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ABSTRACT

Customer reviews are a valuable source of information from which we can extract very
useful data about different online shopping experiences. For trendy items (products,
movies, TV shows, hotels, services . . . ), the number of available users and customers’
opinions could easily surpass thousands. Therefore, online reputation systems could
aid potential customers in making the right decision (buying, renting, booking . . . ) by
automatically mining textual reviews and their ratings. This paper presents MTVRep,
a movie and TV show reputation system that incorporates fine-grained opinion min-
ing and semantic analysis to generate and visualize reputation toward movies and TV
shows. Differently from previous studies on reputation generation that treat the task of
sentiment analysis as a binary classification problem (positive, negative), the proposed
system identifies the sentiment strength during the phase of sentiment classification
by using fine-grained sentiment analysis to separate movie and TV show reviews into
five discrete classes: strongly negative, weakly negative, neutral, weakly positive and
strongly positive. Besides, it employs embeddings from language models (ELMo)
representations to extract semantic relations between reviews. The contribution of this
paper is threefold. First, movie and TV show reviews are separated into five groups
based on their sentiment orientation. Second, a custom score is computed for each
opinion group. Finally, a numerical reputation value is produced toward the target
movie or TV show. The efficacy of the proposed system is illustrated by conducting
several experiments on a real-world movie and TV show dataset.
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1. INTRODUCTION
The exponential growth of Web 2.0 has dramatically impacted the evolution of e-commerce platforms

[1–4]. On the one hand, some recent statistics show that 72% of customers will not take action until they read
reviews, and only 6% of consumers don’t trust customer reviews at all, on the other hand, the number of user-
generated reviews attached to an online entity could easily exceed thousands [5, 6]. Thus, a potential customer
doesn’t have the time or effort to examine all the reviews manually in order to make a decision toward it [7, 8].

Little research has been conducted in mining customer and user reviews with regard to feature-based
summarization and reputation generation for the purpose of supporting customer decision making process in
E-commerce (buying, renting, booking . . . ). Over the last two decades, a few opinion summarizer systems
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have been proposed to produce a summary for product reviews [9], movie reviews [3], hotel reviews [1] and
local service reviews [10]. Backing to reputation generation task, to the best of our knowledge, there are very
few reputation systems that have been proposed to compute a single reputation value toward different entities
based on fusing and mining user and customer reviews expressed in natural language [11–15]. Yan et al. [11]
applied opinion mining and fusion techniques on product reviews. Benlahbib and Nfaoui [12] used K-Means
clustering algorithm on movie reviews. The same authors [13] incorporated semantic and sentiment analysis to
generate a single reputation value from user and customer reviews expressed in natural language (English).

An important issue that was neglected in the past research on reputation generation is identifying the
sentiment strength during the phase of sentiment classification and opinion fusion. In fact, existing works
have only focused on classifying reviews into positive or negative before generating a single reputation value,
disregarding the sentiment strength.

In this paper, we propose MTVRep, a movie and TV show reputation system that applies fine-grained
opinion mining to separate reviews into five opinion groups: strongly negative, weakly negative, neutral, weakly
positive and strongly positive. Then, it computes a custom score for each group based on the acquired statistics
of each group, i.e., the number of reviews in each group, the sum of their ratings and the sum of their semantic
similarity (ELMo and cosine metric). Finally, a numerical reputation value is produced toward the target movie
or TV show using the weighted arithmetic mean.

In this manner, this study addressed the following research question: with the combination of fine-
grained opinion mining and semantic analysis, can the proposed reputation system offer better results in terms
of reputation generation than the previous reputation systems (consider only semantic relations)?. The remain-
der of this paper is organized as follows: Related works are provided in Section 2. Section 3 illustrates the
work-flow of the reputation system. Section 4 presents all the experimental results and discusses its compara-
tive performance, finally conclusions are drawn in Section 5.

2. LITERATURE REVIEW
This section describes and examines previous research work done in the area of natural language

processing (NLP) techniques for decision making in E-commerce and fine-grained sentiment analysis.

2.1. Fine-grained sentiment analysis on the 5-class stanford sentiment treebank (SST-5) dataset
Xu et al. [16] proposed Emo2Vec which are word-level representations that encode emotional se-

mantics into fixed-sized, real-valued vectors. Mu et al. [17] presented a simple post-processing operation
that renders word representations even stronger by eliminating the top principal components of all words.
Socher et al. [18] introduced recursive neural tensor networks and the stanford sentiment treebank. Wang
et al. [19] proposed RNN-Capsule, a capsule model based on recurrent neural network (RNN) for sentiment
analysis. Yang [20] presented RNFs, a new class of convolution filters based on recurrent neural networks.
McCann et al. [21] introduced an approach for transferring knowledge from an encoder pretrained on machine
translation to a variety of downstream natural language processing (NLP) tasks. Munikar et al. [22] used the
pretrained BERT [23] model and fine-tuned it for the fine-grained sentiment classification task on the SST-5
dataset. Table 1 summarizes the latest works on fine-grained opinion mining applied to stanford sentiment
treebank dataset (SST-5).

Table 1. State-of-the-art results for sentiment analysis on SST-5 fine-grained classification
Method Authors and Year Accuracy %
BCN+Suffix BiLSTM-Tied+CoVe Brahma (2018) [24] 56.2
BERT large Munikar et al. (2019) [22] 55.5
BCN+ELMo Peters et al. (2018) [25] 54.7
BCN+Char+CoVe McCann et al. (2017) [21] 53.7
CNN-RNF-LSTM Yang (2018) [20] 53.4
RNN-Capsule Wang et al. (2018) [19] 49.3
SWEM-concat Shen et al. (2018) [26] 46.1
RNTN Socher et al. (2013) [18] 45.7
GRU-RNN-WORD2VEC Mu et al. (2017) [17] 45.02
GloVe+Emo2Vec Xu et al. (2018) [16] 43.6
Emo2Vec Xu et al. (2018) [16] 41.6
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2.2. NLP techniques for decision making in E-commerce
It has been well recognized that user reviews attached to an entity (movie, product, etc...) contain

valuable information about it. Recently, few approaches have been proposed to help potential customers during
decision-making process in E-commerce websites by automatically mining user and customer reviews. The
most popular approaches are feature-based summarization and reputation generation.

Feature-based summarization approaches aim to produce a feature-based summary for a target entity
as shown in Figure 1. The first feature-based summarizer system was proposed by Hu and Liu [9] in which they
applied association rule mining to extract product features, and they used a set of seed adjectives to identify the
semantic orientation for opinion words. Zhuang et al. [3] built a multi-knowledge based system that aims to
generate a feature-based summary for online movie reviews. Blair-Goldensohn et al. [10] presented a feature-
based summarizer for local service reviews. Kangale et al. [27] proposed a feature-based summarize system
for product reviews that produces a rating as well as review summary of each product feature as shown in
Figure 1.

Figure 1. Feature-based summary [27]

Reputation generation systems have interest in providing potential customers with sufficient informa-
tion toward the target entity (product, movie, hotel . . . ) to help them make the right decision toward it (buying,
renting, booking . . . ). Currently, a few reputation systems have been proposed to tackle the task of reputa-
tion generation using opinion mining techniques on user and customer reviews expressed in natural language.
Yan et al. [11] were the first to propose a reputation system that combines opinion mining and opinion fu-
sion techniques for the purpose of producing a single reputation value toward various products. The system
firstly eliminates irrelevant reviews [28], then, the remaining reviews are grouped into different sets based on
their semantic relations (latent semantic analysis and cosine metric), and finally, a single numerical reputation
value is produced. Benlahbib and Nfaoui [12] used K-Means clustering algorithm to group similar movie re-
views into the same cluster based on their semantic relations before generating a reputation value. The same
authors [13] designed and built a hybrid reputation system that firstly combines Naı̈ve Bayes and linear sup-
port vector machine (SVM) to separate user and customer reviews into positive and negative (document level
sentiment analysis), then, it groups them into different sets based on semantic relations, and finally, a single
reputation value is computed using weighted arithmetic mean.

3. PROPOSED SYSTEM
3.1. System overview

The proposed approach consists mainly on four steps:

− We collect movie and TV show reviews from IMDb in https://www.imdb.com/, website using the web
scraping tool ScrapeStorm in https://www.scrapestorm.com/, then, we preprocess them.

MTVRep: A movie and TV show reputation system based on... (Abdessamad Benlahbib)
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− We train Multinomial Naı̈ve Bayes model on the 5-class stanford sentiment treebank (SST-5) dataset
in order to perform fine-grained sentiment analysis. The model classifies the collected reviews to five
opinion groups: strongly negative, weakly negative, neutral, weakly positive and strongly positive.

− For each opinion group, we acquire the sum of user ratings and the sum of reviews semantic similarity.
The semantic similarity between two reviews is computed as the cosine between their deep contextualized
word embeddings (ELMo). These acquired statistics are used to compute a custom score for each opinion
group.

− We compute the movie or TV show numerical reputation value based on the opinion groups’ scores by
applying the weighted arithmetic mean.

Figure 2 illustrates the work-flow of the reputation system (MTVRep).

Figure 2. Reputation system pipeline
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3.2. Fine-grained sentiment analysis
We classify the collected reviews into five opinion groups based on their sentiment intensities by ap-

plying the Multinomial Naı̈ve Bayes model trained on the 5-class stanford sentiment treebank (SST-5) dataset.
The reasons behind using Multinomial Naı̈ve Bayes model are discussed in section 4.2.

3.3. Opinion groups custom scores
After separating movie and TV show reviews into five opinion groups: strongly negative, weakly

negative, neutral, weakly positive and strongly positive, we compute a custom score for each opinion group
based on the sum of their ratings and the sum of their reviews semantic similarity. The statistics of opinion
groups are acquired by applying algorithm 1.

Algorithm 1: Opinion groups statistics acquisition

Define : Gpolarity = {rpolarity1 , rpolarity2 , . . . , rpolarityn }: the opinion group that contains reviews
which hold the sentiment orientation polarity.
Rpolarity = {rrpolarity1 , rrpolarity2 , . . . , rrpolarityn }: the set of ratings
attached to Gpolarity reviews.
SSpolarity: the sum of semantic similarity for Gpolarity reviews.
SRpolarity: the sum of ratings for Gpolarity reviews.
NRpolarity: the number of reviews in Gpolarity .
ELMo(rpolarityi ): ELMo embeddings for review i from Gpolarity .
cos(ELMo(rpolarityi ), ELMo(rpolarityj )): the cosine similarity between
ELMo embeddings for review i and j from Gpolarity.

Input : Opinion groups, their lengths and their user ratings: Gpolarity , NRpolarity and Rpolarity.
Output: Opinion groups’ statistics: SSpolarity and SRpolarity

1 polarity ← [strongly negative, weakly negative, neutral, weakly positive, strongly positive]

2 /* After applying the trained model on the collected movie and TV show

reviews, we separate them into five opinion groups: strongly negative,

weakly negative, neutral, weakly positive and strongly positive. For

each opinion group, we acquire the sum of their reviews semantic

similarity (cosine metric and ELMo embeddings) and the sum of their

ratings */

3 for i in polarity do
4 SSi ← 0
5 SRi ← 0
6 for j ← 1 to NRi do
7 SSi ← SSi + cos(ELMo(ri1), ELMo(rij))

8 SRi ← SRi + rrij
9 end for

10 end for

By applying algorithm 1, we retrieve for each group, the sum of their ratings and the sum of their
semantic similarity. We propose formula (1) to compute a custom score for each opinion group.

CS(Gpolarity) =
maxR · SSpolarity

NRpolarity + SRpolarity

NRpolarity

2
(1)

Formula (1) could also be written as follows:
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CS(Gpolarity) =
maxR · SSpolarity + SRpolarity

2 ·NRpolarity
(2)

We denote:
maxR : Highest value of user ratings (5 or 10) depending on the range of ratings (1 to 5 or 1 to 10).
SSpolarity : Sum of similarity for reviews contained in opinion group Gpolarity .
SRpolarity : Sum of user ratings in opinion group Gpolarity .
NRpolarity : Number of reviews contained in opinion group Gpolarity .

The custom score of each opinion group ranges between 1 and 5 or 1 and 10 depending on the range
of user rating values. Since the cosine metric returns values in the range of [0,1], the average of the sum of
semantic similarity for an opinion group is also between 0 and 1, therefore, we multiply the average of the sum
of semantic similarity by 5 or 10 (maxR) to get a numerical value between 0 and 5 or 0 and 10, then, we add
this value to the average of sum of ratings and we divide them by 2.

3.4. Reputation generation
We propose formula (3) (weighted arithmetic mean) to compute the movie or TV show reputation

value.

Rep(E) =

∑
polarity CS(Gpolarity) ·NRpolarity∑

polarity NRpolarity
(3)

CS(Gpolarity) is the custom score for opinion group Gpolarity computed by applying formula (1) or
(2).

The movie or TV show reputation value has values in the range of [1, 5] or [1, 10] depending on the
range of user ratings.

4. EXPERIMENTAL EVALUATION
4.1. Dataset gathering

We collect movie and TV show reviews and their numerical ratings from IMDb web site using the
web scraping tool ScrapeStorm. Figure 3 depicts the structure of IMDb user reviews.

Figure 3. IMDb user reviews structure

The first ten datasets contain movie reviews and the remaining ten datasets contain TV show reviews.
Table 2 shows the statistical information of the collected datasets.

Table 2. Statistical information of the collected datasets
Movies TV shows Total

Number of reviews 1000 1000 2000
Number of entities 10 10 20
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After collecting the reviews, we replace the missing rating values with the average of the ratings, then,
we lowercase them and we remove punctuation marks and numbers.

4.2. Training phase and fine-grained opinion mining
We train the Multinomial Naı̈ve Bayes model with SST-5 dataset. The training set contains 1092

strongly negative reviews, 2218 weakly negative reviews, 1624 neutral reviews, 2322 weakly positive reviews
and 1288 strongly positive reviews. The test set contains 279 strongly negative reviews, 633 weakly negative
reviews, 389 neutral reviews, 510 weakly positive reviews and 399 strongly positive reviews. Figure 4 depicts
the distribution of training and test samples over the five classes.

Figure 4. Number of samples in SST-5 training and test set

Before feeding the data to the classifier for training, we preprocess them by removing punctuation
marks, numbers and whitespaces, then, we lowercase and lemmatize them. After preprocessing the data, we
must choose which classifier we will apply and which features we will use. Since deep learning models require
substantial computing power (High-performance CPUs, GPUs and RAM), we decided to work with one of
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the four models: Random Forest, Logistic Regression, Multinomial Naı̈ve Bayes and Linear support vector
machine (SVM). The last two classifiers (Naı̈ve Bayes and SVM) have been recognized as the most popu-
lar supervised machine learning algorithms for polarity classification [29]. For features selection, we have
tried many combinations: unigrams, bigrams, trigrams, tf-idf unigrams, tf-idf bigrams and tf-idf trigrams.
We discarded some popular models such as: word2vec and doc2vec because Wang et al. [30] have con-
ducted experiments on Naı̈ve Bayes, Logistic Regression and linear support vector classifier (SVC) for short
text classification using tf-idf weighting, word2vec and paragraph2vec (doc2vec), and they have reported that
tf-idf/counter feature has the highest accuracy, while word2vec next, and doc2vec has the lowest accuracy.
Table 3 summarizes the classification result of the four classifiers on SST-5 dataset.

Table 3. Sentiment analysis classification result
Macro
average

precision

Macro
average
recall

Macro
average
f1-score

Weighted
average

precision

Weighted
average
recall

Weighted
average
f1-score

Accuracy

Random Forest (unigrams) 0.40 0.31 0.30 0.40 0.36 0.33 0.36
Random Forest (bigrams) 0.34 0.29 0.28 0.34 0.32 0.31 0.32
Random Forest (trigrams) 0.29 0.23 0.20 0.31 0.23 0.22 0.23
Random Forest (tf-idf unigrams) 0.40 0.30 0.28 0.39 0.35 0.31 0.35
Random Forest (tf-idf bigrams) 0.34 0.29 0.28 0.34 0.32 0.31 0.32
Random Forest (tf-idf trigrams) 0.28 0.22 0.20 0.29 0.23 0.21 0.23
Multinomial Naive Bayes (unigrams) 0.43 0.38 0.38 0.43 0.43 0.41 0.43
Multinomial Naive Bayes (bigrams) 0.36 0.30 0.29 0.36 0.35 0.32 0.35
Multinomial Naive Bayes (trigrams) 0.31 0.26 0.24 0.31 0.29 0.26 0.29
Multinomial Naive Bayes (tf-idf unigrams) 0.48 0.34 0.29 0.46 0.41 0.34 0.41
Multinomial Naive Bayes (tf-idf bigrams) 0.38 0.29 0.24 0.38 0.35 0.29 0.35
Multinomial Naive Bayes (tf-idf trigrams) 0.29 0.24 0.19 0.30 0.29 0.23 0.29
Logistic Regression (unigrams) 0.42 0.37 0.37 0.42 0.41 0.39 0.41
Logistic Regression (bigrams) 0.38 0.28 0.23 0.37 0.34 0.27 0.34
Logistic Regression (trigrams) 0.36 0.23 0.18 0.35 0.28 0.22 0.28
Logistic Regression (tf-idf unigrams) 0.42 0.35 0.34 0.41 0.40 0.37 0.40
Logistic Regression (tf-idf bigrams) 0.43 0.28 0.23 0.41 0.35 0.27 0.35
Logistic Regression (tf-idf trigrams) 0.30 0.23 0.17 0.32 0.29 0.21 0.29
Linear SVM (unigrams) 0.38 0.37 0.37 0.39 0.40 0.39 0.40
Linear SVM (bigrams) 0.33 0.31 0.31 0.34 0.34 0.33 0.34
Linear SVM (trigrams) 0.31 0.25 0.22 0.32 0.29 0.25 0.29
Linear SVM (tf-idf unigrams) 0.38 0.38 0.38 0.39 0.41 0.39 0.41
Linear SVM (tf-idf bigrams) 0.33 0.31 0.31 0.34 0.34 0.33 0.34
Linear SVM (tf-idf trigrams) 0.31 0.27 0.25 0.31 0.30 0.27 0.30

From Table 3, we can see that Multinomial Naı̈ve Bayes classifier achieves the best classification
result when it’s trained with unigrams. Logistic Regression and linear SVM classifiers also gave good result
when they are trained with unigrams or tf-idf unigrams. The worst results are provided by Random Forest
since it achieves a 0.36 accuracy in its best. Figure 5 depicts the confusion matrix of Multinomial Naive Bayes
(unigrams) for SST-5 test set.

We mention that BERTbase achieves a 0.45 accuracy and 0.40 macro average f1-score, GRU-RNN-
WORD2VEC achieves a 0.45 accuracy and recursive neural tensor network achieves a 0.46 accuracy, Besides,
deep learning algorithm takes a long time to train as shown in Table 4 due to the large number of parameters.
Based on that, we have made the choice of applying Multinomial Naı̈ve Bayes classifier since it achieves
an accuracy of 0.43 and it doesn’t require substantial computing power to be trained. Table 4 depicts the
training time of bidirectional gated recurrent unit (Bi-GRU), bidirectional long short-term memory (Bi-LSTM),
recurrent neural network (RNN) and multinomial naı̈ve bayes (MNB) for SST-5 dataset.

One of the benefits of fine-grained opinion mining is that it provides a better understanding of the
distribution of reviews over the five emotion classes, therefore, visualizing these five classes will help users and
customers make up their minds about the target item (buying, renting).
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Figure 5. Confusion matrix of multinomial naive bayes (unigrams) for SST-5 test set

Table 4. Training time of bidirectional gated recurrent unit (Bi-GRU), bidirectional long short-term memory
(Bi-LSTM), recurrent neural network (RNN) and multinomial naı̈ve bayes (MNB) for SST-5 dataset

Model Epochs Batch size Training time (seconds)
Bi-GRU 50 64 210.10
Bi-LSTM 50 64 180.25
RNN 50 64 85.26
MNB – – 3.77

4.3. Reputation evaluation
MTVRep offers a holistic reputation visualization form as shown in Figure 6 by depicting the numer-

ical reputation value and the distribution of reviews over the five emotion classes, Table 5 shows comparison
results between MTVRep and previous studies in term of visualizing reputation.

An important issue that was neglected in the past research on reputation generation is identifying
the sentiment strength during the phase of opinion mining. Actually, existing studies have only focused on
classifying reviews as positive or negative, disregarding sentiment intensity. Therefore, we propose MTVRep,
a movie and TV show reputation system that combines fine-grained sentiment analysis and semantic analysis
for the purpose of generating and visualizing reputation toward movies and TV shows. Table 6 depicts the
features exploited by previous studies and MTVRep during reputation generation and visualization.

In order to evaluate the performance of MTVRep in generating accurate reputation values toward
various movies and TV shows, we compared it with Yan et al. [11] reputation system. We set the opinion
fusion threshold t0 to 0.15 since the authors mentioned that their reputation system performs in its best when
t0 = 0.15. We applied the two reputation systems on the twenty collected datasets. The chosen evaluation
measure is the squared error between the movie or TV show IMDb weighted average ratings and the numerical
reputation value computed by one of the two reputation systems.

The formula of the squared error is: SE = (xi − yi)
2 where xi is the reputation value returned by

one of the two systems and yi is the IMDb Weighted Average Ratings toward the target movie or TV show.
Figure 7 depicts the IMDb weighted average ratings for forrest gump movie.

According to IMDb in https://help.imdb.com/article/imdb/track-movies-tv/weighted-average-ratings/
GWT2DSBYVT2F25SK?ref=helpsectpro28# : ”IMDb publishes weighted vote averages rather than raw
data averages. Various filters are applied to the raw data in order to eliminate and reduce attempts at vote
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stuffing by people more interested in changing the current rating of a movie than giving their true opinion of it.
The exact methods we use will not be disclosed. This should ensure that the policy remains effective. The result,
is a more accurate vote average.”

The motivation behind choosing the squared error instead of absolute error resides in the fact that
reputation systems don’t tolerate high error values. Consequently, the squared error will penalize large errors
more. Figure 8 and 9 show the comparison result between the two reputation systems over the twenty datasets.

As illustrated in Figure 8, MTVRep produces the nearest reputation value to IMDb weighted average
ratings for the first ten datasets that contain movie reviews compared to reputation system [11]. We observe
that the squared error of reputation system [11] exceeds 2.5 in dataset 1, dataset 4, dataset 7 and dataset 9.
We also observe that the squared error of MTVRep doesn’t surpass 0.1 in dataset 3, 5 and 10, which implies
that the system generates accurate reputation values toward movies since the highest squared error achieved by
MTVRep is 1.87 (dataset 6).

Figure 6. Reputation visualization
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Table 5. Comparison results: Reputation visualization
Work Distribution of reviews polarity Numerical reputation value
[11] 7 3

[12] 7 3

[14] 7 3

[13] 3 3

MTVRep 3 3

Table 6. Comparison results: Exploited features
Work Semantic Sentiment (binary) Sentiment (fine-grained)
[11] 3 7 7

[12] 3 7 7

[14] 3 3 7

[13] 3 3 7

MTVRep 3 7 3

Figure 7. IMDb weighted average ratings

Figure 8. Squared error comparison result: Dataset 1 to dataset 10

Figure 9 shows that except for dataset 15, MTVRep outperforms Yan et al. [11] reputation system
on all the remaining nine datasets that contain TV show reviews. We also observe that the squared error of
reputation system [11] exceeds 3.5 in dataset 20, on the other hand, MTVRep doesn’t exceed 1.44 in its worst.
We conclude that the proposed reputation system MTVRep performs well in generating and visualizing reputa-
tion for movies and TV shows since it produces the nearest reputation value to IMDb weighted average ratings
for both movies and TV shows compared to Yan et al. [11] reputation system.

MTVRep: A movie and TV show reputation system based on... (Abdessamad Benlahbib)
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Figure 9. Squared error comparison result: Dataset 11 to dataset 20

5. CONCLUSION, SUMMARY AND FUTURE DIRECTION
In this paper, we have proposed MTVRep, a system that combines fine-grained opinion mining and

semantic analysis for the purpose of generating and visualizing reputation toward movies and TV shows. The
web scraping tool ScrapeStorm was used to collect 2000 movie and TV show reviews and their numerical
ratings from IMDb, and Multinomial Naı̈ve Bayes classifier was trained on SST-5 dataset to perform fine-
grained opinion mining task. Experimental studies showed that MTVRep outperforms Yan et al. reputation
system since it produces the nearest reputation values to the ground truth (IMDb weighted average ratings) for
both movies and TV shows. We believe that MTVRep could be integrated in any platform where users share
their reviews and ratings freely toward movies and TV shows.

Future works will focus on, using more sophisticated models for opinion mining such as BERT and
XLNet, exploiting further features some of which are user credibility, review time and review helpfulness,
and incorporating aspect based opinion mining to enhance the reputation visualization form by showing more
useful information toward the target movie or TV show (aspects).
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