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Historically, it was thought that the number of X chromosomes plays little role

in causing sex differences in traits. Recently, selected mouse models have been

used increasingly to compare mice with the same type of gonad but with one

versus two copies of the X chromosome. Study of these models demonstrates

that mice with one X chromosome can be strikingly different from those with

two X chromosomes, when the differences are not attributable to confounding

group differences in gonadal hormones. The number of X chromosomes

affects adiposity and metabolic disease, cardiovascular ischaemia/reperfusion

injury and behaviour. The effects of X chromosome number are likely the

result of inherent differences in expression of X genes that escape inactivation,

and are therefore expressed from both X chromosomes in XX mice, resulting

in a higher level of expression when two X chromosomes are present. The

effects of X chromosome number contribute to sex differences in disease

phenotypes, and may explain some features of X chromosome aneuploidies

such as in Turner and Klinefelter syndromes.

1. Introduction
It comes as no surprise to us that males and females are different, because the

differences are emphasized and celebrated in our daily conversations from the

earliest years of our lives. In everyday discourse, biological sex differences are

easily confused with gender differences, i.e. those stemming from cultural

attitudes and sex-specific rearing. The study of biological sex differences attempts

to identify, categorize and understand the inherent factors that make the two sexes

different from each other. These include factors that make every female different

from every male (and vice versa). In addition, some factors cause the two sexes to

be different, on average, even though some individuals of each sex are similar to

individuals of the other sex. Our general goal is to distinguish and understand

the separate components causing sex differences.

At the beginning of life, in the zygote, all inherent components must be

encoded on the X and Y sex chromosomes, because they are the only genetic

factors that are different at that stage. The Y chromosome of mammals encodes

several genes that eventually make males different from females, including the

testis-determining gene Sry and genes required for spermatogenesis [1,2]. The

action of Sry sets up lifelong differences in the levels of gonadal hormones,

which act in each sex to make it different from the other sex. Until recently,

the X chromosome was thought not to participate significantly in the process

of sexual differentiation. That attitude probably stemmed partly from the idea

that the process of X inactivation effectively silences most of one X chromosome

in XX females, so that they, like XY males, have one active X chromosome in

each cell. In the past decade, however, the study of mouse models has provided

convincing evidence that cells with two X chromosomes are intrinsically differ-

ent from those with one X chromosome. Sex differences caused by the number
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of X chromosomes can have a profound effect on disease. A

fundamental understanding of these diseases requires an

appreciation of the effects of X chromosome number. The

role of the X chromosome implies that specific X genes, at cer-

tain levels of expression, protect from disease and therefore

might be novel targets for therapy.

2. Mechanisms causing sex differences because
of the number of X chromosomes

The X chromosome is one of the most unusual chromosomes

in mammals, because it is present in different numbers in

males and females. There are numerous ramifications of

this inherent imbalance. The inequality in genomic dose of

X genes is thought to present a major problem [3], but per-

haps for only some gene networks [4]. For some genes,

having one or two doses does not make much difference,

so that individuals with a single copy of the gene have

about the same phenotype as those with two expressed

copies. For other X genes, however, the level of expression

must be within a limited range, over which the gene product

has the optimal balance with its interacting partners, most of

which are autosomal [5,6]. These X genes are called ‘dosage-

sensitive’ genes. The existence of dosage-sensitive genes on

the X chromosome means that cells with two X chromosomes

will have too much of some gene products, and/or cells with

one X chromosome will have too little, relative to their inter-

acting partners in gene networks. This imbalance creates a

selection pressure to increase the expression of the gene in

XY cells, which leads to counteracting pressure to decrease

expression in XX cells. These selection pressures are thought

to have driven the evolution of the current dosage compen-

sation system, X inactivation. The expression of X genes,

from a single X chromosome in both sexes, is also upregu-

lated by an unknown mechanism to make X gene

expression about on a par with expression of autosomal

genes, which are expressed from two copies in most instances

[7]. X inactivation is a remarkable process that quite effect-

ively reduces the expected XX.XY sex difference in

expression of all but a small minority of X genes [8].

Because X inactivation is a random process in somatic tis-

sues derived from the embryonic epiblast, each XX cell

expresses most gene variants and parental imprints from

only one of the two X chromosomes. Adult XX tissues and

individuals are therefore mosaics of cells that exhibit the

effects of either the maternal or paternal X genes. No such

mosaicism occurs in XY tissues. The mosaicism of X gene

effects has long been recognized as one of the factors that

makes individuals with two X chromosomes different from

those with one [9,10]. In general, mosaicism is viewed as

protective against disease, thus benefitting females. If a dele-

terious X mutation (or imprint) is inherited from the mother,

that mutation is expressed in all cells of XY individuals,

because of the male’s hemizygous exposure of X alleles, but

in only about half of the cells of XX (or XXY) individuals.

Thus, X-linked mutations affect males more than females

(e.g. as in X-linked developmental disabilities such as Fragile

X syndrome). More generally, any genetic variation among X

alleles, even those not causing overt disease (e.g. red-green

colour blindness), will cause sex differences in traits because

the effect of the variant is mitigated in XX tissues by the pres-

ence of another variant, but not in XY tissues. The ‘mosaicism

buffering effect’ that causes sex differences is relevant only to

genetically diverse populations such as humans, but is not a

potential explanation of sex differences in traits in inbred

laboratory populations such as inbred mice in which the

maternal and paternal X alleles are identical.

The sexual inequality of number of X chromosomes also

leads to sex differences in traits via at least three mechanisms

other than mosaicism: escape from X-inactivation, X imprint-

ing and epigenetic sinks [11]. (i) Escape from X inactivation. X

inactivation is not 100% complete, because some genes are

insulated from the inactivation process and are thus

expressed from both X chromosomes, making expression

levels inherently greater in XX (and XXY) cells than in XY

(or XO) tissues. The number of ‘X escapees’ has been esti-

mated at about 15% of X genes in humans, and 3% in mice

[12–15]. These estimates are based on studies of cell lines

under artificial conditions in vitro, in which it is possible to

detect rigorously even small amounts of expression from

the inactive X chromosome. Evidence suggests, however,

that many of the putative X escapees do not show the

expected XX.XY pattern of expression in whole tissues

in vivo [16,17], and the degree of escape from inactivation

might be specific to cell types, developmental stages, disease

states, environmental conditions, etc. [18]. (ii) Parental imprint-
ing. During production of gametes, each parent methylates

DNA in some genes, silencing the allele passed from that

parent to its offspring, a process known as imprinting. Sex

differences in traits might also arise because of the inherently

different pattern of parental imprinting of the X chromosome.

Unlike XY tissues, XX tissues are influenced by parent-of-

origin effect on X genes. Each parental imprint affects

expression in about one-half of the cells because of random

X inactivation. For example, a paternal imprint affects only

XX cells in which the paternal X chromosome is active.

(iii) Epigenetic sinks. The presence of a large inactive and

heterochromatic X chromosome in XX cells may attract

heterochromatizing factors away from other chromosomes

(providing a ‘sink’ for those factors) which could shift the

epigenetic status of the genome, and shift gene expression.

The ‘epigenetic sink’ hypothesis is still speculative, but has

some support [19–23].

3. Methods for detecting differential effects
of two versus one X chromosome

Our goal is to test for phenotypic effects of the number of X

chromosomes, mirroring the natural difference between

females and males, in a manner that will reveal X gene effects

involving the molecular mechanisms outlined in §2. We note

that some traditional methods of linking genes to phenotypes

may not uncover these kinds of X chromosome dosage

effects. For example, traditional linkage or association

analyses, which establish that variations in the genomic

sequence cause phenotypic variation, do not test directly

for effects of different doses of genes when there is no differ-

ence in genomic DNA sequence. Although variations in

genomic sequence might cause changes in gene expression

that accidentally mimic sex differences in levels of expression,

they do not necessarily do that, and X escapees may have no

endogenous differences in DNA sequence. Moreover, many

linkage and association studies do not include the X chromo-

some because of the complexity of analysis of that
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chromosome [24,25]. However, methods that vary the copy

number of the X chromosome to observe its effects in vivo
have been informative [25].

We discuss here mouse models for comparing mice with

different numbers of the X chromosome [26–28], because

this species is the most genetically tractable whole-animal

mammalian model of human physiology and disease. An

important problem is that groups with different numbers of

X chromosomes could conceivably have different levels of

gonadal hormones, so that group differences might be

caused by gonadal hormones rather than direct effects of X

genes on non-gonadal tissues. For example, naturally occur-

ring variation in the number of X chromosomes in humans

is associated with changes in adult gonadal hormone levels.

Women with Turner syndrome (XO) are infertile and have

altered levels of androgens and oestrogens, compared with

XX females [29]. Klinefelter syndrome (KS) men (XXY) are

also infertile and have lower levels of androgens than XY

men [30]. XXY mice similarly are infertile and have lower

levels of androgens compared with XY [31–33], but XY and

XXY male mice appear to have similar levels of androgens pre-

natally [34]. The endocrine differences between XO and XX

mice are reduced relative to those in humans. XO mice are fer-

tile in some genetic backgrounds, and prenatal levels of

androgens appear to be similar to those of XX mice [34].

Nevertheless, one cannot assume that there are no differences

in the levels of ovarian hormones. Accordingly, methods must

be used to deal with the possible problem that varying X

chromosome number could bring changes in the levels of

gonadal hormones, which cause differences in non-gonadal

traits. Distinguishing hormonal and non-hormonal effects of

X chromosome number is a challenge.

One approach to circumventing the issue of confounding

gonadal hormone levels is to gonadectomize (GDX) mice as

adults (with or without equal hormone replacement) to

control hormone levels, so that groups of adult mice can be

effectively compared when hormonal levels are the same

[35]. Although that method eliminates many possible con-

founding effects of hormones, it is not sufficient to

eliminate all conceivable group differences caused by gonad-

al hormones. Gonadal hormone effects can be long-lasting, so

that group differences may exist even before birth, or before

the time of GDX, and can potentially cause phenotypic differ-

ences in adulthood [36,37]. (Nevertheless, prenatal

differences in gonadal hormone levels, in mice with the

same type of gonad, have not been detected in two mouse

models discussed here, the Four Core Genotypes (FCG) and

XY* models [34,38].) Ultimately, there are almost no methods

for keeping gonadal hormones equivalent among groups

during the entire lifetime, except in mice that lack gonads

entirely [39–41]. However, as we see in §4, it is possible to

discover differences in mice with different sex chromosomes

that are not explained by effects on gonadal secretions.

One useful model is the FCG model [28,35,42], which pro-

duces XX and XY mice with testes (XXM and XYM) or with

ovaries (XXF and XYF) (figure 1). Thus, the XX versus XY

comparison can be made when both groups have testes, or

have ovaries. The XX and XY groups with the same type of

gonad have similar levels of gonadal hormones in adulthood

[46–50]. Moreover, differences between XX and XY mice are

sex chromosomes
Chr3 Sry

ChrY Sry

XY–

present
testes
XYM

XY–

absent
ovaries
XYF

XX
present
testes
XXM

XX
absent
ovaries
XXF

XX XY*X

absent
ovaries

XX
2XF

absent
ovaries

XO + PAR
1XF 1XM 2XM

XY*
present
testes
XY

XXY*

present
testes
XXY

gonads
shorthand

chromosomes

Four Core Genotypes

S

genotype

gonads
shorthand

chromosomes

shorthand

XY* model

3 3 3 3 3 3 3 3

Y Y
S

X X X X X X

Figure 1. Effects of one versus two X chromosomes can be revealed using two mouse models that have various combinations of sex chromosomes and gonad type.
In the FCG model, the Y chromosome is deleted for Sry, and designated Y2. An Sry transgene (S) is present on chromosome 3 in some groups. Breeding XYM with
XXF produces the four genotypes, XX and XY mice with testes (XXM, XYM), and XX and XY mice with ovaries (XXF, XYF). In the XY* model, breeding an XX mother
with XY* father produces the four genotypes, based on the abnormal recombination of the Y* chromosome with the X chromosome [43 – 45]. Adapted from [27]
with permission from Elsevier.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150113

3



found after the gonads are removed in adulthood (making

their adult gonadal hormone levels zero, and equivalent

across groups). In some cases, the XX versus XY difference

observed in mice with ovaries is similar to the XX versus

XY difference observed in mice with testes. That result

suggests that sex chromosome differences can occur under

quite different hormonal conditions including during prena-

tal life (see examples in §4). The FCG model has the major

advantage that it detects XX versus XY differences that are

independent of type of gonad. The model does not solve

whether these sex chromosome effects are caused by the

number of X chromosomes (1 versus 2) or the presence of

the Y chromosome. For that purpose, the XY* model is

useful. It compares groups that have sex chromosomes that

are similar to XO, XX, XY and XXY (figure 1). In this

model, two comparisons test for different effects of one

versus two X chromosomes: XO versus XX, and XY versus

XXY (figure 1). The combined use of the FCG and XY*

models offers the advantage that a sex chromosome effect

can be detected and found to be insensitive to gonadal type

in the FCG model, and then confirmed in a completely differ-

ent genetic model using XY* mice, which also discriminates

between effects caused by X or Y chromosome number. The

XY* model may be used by itself, to demonstrate differences

in the effects of one versus two X chromosomes, in the pres-

ence (XY versus XXY) or absence (XO versus XX) of the Y

chromosome [51]. The XY* model also tests for the effect of

a Y chromosome (XO versus XY or XX versus XXY), but in

this model the Y chromosome effects are most likely the

result of effects of testicular secretions, because the mice

with Y chromosomes have testes. In §4(a–c), we illustrate

the use of these and related mouse models to identify mech-

anisms that contribute to sex differences in traits such as

obesity, cardiovascular disease and behaviour.

4. Test cases showing effects of X chromosome
number

(a) Sex differences in metabolism and adiposity
Women and men differ in the amount and distribution of fat in

the body, and overweight and obesity have differential effects

on health of the two sexes [52]. Mice are an important genetic

model in research on obesity and metabolic syndrome. As

adults, male mice generally weigh more than female mice. In

the C57BL/6 strain, the sex difference is approximately 25%.

This difference can be seen in gonad-intact FCG mice

(figure 2a). By 45 days of age, after puberty, XXM or XYM

mice (males with testes) weigh more than XXF and XYF

(females with ovaries). To test if the sex difference is caused

by adult secretions of gonadal hormones, the gonads are

removed (figure 2b). Within a month after GDX, all four

groups weigh about the same, because of reduced increase

of body weight in males and increase in body weight in

females, indicating that the main sex difference in body

weight was influenced by both testicular and ovarian sections

[43,53,55]. In mice gonadectomized for seven weeks or longer,

however, the XX mice gradually gain weight relative to XY

mice, leading to a large XX . XY difference in body weight

by eight months after GDX. This demonstrates that two X

chromosomes are associated with enhanced body weight, a

finding that could never be determined by comparing

standard XX female and XY male mice, which differ from

one another in both gonad type and sex chromosome com-

plement. This sex chromosome effect cannot be explained by

group differences in gonadal hormones secreted in adulthood,

because the groups had no gonadal hormones for a prolonged

period of adulthood. The effect is also not likely to have been

caused by group differences in the levels of gonadal hormones

secreted before GDX in adulthood, because the XX.XY differ-

ence occurs when comparing XX and XY groups that both had

either testes or ovaries. The sex chromosome effect therefore

occurs robustly under distinctly different hormonal conditions.

Moreover, comparison of XX and XY FCG mice with the same

type of gonad has uncovered no prenatal or adult XX–XY

difference in levels of gonadal hormones [38,46–50].

The XX chromosome effect on body weight could potentially

be caused by the presence of two X chromosomes, or by the

absence of a Y chromosome. To distinguish these possibilities,

mice from the XY* model were studied. In mice gonadectomized

as adults, body weight increased in mice with two X chromo-

somes (XX and XXY) more than in mice with one X

chromosome (XO or XY), but the presence or absence of the Y

chromosome had little apparent effect (figure 2c) [53]. Thus, the

effect is caused by the inherent sex difference in number of X

chromosomes. The results from XY* mice confirm and extend

those from FCG mice, using a different genetic model.

The X chromosome effect on body weight is associated

with several metabolic changes. One reason for the greater

body weight and adiposity of XX mice, relative to XY,

could be that they begin their diurnal phase of feeding earlier,

and ingest more food during the light phase of the cycle

[53,55]. Thus, the time of food intake, rather than total

amount eaten, could be affected by the number of X chromo-

somes. Mice with two X chromosomes also have higher

expression of growth hormone mRNA in the arcuate nucleus

of the hypothalamus, which likely reflects different activity of

hypothalamic circuits regulating feeding [56,57]. Mice with

two X chromosomes (relative to those with one) also express

higher levels of the gene Pdyn in the striatum [58], which is

conceivably related to feeding behaviour [59]. The changes

in feeding in XX mice gonadectomized as adults likely

contribute to the accrual of nearly double the levels of body

fat as XY mice [53]. Moreover, when GDX XX mice are fed

a high fat, simple carbohydrate diet, they gain weight faster

than XY mice, develop insulin resistance, and have greatly

elevated levels of liver fat [53]. In addition, XX mice have

altered levels of circulating lipoproteins compared with XY

mice, including about 20% higher levels of high-density

lipoproteins, both when they are gonad-intact and after

GDX, and when fed different diets (figure 2d) [54]. Again,

this difference is attributable to the number of X chromosomes.

(b) Sex differences in cardiovascular disease
Men and women differ in their susceptibility to cardiovascular

artery disease, which is a leading cause of death [60], but the

biological basis of the sex difference is not well understood.

The FCG and XY* mouse models have also been studied in a

mouse model of ischaemia/reperfusion (I/R) injury in the

heart [61] (figure 3) modelling a human heart attack. FCG

and XY* mice were GDX and used one month later to

remove any possible group differences in levels of gonadal hor-

mones. In an in vivo model, blood flow to some regions of the

heart is stopped by ligating one of the cardiac arteries for
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Figure 2. The FCG and XY* models are used to demonstrate that the number of X chromosomes contributes to sex differences in body weight and lipoprotein levels.
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ovaries (‡p , 0.000001), and mice with XX sex chromosomes weighed slightly more than XY (*p , 0.05). After mice were gonadectomized (GDX) at 75 days of
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females were heavier than males (**p , 0.01). The effects of sex chromosome complement interacted significantly with the effects of gonad type (int, *p , 0.05).
(b) Growth curves for FCG mice GDX at day 75 (week 0). Before gonadectomy (GDX), mice with ovaries weighed less than mice with testes, and XX mice weighed
more than XY mice. The sex difference caused by gonadal secretions acting in adulthood disappeared within four to five weeks after GDX, and thereafter XX mice
gained more weight than XY mice. (c) The sex chromosome effect on body weight is confirmed in the XY* model and found to be caused by the number
of X chromosomes, using the same GDX design as in a and b. After GDX at day 75, mice with two X chromosomes gained weight more than mice with
one X chromosome ( p , 0.000001). (d ) Metabolic effects of X chromosome number. In FCG mice (left and centre panels) that were gonad-intact or GDX,
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independent of their gonadal sex. In the XY* model, mice with two X chromosome had higher HDL levels than mice with one X chromosome. *p , 0.05,
**p , 0.01, ***p , 0.001, †p , 0.0001. Adapted from [53,54], with permission from Wolters Kluwer Health, Inc.
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30 min, then the ligature is removed to start the blood flow to

the heart muscle for 24 h, producing I/R injury (figure 3a–d).

In an ex vivo model, in which the heart is removed from the

mouse and perfused through the aorta with an oxygenated

physiological buffer, the flow is interrupted for 30 min

and then restarted for 60 min to simulate I/R injury in

humans (figure 3e–h). In both in vivo and ex vivo models, the

infarct size was measured at the end of the experiment. In the

ex vivo model, haemodynamic parameters were measured

throughout the experiment such as rate pressure product

(RPP). The infarct size in GDX FCG mice was strikingly greater

in XX than XY (approx. 40%) in the in vivo model, independent

of the gonadal sex in mice (figure 3b–d). Consistent with larger

infarct size in XX mice in vivo, the heart functional recovery

after ischaemia in the ex vivo model was significantly lower in

XX than XY mice in GDX FCG mice, as indicated by RPP

(figure 3f ). When the XY* model was subjected to ex vivo I/R

injury, RPP was significantly lower and the infarct size was sig-

nificantly larger in mice with two X chromosomes, relative to

mice with one X chromosome, and the presence of the Y

chromosome appeared to have no effect (figure 3g,h). These

studies of X chromosome effects on cardiovascular disease

mirror the studies on metabolism discussed in §4(a), in that

two X chromosomes confer a greater disease burden than one

X chromosome.

(c) Sex differences in behaviour
Studies of mouse behaviour also provide evidence that the

number of X chromosomes contributes to sex differences.

Fear reactivity in gonad-intact adult mice is greater in XO

than XX mice, shown by the reluctance of the mouse to ven-

ture into an open area of an elevated plus maze. This

difference is not explained by the number of genes in the

pseudoautosomal region (PAR), but by the difference in

number of non-PAR X genes [62]. In studies of sexual behav-

iour, when mice of the XY* model are GDX as adults and

treated equally with testosterone, then tested with a receptive

female, they show male sex behaviour differently depending

on the number of X chromosomes [34]. In juvenile mice of the

XY* model tested at approximately three weeks of age, mice

with one X chromosome show less social behaviour when

paired with another mouse, compared with mice with two

X chromosomes [51]. Mice with one X chromosome investi-

gated their cage partners more frequently than mice with

two X chromosomes, but spent less total time in proximity

to or interacting with the partner. When tested for preference

for a novel versus familiar mouse, mice with two X chromo-

somes had greater preference for the unfamiliar mouse. The

greater anxiety-like behaviour, found in adult mice with

one X chromosome [62], was also found in juvenile mice

[51], and may help explain the tendency of mice with one X

chromosome to avoid novel mice or social partners, more

than mice with two X chromosomes.

(d) Models of sex chromosome aneuploidy
The effects of two versus one X chromosome are not only

relevant to the natural difference between the sexes (XX

versus XY), but also to two sex chromosome aneuploidies

ischaemia reperfusion

FCG

FCG

70
60
50
40
30

A
A

R
/L

V
(%

)

IS
/A

A
R

(%
)

in
fa

rc
t s

iz
e

(%
)

20
10 F

XX XY XX XY

M F M

F M F M

F M F M

F M F M

0

60 *
XY*

***
XY*FCG

ischaemia

30 min 60 min

reperfusion

XYXX

50

40

30

20

10

0
XX XO XYXXY

XX XO XYXXY

50

40

30

20

10

0

100
80
60
40
20

R
PP

 r
ec

ov
er

y
(%

)

R
PP

 r
ec

ov
er

y
(%

)

0

80

60

40

20

0

FCG
**

XXF XYFXXM XYM

in vivo LAD
Evans blue

dye

24 h30 min

(a)

(c)

(e)

(d )

(b) (g)

(h)

( f )

ex vivo I/R

F M F M

Figure 3. Use of the FCG model shows that after ischaemia/reperfusion injury, GDX XX mice have worse recovery and larger myocardial infarct area compared with
GDX XY mice, irrespective of gonadal type. (a) Experimental protocol in vivo: the left anterior descending artery was occluded in GDX FCG mice for 30 min followed
by 24 h of reperfusion. (b) Representative cross sections of heart muscle stained with triphenyl tetrazolium chloride. The white area represents the infarcted area,
blue shows the non-infarcted area, red plus white areas show risk area. (c) Percentage of area at risk (AAR) divided by left ventricle area. (d ) Infarct size (IS) divided
by AAR. **p , 0.01, n ¼ 6 – 7. (e) Experimental protocol ex vivo: perfusion of the heart is shut off for 30 min, then reperfused for 60 min before measuring heart
function. ( f ) The rate pressure product (RPP), a measure of recovery after injury, was worse in XX than XY mice. **p , 0.01. (g) Use of the XY* model shows that
in the ex vivo system, mice with two X chromosomes (XX, XXY) have worse recovery (lower RPP) than mice with one X chromosome (XO, XY). (h) The infarct size as
the percentage of total ventricular area in hearts ex vivo. *p , 0.05. Adapted from [61] with permission from Oxford University Press.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150113

6



that occur with significant frequency in humans: XO (Turner

syndrome, 1/2500 live female births) and XXY (KS, 1/600

live male births). XO females differ from XX females exclu-

sively because of the difference in number of X

chromosomes, and XXY males differ from normal XY males

for the same reason. XXY males experience inactivation of

one of the two X chromosomes, as in XX females [63]. Monos-

omy of the X chromosome (XO) is usually lethal to human

embryos [64], but those who survive to adulthood have mul-

tiple phenotypes including ovarian failure with abnormal

levels of reproductive hormones (low oestrogen and elevated

androgens), short stature, neck webbing, and susceptibility to

cardiovascular and metabolic disease [29]. Men with KS have

small testes, lowered testosterone levels, and increased

height. As a group they show greater incidence of behaviour-

al problems including delayed language development and

deficits in social and executive functioning [65]. They experi-

ence increased prevalence of several health problems [66,67],

some of which are usually more common in women than in

men including breast cancer [68,69], osteoporosis [70] and

autoimmune diseases including rheumatoid arthritis and sys-

temic lupus erythematosus [71]. KS men have increased body

fat, specifically abdominal fat, as well as increased rates of

hyperinsulinaemia, insulin resistance, type II diabetes and

metabolic syndrome [30].

The loss of one X chromosome in female mice results in a

much milder phenotype than in humans. XO mice are fertile at

least in outbred genetic backgrounds. The milder phenotype

might result from a smaller number of genes in the mouse

PAR than human PAR, which are expected to be expressed dif-

ferently in XO (one PAR) versus XX (two PARs). In addition,

fewer X genes escape inactivation in mice than humans,

which would reduce the presumed disparity of expression

levels of non-PAR X escapees [72], so fewer phenotypes

would be affected. Differences in gene expression have been

detected in XO mice relative to XX, including in X escapees

[73,74]. Although XO mice do not completely model Turner

syndrome, numerous genes escape X inactivation in both

species, so that the XX versus XO comparison in mice may

well model some effects of dosage of those genes in humans.

Several mouse models of KS have been used [33,75–77].

These studies have demonstrated that the second X chromosome

in males eliminates sperm production as in KS men [78], reduces

testis size, lowers testosterone levels, induces Leydig cell hyper-

plasia and causes behavioural deficits [33,79]. Moreover, XXY

mice have abnormal bone density, and altered sexual partner

preferences [80,81]. In most of these studies, gonad-intact mice

were studied, so that the lower levels of testosterone in XXY

mice, relative to XY mice, could have caused the difference in

phenotype, instead of direct (non-gonadal) effects of X genes

in mice with one versus two X chromosomes. In some cases,

the group differences in adult levels of testosterone were elim-

inated by castration of adult males, with or without

replacement of testosterone [34,80–82]. For some behaviour

traits, such as altered social interaction and sex preference, equal-

izing hormone levels ameliorated group differences [81].

However, differences in male sexual behaviour and in bone

architecture persisted despite castration and testosterone replace-

ment [34,80]. These studies ruled out effects of circulating

testosterone as the responsible mechanism, but in these studies

it is difficult to assess if XY versus XXY differences in levels of

testicular hormones before the time of GDX contributed to

group differences in phenotype.

Recently, we introduced a novel model of KS, the ‘Sex

Chromosome Trisomy’ (SCT) model, which produces XX,

XY, XXY and XYY mice (figure 4a) [77,83]. In this model, as

in the FCG model, the Sry gene is not on the Y chromosome,

but is present on an autosome as a transgene. Thus, each of the

four sex chromosome groups is produced with Sry (with

testes) or without Sry (with ovaries). The comparison of XXY

groups, modelling KS versus normal men, tests for the effects

of one versus two X chromosomes when a Y chromosome is

present. The model expands the ability to detect effects of

the second X chromosome that do not depend on testicular

secretions, because the model tests the effects also in mice

that do not have testes. In SCT mice GDX as adults and then

treated equally with testosterone, XXY mice weigh more

than XY mice and have more body fat and less lean mass, com-

pared with XY mice (figure 4b) [77]. The occurrence of these

differences in mice that had either testes or ovaries indicates

that the group differences do not depend on XXY versus XY

differences in the levels of testicular hormones. In tests of

sexual partner preference of SCT mice, again GDX and treated

with testosterone, XXY male mice also spent less time with a

female test mouse than did XY male mice, suggesting a femin-

izing influence of the second X chromosome on sexual partner

preference [83]. This influence appeared to be dependent on

the presence of the Y, as the partner preference of XX male

mice did not differ from XY males. In the same mice, gene

expression was measured in the bed nucleus of the stria

terminalis and the striatum. Most genes in XXY males were

found to be male-typical in their expression patterns, but a

substantial minority of genes in both regions was significantly

more female-typical. These genes are candidates for genetic

contributors to the KS phenotype

5. Candidate X genes that cause sex differences
The inherent sexual imbalance in the number of X chromo-

somes has now been shown to have unexpectedly large

effects on phenotypes, including susceptibility to disease.

The next step is to identify the X genes that contribute to

this imbalance, and to understand the downstream pathways

that affect phenotypes. Although the X chromosome is large

and gene-rich, the candidate genes are less numerous, because

we can focus on either imprinted genes or genes escaping X

inactivation. Tissue-specific parent-of-origin effects on gene

expression are just now being reported for an increasing

number of X genes [84–86], but it is not clear how many

of these will emerge as viable candidates for explaining

phenotypic sex differences caused by different number of

X chromosomes. By contrast, the number of X escapees result-

ing in sex differences in expression is relatively small [13],

making their analysis more tractable and attractive at present.

In mice, several X escapee genes are particularly interesting:

Kdm5c, Kdm6a, Eif2s3x and Ddx3x. These are routinely found

by numerous laboratories to be expressed at higher levels in

XX (or XXY) than XY (or XO) mice in numerous tissues

[53,56,61,73,74,87–92]. Each escapes X chromosome inacti-

vation in humans and mice [93–97]. Two of these genes,

Kdm5c and Kdm6a, are histone demethylases that are expected

to have widespread effects on gene expression throughout the

genome, and null mutations of each are implicated in human

disease [98,99]. Ddx3x is an RNA helicase involved in several

basic cellular processes such as transcription, RNA transport
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and splicing, and translation, and is implicated in human

cancer and intellectual disability [100]. Less is known about

Eif2s3x, a translation initiation factor, which is the X-linked

paralogue of Eif2s3y, a spermatogonial proliferation factor

[101]. Each of these genes has a closely related gene on the Y

chromosome, the expression of which in XY males could com-

pensate for the lack of a second copy of the X gene in males.

However, the Y genes are unlikely to offset sex differences in

effects of X escapees. In some cases, the X and Y copies

appear to have diverged in function [102] or pattern of

expression [89,90], suggesting that the compensation by the

Y paralogue is not complete. Thus, the X escapee genes

remain exciting candidates for explaining the effects of two

X chromosomes relative to one. Tests of this idea require care-

ful manipulation of the dose of the genes in mouse models, to

determine if one versus two copies of the gene causes pheno-

typic changes similar to the comparison of one versus two

copies of the entire X chromosome.

6. Conclusion and prospectus
In the twentieth century, gonadal hormones emerged as the

primary proximate factors that act on tissues to cause sex

differences in phenotypes. Their effect was so pervasive that

they were essentially the only proximate factors incorporated

into theories of the origins of sex differences in phenotype.

In the past two decades, however, the sexual imbalance of

effects of the X and Y chromosomes have been clearly

shown to cause sex differences in non-gonadal tissues that

are not mediated by gonadal hormones [10,11,35,103–105].

More of these effects have been localized to the X chromosome

than to the Y chromosome. Although specific X genes are

prime candidates for these effects, we cannot rule out non-

genic effects of the X chromosome as reviewed above. These

studies are still in their infancy, because we do not know yet

which X genes are responsible, and how they act. An impor-

tant question that is almost completely unstudied is how the

multiple sex-biasing factors, hormones and sex chromosome

genes, interact with each other in specific instances. Thus, we

can expect exciting developments in the near future.
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