
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 10, No. 3, June 2020, pp. 2934~2943 

ISSN: 2088-8708, DOI: 10.11591/ijece.v10i3.pp2934-2943      2934 

  

Journal homepage: http://ijece.iaescore.com/index.php/IJECE 

Towards optimize-ESA for text semantic similarity: A case 

study of biomedical text 
 

 

Khaoula Mrhar1, Mounia Abik2 

1IPSS Research Team, FSR, Mohammed V University, Morocco 
2IPSS Research Team, ENSIAS, Mohammed V University, Morocco 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jun 4, 2019 

Revised Jan 3, 2020 

Accepted Jan 10, 2020 

 Explicit Semantic Analysis (ESA) is an approach to measure the semantic 

relatedness between terms or documents based on similarities to documents 

of a references corpus usually Wikipedia. ESA usage has received 

tremendous attention in the field of natural language processing NLP and 

information retrieval. However, ESA utilizes a huge Wikipedia index matrix 

in its interpretation by multiplying a large matrix by a term vector to produce 

a high-dimensional vector. Consequently, the ESA process is too expensive 

in interpretation and similarity steps. Therefore, the efficiency of ESA will 

slow down because we lose a lot of time in unnecessary operations.  

This paper propose enhancements to ESA called optimize-ESA that reduce 

the dimension at the interpretation stage by computing the semantic 

similarity in a specific domain. The experimental results show clearly that 

our method correlates much better with human judgement than the full 

version ESA approach. 

Keywords: 

Explicit semantic analysis ESA 

Natural language processing 

NLP 

Semantic relatedness 

Semantic similarity 

Copyright © 2020 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Khaoula Mrhar,  

IPSS Research Team, 

FSR, Mohammed V University,  

Ibn Batouta avenue,  Rabat, Morocco  

Email: Khaoula_mrhar@um5.ac.ma 

 

 

1. INTRODUCTION 

Semantic relatedness measures quantify the degree in which two words or concepts are related in 

a taxonomy by using all relations between them, such as synonymy, hyponymy. Semantic similarity is 

a special case of relatedness and it is limited to hyponymy (i.e. is-a) relations. Measures of relatedness or 

similarity are used in many Natural Language Processing (NLP) applications, such as word sense 

disambiguation, Information retrieval , automatic detection and spelling correction, semantic annotation, text 

clustering and classification, topic detection [1, 2]. Measuring the semantic similarity between texts is 

a challenging task. The traditional lexical approach based on Bag of Word (BOW) [3] and vector space 

model [4] which convert each text into a word vector, has a notorious disadvantage that is ignore 

the semantic relationship among words and treat words independent of each other [3]. One solution to resolve 

this problem is to enrich text representation with an external source of knowledge. Some technique use large 

corpora such as the statistical corpus based similarity approach, which measures the semantic similarity 

metric between two text and word based on the information gained from corpora. A Corpus refers to a large 

collection of written or spoken texts that is used to study and describe a language. The most relevant 

technique of this approach is HAL [4], LSA [4], ESA [5]. However , the corpora techniques are unstructured 

and imprecise. Morever, other techniques use a lexical structures such as taxonomies specially wordnet [6], 

but wordnet is limited in scope and coverage and does not include the information about named entities and 

specialized concept, and doesn’t give a good results in text similarity [7]. 
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In contrast, to solve these shortcomings, Wikipedia is an outstanding resource for text semantic 

similarity problem. It’s a large-scale collaborative open encyclopedia that has evolved into a comprehensive 

resource with very good coverage on diverse topics, important entities, events, it widely covers named 

entities, domain specific entities, and new entities. The English Wikipedia currently contains over 4 million 

articles (including redirection articles). Furthermore, WikiRelate [7] was the first work which compute  

the measures of semantic relatedness using Wikipedia, this approach applied the familiar technique used in 

semantic relatedness based on wordnet and modified it to be used in Wikipedia, such as path-length 

measure [8], but in general the results are similar. However, Gabrilovich and Markovitch (2007) [5] propose 

a new approach with Explicit Semantic Analysis (ESA) that achieve highly accurate results, this method has 

been extensively studied in many applications [9]. ESA use Wikipedia as a semantic interpreter and builds 

a weighted inverted vector that maps each term into a list of Wikipedia articles in which it appears, and 

computes the similarity between vectors generated from two terms or texts. It means that the inverted vector 

may contain a millions of columns with many 0 value considering the sheer size of Wikipedia articles  

(more than 4Mconcepts). Accordingly, interpreting text based on all Wikipedia concepts can be expensive 

and computing semantic relatedness after between this huge vectors using Cosine similarity, the efficiency of 

ESA will slow down. 

Several related paper are interested to this problem. [10] Propose Economy-ESA which is an 

economic schema of explicit semantic analysis ESA, by reduce the ESA index matrix dimension using 

random selection, k-means and norm-based clustering approaches. The authors in [11] propose a novel 

graph-based relatedness assessment method using Wikipedia features to avoid the drawbacks. It propose 

Naive-ESA algorithm to return the top 𝑘 most relevant Wikipedia in order to reduce the dimensional space of 

Explicit Semantic Analysis (ESA). An efficient and effective algorithm was proposed in [12], it’s represent 

the meaning of a text by using the concepts that best match it. This approach first computes the approximate 

top-k Wikipedia concepts that are most relevant to the given text and then leverage these concepts for 

representing the meaning of the given text. Following the above-mentioned studies, in this paper we present 

a new method that optimize ESA approach and resolve some of its limitation and drawbacks. Optimize-ESA 

reduce the dimension at the interpretation stage by computing the semantic similarity in a specific domain.  

Thus, based on several works [13], using a domain knowledge base is more beneficial and 

performant in sematic similarity computation process [14]. This result has pushed many researchers to use 

domain knowledge base when the text input domain is already known.The based majority of work in 

semantic similarity in a specific domain are in a biomedical domain because of the proliferation of textual 

resources and the importance of the terminology. In this context, the state-of-the-art methods for calculating 

semantic relatedness in a specific domain can be roughly divided into two main groups. Those that are 

concentrated on ontology based methods [15] And distributional methods that use the domain specific 

corpus [16]. Many attempts to use Wikipedia to compute semantic similarity in a specific domain. [17] 

assesses the suitability of Wikipedia in the biomedical domain as a potential knowledge resource for 

semantic relatedness computation by comparing it with other methods (ontology based, distributional 

methods). However, Jaiswal [18] propose a method for calculating the semantic relatedness of text related to 

diseases, conditions, and wellness issues that uses ESA with MedlinePlus as its knowledge base instead of 

Wikipedia. 

In this paper, we propose an approach optimize-ESA that perform the ESA approach and provides 

significant gains in execution time and space consuming without causing significant reduction in precision.  

In our approach we limit the K concept based on the category Wikipedia tree and the domain input.  

After that, we leverage these concepts vector to map a text from the keyword-space into the concept-space 

optimized. All evaluations are performed on datasets containing pairs of terms from biomedical domain and 

a gold standard semantic similarity value for each pair. The results are compared with the results of the ESA 

approach and the other state of art semantic similarity approach. The remainder of this paper is organized as 

follows. Section 3 present our method optimize-ESA and it architecture, Section 4 details the experiments 

that evaluate the effectiveness of our method and reports the analysis of results in the biomedical domain. 

Finally, we remark our conclusion and present some perspectives for future research in Section 5. 

 

 

2. PROPOSED APPROACH: OPTIMIZE-ESA FOR SEMANTIC SIMILARITY MEASURES 

2.1. The Wikipedia features 

Wikipedia is a large online encyclopedia founded in 2001 and it is a free, editable by users, 

web-based, collaborative, multilingual encyclopedia. While it underwent a tremendous growth and currently 

comprises more than 2,382,000 articles in about 250 languages. And become one of the most important 

information resources in the web. 
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Wikipedia content is presented on pages: 

 Articles: Are the normal page in Wikipedia that contain encyclopedic information, Each article describes 

a single concept or topic with a concise title that can be used in a ontologies and a brief overview of  

the topic. There is only one article for each concept or topic. 

 Redirects: Redirects is a Wikipedia page which automatically redirects users to another page (connect 

articles to articles or section of an article). It is possible to redirect to just a specific section of the target 

page. 

 Disambiguation pages: disambiguation is the process of resolving conflicts when article title is 

ambiguous, it contain a list of articles corresponding to different meaning of the same word. For example, 

the word "Java" can refer to an island of Indonesia, a programming language, a French band, and many 

other things. 

 Categories:  categories are nodes for hierarchical organization of articles, it intend to group pages on 

similar subjects, almost all Wikipedia articles are within one or more categories.Wikipedia category is 

organized as a network that we present briefly in section 3.3.1. 

 

2.2. ESA Approach 
Explicit Semantic Analysis created by Gabrilovich and Markovitch [19]. This approach consist to 

represent texts as weighted mixture of a set concepts and using Wikipedia concept which each concept is 

a title of Wikipedia page. The main advantage of this approach is the use of a vast amount of highly human 

knowledge. The first step of this approach is to construct the semantic interpreter that maps fragments of 

natural language text into a weighted sequence of Wikipedia concepts ordered by their relevance to the input. 

Given a input text Fragment T compose of I words T={wi}, we first represent it as an interpretation vectors 
using TFIDF Schema Vi , where Vi is the weight of the word wi. Then, we use Wikipedia articles as index 

documents, each Wikipedia concept is represented as a vector of words that occur in the corresponding 

article. Entries of these vectors are assigned weights using TFIDF scheme. Hence, these weights quantify  

the strength of association between words and concepts. We build an inverted index which maps each word 

into a list of concept in which it appears. Let Kj be an inverted index entry for word Wi , which Kj quantifies 

the strength of association of word Wi with Wikipedia concept cj , {cj, c1, . . . , cN} (where N denotes   

the total number of Wikipedia concepts). Then, the semantic interpretation vector V for text T is a vector of 

length N, in which the weight of each concept Cj is defined as ∑wi€T vi . kj Entries of this vector reflect  

the relevance of the corresponding concepts to text T . After That ESA uses Cosine metric to compute 

semantic relatedness of a pair of text fragments by comparing their vectors. The Figure 1 below present  

the whole ESA process. 

 

 

 
 

Figure 1. Explicit semantic analysis ESA system 
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The ESA approach is simple and efficient, however the process is too expensive for many reasons. 

Firstly, the dimension of concept vector for a given word is too large because it length equals to all concepts 

in Wikipedia considering the sheer size of Wikipedia article (more than 4 M concept). Secondly, to produce 

this concept vector, the overall index matrix must be multiplied by a term vector and give a large index 

matrix that requires numerous multiplications. Thirdly, the space vector of a word is a matrix in which most 

of the elements are zero because the word will appears just in a few Wikipedia articles. The reinterpretation 

of text based on Wikipedia concept can be very expensive and slow, because we lose a lot of time in 

unnecessary operations because the zero value in high-dimensional sparse vectors can impact efficiency and 

performance of ESA approach. Finally the computations of similarity or relatedness between two vectors 

with numerous dimensions are very costly. Thus, because of this problems, we propose in this paper an 

approach which optimize the ESA approach and allowed us to not return the vector space for the whole 

concepts in Wikipedia but only the top k concepts most relevant. Indeed, given a domain specific, we select 

the most relevant Wikipedia articles related to domain Di based on Wikipedia category network. 

Furthermore, we create a domain index Ui that save the inverted index of Wikipedia articles of each domain 

calculated after a domain Di entered. And for each text T in a specific domain Di, we semantically reinterpret 

it based on k concept saved in domain index Uj. We process an update for this domain index according to 

Wikipedia update frequency. We present briefly the optimize ESA approach in the section below. 

 

2.3. Optimize-ESA approach  

In this paper, we propose an approach to compute a semantic similarity in a specific domain called 

the Optimize-ESA approach. This approach resolve some of the shortcomings of ESA approach and optimize 

it in term of space consuming and time similarity computation. The architecture of our approach presented in 

Figure 2, it consist of two layers: filter k concept for domain Di and build a domain inverted index. 

 

 

 
 

Figure 2. Optimize-ESA architecture 

 

 

2.3.1. First Layer: filter K concept for domain Di  

The relationship between concept or article and category in Wikipedia is expressed by a link called 

category link (the English version contain 49.98 million inter links in September 2006 [20]). Indeed,  

the Wikipedia category system is socially created and edited and any user can create an article and classify it 

into category. This leads to a tremendous growth of articles and categories in Wikipedia (more than 500000 

categories in English Wikipedia article [20] ). Consequently, Wikipedia editors try to better organize 

Wikipedia category structure by purifying certain concepts and split category into multiple fine-grained 

categories (the number of categories in wiki-14 was increased 25% than wiki-12). Furthermore, the category 

system in Wikipedia is represented as a directed graph where nodes represent pages or categories, and edges 

represent the oriented relationship “is assigned to”. Every category has a multiple parents and children 

categories. And each category is connected to a number of articles (coverage all Wikipedia articles by 

a category). Besides, the category system in Wikipedia has a taxonomy structure which is a hierarchy of 
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topics and subtopics as shown in Figure 3. It enables us to search articles by narrowing from broader 

categories to the down categories. Indeed, Wikipedia offer a category tree system [21] which enable users to 

browse categories but not all concepts belonging to a specific category because it’s not a tree structure. 

Nevertheless, starting by a category we can traverse the descendant categories and detect all articles 

connected. 

 

 

 
 

Figure 3. Category tree wikipedia 

 

 

In this part, we use the Wikipedia category system to extract the articles or concept related to an 

input domain D. using this category system, we can consider our input domain as a category in Wikipedia 

and try to search all category belonging, as well as by traversing the descendant categories extract all articles 

connected. However, as the level increases, we can note that the articles covered are augmented more and 

more almost all the articles in the Wikipedia are covered. That means, all the articles belong to all the broad 

categories, which is incorrect. So our issue is how to define which level of the breadth first traversal we need 

to stop, in other words, in which level in Wikipedia tree structure the categories are effectively related to  

the category input. Therefore, we propose to compute the semantic similarity between category input and all 

categories in each level, and deciding after experimentation in which level we need to stop. The Table 1 

below present the result of our experimentation. 

Based on several experimentation and observation, we find that the categories level that are 

effectively related to the domain input changes from one domain to another and is not always correct to stop 

in a specific category level (computer science at 8 level and bioinformatics at 7 level). because it is according 

to the number of down categories of this domain existing in Wikipedia category system. Therefore,  

the categories extracted must be based on a semantic similarity measure between domain input and  

the categories in each level. Consequently, after experimentation, we decided to stop the extraction of sub 

categories related to domain input after a similarity value of 0.4. The Figure 4 presents the whole process of 

detecting the Wikipedia articles related to a specific domain input. 

 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Towards optimize-ESA for text semantic similarity: A case study of biomedical text (Khaoula Mrhar) 

2939 

Table 1. Correlation semantic similarity between wikipedia category tree levels 
Category input  Correlation Semantic Similarity   

Category Tree Levels 

1 2 3 4 5 6 7 8 9 10 11 12 

Computer science  0.8389 0.6858 0.6127 0,587 0,557 0,517 0,489 0,435 0,387 0,345 0,287 0,198 

Bioinformatics 0.629 0.5058 0,502 0,497 0,476 0,456 0,436 0,427 0,357 0,245 0,227 0,175 

Biology  0.7205 0.6063 0,598 0,576 0,554 0,518 0,486 0,423 0,397 0,297 0,267 0,109 

Medicine  0.7379 0.64498 0.5870 0.5630 0.5563 0.536 0,501 0,456 0,345 0,329 0,234 0,206 

 

 

 
 

Figure 4. The process of detecting wikipedia articles related to domain input 

 

 

2.3.2. Second layer: Build domain index Ui  

After the filtering of the Wikipedia articles related to a specific domain Di, we build an inverted 

index domain Di which maps each word into a list of concept in which it appears as presented in section 

3.2.1. Let kj be an inverted index entry for word wi, where kj quantifies the strength of association of word 

Wi with Wikipedia concept cj , {cj ∍ C1,…..,Cn}, where n denotes the number of Wikipedia concept filtered 

for domain Di as appear in table 2. 

 

 

Table 2. Wikipedia articles filtered for domain Di 
 WA1 ….. ….. WAj 

Term 1 T[0,0]    

…..     

…..     

Term k ….. …. …. T[i,j] 

Terms in wikipedia articles filtered for domain Di 

 

 

After building the weighted inverted index for domain Di, We store it in a database as Ui to use it 

for any future interpretation to optimize the computation of semantic similarity. Our database must be 

updated for selecting new articles added to Wikipedia, the algorithm of our method is presented below: 

 

//the algorithm create the inverted index wikipedia for a specific domain that can be used in the similarity 

semantic measures between text based on ESA method 

// Input : domain Di 

// output : domain index Ui 

step 1  

//extract k concept related to domain input Di 

for domain Di 

if Di exist in U 

return U[Di] 

Else  
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//Search Di in node category tree wikipedia 

Ck =search [Di,CT] 

 //extract K concept Ck [C1….Ck] belongs to Di  

Return Ck 

Step 2  

// build inverted index for domain Di, WDi 

For C1 to Ck 

 WDi [C1…..Ck] 

    store WDi in Ui 

return Ui 

stop 

Furthermore, To compute the semantic similarity between two text T1 and T2 , we consider it as 

a bag of words T1= {t1,t2,…tn} with n words. And we semantically reinterpret it based on k concept saved 

in domain index Ui. And finally we compute the sematic similarity between the two text vectors based on 

a cosines similarity metric. 

 

 

3. RESULTS AND DISCUSSION 

3.1. Case study: biomedical domain  

In the last years, the amount of information available in textual format is rapidly increasing in  
the biomedical domain such as patient health records and medical documents. Therefore, Measures of 
semantic relatedness between concepts and texts is widely used in this domain, discovering similar 
diseases [22], and redundancy detection in clinical records [23], comparing gene products [24], identifying 
direct and indirect protein interactions within human regulatory pathways using gene ontology [25], coding 
medical diagnoses and adverse drug reactions using semantic distance [26]. Furthermore, the classical 
semantic similarity computation measures have been adapted to be used in several domain. However, these 
measures are less efficient due to the limited coverage of specialized domains. That is why, the need to use 
a specialized knowledge base such as in the biomedical domain, by exploiting the medical ontologies, 
knowledge repositories and biomedical structured vocabularies. For this reason, we propose in this paper 
a domain specialized method that optimize ESA semantic similarity approach. We choose to test  
the performance of our method on three biomedical dataset because of the availability and proliferation of  
the resources. We present in the section below the dataset used in our experimentation and the interpretation 
of our result. 

 

3.2. Experimentation 

Humans have an innate ability to judge semantic relatedness of texts. Accordingly, to evaluate  

the performance of machine measurement of semantic similarity between texts, we compare them with 

human rating on the same setting by compare the correlation between human judgement and machine 

calculations. In this work, because of the no suitability of dataset of biomedical pairs sentences as appear in  

Table 3. We use BIOSSES Dataset [27], which is a benchmark dataset for biomedical sentences similarity 

estimation. It contain 100 sentences pair selected from the TAC (Text Analysis Conference) biomedical 

summarization track training containing articles from the biomedical domain. The sentences pairs were 

evaluated by five different human expert that give a scores ranging from 0 (no relation) to 4 (equivalent). 

Which averaged for each pair to produce a single relatedness score. We test our method also on two French 

Web corpora [28]. The first corpus is about “epidemics” and the second one is about “space conquest.” Each 

corpus contains reference sentences and each of them was associated with six sentences chosen with 

similarities score ranging from 0 (the sentences are unrelated) and 4 (the sentences are completely 

equivalent). 

 

 

Table 3. The datasets used in semantic similarity task 
Dataset Pairs Scale References 

BIOSSES 100 1-5 [27] 

Epidemics 60 0-4 [28] 

Space conquest 60 0-4 [28] 

 

 

Following the literature on semantic relatedness, we evaluate the performance by measuring a pair 

correlation scores between the score assigned by the proposed method and human judgement score for each 

dataset we report the correlation computed on all pairs with the metric Pearson’s correlation coefficients.  
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The Pearson’s correlation metric denoted as P reflects the linear correlation between measuring result with 

human judgments, where 0 means uncorrelated and 1 means perfect correlated. The corresponding formula is 

defined as: 

 

 
 

where 𝑥𝑖 refers to the value of the ith in the dataset given by human judgments, 𝑦𝑖 to the corresponding value 

returned by an Optimize-ESA method, and n to the length of the target dataset.  

Table 4 show the correlation coefficient Pearson by the ESA algorithm and our methods Optimize-

ESA for the three datasets BIOSSES, Epidemics and Space Conquest. Our method optimize ESA gets 

a correlation of 0.612 compared to 0.595 for ESA method for sentences dataset BIOSSES. On the Epidemics 

dataset, our method gets a correlation of 0.544 compared to 0.525 for the full version ESA. And ESA 

approach with Wikipedia knowledge base get a correlation of 0.558 for Space conquest dataset compared to 

0.571 for our method. This clearly show that our method correlates much better with human judgement than 

the full version ESA approach. A comparison of our method Optimize-ESA and some state-of-art for 

computing semantic relatedness in the biomedical domain is shown in Table 5. We compare it with Resink 

and Lin which is the most popular information content measures in knowledge based methods. In addition, 

Levenshtein which is a string based measure. Besides comparing our optimize ESA with the traditional ESA 

approach with wikipedia as a knowledge graph. 

 

 

Table 4. The comparison of Pearson’s correlation coefficient on BIOSSES, Epidemics,  

Space conquest Datasets 
Dataset 

 

ESA Algorithm (Gabrilovich & Markovitch, 2007) Optimize-ESA 

Pearson’s (P) Pearson’s (P) 

BIOSSES 0.595 0.612 

Epidemics 0.525 0.544 

Space conquest 0.558 0.571 

 

 

Table 5. Correlation coefficients pearson (P) between related studies 

Related studies Dataset References 

 BIOSSES Epidemics Space Conquest  

IC-based measures 

Resink 0.473 0.396 0.412 P.Resnik [29] 

Lin 0.645 0.591 0.611 D.Lin [30] 

String similarity measures 

Levenshtein 0.592 0.601 0.591 Finkelstein et al., 

[31] 

ESA similarity measures 

ESA-wiki 0.595 0.525 0.558 Gabrilovich and 

Markovitch [19] 

Optimize-ESA 0.612 0.544 0.571  

 
 

As the above results in Table 5 indicate that the optimize-ESA can obtain competitive results for 

Pearson correlation especially for the small dataset. In contrast, in the big size dataset, the use of the full 

version ESA including all concepts in Wikipedia or optimize-ESA in a domain specific is more performant 

compared to string similarity measure and IC based measures. Furthermore, we noticed that our method 

optimize-ESA is faster than ESA with full Wikipedia after an experimentation presented in Figure 5. 

We measured the cosines similarity processing cost of six pairs from each test collection and we compute 

the running time comparison between ESA and Optimize-ESA. 
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Figure 5: ESA & Optimize-ESA Running Time 

 

 

4. CONCLUSION AND FUTURE WORK 

The study of semantic similarity between words has long been an integral part of information 

retrieval and natural language processing. Based on the theoretical principles and the way in which 

ontologies are investigated to compute similarity, different kinds of methods can be identified according to 

type, size and domain of dataset. Among these methods, we can cite the Explicit Semantic Analysis ESA 

approach with Wikipedia knowledge base which perform very well the task of computing the sematic 

relatedness of word and text fragment. However, The ESA process is too expensive due to the large length 

dimension of concept vector for a given word which equals all Wikipedia concept (4 M). And the efficiency 

of ESA will slow down because we lose a lot of time in unnecessary operations.  

We propose in this paper a new method called optimize-ESA which reduce the dimension at  

the interpretation stage by computing the semantic similarity in a specific domain. To evaluate  

the performance of our method, we give a comparison between different algorithms for Semantic Relatedness 

in the biomedical domain. We choose the biomedical domain because of the availability of different 

ontologies and methods, which is significantly higher than any other domain. We conclude that our method 

outperforms the current state-of-the-art methods for calculating the semantic relatedness of biomedical texts 

as it correlates much better with human judgements. There are two other interesting lines of future research 

related to the method presented in this work. Firstly, we plan to more optimize our method by filtering  

the Wikipedia concept using the domain specific knowledge based leveraged with Wikipedia category tree. 

Secondly, we plan to more perform the result of ESA by adding to the weighted inverted index a category 

index. Finally, a wider evaluation will be desirable, considering larger sets of text pairs as benchmark data in 

other domain. 
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