clashing/duplicity problem (and affecting a similar number of files). To address this 
problem, we relied on data provided by GitHub for each project (in particular, GitHub usernames, which are 
unique). By linking commits to unique usernames, we could disambiguate the contributors behind the commits. 
Thus, we enriched our repository data by querying GitHub API to discover the actual username for each commit 
in our repository, and relied on those instead on the information provided as part of the Git commit metadata. 
This method only failed for commits without a GitHub username associated (e.g. when the user that made that 
commit was no longer existing in GitHub). In those cases we stick to the email in Git commit as contributor iden-
tifier. We reduced considerably the clashing/duplicity problem in our dataset. The percentage of commits modi-
fied by contributors that may involve a clashing/duplicity problem was reduced to 0.004% on average (σ = 0.011), 
and the percentage of files affected was reduced to 0.020% (σ = 0.042).

At the end of this process, we had successfully collected a total number of 83 projects, adding up to 48,015 
contributors, 668,283 files and 912,766 commits. 18 more projects (to the total of 65 reported in this work) were 
rejected due to other limitations. On one hand, we discarded some projects that presented very strong divergence 
between the number of nodes of the two sets, e.g. projects with very large number of files but very few contribu-
tors. In these cases, although  , Q and   can be quantified, the outcome is hardly interpretable. An example of 
this is the project material-designs-icons, with 15 contributors involved in the development of 12,651 files. As 
mentioned above, we also discarded projects that are not devoted to software development, but are rather collec-
tions of useful resources (free programming books, coding courses, etc.). Finally, we considered only projects 
with a bipartite network size within the range 101 ≤ S ≤ 104, as the computational costs to optimise in-block 
nestedness and modularity for larger sizes were too severe. The complete dataset with the final 65 projects is avail-
able at http://cosin3.rdi.uoc.edu, under the Resources section.

Matrix generation.  We build a bipartite unweighted network as a rectangular N × M matrix, where rows 
and columns refer to contributors and source files of an OSS project, respectively. Cells therefore represent links 
in the bipartite network, i.e. if the cell aij has a value of 1, it represents that the contributor i has modified the file 
j at least once, otherwise aij is set to 0.

We are aware that an unweighted scheme may be discarding important information, i.e. the heterogeneity 
of time and effort that developers devote to files. We stress that including weights in our analysis can introduce 
ambiguities in our results. In the Github environment, the size of a contribution could be regarded either as the 
number of times a developer commits to a file, or as the number of lines of code (LOC) that a developer modified 
when updating the file. Indeed, both could represent additional dimensions to our study. Furthermore, at least 
for the first (number of commits), it is readily available from the data collection methods. However, weighting 
the links of the network by the number of commits is risky. Consider for example a contributor who, after hours 
or days of coding and testing, performs a commit that substantially changes a file in a project. On the other side, 
consider a contributor who is simply documenting some code, thus committing many times small comments to 
an existing software –without changing the internal logic of it. There is no simple way to distinguish these cases. 
The consideration of the second item (number of LOC modified) could be a proxy to such distinction, but this 
is information is not realistically accessible given the current limitations to data collection. Getting a precise 
number of LOCs requires a deeper analysis of the Git repository associated to the GitHub project, parsing the 
commit change information one by one –an unfeasible task if we aim at analysing a large set of projects. The same 
scalability issue would appear if we rely on the GitHub API to get this information, which additionally would 
involve quota problems with such API. One might consider even a third argument: not every programming lan-
guage “weighs” contributions in the same way. Many lines of HTML code may have a small effect on the actual 
advancement of a project, while two brief lines in C may completely change a whole algorithm. In conclusion, we 
believe there is no generic solution that allows to assess the importance of a LOC variation in a contribution. This 
will depend first on the kind of file, then on the programming style of each project and finally on an individual 
analysis of each change. Thus, adding informative and reliable weights to the network is semantically unclear 
(how should we interpret those weights?) and operationally out of reach.

Nestedness.  The concept of nestedness appeared, in the context of complex networks, over a decade ago in 
Systems Ecology42. In structural terms, a perfect nested pattern is observed when specialists (nodes with low 
connectivity) interact with proper nested subsets of those species interacting with generalists (nodes with high 
connectivity), see Fig. 2 (left). Several works have shown that a nested configuration is signature feature of coop-
erative environments –those in which interacting species obtain some benefit42–44. Following this example in 
natural systems, scholars have sought (and found) this pattern in other kinds of systems32,45–47. In particular, 
measuring nestedness in OSS contributor-file bipartite networks helps to uncover patterns of file development. 
For instance, in a perfectly nested bipartite network the most generalist developer has contributed to every file in 

https://doi.org/10.1038/s41598-019-50463-y
http://cosin3.rdi.uoc.edu


9Scientific Reports |         (2019) 9:13890  | https://doi.org/10.1038/s41598-019-50463-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

the project, i.e. a core developer. Other contributors will exhibit decreasing amounts of edited files. On top of this 
hierarchical arrangement, we find asymmetry: specialist contributors (those working on a single file) develop 
precisely the generalist file, i.e. the file that every other developer also works on. Here, we quantify the amount of 
nestedness in our OSS networks by employing the global nestedness fitness   introduced by Solé-Ribalta et al.30:
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where Oi,j (or Ol,m) measures the degree of links overlap between rows (or columns) node pairs; ki, kj corresponds 
to the degree of the nodes i,j; Θ(·) is a Heaviside step function that guarantees that we only compute the overlap 
between pair of nodes when ki ≥ kj. Finally, 〈Oi,j〉 represents the expected number of links between row nodes i 
and j in the null model, and is equal to 〈 〉 =Oi j

k k

M,
i j . This measure is in the tradition of other overlap measures, i.e. 

NODF48,49.

Modularity.  A modular network structure (Fig. 2, center) implies the existence of well-connected subgroups, 
which can be identified given the right heuristics to do so. Unlike nestedness (which apparently emerges only in 
very specific circumstances), modularity has been reported in almost any kind of systems: from food-webs50 to 
lexical networks51, to the Internet27 and social networks52. Applied to OSS developer-file networks, modularity 
helps to identify blocks of developers working together in a set of files. High Q values in OSS projects would reveal 
some level of specialisation (division of labour) in the development of the project. However, if an OSS project is 
only modular (i.e., any trace of nestedness is missing), it may reveal that, beyond compartmentalisation, no fur-
ther organisational refinement is at work. Here, we search a (sub)optimal modular partition of the nodes through 
a community detection analysis26,27. To this end, we apply the extremal optimisation algorithm53 (along with a 
Kernighan-Lin54 refinement procedure) to maximise Barber’s26 modularity Q,
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where L is the number of interactions (links) in the network, 
aij denotes the existence of a link between nodes i 

and j, =p k k L/ij i j  is the probability that a link exists by chance, and δ(αi,αj) is the Kronecker delta function, 
which takes the value 1 if nodes i and j are in the same community, and 0 otherwise.

In-block nestedness.  Nestedness and modularity are emergent properties in many systems, but it is rare 
to find them in the same system. This apparent incompatibility has been noticed and studied, and it can be 
explained by different evolutive pressures: certain mechanisms favour the emergence of blocks, while others 
favour the emergence of nested patterns. Following this logic, if two such mechanisms are concurrent, then 
hybrid (nested-modular) arrangements may appear. Hence, the third architectural organisation that we consider 
in our work refers to a mesoscale hybrid pattern, in which the network presents a modular structure, but the 
interactions within each module are nested, i.e. an in-block nested structure, see Fig. 2 (right). This type of hybrid 
or “compound” architectures was first described in Lewinsohn et al.28. Although the literature covering this types 
of patterns is still scarce, the existence of such type of hybrid structure in empirical networks has been recently 
explored29,30,55, and the results from these works seem to indicate that combined structures are, in fact, a common 
feature in many systems from different contexts.

In order to compute the amount of in-block nested present in networks, in this work, we have adopted a new 
objective function30, that is capable to detect these hybrid architectures, and employed the same optimisation 
algorithms used to maximise modularity. The in-block nestedness objective function can be written as,
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Note that, by definition,   reduces to   when the number of blocks is 1. This explains why the right half of the 
ternary plot (Fig. 6) is necessarily empty: ≥I N , and therefore I N≥f f . On the other hand, an in-block nested 
structure exhibits necessarily some level of modularity, but not the other way around. This explains why the 
lower-left area of the simplex in Fig. 6 is empty as well (see Palazzi et al.33 for details).

The corresponding software codes for nestedness measurement, and modularity and in-block nestedness opti-
misation (both for uni- and bipartite cases), can be downloaded from the web page http://cosin3.rdi.uoc.edu/, 
under the Resources section.

Stationarity test.  Figures 1 and 5 visually suggest that some quantities do not vary as a function of project 
size –or vary very slowly. As convincing as this visual hint may result, a statistical test is necessary to confirm that, 
indeed, there is a limit on the quantity at stake. The idea of stationarity on a time series implies that summary 
statistics of the data, like the mean or variance, are approximately constant when measured from any two starting 
points in series (different project sizes in our case). Typically, statistical stationarity tests are done by checking for 
the presence (or absence) of a unit root on the time series (null hypothesis). A time series is said to have a unit 
root if we can write it as
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where ε is an error term. If a = 1 the null hypothesis of non-stationarity is accepted. On the contrary, if a < 1 
there is not unit root, and the process is deemed stationary. In this work, we have employed the Augmented 
Dickey-Fuller (ADF) test56, as implemented in the statsmodels.tsa.stattools Python package. The results of the 
analysis indicate that, if the test statistic is less than the critical values at different significance levels, then, the null 
hypothesis of a unit root is rejected, and we can conclude that the data series is stationary.
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