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Abstract 

 

 Objectives: Real-time monitoring of disease status would be beneficial for timely 

decision making in the treatment of urothelial cancer (UC), and may accelerate the evaluation 

of clinical trials. Use of cell free tumour DNA (cftDNA) as a biomarker in liquid biopsy is 

minimally invasive and its successful use has been reported in various cancer types, including 

UC. The objective of this study was to evaluate the use of digital droplet PCR (ddPCR)-based 

assays to monitor UC after treatment.  

 Method and Materials: Blood, urine and matching formalin fixed, paraffin 

embedded (FFPE) diagnostic specimens were collected from 20 patients diagnosed with stage 

T1 (n=2) and T2/T3 (n=18) disease. SNaPshot assays, Sanger sequencing and whole exome 

sequencing (WES) were used to identify tumour-specific mutations, and somatic mutation 

status was confirmed using patient-matched DNAs extracted from buffy coats and peripheral 

blood mononucleocytes. The ddPCR assays of the tumour-specific mutations were used to 

detect the fractional abundance of cftDNA in plasma and urine. 

 Results: SNaPshot and Sanger sequencing identified point mutations in 70% of the 

patients that were assayable by ddPCR. Cases of remission and relapse monitored by assays 

for PIK3CA E542K and TP53 Y163C mutations in plasma and urine concurred with clinical 

observations up to 48 months from the start of chemotherapy. A new ddPCR assay for the 

telomerase reverse transcriptase (TERT) promoter (-124) mutation was developed. The TERT 

assay was able to detect mutations in cases below the limit of detection by SNaPshot. WES 

identified a novel mutation, CNTNAP4 G727*. A ddPCR assay designed to detect this 

mutation was able to distinguish mutant from wild-type alleles.  
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 Conclusions: The study demonstrated that ddPCR assays could be used to detect 

cftDNA in liquid biopsy monitoring of the post-therapy disease status in patients with UC. 

Overall, 70% of the patients in our study harboured mutations that were assayable by ddPCR. 
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1. Introduction 

Urothelial carcinoma (UC) is the 10th most common cancer, with 550,000 new cancer 

cases worldwide in 2018 [1]. Risk of progression from non-muscle-invasive bladder cancer 

(NMIBC) to MIBC is high in T1 disease, up to 17% at one year, increasing to 45% at 5 years 

[2]. High-risk NMIBC and MIBC are treated aggressively, often by cystectomy with peri-

operative chemotherapy in the case of MIBC. Effectiveness of treatments of metastatic 

disease is limited [3, 4]. The recent technological advance in identifying cell free tumour 

DNA (cftDNA) offers the opportunity to enable real-time diagnosis in combination with new 

and existing diagnostic modalities, which may facilitate the selection of therapy options and 

more accurate prediction of disease prognosis [5].    

 DNA is released into the bloodstream or urine as cell-free DNA (cfDNA), and DNA 

released from tumours, cftDNA, can be differentiated from normal cfDNA using tumour-

specific mutations as markers [6]. Use of cftDNA-based markers in liquid biopsy samples 

may enable a minimally invasive approach to disease monitoring, and facilitates longitudinal, 

repeated sampling. cftDNA is detectable in many cancer types, including UC [7], albeit the 

levels may vary [8]. Studies showed that real-time monitoring of tumour burden is possible, 

when measured as variant allele frequency or fractional abundance (FA) of cftDNA, and it 

can represent DNA from both primary and metastatic tumours [6, 9, 10].  

 Detection of the UC hotspot mutations FGFR3 S249C and Y373C, and PIK3CA 

E545K in plasma and urine cfDNA was used in disease surveillance, and the level of cftDNA 

was associated with later disease progression in NMIBC and recurrence in patients that were 

undergoing cystectomy [11]. A custom-designed panel of one to six patient-specific ddPCR 

assays, developed based on the pre-screening of the tumour-specific mutations by next-

generation sequencing, was successfully utilised in longitudinal monitoring of NMIBC [12]. 

An extension of this strategy that used 84 personalized ddPCR assays targeting 61 genes in 
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cftDNA detected a relapse in MIBC patients with a lead-time of 101 days after cystectomy 

over radiographic imaging [13]. The level of cftDNA in liquid biopsy could be detected by a 

panel of general or UC-specific mutations and structural alterations, such as copy number 

alterations (CNAs) [13-18].  

 The underlying principle of ddPCR is a single PCR reaction split into 10,000 to 

20,000 discreet measurements in "droplets", which enables quantification of a single mutant 

DNA sequence amongst thousands of wild-type sequences [6]. While relatively limited in the 

flexibility of mutational coverage in monitoring patients, it does have an advantage in 

simplicity and sensitivity. In this study, we have tested the feasibility and practicality in 

performing commercially available ddPCR-based assays and in designing new ddPCR assays 

where pre-existing assays were not available.  

 

2. Materials and Methods 

 

2.1. Patients and DNA samples 

 Samples were collected under the approvals by The West of Scotland Research Ethics 

Service (REC 10/S0704/18) and MI84 ECMC Blood Biomarkers Study. The survival status 

of patients is as of 1/1/2018. The matched formalin fixed, paraffin embedded (FFPE) samples 

were acquired from the NHS Greater Glasgow and Clyde Biorepository (16/WS/0207 app 

122). Blood samples were processed at the Queen Elizabeth University Hospital or The 

Analytical Services Unit (ASU), University of Glasgow. Macrodissection of tumour areas, 

identified by the pathologist, was performed from five to ten 8-µm FFPE tissue sections. 

DNAs from plasma, buffy coat, peripheral blood mononucleocytes (PBMCs), and urine were 

extracted as described in Supplementary Methods.  
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2.2. SNaPshot assay and Sanger sequencing 

 Hotspot mutations in the TERT promotor, PIK3CA, FGFR3 and RAS genes were 

assayed by SNaPshot analysis [19] in tumour DNAs. Sanger sequencing was used to identify 

TP53 mutations. The patient-matched buffy coat DNAs were used as control for somatic 

mutations. Further details of SNaPshot assay and Sanger sequencing are provided in 

Supplementary Methods.  

 

2.3. Whole Exome Sequencing (WES) 

 WES and the subsequent bioinformatic analysis was performed by Glasgow Polyomics 

Facility, University of Glasgow. Whole exome capture was carried out using the SeqCap EZ 

Exome+UTR kit (Roche, Pleasanton, CA, USA), sequenced using the NextSeq 500 platform 

(Illumina, San Diego, CA, USA) and 2x 75 bp reads were generated. The sequence data was 

aligned to the GRCh37 (hg19) genome using BWA (Version 0.7.10-r789) and variants were 

called using the Genome Analysis Toolkit (GATK, Broad Institute, Cambridge, USA). 

Tumour-specific mutations were identified by removing germ-line variants identified in 

PBMCs. Variant annotation and effect prediction was completed using SnpEff [20]. 

 

2.4. The ddPCR 

 A typical ddPCR experiment consisted of a control amplification without the addition 

of template DNA, negative (tumour DNA that does not carry the mutation) and positive 

(tumour DNA that carries the mutation) controls, along with the assays performed with plasma 

and urine cfDNA. DNA input of liquid biopsy was 0.5-8 ng per reaction. BioRad C1000 

Touch thermos cycler was used for PCR in droplets generated, which were analysed by the 

QX200 droplet digital PCR system and Quantasoft (BioRad, Watford, UK). FA of the mutant 

allele was calculated as the number of droplets positive with mutant amplicon, divided by total 
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droplets positive with amplicons. The assays were repeated in at least three independent 

experiments. The CNTNAP4 assay was carried out in duplicate or triplicate in a single assay. 

Further details of ddPCR assays are described in Supplementary Methods. 

 

3. Results 

 

3.1. Patient characteristics 

 A cohort of 20 patients (2 NMIBC and 18 MIBC) was available (Table 1). Eight 

patients had recurrent disease, 5 of whom had a single recurrence, while others had 3 or 

more. Of 11 deceased patients, 8 (73%) had metastasis. Metastasis was identified in 11% (1 

out of 9) of patients who are alive. Cystectomy with neoadjuvant chemotherapy (NAC), 

radiotherapy with or without chemotherapy were the most common treatment types (70% 

combined) (Table 2).    
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Table 1: Clinicopathological characteristics of patients in this study 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 All patients (n = 20) 
 Number % 

Sex   
  Male 17 85.0 
  Female 3 15.0 
Age (Years)   
  Range 43-83  
  Median 67  
  Mean 68  
T Stage   
  pT1 2 10.0 
  pT2 18 90.0 
Grade   
  2 1 5.0 
  3 19 95.0 
Recurrence/Outcome   
  Clinical Recurrence 8 40.0 
  No Recurrence 12 60.0 
Current Status   
  Alive 9 45.0 
  Deceased 11 55.0 
Presence of Metastasis   
  No metastasis  11 55.0 
  Metastasis present 9 45.0 
Survival Time, mean (months)   
  No metastasis 53.8  
  Metastasis present 31.5  
Treatments   
  Cystectomy only 2 10.0 
  Cystectomy and Neo. Adj. Chemotherapy 5 25.0 
  Cystectomy and Radiotherapy 1 5.0 
  Radiotherapy only 6 30.0 
  Radiotherapy and Chemotherapy 3 15.0 
  Chemotherapy only 2 10.0 
  Nephroureterectomy 1 5.0 
Presence of mutations identified in each patient   
  Two mutations 3 15.0 
  Single mutation 11 55.0 
  No mutation  6 30.0 
Mutations identified by SNaPshot    
  PIK3CA E542K 1 5.0 
  PIK3CA E545K 2 10.0 
  TERT -124 11 55.0 
  FGFR3 K650/652M 1 5.0 
Mutations identified by Sanger sequencing   
  TP53 Y163C  1 5.0 
  TP53 P278T 1 5.0 
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Table 2. Details of patients and tumour samples  

 

 
*as of 1/1/2018 

NAC, neoadjuvant chemotherapy 

 

 

Patient 
ID 

Sex Age Tumour 
Stage/ 
Grade 

Recurrence Metastasis Survival* 
(Months) 

Treatment 1 Treatment 2 Mutations identified in tumour by 
SNaPshot/Sanger sequencing  

1 M 57 pT1bG2 1 0 62 (Alive)  NAC Cystectomy  TERT -124, FGFR3 K650/652M 
2 M 62 pT1cG3 1 0 56 (Alive)  Nephroureterectomy   
3 M 77 pT2G3 0 0 60 (Alive)  NAC Cystectomy  TERT -124, PIK3CA E542K 
4 M 67 pT2G3 0 0 49 (Alive) Radiotherapy Chemotherapy TERT -124 
5 M 81 pT2G3 0 0 50 (Alive)  NAC Cystectomy  TERT -124  
6 M 67 pT2G3 0 0 57 (Alive)  Radiotherapy Chemotherapy  
7 F 83 pT2G3 0 0 70 (Alive)  Radiotherapy  TERT -124 
8 M 65 pT2G3 0 0 64 (Alive)  Radiotherapy  TP53 P278T 
9 M 66 pT2G3 0 0 47  Chemotherapy  TP53 Y163C 
10 M 64 pT2G3 1 0 46  Radiotherapy  TERT -124 
11 M 68 pT2G3 3 1 57 (Alive)  Chemotherapy and 

Radiotherapy 
Cystectomy 

Cystectomy TERT -124 

12 M 79 pT2G3 3 0 27 Radiotherapy   
13 M 63 pT2G3 0 1 29 Radiotherapy  PIK3CA E545K 
14 M 69 pT2G3 0 1 18 NAC Cystectomy  TERT -124 
15 M 70 pT2G3 0 1 28 Cystectomy  TERT -124 
16 M 61 pT2G3 0 1 32 Chemotherapy   
17 F 43 pT2G3 1 1 11 NAC Cystectomy  TERT -124, PIK3CA E545K 
18 M 77 pT2G3 1 1 28 Radiotherapy Chemotherapy TERT -124 
19 F 82 pT2aG3 0 1 21 Cystectomy   
20 M 73 pT2aG3 4 1 58 Radiotherapy    



10 
 

3.2. SNaPshot and Sanger sequencing identified assayable mutations in 70% of samples 

 PIK3CA E542K, PI3KCA E545K and TERT promoter (-124) mutations were 

identified by SNaPshot assays in 5%, 10% and 55% of patients, respectively (Table 1, Table 

2). TP53 mutations (P278T and Y163C) were identified by Sanger sequencing in 10% of the 

patients. No FGFR3 S249C or RAS gene mutations were detected. Overall, no mutations 

were identified in 30% of the cases. 

 

3.3. ddPCR analysis of a PIK3CA E542K mutation in plasma cftDNA from a case in 

remission 

Patient 3 was a 77-year-old male, diagnosed with non-metastatic muscle invasive 

disease, with a pT2 G3 tumour that carried a PIK3CA E542K mutation as identified by 

SNaPshot (Table 2). The presence of the PIK3CA E542K mutation was evaluated by ddPCR 

using a commercially available, validated assay, with a limit of detection (LOD) of 0.1%. A 

LOD of the mutant allele defines the lowest fraction of mutant DNA that an assay can 

reliably detect. The PIK3CA E542K mutation was confirmed in the patient’s tumour DNA 

with an FA of 35.7 % (Fig. 1C, Supplementary Results). No mutant signals were observed in 

the absence of template DNA, or in the tumour DNA from Patient 14, that was wildtype for 

the PIK3CA E542K mutation by SNaPshot (Fig. 1A, B). The mutant allele was still detected 

in the plasma of Patient 3 (FA of 4.2%) above the LOD of 0.1% at 1 week after the start of 

NAC (Fig. 1D). The patient subsequently had cystectomy at 3.5 months after NAC. The 

mutant allele was not detected at 45 months after cystectomy (48 months after the start of 

NAC) in plasma or urine (Fig. 1E, F). A minimum of 3 independent experiments were 

performed and the results were replicated (Fig. 1G). The patient is currently in remission after 

5 years and believed to be disease free. Therefore, ddPCR-based monitoring of the PIK3CA 

E542K mutation concur with clinical observations.   
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Fig. 1: ddPCR-based detection of a PIK3CA E542K mutation in plasma and urine 

ctDNA from a case of remission. The plots (A-F) indicate the digital PCR droplets positive 

with wild type (green), mutant (blue), both mutant and wild type (red) amplicons, and those 

with no amplicons (black). The number of positive droplets in the plots depends on the total 

DNA input, therefore fractional abundance (FA) is to be used for comparisons among 

samples.The assays were performed along with negative controls in which no template DNA 

was added (A) and tumour DNA known to be negative for this mutation (Patient 14) (B). 

The PIK3CA E542K assays were performed to monitor the disease status of Patient 3, using 

DNAs extracted from tumour (C), plasma collected at 1 week after the start of NAC, before 

cystectomy (D), plasma (E) and urine (F) collected at 45 months after cystectomy (48 

months from the start of NAC). (G) Summary of FA of the mutant allele within total 

droplets positive with amplicons is shown. Error bars are mean with standard deviation 

based on 5 independent experiments for tumour DNA and 3 independent experiments for 

plasma and urine. 



12 
 

 

3.4. ddPCR analysis of a TP53 Y163C mutation in plasma and urine cftDNA from a relapsed 

case 

Patient 9 was a 66-year-old male with a pT2 G3 tumour that was identified with a 

TP53 Y163C mutation by Sanger sequencing (Table 2). The TP53 Y163C mutation was 

confirmed in the patient’s tumour DNA by a commercially available, validated ddPCR assay 

(Fig. 2A). No mutant alleles were detected by ddPCR in plasma collected at 3 weeks into 

cisplatin gemcitabine chemotherapy (Fig. 2B). However, mutant alleles were detected in 

plasma and urine collected at 37 months after the initiation of chemotherapy (FA of 0.80 and 

0.43%, respectively) above the LOD of 0.1% (Fig. 2C-E). Clinically, the patient had a very 

good response to chemotherapy but relapsed and has died from UC at 45 months from the 

initiation of chemotherapy. Therefore, the results of the ddPCR assay matches the clinical 

observations.   



13 
 

 

Fig. 2: ddPCR-based detection of a TP53 Y163C mutation in plasma and urine cell-free 

tumour DNA from a case of relapse. The TP53 Y163C ddPCR assays were performed to 

monitor the disease status of Patient 9, using DNAs extracted from tumour (A), plasma 

collected at 3 weeks (B), and plasma (C) and urine (D) collected at 37 months after the 

initiation of chemotherapy. (E) Fractional abundance of the mutant allele. Error bars are the 

mean and standard deviation based on 3 independent experiments. 
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3.5. Application of the new TERT -124 ddPCR assay to the monitoring of plasma from cases 

of patients in remission 

The TERT -124 mutation was identified in 55% of our patients (n=11/20) by SNaPshot 

assay (Table 1). In order to take advantage of this common mutation, a ddPCR assay was 

designed with a new set of probes and previously reported PCR amplification primers [21, 22] 

(Supplementary Results, Fig S1, Fig S2). The new assay was able to detect the presence of the 

TERT -124 mutation correctly with the LOD of 0.5% (Fig S1). The LOD of SNaPshot is 

reported to be between 5-10% [19]. Our results showed that the new ddPCR assay could detect 

the mutant allele in cases below the detection limit of SNaPshot (Fig S2).   

A TERT -124 mutation had been identified in the tumour of Patient 3 by SNaPshot 

(Table 2), as well as the PIK3CA E542K mutation (Fig. 1). The new ddPCR assay showed 

mutant droplets in the patient’s tumour DNA (Fig. 3A) with the FA of 74.1% (Fig. 3D). 

TERT -124 mutant alleles were detected in the plasma collected at 1 week from the start of 

NAC (Fig. 3B) with a FA of 36.0% (Fig. 3D). In contrast, the mutant droplets were not 

detected in the plasma at 45 months post-cystectomy (48 months after the start of NAC) (Fig. 

3C, D). These results are in accordance with our observations for the PIK3CA E542K 

mutation in Patient 3 (Fig. 1). 

 Furthermore, a TERT -124 mutation was identified by SNaPshot in the initial pT2 G3 

tumour of Patient 11 (Table 2). The patient was a 68-year-old male who had metastatic disease 

(para-aortic lymph nodes). The patient was treated with palliative chemotherapy, which led to 

a complete response to treatment and went on to a consolidative radiotherapy to his metastatic 

lymph nodes and his bladder tumour. The patient developed non-muscle invasive disease in 

his bladder and had undergone cystectomy at 38 months from the start of chemotherapy. It is 

unclear whether the tumour is a second primary “recurrent” urothelial tumour or regrowth of a 

residual tumour. Patient’s initial tumour DNA was shown to be positive for the mutant alleles 
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by ddPCR (Fig. 3E) with a FA of 42.1% (Fig. 3I). Some mutant droplets were observed in the 

plasma collected at 1 month after the start of chemotherapy prior to cystectomy (Fig. 3F). The 

FA value (11.3%) was above the LOD for the assay (Fig. 3I). The number of mutant signals 

detected by ddPCR increased in the plasma collected at 2 months and 17 months post-

cystectomy (40 months and 57 months from the start of chemotherapy) (Fig. 3G, H), with a 

FA of 20.0% and 23.0%, respectively (Fig. 3I). Clinically, the patient remained in remission at 

16 months from cystectomy (56 months from the chemotherapy). As it is probable that the 

patient has residual micrometastatic disease, his status is being carefully monitored by the 

oncologist.  
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Fig 3: ddPCR-based detection of the TERT -124 mutation in plasma ctDNA from cases 

of remission and relapse. The new TERT -124 ddPCR assays were applied to monitor the 

disease status of Patient 3 (A-D) and Patient 11 (E-I). In Patient 3, the plots show the results 

of the assay performed using DNAs extracted from tumour (A), plasma at 1 week after the 

initiation of NAC, before cystectomy, (B) plasma collected at 48 months from the start of 

NAC (45 months post-cystectomy) (C), and FA of the mutant allele summarised (D). In 

Patient 11, the plots show the assay results of tumour DNA (E), plasma at 1 month after the 

initiation of chemotherapy, before cystectomy (F), 2 months post-cystectomy (40 months 

from the start of chemotherapy) (G), at 17 months post-cystectomy (57 months from the start 

of chemotherapy) (H), and FA of the mutant allele summarized (I). Error bars are the mean 

and standard deviation based on 3 independent experiments. 
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3.6. The ddPCR assay for CNTNAP4 gene was developed from WES  

 To identify patient-specific tumour mutations in an unbiased fashion, WES was 

performed in DNAs extracted from FFPE tumours (n=3, Patient 4, 5, and 6) (Fig. 4, 

Supplementary Results, Fig S3A). Three adjacent areas within one FFPE block from Patient 5 

were also sampled to assess the variability of mutations. We found that adjacent areas 5-1, 5-2 

and 5-3, contained 19883, 19858 and 21785 tumour-specific mutations, respectively. This was 

close to the reported mutation rate [23]. Among these, 142 mutations were identified as 

common (Fig. 4A). Following a systematic filtering, we selected a Contactin-Associated 

Protein-Like 4 (CNTNAP4) G727* mutation for assay development. We confirmed the 

presence of this mutation in the tumour DNA by Sanger sequencing, as a secondary peak 

showing a C>A mutation (Fig. 4B). A new ddPCR assay designed was able to distinguish 

mutant and normal genomic DNAs with the LOD of 1% FA of mutant allele (Supplementary 

Results, Fig S4). 

 Patient 5 was an 81-year-old male with a pT2 G3 tumour that carried a TERT -124 

mutation (Table 2, Fig S2A) in addition to the CNTNAP4 G727*. Cystectomy followed 3.5 

months after NAC. The presence of the CNTNAP4 G727* mutation was confirmed in the 

patient’s tumour DNA by ddPCR (Fig. 4C) with a FA of 7.31% (Fig. 4G). Mutant droplets 

were observed in plasma collected 2 months into NAC and at 38 months post-cystectomy, 

with the FA of 0.25% and 0.4%, respectively, below the LOD (Fig. 4D, E, G). However in the 

urine collected at 38 months post-cystectomy, the mutant droplets were detected at FA of 

1.2% (Fig 4F). TERT -124 ddPCR assay was positive in tumour (FA 41.6%) but negative (FA 

0%) in plasma at 2 months and urine at 38 months (data not shown). There was no clinical 

evidence of relapse at this time, and the disease status is being carefully monitored by the 

oncologist. 
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Fig. 4: ddPCR-based detection of a CNTNAP4 G727* mutation identified by WES in the 

plasma and urine. (A) Number of tumour-specific mutations identified by WES in three 

adjacent areas (5-1, 5-2, 5-3) of tumours in Patient 5. 142 mutations were found in common 

between 5-1, 5-2 and 5-3. (B) Sanger sequencing confirmed the presence of the CNTNAP4 

G727* mutation in tumour area 5-1 (arrow). The plots show the results of the new CNTNAP4 

G727* ddPCR assay performed on DNAs extracted from tumour (C), plasma collected at 2 

months after the start of NAC before cystectomy (D), and plasma (E) and urine (F) collected 

at 38 months from cystectomy (41 months from the start of NAC). (G) Summary of FA of the 

mutant allele. Error bars are 95% confidence intervals calculated by the Poisson distribution 

based on the number of positive droplets from duplicates in a single experiment. 
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4. Discussion  

 While a good range of ddPCR assays are commercially available for the detection of 

hotspot mutations in PIK3CA and FGFR3, a limited range was available for TP53 mutations, 

likely due to these mutations being distributed across the gene [24, 25]. Some commercial 

ddPCR assays are validated in silico, however, this did not guarantee that the assays would 

work. We were not able to design a functional FGFR3 K650/652M ddPCR assay due to 

persistent false-positive signals.  

 Inhibition of PI3K was shown to suppress bladder tumours particularly effectively in 

the presence of PIK3CA hotspot mutations, as evaluated in human urothelial cell lines and in 

xenograft mouse models [26]. Various inhibitors for PI3K/AKT/mTOR signalling pathways 

are currently in clinical trials for advanced solid tumours, including those of the bladder [27, 

28], and evaluation of PIK3CA mutational status as a biomarker is a rational approach in 

patient selection, at least in the trial set up.   

 TERT is a part of telomerase protein complex that plays a role in extending the 

telomere length [29]. TERT promotor at -124 and -146 are mutated frequently in UC across all 

stages, but not in normal bladder tissues [29-31]. These mutations are predicted to increase the 

level of TERT transcripts, leading to pro-tumour telomerase activity [29]. Several studies have 

investigated the usefulness of TERT promotor mutations as a urinary cell free biomarker, using 

SNaPshot [21, 22], ddPCR [30] and next generation sequencing with urine sediment DNA 

[32]. Telomerase inhibitors are in clinical trials based on the likely involvement of telomerase 

activity in tumour progression [29]. The ddPCR assay in this study produced meaningful 

results with as little as 1 ng of DNA as starting material, in contrast to SNaPshot that required 

5 ng [33]. The LOD provides important guidance to the decision of positivity of the mutant 

allele in samples. The ddPCR-based assays can have a range of LODs depending on the 

ddPCR assay platforms and the nature of samples, such as different amount of DNA input. For 
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example, the LOD for PIK3CA E542K ddPCR assay, the same BioRad assay we used in this 

study, was reported as 0.1% in the study of metastatic biliary cancers using serum as a liquid 

biopsy [34], while for EGFR T790M and L858R mutations, the LOD was 0.5% using 

fragmented DNA of 100-200bp representing plasma cfDNA size in the study of non-small cell 

lung carcinoma [35].  

 CNTNAP4 (CASPR4) is a member of Neurexin-IV/Caspr/Paranodin (NCP) family of 

cell adhesion and recognition molecules and is expressed in neuronal subpopulations in 

specific brain regions [36]. A function as a tumour suppressor was shown in the other family 

member CNTNAP2 (CASPR2) [37]. According to TCGA database (portal.gdc.cancer.gov) 

[38], 28 different CNTNAP4 mutations were identified in 6.80% (28/412) of UC. CNTNAP4 

mutations were also identified at a high frequency in lung, colorectal cancer, and melanoma 

(68-82%), and at a lower frequency in breast cancer (15%). Mutation at the G727 site, G727V 

has been identified in colorectal cancer [39], however, G727* mutation has not been reported 

so far.  

 Stratification strategies for NAC and surveillance in conjunction with cftDNA analysis 

have been proposed [14, 16]. Use of cftDNA monitoring in the course of checkpoint 

immunotherapy is also possible [40, 41]. A novel concept of an integrated monitoring system, 

such as continuous individualised risk index (CIRI) is based on the advance of cftDNA-based 

technologies [5]. The cost effectiveness of ddPCR should be carefully evaluated, as repeat 

cystoscopies are expensive for health services [42] and tests for several mutations in genes 

such as FGFR3, PI3KCA, and TP53 are already available as molecular diagnostic services 

offered by the National Health Service in the UK. Given that the cfDNA technology has still 

not been implemented widely in the health service, clinical applicability of ddPCR-based 

approaches may lie in the feasibility of use of such assays in a clinical setting. 

 



21 
 

Conflict of Interest 

No conflicts of interest were declared.  

 

Acknowledgements 

This work was supported by The Pathological Society of Great Britain and Ireland.  

 

Author contributions 

JP, CH and CO planned and performed experiments, GH performed WES bioinformatics, SF 

advised on histopathology. RJ supervised clinical data. JP, CH and TI analysed the results 

and wrote the manuscript, TI, MAK, HL, and RJ supervised the overall project. All authors 

reviewed and/or edited the manuscript.  

 

References 

[1] Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Pineros M, et al. 

Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and 

methods. Int J Cancer. 2019;144:1941-53. 

[2] Sylvester RJ, van der Meijden AP, Oosterlinck W, Witjes JA, Bouffioux C, Denis L, et al. 

Predicting recurrence and progression in individual patients with stage Ta T1 bladder 

cancer using EORTC risk tables: a combined analysis of 2596 patients from seven 

EORTC trials. Eur Urol. 2006;49:466-5; discussion 75-7. 

[3] Babjuk M, Bohle A, Burger M, Capoun O, Cohen D, Comperat EM, et al. EAU 

Guidelines on Non-Muscle-invasive Urothelial Carcinoma of the Bladder: Update 2016. 

Eur Urol. 2017;71:447-61. 



22 
 

[4] Alfred Witjes J, Lebret T, Comperat EM, Cowan NC, De Santis M, Bruins HM, et al. 

Updated 2016 EAU Guidelines on Muscle-invasive and Metastatic Bladder Cancer. Eur 

Urol. 2017;71:462-75. 

[5] Wan JCM, White JR, Diaz LA, Jr. "Hey CIRI, What's My Prognosis?". Cell. 

2019;178:518-20. 

[6] Wan JC, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid 

biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev 

Cancer. 2017;17:223-38. 

[7] Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of 

circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 

2014;6:224ra24. 

[8] Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, et al. 

Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 

2018;10. 

[9] Tan MP, Attard G, Huddart RA. Circulating Tumour DNA in Muscle-Invasive Bladder 

Cancer. International journal of molecular sciences. 2018;19. 

[10] Todenhofer T, Struss WJ, Seiler R, Wyatt AW, Black PC. Liquid Biopsy-Analysis of 

Circulating Tumor DNA (ctDNA) in Bladder Cancer. Bladder Cancer. 2018;4:19-29. 

[11] Christensen E, Birkenkamp-Demtroder K, Nordentoft I, Hoyer S, van der Keur K, van 

Kessel K, et al. Liquid Biopsy Analysis of FGFR3 and PIK3CA Hotspot Mutations for 

Disease Surveillance in Bladder Cancer. Eur Urol. 2017;71:961-9. 

[12] Birkenkamp-Demtroder K, Nordentoft I, Christensen E, Hoyer S, Reinert T, Vang S, et 

al. Genomic Alterations in Liquid Biopsies from Patients with Bladder Cancer. Eur Urol. 

2016;70:75-82. 



23 
 

[13] Birkenkamp-Demtroder K, Christensen E, Nordentoft I, Knudsen M, Taber A, Hoyer S, 

et al. Monitoring Treatment Response and Metastatic Relapse in Advanced Bladder 

Cancer by Liquid Biopsy Analysis. Eur Urol. 2018;73:535-40. 

[14] Patel KM, van der Vos KE, Smith CG, Mouliere F, Tsui D, Morris J, et al. Association 

Of Plasma And Urinary Mutant DNA With Clinical Outcomes In Muscle Invasive Bladder 

Cancer. Sci Rep. 2017;7:5554. 

[15] Vandekerkhove G, Todenhofer T, Annala M, Struss WJ, Wong A, Beja K, et al. 

Circulating Tumor DNA Reveals Clinically Actionable Somatic Genome of Metastatic 

Bladder Cancer. Clin Cancer Res. 2017;23:6487-97. 

[16] Christensen E, Birkenkamp-Demtroder K, Sethi H, Shchegrova S, Salari R, Nordentoft I, 

et al. Early Detection of Metastatic Relapse and Monitoring of Therapeutic Efficacy by 

Ultra-Deep Sequencing of Plasma Cell-Free DNA in Patients With Urothelial Bladder 

Carcinoma. J Clin Oncol. 2019;37:1547-57. 

[17] Agarwal N, Pal SK, Hahn AW, Nussenzveig RH, Pond GR, Gupta SV, et al. 

Characterization of metastatic urothelial carcinoma via comprehensive genomic profiling 

of circulating tumor DNA. Cancer. 2018;124:2115-24. 

[18] Barata PC, Koshkin VS, Funchain P, Sohal D, Pritchard A, Klek S, et al. Next-

generation sequencing (NGS) of cell-free circulating tumor DNA and tumor tissue in 

patients with advanced urothelial cancer: a pilot assessment of concordance. Ann Oncol. 

2017;28:2458-63. 

[19] Hurst CD, Zuiverloon TC, Hafner C, Zwarthoff EC, Knowles MA. A SNaPshot assay 

for the rapid and simple detection of four common hotspot codon mutations in the 

PIK3CA gene. BMC research notes. 2009;2:66. 

[20] Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. A program for 

annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in 



24 
 

the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 

2012;6:80-92. 

[21] Allory Y, Beukers W, Sagrera A, Flandez M, Marques M, Marquez M, et al. Telomerase 

reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, 

detection in urine, and lack of association with outcome. Eur Urol. 2014;65:360-6. 

[22] Hurst CD, Platt FM, Knowles MA. Comprehensive mutation analysis of the TERT 

promoter in bladder cancer and detection of mutations in voided urine. Eur Urol. 

2014;65:367-9. 

[23] Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, et al. 

Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell. 

2017;171:540-56 e25. 

[24] Saito S, Matsuda K, Taira C, Sano K, Tanaka-Yanagisawa M, Yanagisawa R, et al. 

Genetic analysis of TP53 in childhood myelodysplastic syndrome and juvenile 

myelomonocytic leukemia. Leuk Res. 2011;35:1578-84. 

[25] Yamamoto S, Romanenko A, Wei M, Masuda C, Zaparin W, Vinnichenko W, et al. 

Specific p53 gene mutations in urinary bladder epithelium after the Chernobyl accident. 

Cancer Res. 1999;59:3606-9. 

[26] Ross RL, McPherson HR, Kettlewell L, Shnyder SD, Hurst CD, Alder O, et al. PIK3CA 

dependence and sensitivity to therapeutic targeting in urothelial carcinoma. BMC Cancer. 

2016;16:553. 

[27] Liu ST, Hui G, Mathis C, Chamie K, Pantuck AJ, Drakaki A. The Current Status and 

Future Role of the Phosphoinositide 3 Kinase/AKT Signaling Pathway in Urothelial 

Cancer: An Old Pathway in the New Immunotherapy Era. Clin Genitourin Cancer. 

2018;16:e269-e76. 



25 
 

[28] Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms 

and advances in clinical trials. Mol Cancer. 2019;18:26. 

[29] Gunes C, Wezel F, Southgate J, Bolenz C. Implications of TERT promoter mutations 

and telomerase activity in urothelial carcinogenesis. Nature reviews Urology. 

2018;15:386-93. 

[30] Russo IJ, Ju Y, Gordon NS, Zeegers MP, Cheng KK, James ND, et al. Toward 

Personalised Liquid Biopsies for Urothelial Carcinoma: Characterisation of ddPCR and 

Urinary cfDNA for the Detection of the TERT 228 G>A/T Mutation. Bladder Cancer. 

2018;4:41-8. 

[31] Theodorescu D, Cech TR. Telomerase in bladder cancer: back to a better future? Eur 

Urol. 2014;65:370-1. 

[32] Stasik S, Salomo K, Heberling U, Froehner M, Sommer U, Baretton GB, et al. 

Evaluation of TERT promoter mutations in urinary cell-free DNA and sediment DNA for 

detection of bladder cancer. Clin Biochem. 2019;64:60-3. 

[33] Kompier LC, Lurkin I, van der Aa MN, van Rhijn BW, van der Kwast TH, Zwarthoff 

EC. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their 

potential as biomarkers for surveillance and therapy. PloS one. 2010;5:e13821. 

[34] Kim ST, Lira M, Deng S, Lee S, Park YS, Lim HY, et al. PIK3CA mutation detection in 

metastatic biliary cancer using cell-free DNA. Oncotarget. 2015;6:40026-35. 

[35] Tran LS, Pham HT, Tran VU, Tran TT, Dang AH, Le DT, et al. Ultra-deep massively 

parallel sequencing with unique molecular identifier tagging achieves comparable 

performance to droplet digital PCR for detection and quantification of circulating tumor 

DNA from lung cancer patients. PloS one. 2019;14:e0226193. 



26 
 

[36] Spiegel I, Salomon D, Erne B, Schaeren-Wiemers N, Peles E. Caspr3 and caspr4, two 

novel members of the caspr family are expressed in the nervous system and interact with 

PDZ domains. Mol Cell Neurosci. 2002;20:283-97. 

[37] Bralten LB, Gravendeel AM, Kloosterhof NK, Sacchetti A, Vrijenhoek T, Veltman JA, 

et al. The CASPR2 cell adhesion molecule functions as a tumor suppressor gene in 

glioma. Oncogene. 2010;29:6138-48. 

[38] Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al. Toward a 

Shared Vision for Cancer Genomic Data. N Engl J Med. 2016;375:1109-12. 

[39] Giannakis M, Mu XJ, Shukla SA, Qian ZR, Cohen O, Nishihara R, et al. Genomic 

Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma. Cell Rep. 2016;15:857-65. 

[40] Raja R, Kuziora M, Brohawn PZ, Higgs BW, Gupta A, Dennis PA, et al. Early 

Reduction in ctDNA Predicts Survival in Patients with Lung and Bladder Cancer Treated 

with Durvalumab. Clin Cancer Res. 2018;24:6212-22. 

[41] Cabel L, Riva F, Servois V, Livartowski A, Daniel C, Rampanou A, et al. Circulating 

tumor DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-concept 

study. Ann Oncol. 2017;28:1996-2001. 

[42] Svatek RS, Hollenbeck BK, Holmang S, Lee R, Kim SP, Stenzl A, et al. The economics 

of bladder cancer: costs and considerations of caring for this disease. Eur Urol. 

2014;66:253-62. 

 



1 
 

Monitoring of urothelial cancer disease status after treatment by digital droplet PCR 

liquid biopsy assays  

John J. G. Pritchard et al 

 

Supplementary Methods 

 

Preparation of plasma, buffy coat, peripheral blood mononucleocytes (PBMCs), and urine 

 

 Nine ml of blood was added to a S-Monovette EDTA tube (Sarstedt, Numbrecht, 

Germany) and mixed by inverting several times. The samples were centrifuged at 1600g for 

10 minutes at 4°C in a swing out head centrifuge. The plasma was placed into cryotubes 

(Alpha Labs, Eastleigh, UK) in 1-ml aliquots and centrifuged for a further 10 minutes at 

13200 rpm at room temperature. The resulting supernatant was stored in cryotubes at -80°C. 

The buffy coat was collected by aspiration after plasma was removed, and stored in 1-ml 

cryotubes at -80°C. PBMCs were processed from 6 ml of blood in an EDTA vacutainer (BD, 

Workingham, UK). Five ml of HISTOPAQUE-1077 (Sigma-Aldrich, Gillingham, UK) was 

added to a 15-ml tube and layered with 5 ml of blood. Four layers were visible after 

centrifugation at 600g for 20 minutes. The plasma (top layer) was discarded. PBMC (the 

second layer above a clear bottom layer) was transferred into a clean 15-ml tube. Ten ml of 

ice-cold PBS was added, and the sample was centrifuged at 500g for 10 minutes at 4°C. The 

pellet was resuspended in 1 ml of ice-cold PBS and transferred to a 1.5-ml Eppendorf tube and 

centrifuged for 5 minutes at 500g at 4°C. The supernatant was discarded and the PBMCs 

(pellet) were stored at -80°C. Voided urine collected from patients (10 ml) was added with 

200 µl of 0.5 M EDTA, pH 8 (Thermo Fisher Scientific, UK #15575020) to achieve a final 

concentration of 10 mM EDTA. Urine was stored at -80°C until DNA extraction. 
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DNA Extraction  

 

 DNA was extracted using the QIAamp FFPE Tissue Kit (Qiagen, Manchester, UK) and 

eluted in 70-100 µl of buffer ATE or molecular-grade water. DNA was extracted from PBMCs 

using the QIAamp Blood Mini Kit (Qiagen) and eluted in 100 µl buffer AE. Plasma and urine 

DNAs were extracted using the QIAamp Circulating Nucleic Acid Kit (Qiagen) and eluted in 

40 µl buffer AVE. DNA was stored at -20°C. DNA was quantified using Qubit High 

Sensitivity DNA or Broad Range DNA Kits (ThermoFisher Scientific, Loughborough, UK). 

For WES, genomic DNA samples from patient tumour and matched PBMCs were assessed by 

Agilent Tapestation (Agilent, Santa Clara, CA USA) and Qubit 3.0 (ThermoFisher, 

Loughborough, UK). 

 

SNaPshot assay  

 

 Ten ng of DNA was mixed with 1X PCR buffer (Promega, Southampton, UK), 1.5 

mM MgCl2, 0.17 mM dNTPs, 0.7 µM of each primer, 5% glycerol, 1 unit GoTaq DNA 

polymerase (Promega), in a total volume of 15 µl. The thermal cycler conditions were an 

initial denaturation at 95°C for 5 minutes, followed by 45 cycles of 95°C for 45 seconds, 60°C 

for 45 seconds and 72°C for 45 seconds and a final extension for 10 minutes at 72°C. PCR 

products were treated with 3 units of shrimp alkaline phosphatase and 2 units of exonuclease I 

to remove excess dNTPs and primers. SNaPshot assay was carried out using an Applied 

Biosystems SNaPshot Multiplex Kit (ThermoFisher Scientific). The reaction consisted of 2.5 

µl of SNaPshot Ready Multiplex Mix, 1X BigDye sequencing buffer, 1 µl of probe mix and 1 

µl of PCR product in a total volume 9 µl. The extension reactions were performed in a thermal 
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cycler and consisted of 35 cycles of denaturation at 95°C for 10 seconds and annealing at 

58.5°C for 40 seconds. Products were treated with 1 unit of shrimp alkaline phosphatase and 

diluted 1 in 10. The diluted product (1 µl) was mixed with 9.8 µl HiDi formamide 

(ThermoFisher Scientific) and 0.2 µl 120 LIZ-standard (ThermoFisher Scientific). Analysis 

was carried out on ABI3100 (ThermoFisher Scientific).  

 

Sanger sequencing 

 

 PCR was used to amplify regions covering exons 5 and exon 8 [1] and exon 7 [2] of 

TP53 with following cycle: 95°C for 5 minutes; 30 cycles of 93°C for 45 seconds, 57°C (exon 

5), 59°C (exon 7) or 55°C (exon 8) for 45 seconds and 72°C for 1 minute; and 72°C for 5 

minutes. PCR products were purified using QIAquick PCR purification kit (Qiagen, 

Manchester, UK).  

 

PIK3CA E542K and TP53 Y163C ddPCR assays  

 

 The assays used were; PIK3CA E542K, #dHsaCP2000073 FAM Mutant, 

#dHsaCP2000074 HEX Wild Type, and TP53 Y163C, #dHsaCP2000099 FAM Mut, 

#dHsaCP2000100 HEX WT (BioRad, Watford, UK). Assays were performed in reactions 

containing 2 µl of DNA, 12.5 µl SuperMix no dUTP (BioRad), 1.25 µl FAM Primers and 1.25 

µl of HEX Primers and 1µl of Alu1 (NEB, Hitchin, UK) or Tru1 (ThermoFisher Scientific). 

PCR was performed as follows; 95°C for 10 minutes then 40 cycles of 94°C for 30 seconds 

and 55°C for 1min followed by 98°C for 10 minutes, and a final hold at 4°C. The LOD of 

PIK3CA E542K and TP53 Y163C ddPCR assays is 0.1% (PrimePCR ddPCR Mutation Assay 
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Validation Data, BioRad). The criteria for positive calling was >3 droplets, as suggested by 

BioRad, or >1 droplet if the result was replicable in more than 3 independent experiments.  

 

Design of new ddPCR assays 

 

 The ddPCR assays (PCR primers and probes) for TERT -124 and CNTNAP4 G727* 

were designed using Primer 3Plus [3] with the Human GRCh37 as a reference sequence. The 

specificity of the sequences was evaluated by PrimerBlast and an in-silico PCR run 

(genome.ucsc.edu/cgi-bin/hgPcr). 

 

TERT -124 ddPCR assay 

 

 The TERT -124 assay was optimised using a TERT vector DNA. The TERT vector 

DNA construct (a gift from Dr Alan Bilsland and Professor W. Nicol Keith, University of 

Glasgow, UK) was generated from pGL3-hTERT [4] using a QuikChange Lightning Site 

Directed Mutagenesis kit (Agilent) and the primers TERT-124 Forward (5’-

ccccggcccagccccttccgggccctcccag-3’) and TERT-124 Reverse (5’-

ctgggagggcccggaaggggctgggccgggg-3’). The complete 574bp promoter region was 

sequenced. The promoter was excised from a clone found to be positive for the mutation 

using XhoI/HindIII digest and re-inserted in the pGL3 (Promega) plasmid backbone. The 

TERT -124 ddPCR assay was carried out using a forward primer 

GTCCTGCCCCTTCACCTT, reverse primer CAGCGCTGCCTGAAACTC [5, 6], mutant 

probe CAGCCCCTTCCGGGCCCT and wild type probe CAGCCCCCTCCGGGCCCT. The 

PCR was as follows; 95°C for 10 minutes then 50 cycles of 94°C for 30 seconds and 60°C for 

1min followed by 98°C for 10 minutes, and a final hold of 4°C.  
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CNTNAP4 G727* ddPCR assay 

 

 The assay was carried out using a forward primer CCTCTGAGTTGGTGGGTAGG, 

reverse primer CACCATTCATTCCGGTCAG, mutant probe 

CTTGTGGATTAGAGTGAAACTGCATTG and wild type probe 

TGTGGATTAGAGGGAAACTGCATT. The assay was optimised using oligo DNA 

synthesised by IDT, Leuven, Belgium, and Human-Random-Control-DNA-5 (HRC-5) 

(Public Health England, Salisbury, UK). The PCR was as follows; 95°C for 10 minutes then 

50 cycles of 94°C for 30 seconds and 61°C for 1min followed by 98°C for 10 minutes and a 

final hold of 4°C.  

 

Supplementary Results 

 

ddPCR analysis of a PIK3CA E542K, TP53 P278T, and FGFR3 K650/652M, in additional 

patients 

 The PIK3CA E545K ddPCR assay also successfully detected mutations in tumour 

DNA samples from Patients 13 and 17, and correctly called Patient 19 negative for the 

mutation (data not shown). No plasma samples were available for these patients for 

monitoring.  

 A TP53 mutation in exon 8 (P278T) was identified in Patient 8, however a ddPCR 

assay was not commercially available. Patient 1 was identified with a FGFR3 K650/652M 

mutation (Table 2). While an in silico designed ddPCR assay was commercially available, we 

were not able to eliminate the false positive signal. Several in-house assays were designed, 

however the issue of false positive signal persisted. 
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A new TERT -124 ddPCR assay can detect TERT -124 mutations in cases below the 

SNaPshot assay detection limit 

 

Using a new set of probes and previously reported PCR amplification primers [5, 6], a 

new ddPCR assay for TERT promotor -124 mutation was designed and tested. An optimal 

annealing temperature was identified as 60°C with 50 cycles for the PCR (Fig. S1A). An 

optimal ratio of the wildtype to mutant probes of 50:50 was established (Fig. S1B). The primer 

to probe ratio was optimal at 1.8:1 (Fig. S1C). We determined the sensitivity of the assay by 

spiking mutant vector DNA into wild type vector DNA. Plotting the observed fractional 

abundance (FA) of the mutant allele against the expected FA, presented as a solid line (Fig. 

S1D), we have examined the linear relationship between observed and expected mutant FA. 

We observed that the lower points of observed FA were away from, and not in alignment with, 

the linear decline of the expected FA. Based on this, we determined the limit of detection 

(LOD) of this assay as 0.5%.  

 Next, we performed the ddPCR assay using 9 samples in which the SNaPshot assay 

had previously indicated the presence of a TERT -124 mutation. Using the tumour DNA that 

ranged between 1 ng to 20 ng as a template, the production of mutant droplets was clearly 

observed (Fig. S2B and data not shown). The FA of the mutant allele of the 9 tumours ranged 

from 27% to 67% (Fig. S2A).  

 A further 9 patients were identified as negative for the TERT -124 mutation by 

SNaPshot analysis of their tumour DNA (Table 1, Table 2). Using the ddPCR assay, no 

mutant droplets were observed in 5 out of 9 patients (Patients 6, 9, 19, 20 and 21) in 

accordance with SNaPshot (Fig. S2C, D and data not shown). In contrast, 4 out of 9 (Patients 

2, 8, 12 and 13) produced mutant droplets (Fig. S2C and data not shown). The FA of the 
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mutant allele in the tumour of Patent 2 was 7%, and therefore above the LOD of the ddPCR 

assay (Fig. S2E). The FA was below the LOD in the other 3 cases (Patient 8, 12, 13).   

 Taken together, the above results showed that the new TERT -124 ddPCR assay was 

able to detect the presence of the TERT -124 mutation correctly.  

 

The ddPCR assay for CNTNAP4 G727* mutation 

 

WES performed in DNAs extracted from FFPE tumours (n=3) were compared with the 

results from the corresponding patient's PBMCs for the presence of germ-line mutations (Fig 

S3A). From a total of 19674 (Patient 6) and 39776 (Patient 4) tumour-specific mutations 

identified, systematic filtering of small nucleotide polymorphisms (SNPs) resulted in 54 and 

249 mutations, respectively, that could be used in the development of ddPCR assays to track 

the presence of cftDNA (Fig. S3B, C). In consideration of regional variations in mutations 

within the same tumour samples (Fig. 4A), we further filtered the mutations to include those 

that were in at least 10% of the total number of reads and with a depth of >50. 

 A ddPCR assay was designed for CNTNAP4 G727* mutation (Fig. S4). The optimal 

annealing temperature was established as 61°C with 50 cycles (Fig. S4A). The optimal wild 

type and mutant probe ratio was identified as 50:50 (Fig. S4B). The primer to probe ratio was 

optimal at 2:1 (Fig. S4C).  The new assay was tested using tumour DNA from Patient 5 and 

HRC-5 DNA as a negative control. The LOD of the assay was determined as 1% FA of the 

mutant allele, as the observed values were not aligning with the expected at mutant FA lower 

than 1% (Fig. S4D).  
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Fig. S1: Optimisation of the new TERT -124 ddPCR assay. (A) Identification of optimal 

annealing temperature across a temperature gradient from 50°C to 70°C. (B) Establishment of 

wildtype (WT) probe to mutant (Mut) probe ratio to achieve the best specificity for each WT and 

Mut template DNA. (C) Identification of the optimal primer to probe ratio. (D) Observed and 

expected fractional abundance of the mutant allele was used to determine the level of detection 

(LOD). 



Fig. S2: Detection of the TERT promoter -124 mutation by a new ddPCR assay. We have used 

a new ddPCR assay to investigate the TERT -124 mutation status in tumour DNAs that had been 

previously identified by SNaPshot as positive (A, B) or negative (C-D). Fractional abundance of 

the mutant allele (A, C). The representative plots of TERT -124 -positive (Patient 11), and -

negative (Patient 9) cases are shown (B, D). Tumour DNA from Patient 2 was identified as 

positive by the ddPCR assay, while previously identified as negative by SNaPshot (E).



Fig. S3: Whole exome sequencing (WES) of tumours from three patients. (A) Summary 

details of three patient’s tumour samples that have been subjected to WES. (B) The approach used 

to filter the sequencing results to identify candidate mutations for ddPCR assays. (C) Numbers of 

mutations identified in tumours from three patients. Three proximate areas of the tumour from 

Patient 5 (5-1, 5-2, 5-3) were also compared. 

Patient Sex Age Tumour 
Stage/Grade

Tumour DNA 
tissue

Germ Line 
control

4 Male 67 pT2 G3 FFPE PBMC

5 Male 81 pT2 G3 FFPE PBMC

6 Male 67 pT2 G3 FFPE PBMC

Step Filter

1 Remove Intergenic and IG mutations

2 Remove RNA Mutations

3 Remove synonymous mutations

4 Remove splice variants

5 Remove downstream mutations

6 Remove intron mutations

7 Remove 5” and 3” UTR mutations

8 Remove upstream mutations

9 Remove transcription factor binding site mutations

10 Remove low effect mutations

11 Remove mutations lacking complete data

12 Remove mutations not identified in the COSMIC database

13 Remove all mutations with a read depth <50

Filter Stage Patient-Sample

4 5-1 5-2 5-3 6

Raw Tumour 193252 113215 97472 114171 103848

Tumour-Germ line 39776 19883 19858 21785 19674

SNP’s 31382 18254 18958 20840 18593

Insertions 7007 1134 518 509 695

Deletions 1386 495 382 436 386

Variant rate (/Mb) 12.9 6.4 6.4 7.0 6.4

Final Filter 249 73 81 54 54

A

B

C



Fig. S4: Characteristics of the developed CNTNAP4 G727* ddPCR assay. (A) Identification 

of optimal annealing temperature using a temperature gradient. (B) Establishment of WT probe to 

Mut probe ratio to achieve the best specificity for each WT and Mut template DNA. (C)

Identification of the optimal primer to probe ratio. (D) Observed and expected fractional 

abundance of the mutant allele was used to determine the LOD.
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Highlights: 

• Digital Droplet PCR assays of tumour-specific mutations can be used to monitor cell 

free tumour DNA levels in plasma and urine in urothelial cancer patients. 

• Seventy percent of the patients in our study harboured mutations that were assayable 

by ddPCR. 

• Commercially available ddPCR assays for PIK3CA E542K and TP53 Y163C can be 

used to assess disease status.  

• A new ddPCR assay for TERT promotor (-124) enables detection at a lower fractional 

abundance than SNaPshot.  

• A ddPCR assay was developed to detect a novel mutation, CNTNAP4 G727*. 

 


