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ABSTRACT 

Traffic flow models are important tools for traffic management applications such as traffic incident 

detection and traffic control. In this paper, we propose a novel numerical approximation method for 

second-order macroscopic traffic flow models. The method is based on the semi-discrete central-upwind 

numerical flux and high-order reconstructions for spatial discretizations. We then apply the designed 

high-resolution schemes to three representative types of second-order traffic flow models and perform 

a variety of numerical experiments to validate the proposed methods. The simulation results illustrate 

the effectiveness, simplicity and universality of the central-upwind scheme as numerical approximation 

method for macroscopic traffic flow models. 

Keywords: Traffic flow model; Central-upwind scheme; Numerical approximation; High-resolution 

1. Introduction 

Traffic congestion is a worldwide growing problem. It has serious impact on the 

economy, safety and environment. Therefore, how to eliminate the negative effects of 

traffic congestion has attracted considerable attention. Researchers so far have proposed a 

variety of models, which are usually classified as microscopic models, mesoscopic models 

and macroscopic models in terms of the detailed traffic characteristics represented. Among 

them, macroscopic traffic flow models focusing on the collective behaviour of vehicles are 

a popular strand of models, and most of them follow the hyperbolic conservation law form 

[1-10]. A key feature of this type formulation is that it allows both smooth and 

discontinuous solutions. An example of discontinuous solutions in traffic flow theory is 

shock waves [1].  

 The kinematic wave model of Lighthill and Whitham [2], and Richards [3] (LWR 
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model) is the first macroscopic model of traffic flow. The model employs fluid dynamic 

principle to represent traffic flow on long crowded roads and is shown to successfully 

represent the shock-waves on the highways. A discretization of the LWR model employing 

the first-order Godunov scheme [11,12] leads to a widely applied discrete macroscopic 

model, namely the cell transmission model (CTM) [13,14]. The LWR model has certain 

deficiencies, for example in its representations of heterogeneity in driver behaviour, shock 

structure, and traffic instability (see [4] for details). There are two important extensions of 

LWR model. The first extension develops second-order models which contain the 

acceleration equation in addition to the continuity equation. The Payne-Whitham (PW) 

type models [5-7] were firstly proposed and investigated. After the critique 

of the PW model for its isotropic nature [15], Aw and Rascle (AR) type models [8,9] were 

gradually developed. Treiber et al. [16,17] proposed the gas-kinetic-based traffic model 

(GKT model) which is a second-order nonlocal macroscopic traffic flow model. A more 

detailed discussion of second-order traffic flow models can be found in [17]. The second 

extension considers heterogeneous traffic and develops multi-class models; examples can 

be found in [10,18].  

The second-order macroscopic traffic flow models cannot be solved by analytical 

method for general initial/boundary value problems. It is necessary to introduce numerical 

methods to obtain approximate solutions. The widely used numerical approximation 

methods are the finite difference method and the finite volume method. Lower order 

numerical methods have been applied to solve the second-order models. Zhang [19] 

developed a finite difference scheme for the PW model [5,6] and Zhang model [7] based 

on an extension of Godunov scheme [11]. Morgan [20] employed the Lax-Friedrichs 

scheme and Roe’s upwind scheme to approximate some second-order traffic flow models 

such as the PW model [5,6] and the AR model [8]. Jin and Zhang [21] extended the first-

order Godunov scheme to solve the homogeneous part of the PW model. In [22], Godunov-

type schemes are developed for the LWR model, the PW model and the Zhang model [7]. 

Niyitegeka [23] discussed the Riemann problem of the LWR model and the AR model [8], 

and applied Godunov scheme [11] to solve these models.  

However, some of lower order schemes such as the Lax-Friedrichs scheme may 
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produce a smeared resolution of discontinuities due to excessive numerical dissipation. For 

example, Zhang et al. [24] studied the multi-class LWR (MC-LWR) model, and the 

numerical results showed that the lower order scheme might miss catching some very 

important features of the solution, such as the shocks. Moreover, the resolution of the Lax-

Friedrichs scheme using 6400 grid points is similar to that of the fifth weighted essentially 

non-oscillatory (WENO) [25] using 100 grid points. Some schemes such as Godunov-type 

upwind schemes with exact or approximate Riemann solvers may require developing 

different solvers for different models [22,26,27]. The computation of Riemann solvers and 

related characteristic decompositions is very intricate and time-consuming. 

The primary motivation of this study is to design and provide a universal numerical 

discretization framework for approximating second-order traffic flow models. In this 

framework, the method can be applicable to different types of second-order models and 

moreover the method can be easily implemented to new developed macroscopic models, 

for example, the model describing semi-automated vehicles [28,29] and automated 

vehicles. Furthermore, the method is able to resolve the problems in which solutions 

contain rich region structures and can capture the structure of all waves, which may be 

completely obscured by the excessive numerical dissipation of lower order schemes. In 

addition, the method does not involve the costly exact or approximate Riemann solvers, 

which is necessary for Godunov-type upwind schemes. For Godunov-type upwind 

schemes, different solvers are also needed to be constructed for different macroscopic 

traffic flow models [22,26,27]. The second goal of this paper is to validate and demonstrate 

the advantages of high-order numerical discretization methods over lower order methods 

for traffic flow models by comparing the performance on different second-order 

macroscopic models. 

The WENO scheme [25] and high-order relaxation scheme have been applied to 

solving the MC-LWR models with heterogeneous drivers [24,30] and on an 

inhomogeneous highway [10,31], respectively. Using high-resolution relaxation schemes 

to approximate the solutions of second-order traffic flow models was presented in [29,32]. 

The relaxation scheme is based on constructing a linear system with stiff relaxation source 

term (known as the relaxation system) to replace the given conservation law. However, the 
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relaxation system is larger than the original system, and moreover, the implicit-explicit 

Runge-Kutta method is used for the time discretization of relaxation scheme. As such, the 

relaxation scheme is relatively expensive in computational cost. 

In this work, we focus on a different type of high-resolution finite volume scheme, the 

so-called central-upwind (CU) scheme originally introduced by Kurganov et al. [33], 

which admits a particularly simple semi-discrete form. The CU schemes have been widely 

studied in the field of computational fluid dynamics. The construction of the CU schemes 

includes three steps: reconstruction, evolution and projection. In derivation of the CU 

schemes, the integration over nonuniform control volumes that contain the entire Riemann 

fans still belongs to the central schemes framework. Thus, they retain the simplicity of the 

central schemes, namely they do not require Riemann solvers and characteristic 

decomposition. At the same time, the local speeds of propagation are utilized to define 

such control volumes. This feature makes the schemes to have a certain upwind nature. 

The CU schemes have been extended to cluster dynamics equations [34], shallow water 

systems [35-37] and so on. The CU scheme for a two-class LWR traffic flow model and 

the MC-LWR model with heterogeneous drivers were presented in [38,39]. Kurganov and 

Polizzi [40] implemented the second-order non-oscillatory central scheme of Nessyahu 

and Tadmor [41] and the CU scheme to solve a traffic flow model with Arrhenius look-

ahead dynamics. In [42], the LWR model with non-local velocity was investigated, and the 

second-order central scheme [41] were employed to solve the model. As far as we are 

aware, there are very few studies implementing the CU scheme for second-order traffic 

flow models. 

The contributions of this paper are threefold. First, a simple and Riemann-solver-free 

approximation method is introduced to obtain numerical solutions of traffic flow models. 

Second, high-order reconstructions are implemented to achieve high-order numerical 

discretization schemes. The superiority of the high-order discretization schemes over low 

order methods are validated on various numerical simulations of three representative types 

of second-order models. Third, the present numerical discretization procedures can be used 

for approximating different second-order traffic flow models using the same framework. 
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This paper is organized as follows. In Section 2, we give a brief review of second-order 

macroscopic traffic flow models. In section 3, we describe the procedures of numerical 

discretization. The numerical tests are shown in section 4. The conclusions are presented 

in section 5. 

2. Second-order traffic flow models 

The basic equation of the LWR model is: 

( ) 0t xv   ,                           (1) 

where   and v  are the traffic density and speed, respectively. In model (1), the speed 

is determined by an equilibrium speed-density relationship 

( )ev v  .                              (2) 

As an important extension of the LWR model, the second-order macroscopic models 

take acceleration into account, and replace Eq. (2) with a momentum equation. We here 

consider the following three types second-order models. 

2.1. The PW type models 

Payne [5] and Witham [6] independently proposed the first second-order model, the so 

called PW model. The momentum equation is given by 

( )1
( ) e

t x x

v v
v vv p


 


   ,                      (3) 

where 2

0( )p c   represents the traffic pressure, with 
0c  being the traffic sound 

speed, and   is the relaxation time, which is the period of time that the driver adjusts 

the speed v  to the equilibrium speed 
ev . For other PW type models, we refer to 

[7,43,44]. 

The common features of this type models are that the momentum equation includes 

the density gradient term, and the model has a characteristic speed greater than the 

macroscopic speed.  

In this type models, we investigate the numerical method for the PW model, which can 
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be rewritten in the conservative form 

2 2

0

0,

( )
( ) ,

t x

e
t x

q

v q
q q c


  



 

 

  

                   (4) 

or  

t x u f(u) s(u) ,                            (5) 

where ( , )T
qu  is the state variables (the conserved variables), q v  is the flow, 

2 2

0( , )T
q q c  f(u)  is the vector of flux, and (0,( ( ) ) )T

ev q   s(u)  is the source 

vector. Based on the computation of the Jacobian matrix   A(u) f u , the system (5) has 

the two real and distinct eigenvalues 

1,2 0v c   .                             (6) 

Although Del Castillo et al. [45] and Daganzo [15] pointed out several drawbacks of 

the PW model, we consider this model here because we are mainly concerned with its 

numerical solution and the performance of the proposed numerical method. We adopt the 

following equilibrium speed-density relationship used in [4,22,46-49]: 

1 6( ) 5.0461[(1 exp(( 0.25) / 0.06)) 3.72 10 ] /ev l        ,        (7) 

where l  and   are, respectively, the unit of length and the relaxation coefficient, and 

  is scaled by the jam density max . Figure 1 shows the fundamental diagram of the PW 

model. 

 

Fig.1. Fundamental diagram of the PW model with 10 ml   and 10 s  . 
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2.2. The AR type models 

To remedy the deficiencies of the PW type models, Aw and Rascle [8] replaced the 

space derivative of the pressure in Eq. (3) by a convective derivative, and proposed a new 

macroscopic model, called the AR model. The momentum equation is 

( ( )) ( ) 0t x xv p vv vp     ,                       (8) 

where ( )p   can have different expressions, but ( )p
   with a parameter 0   is 

considered as the prototype. In this work, we use the value 2 . 

Zhang [9] developed a similar model, in which the momentum equation is 

( ) 0t x e xv vv v v    .                          (9) 

In comparison with the PW type models, the density gradient term in the speed 

dynamic equation is replaced by the speed gradient term in AR type models, and the 

characteristic speeds are always less than or equal to the macroscopic flow speed. For 

other AR type models, we refer to [50–54]. 

In this type models, we consider the numerical solution for the AR model and the 

Zhang model, which can be rewritten, respectively, in the conservative form 

0t x u f(u)  with 
( ( ))v p


 
 

   
u , 

( ( ))

v

v v p


 
 

   
f(u) ,        (10) 

and  

0t x u f(u)  with 
y

 
  
 

u , 2

( )

( )

e

y

e

y v

yv

 



 
    

f(u) ,             (11) 

where ( )ey v v     is the difference between the actual flow and the equilibrium flow. 

The eigenvalues of the Jacobian matrix of the model (10) are 

1 ( )v p    , 
2 v  .                        (12) 

Therefore, the system is strictly hyperbolic, except for 0  . The Jacobian matrix of the 

model (11) has two real and distinct eigenvalues 

1 ( )ev v    , 
2 v  .                       (13) 

For the Zhang model, we consider the following equilibrium flow-density relationship 
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proposed by Mammer et al. [55]: 

max max

2

max max max max

( ) , if 0 ,
( )

( ) ( ) , if .

cr cr

e cr

cr

v v v
q

w

  
 

       

  
        

     

       (14) 

Here 
maxv  is the free flow velocity, 

cr  is the critical density, 
crv  is the critical velocity, 

max max( )ew q    and 2

max max max max( ( ) ) ( ( ))   cr crq w     , where 
maxq  is the 

maximum flow. Figure 2 shows the fundamental diagram of the Zhang model. In the figure, 

the parameter values are chosen as: 

max 0.2 veh/m , 
max 40 m/sv  , 0.0278 veh/mcr  , 20 m/scrv  , 

max 5 m/sw  .   (15) 

 

Fig. 2. Fundamental diagram of the Zhang model. 

2.3. The GKT model 

The GKT model is derived from a microscopic model that explicitly considers vehicle-

driver heterogeneities. The GKT model can be written in the conservation form 

t x u f(u) s(u) ,                          (16) 

where ( , )T
qu , 2( , )T

q q p f(u)  and (0,( ) )T

ev q  s(u) . The pressure 

term p  is given by 

2( )p A v  ,                            (17) 

where ( )A   is a density-dependent function, and is defined as 

0( ) 1 tanh crA A A
  


   
    

  
.                  (18) 
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Here 0A , A  and   are parameters. 

In model (16), 
ev  is generalized equilibrium speed depending not only on the local 

state variables   and v  but also on the variables 
a  and 

av  evaluated at the 

anticipated location 
ax , where 

( , )a ax t  , ( , )a av v x t , 
max(1 )ax x Tv    .          (19) 

Here   denotes an average anticipation factor and T  is the safe time headway. The 

generalized equilibrium speed 
ev  can be defined by  

2

max

max max

( )
( , , , ) 1 ( )

( ) 1

  
       

a
e a a v

a

TvA
v v v v B

A

  
  

,          (20) 

where ( )vB   is a macroscopic interaction term 

2 22 2
2( ) 2 (1 )

2 2

v
v

y

v v v

e e
B dy

 
  

 

 



 
   

  
 .               (21) 

Here 2( ) 2 ( )v av v A v    is the dimensionless speed difference between the actual 

location x  and the anticipated location 
ax . The Jacobian matrix of the model (16) is 

given by 

2 2 2

0 1

( )
( ) 2 ( ) 2

 
     
  

A(u) dA
v A v v A v v

d

  


.             (22) 

The Jacobian matrix has the two real and distinct eigenvalues 

 2

1,2 1 ( ) ( ) ( ) ( )    v A A A dA d       .            (23) 

An important characteristic of the GKT model is its non-local term, which is different 

from the above PW type and AR type macroscopic traffic flow models. The non-local term 

has smoothing properties like the viscosity term in some models. But the effect of the non-

local term is forwardly directed, it is more realistic.  

In GKT model, the steady-state speed-density relation ( )ev   results from the implicit 

steady-state condition [17] and can be written as [56] 
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2 2

max

2

max

4
( ) 1 1

2
e

v v
v

v v


 
     

 

%

%
                 (24) 

with 

max

max

1 1 1 ( )

( )

A
v

T A


  

 
  

 
% . 

This also determines the equilibrium flow ( )e eq v  . The equilibrium flow-density 

relation is shown in Fig. 3, in which the parameter values are as follows: 

0 0.008A  , 0.02A , max 0.16 veh/m  , max 30.56 m/sv  , 
max0.05  , 

max0.27cr  , 1.8 sT  .                                               (25) 

 

Fig. 3. Equilibrium flow-density relation of the GKT model. 

Remark 1. Zhang [57] studied the link between driver memory in car-following and 

viscous effects in macroscopic traffic flow dynamics, and developed a second-order 

macroscopic model with viscosity, in which the momentum equation includes both the 

density gradient term and the speed gradient term. We do not study the numerical method 

for this model here. 

3. Central-upwind approximation for traffic flow models 

3.1. Semi-discrete central-upwind flux 

For simplicity, let us consider a uniform grid: x x    and n
t n t  . The cell 

average of u in the spatial cell 1 1
2 2

[ , ]
j j j

I x x   at time n
t  is denoted by 
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1
( , )

j

n n

j
I

x t dx
x


 u u . We assume that the cell-averages 

n

ju  are available and use these 

cell-averages to reconstruct a piecewise polynomial interpolant: 

( ) ( ) ( )j jj
x x xu h ,                       (26) 

where j  is the characteristic function of the interval jI , and ( )j xh  is a suitable degree 

polynomial in jI  which may be discontinuous at the cell interfaces }{
2
1jx . The left- and 

right-sided local speeds of propagation of the discontinuities can be estimated by: 

1/2 1/2

1/2 1
( ,
min ( ) , 0

j j

j
C

a


 
 
 






       u u

f

u）
, 

1/ 2 1/ 2

1/2
( ,
max ( ) , 0

j j

j N
C

a


 
 
 






       u u

f

u）
,  (27) 

where 1 2 N      are the N  eigenvalues of the Jacobian 



f

u
, and 1

2
j


u  and 

1
2

j


u  are the left and right point values of the reconstruction ( )xu , respectively: 

1 1
2 2

( )jj j
x


 u h , 1 1

2 2
1( )jj j

x


 u h .                   (28) 

In Eq. (27), 1 1
2 2

( , )
j j

C
 
 u u  represents the curve that connects 1

2
j


u  with 1

2
j


u  in the 

phase space. In the genuinely nonlinear or linearly degenerate case, the local speeds can 

be computed by 

1 1 1
2 2 2

1 1min ( ) , ( ) , 0
j j j

a    
  

               

f f
u u

u u
, 1 1 1

2 2 2

max ( ) , ( ) , 0N Nj j j
a    

  

               

f f
u u

u u
. 

(29) 

These local speeds of propagation are utilized to define the non-uniform space-time control 

volumes. Then, the solution is evolved to the next time level. The obtained solution is 

projected back onto the original grid, which leads to a fully discrete CU scheme. Further 

details can be found in [33]. A semi-discrete CU scheme can be obtained as 0t  :  

1 1
2 2

( ) ( )
 ( ) + ( )

 
 


u s

j j

j j

H t H td
t t

dt x
,                    (30) 

where the numerical flux 1
2

( )
j

H t  has the form 

      
1 1 1 1 1 1
2 2 2 2 2 2

1 1 1
2 2 2

1 1 1 1
2 2 2 2

( ( ) ) ( ( ) )
( ) [ ( ) (

j j j j j j

j j j

j j j j

a t a t a a
H t t t

a a a a

     
       

     
   


  

 

f u f u
u u ,    (31) 
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and ( )sj t  is the discretization of the cell averages of the source term s : 

1
( ) ( , )

 s s(u )
j

j
I

t x t dx
x

.                      (32) 

3.2. High-order reconstruction for spatial discretization 

The choice of an appropriate reconstruction is a core step for spatial discretization, 

since the non-oscillatory behavior of the scheme depends on the reconstruction and the 

spatial order of the scheme also depends on the order of the reconstruction. In [33], the 

piecewise constant reconstruction and the piecewise linear reconstruction are applied and 

the first-order scheme and second-order scheme are developed. We here implement two 

high-order reconstructions for spatial discretization. 

3.2.1. WENO reconstruction 

We first apply an improved fifth-order WENO (WENOZ) reconstruction introduced by 

Borges et al. [58] to approximate the point values 1
2

ju . The WENOZ method introduces 

new stiffness indicators to decrease the numerical dissipation and improve the resolution.  

Considering a five-point stencil, i.e.,  2 1 1 2, , , ,j j j j jS x x x x x    , which is subdivided 

into three substencils: 

 1 2( ) , ,k j k j k j kS j x x x     , 0,1,2k  .                  (33) 

Then, the point value 1
2

j


u  is approximated by a convex combination of three 

interpolation polynomial defined in each substencil: 

1 1
2 2

2

,

0

( )j k k jj j
k

u h x h  
 



  ,                     (34) 

where 

0, 1 2

1 5 1

3 6 6
j j j jh u u u


    , 

1, 1 1

1 5 1

6 6 3
j j j jh u u u


     , 

2, 2 1

1 7 11

3 6 6
j j j jh u u u


    , 

and 1
2

j
u

  and  jh  are the i-th components of 1

2
j


u  and jh , respectively. In Eq. (34), 

the weights k
  are defined by 

3

1

k
k

ll

αω
α










, 
51k k

k

α d
IS




   
     

, 5 0 2IS IS   , 0,1,2k  ,     (35) 
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where 
0

3

10
d  , 

1

3

5
d  , 

2

1

10
d  , and   is a small number that is used to prevent the 

denominators becoming zero. In our simulations,   is set to 4010 . The smoothness 

indicators 
kIS  are given as follows: 

 
2 2

0 1 2 1 2

13 1
( 2 ) (3 4 )

12 4
j j j j j jIS u u u u u u         , 

2 2

1 1 1 1 1

13 1
( 2 ) ( )

12 4
j j j j jIS u u u u u        , 

2 2

2 -2 -1 -2 -1

13 1
( 2 ) (3 4 )

12 4
j j j j j jIS u u u u u u      .                (36) 

The reconstruction of 1
2

j


u  can be obtained by symmetry. 

3.2.2. MP reconstruction 

The second reconstruction we adopt is the fifth-order monotonicity preserving (MP5) 

reconstruction proposed by Suresh and Huynh [59]. The MP method applies the limiters 

to a high-order polynomial reconstruction in order to preserve monotonicity and accuracy. 

There are two major steps in the MP5 construction procedure.  

In the first step, a fifth-order interpolation based on the same stencil as the WENOZ 

construction is constructed 

 1 1
2 2

2 1 1 2

1
( ) 2 13 47 27 3

60


         

j j j j j jj j
u h x u u u u u .         (37) 

This interface value is called the original value in [59]. We then compute the upper limit 

UL
u  and the monotonicity-preserving value MP

u : 

1( )UL

j j ju u u u    ,                                 (38) 

1 1min mod( , ( ))MP

j j j j ju u u u u u     ,             (39) 

where 2   is a constant and the minmod function is defined by 

       1 1min mod( , , ) min( , , )k kz z s z z ,     

1 2 1 3 1

1 1 1
(sgn( ) sgn( )) (sgn( ) sgn( )) (sgn( ) sgn( ))

2 2 2
ks z z z z z z    .     (40) 

Let 1( , , )kI z z  denotes the interval 1 1[min( , , ),max( , , )]k kz z z z . If the original 
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value lies in the monotonicity-preserving interval [ , ]MP

jI u u , which is the intersection of 

1[ , ]j jI u u   and [ , ]UL

jI u u , such that  

  1 1
2 2

0MP

jj j
u u u u
 
    ,                   (41) 

then the interface value is not changed. 

In the second step, if the criterion (41) is not satisfied, it is necessary to apply the limiter 

to the original interface value given by Eq. (37). According to Suresh and Huynh [59], the 

intervals 1[ , ]j jI u u   and [ , ]MP

jI u u  are enlarged to 1[ , , ]MD

j jI u u u  and 

[ , , ]MP LC

jI u u u , respectively, where 

4

1 1

2

1 1
( )

2 2

MD M

j j
j

u u u D


   ,                          (42) 

4

1 1

2

1 4
( )

2 3

LC M

j j j
j

u u u u D


    .                       (43) 

Here 4

1 1 1 1

2

min mod(4 ,4 , , )M

j j j j j j
j

D d d d d d d  

    and 1 12j j j jd u u u    . The 

interval 
min max[ , ]I u u , which is the intersection of the two intervals 1[ , , ]MD

j jI u u u  and 

[ , , ]MP LC

jI u u u , can be obtained, where  

min 1max(min( , , ),min( , , ))MD UL LC

j j ju u u u u u u ,               (44) 

max 1min(max( , , ),max( , , ))MD UL LC

j j ju u u u u u u .              (45) 

Then, the limiter is implemented and 1
2

j
u

  is replaced: 

1 1 1 1
2 2 2 2

min maxmin mod( , )
j j j j

u u u u u u
   
       .           (46) 

For more details about the derivation of the MP5 reconstruction, we refer to [59].  

3.3. Time and source terms discretization 

The time discretization of the semi-discrete scheme (30) requires a stable and an 

appropriate order. In our numerical simulations, we employ the third-order strong stability 

preserving (SSP) Runge-Kutta method [60]: 
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(1) ( )n n
tL u u u , 

(2) (1) (1)3 1 1
( )

4 4 4

n
tL   u u u u , 

1 (2) (2)1 2 2
( )

3 3 3

n n
tL

    u u u u .                            (47) 

The source terms ( )sj t  is approximated by the Simpson’s quadrature rule, yielding 

1 1
2 2

1
( ) ( ( ) 4 ( ) + ( ))

6

 
  s s u s u s u

j jj j
t ,                   (48) 

where ( )u hj j jx . For the MP5 reconstruction, we use the following formula to compute 

the component of u j
 [61]: 

2 1 1 2

3 29 1067 29 3
( )

640 480 960 480 640
        

j j j j j j j j
u h x u u u u u ,         (49) 

which is a fifth-order reconstruction to 
ju . For the WENOZ reconstruction, we adopt 

the same method used for the WENO reconstruction [61] to compute 
ju . 

The choice of t  is determined by the CFL condition 

1

2


 


t
CFL a

x
,   1 1

2 2

max max , 
  

j j
j

a a a .              (50) 

4. Numerical simulations 

For simplicity, the CU schemes based on the WENOZ reconstruction and the MP5 

reconstruction are abbreviated to the CU-WENOZ scheme and the CU-MP5 scheme, 

respectively. We compare the performance of the proposed CU-WENOZ and CU-MP5 

schemes with the first-order scheme (CU1) and second-order scheme (CU2) which are 

obtained by using the piecewise constant interpolant and the piecewise linear 

reconstruction with the minmod limiter at the reconstruction step [33], respectively. In 

CU2 scheme, the parameter in the minmod limiter is taken to be 1.3. The parameter   in 

Eq. (39) is taken as 4.0 and the CFL number is set to 0.475, unless otherwise stated.  

 4.1. Numerical Examples for the PW model 

We consider Riemann problems for the PW model and present several numerical 

examples. According to [4,22,48,49], there exist eight kinds of wave solutions of Riemann 

problems for the PW model without the relaxation term, which are 1-shock wave 1( )S , 2-
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shock wave 
2( )S , 1-rarefaction wave 

1( )R , 2-rarefaction wave 
2( )R , 

1 2S S (1-

shock+2-shock) wave, 
1 2S R (1-shock+2-rarefaction) wave, 

1 2R S  (1-rarefaction+2-

shock) wave, and 
1 2R R (1-rarefaction+2-rarefaction) wave. The parameter values are 

given as follows: 

10ml  , 10s  , 800L l %, 
max 0.18 veh/m  , 0 2.48445 /c l  % %,       (51) 

where L  is the length of the road. The simulations are performed on a uniform grid with 

400 grid points. 

For the first case, the relaxation time in Eq. (3) is taken to be 1000 , which is long 

enough such that 2-waves don’t relax to 1-waves and we can observe the last four types of 

waves at final time. We use four Riemann initial conditions from Jin [22] and present the 

computed solutions at time 500 st  . 

The first initial condition is given by 

( , ) (0.16, (0.16)), 4000,
( ( ,0), ( ,0))

( , ) (0.16 0.02, (0.16)), 4000.

l l e

r r e

v v x
x v x

v v x





 

    
        (52) 

For this case, the solutions are of 1 2R S  type. Figure 4 shows the density profile 

computed by the different schemes. The numerical results are plotted together with the 

reference solution, which is a converged solution calculated by the CU2 scheme with 6400 

grid points. From Fig. 4, we can see that higher-order schemes yield more accurate 

solutions with high resolution, while the CU1 scheme generates excessive numerical 

dissipation. In comparison with the CU2 scheme, the CU-WENOZ scheme and the CU-

MP5 scheme produce a better resolution, and the shock and rarefaction waves are well 

resolved by both schemes.  

The second initial condition is 

( , ) (0.16, (0.16)), 4000,
( ( ,0), ( ,0))

( , ) (0.16, (0.16) 0.2), 4000.

 
    

l l e

r r e

v v x
x v x

v v x





        (53) 

The solutions for this case are of 1 2R R  type. The numerical results are shown in Fig. 5, 

and it clearly illustrates the advantage of high-resolution schemes. In contrast, the CU-MP5 
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scheme provides slightly better result than the CU-WENOZ scheme, and both schemes 

offer better results than the CU2 scheme. 

The third initial condition is 

( , ) (0.16, (0.16)), 4000,
( ( ,0), ( ,0))

( , ) (0.16, (0.16) 0.2), 4000.

 
    

l l e

r r e

v v x
x v x

v v x





        (54) 

For this case, the solutions are of 
1 2S S  type. The numerical results for the density 

profile are displayed in Fig. 6. From Fig. 6, we can see that the resolution of the CU2 

scheme is better than that of the CU1 scheme but worse than that of the CU-WENOZ 

scheme and the CU-MP5 scheme. In contrast, the CU-WENOZ scheme generates the slight 

oscillation, while the CU-MP5 scheme performs well. 

The fourth initial condition is 

( , ) (0.16, (0.16)), 4000,
( ( ,0), ( ,0))

( , ) (0.16 0.02, (0.16)), 4000.

l l e

r r e

v v x
x v x

v v x





 

    
        (55) 

The solutions for this case are of 1 2S R  type. We show the numerical results of the 

density profile in Fig. 7. As it can be seen, the resolution achieved by high-order scheme 

is better. The CU-MP5 scheme gives a slightly better result, compared with the CU-

WENOZ scheme. 

   

(a)                                       (b)  

Fig. 4. Results for the PW model with the initial data (52). (a) Density; (b) Zoomed region of (a). 
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(a)                                       (b)  

Fig. 5. Results for the PW model with the initial data (53). (a) Density; (b) zoomed region of (a). 

   

(a)                                       (b)  

Fig. 6. Results for the PW model with the initial data (54). (a) Density; (b) zoomed region of (a). 

  

(a)                                       (b)  

Fig. 7. Results for the PW model with the initial data (55). (a) Density; (b) zoomed region of (a). 

 

In the second case, we use the same initial conditions as the first case, but change the 

relaxation time in Eq. (3) to 2 , which is much shorter such that 2-waves relax to 1-waves 
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due to the effect of the source term. Other parameter values are the same as those used in 

the first case.  

For the initial condition (52), the results computed by three schemes are presented in 

Figs. 8-10. In this situation, a new 
1R  wave forms when the 

2S  wave disappears. The 

traffic flow will become uniform as these two rarefaction waves propagate. This transition 

and the propagation of the two rarefaction waves are well resolved by the CU-WENOZ 

scheme and the CU-MP5 scheme. Both schemes accurately capture fine details of the flow, 

and they are superior to the CU1 scheme. 

For the initial condition (53), the numerical results are shown in Figs. 11-13. In this 

situation, a downstream shock 
1S  forms as the traffic flow relaxes to the equilibrium state 

at around 2t  , and then a free region with higher travel speed and lower density is 

formed. This free region gradually disappears as the waves propagate, and the traffic will 

become uniform. The results shown in Figs. 11-13 illustrate that the CU-WENOZ scheme 

and the CU-MP5 scheme achieve a high resolution, while the CU1 scheme cannot provide 

fine details of the flow. The CU-MP5 scheme gives a slightly sharper resolution, compared 

with the CU-WENOZ scheme.  

For the initial condition (54), the numerical results are displayed in Figs. 14-16. In this 

situation, the 2S  wave disappears and a 1R  wave forms at around 2t  , and then a 

cluster with lower travel speed and higher density is formed. The traffic flow will 

eventually become uniform as the waves propagate. The formation and propagation of the 

cluster are well resolved by both high-order schemes and the CU-MP5 scheme produces a 

slightly sharper resolution. Again, the CU1 scheme fails to capture fine details of the flow 

with the same grid.  

For the initial condition (55), the numerical results are illustrated in Figs. 17-19. In this 

situation, a new 1S  wave forms when the 2R  wave disappears. The formation and 

propagation of the waves are well predicted by both high-order schemes and produce a 

sharp resolution.  
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     (a)                                        (b)  

Fig. 8. Evolution of density and velocity for the PW model with the initial data (52) computed by the 

CU1 scheme. (a) Density; (b) Velocity. 

   
     (a)                                        (b)  

Fig. 9. Evolution of density and velocity for the PW model with the initial data (52) computed by the 

CU-MP5 scheme. (a) Density; (b) Velocity. 

   

(a)                                        (b)  

Fig. 10. Evolution of density and velocity for the PW model with the initial data (52) computed by the 

CU-WENOZ scheme. (a) Density; (b) Velocity. 
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(a)                                         (b)  

Fig. 11. Evolution of density and velocity for the PW model with the initial data (53) computed by the 

CU1 scheme. (a) Density; (b) Velocity. 

 

 
(a)                                     (b)  

Fig. 12. Evolution of density and velocity for the PW model with the initial data (53) computed by the 

CU-MP5 scheme. (a) Density; (b) Velocity. 

 

   
(a)                                       (b)  

Fig. 13. Evolution of density and velocity for the PW model with the initial data (53) computed by the 

CU-WENOZ scheme. (a) Density; (b) Velocity. 
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(a)                                         (b)  

Fig. 14. Evolution of density and velocity for the PW model with the initial data (54) computed by the 

CU1 scheme. (a) Density; (b) Velocity. 

 

   
(a)                                       (b)  

Fig. 15. Evolution of density and velocity for the PW model with the initial data (54) computed by the 

CU-MP5 scheme. (a) Density; (b) Velocity. 

 

   
(a)                                      (b)  

Fig. 16. Evolution of density and velocity for the PW model with the initial data (54) computed by the 

CU-WENOZ scheme. (a) Density; (b) Velocity. 
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(a)                                       (b)  

Fig. 17. Evolution of density and velocity for the PW model with the initial data (55) computed by the 

CU1 scheme. (a) Density; (b) Velocity. 

 

   
(a)                                         (b)  

Fig. 18. Evolution of density and velocity for the PW model with the initial data (55) computed by the 

CU-MP5 scheme. (a) Density; (b) Velocity. 

 

   
(a)                                        (b)  

Fig. 19. Evolution of density and velocity for the PW model with the initial data (55) computed by the 

CU-WENOZ scheme. (a) Density; (b) Velocity. 
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4.2. Numerical Examples for the AR model 

In this subsection, we present the numerical results for the AR model. The 

computational domain is taken to be [0,1]  and we set 
max 1v   and 

max 1  .  

For a convergence test of the proposed schemes, we first use the following initial data: 

4( ,0) 0.05 0.01sin (2 ) x x  , ( ,0) 0.9v x , 

and set periodic boundary conditions. We choose the time step 5 34  t x . Table 1 shows 

the 
1L  errors and convergence rates at output time 0.2t . The errors in the 

1L norm are 

obtained by comparing the numerical solution with the reference solution which is 

computed by the same method with 1280 grid points. We can observe that the CU-MP5 

scheme achieves close fifth-order convergence. The CU-MP5 scheme gives more accurate 

numerical solutions than the CU-WENOZ scheme for this problem.  

The second initial condition we use is  

( , ) (0.5, 0.6), 0.5,
( ( ,0), ( ,0))

( , ) (0.7, 0.2), 0.5.

l l

r r

v x
x v x

v x





 

   
          (56) 

According to [8], the corresponding solution consists of a left-going shock wave followed 

by a contact discontinuity. The parameter   in Eq. (39) is set to 2.0. Figure 20 illustrates 

the spatiotemporal evolution of the density and velocity in a period of 0.4 computed by the 

CU-MP5 scheme with 400 grid points. Figure 21 gives a comparison of different schemes 

with the exact solution at 0.4t  . We can see that the CU1 scheme produces excessive 

numerical dissipation, and the CU-WENOZ and the CU-MP5 schemes produce slightly 

better resolution than the CU2 scheme. In contrast, the CU-WENOZ scheme yields the 

slight oscillation while the CU-MP5 scheme performs well.  

The third initial condition we consider is 

( , ) (0.7, 0.3), 0.5,
( ( ,0), ( ,0))

( , ) (0.5, 0.5), 0.5.

l l

r r

v x
x v x

v x





 

   
          (57) 

The solution of this case is given by a rarefaction wave followed by a contact discontinuity 

[8]. The parameter   in Eq. (39) is taken as 2.0. The spatiotemporal evolution of the 

numerical results obtained by the CU-MP5 scheme with 400 grid points is presented in Fig. 
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22. Figure 23 compares the numerical results with the exact solution at 0.4t  . High-

order schemes again achieve a better resolution. The CU-MP5 scheme provides a slightly 

better result, compared with the CU-WENOZ scheme. 

The fourth initial condition is 

( , ) (0.2, 0.2), 0.5,
( ( ,0), ( ,0))

( , ) (0.2, 0.8), 0.5.

 
   

l l

r r

v x
x v x

v x





          (58) 

In this case, the solution consists of a rarefaction wave, followed by a fake vacuum wave 

and then by a contact discontinuity [1,8]. The appearance of the vacuum is a challenge test 

for any numerical method to resolve the transition to free flow regions. In Fig. 24, we give 

the numerical results of different schemes at 0.4t  , which are compared with the exact 

solution. For this case, we use 800 grid points and the CFL number is set to 0.1. From Fig. 

24, it can be seen that the appearance of the vacuum and the transition are better predicted 

by the CU-MP5 scheme and the CU-WENOZ scheme. 

 
Table 1. Errors and orders of convergence for the CU-MP5 and CU-WENOZ schemes. 

N CU-MP5 scheme   CU-WENOZ scheme 

 1L error 1L order  1L error 1L order 

20 1.4397E-04 −  1.5921E-04 − 

40 6.2843E-06 4.52  8.3115E-06 4.26 

80 2.1550E-07 4.87  5.6737E-07 3.87 

160 7.8424E-09 4.78  2.8040E-08 4.34 

   

(a)                                       (b)  

Fig. 20. Evolution of density and velocity for AR model with the initial data (56) computed by the CU-

MP5 scheme. (a) Density; (b) Velocity 
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(a)                                      (b)  

Fig. 21. Results for the AR model with the initial data (56). (a) Density; (b) Velocity. 

 

   

(a)                                       (b)  

Fig. 22. Evolution of density and velocity for AR model with the initial data (57) computed by the 

CU-MP5 scheme. (a) Density; (b) Velocity. 

 

 
(a)                                       (b) 

Fig. 23. Results for the AR model with the initial data (57). (a) Density; (b) Velocity. 
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 (a)                                       (b) 

Fig. 24. Results for the AR model with the initial data (58). (a) Density; (b) Velocity. 

4.3. Numerical Examples for the Zhang model 

In this subsection we present the numerical test for the Zhang model. The length of the 

road L  is 8000m , and other parameter values used are given in (15).  

The first case we consider has the following initial condition: 

( , ) (0.02, 25.0), 4000,
( ( ,0), ( ,0))

( , ) (0.05,15.0), 4000.

l l

r r

v x
x v x

v x





 

   
          (59) 

This initial data satisfies the conditions max0 ( )r l e lv v v v     and r lv v . According 

to Mammer et al. [55], the solution for this case contains a shock-wave followed by a 

contact discontinuity. In Fig. 25, the numerical results computed by all schemes at 

200st   with 400 grid points are compared with the exact solution. One can observe that 

all schemes capture the correct solution. A good agreement with the exact solution is 

observed for high-order schemes. The CU-WENOZ and the CU-MP5 schemes produce 

better resolution than the CU1 scheme and the CU2 scheme. 

The second initial condition we use is  

( , ) (0.1, 5.0), 4000,
( ( ,0), ( ,0))

( , ) (0.08,10.0), 4000.

l l

r r

v x
x v x

v x





 

   
            (60) 

In this case, the initial data satisfies the conditions max0 ( )r l e lv v v v     and r lv v . 

According to Mammer et al. [55], the solution consists of a rarefaction wave followed by 

a contact discontinuity. The results are shown in Fig. 26. The solution is computed up to 
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300st   with 400 grid points. As can be seen from Fig. 26, the numerical results are in 

good agreement with the exact solution for high-order schemes. Similar to the first case, 

the CU-WENOZ scheme and the CU-MP5 scheme provide better results. 

 

    

(a)                                        (b) 

Fig. 25. Results for the ARZ model with the initial data (59). (a) Density; (b) Velocity. 

 

   
(a)                                       (b) 

Fig. 26. Results for the ARZ model with the initial data (60). (a) Density; (b) Velocity. 

4.4. Numerical Example for the GKT model 

In this subsection, we use a representative test to investigate the performance of the 

present scheme for the GKT model.  

Following [16,56,62], we adopt the following dipole-like initial variation of the 

average density  : 
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2 20 0 0( ,0) cosh cosh
x x x x xw

x
w w w

  


 
  

             
    

,      (61) 

where 
0x  and 

0 0x x  are, respectively, the positions of the positive and negative peaks, 

201.25 mw
  , 805 mw

  , 0x w w
     and   represents the amplitude of the 

perturbation. The initial flow is assumed to be in local equilibrium, i.e., 

( ,0) ( ( ,0)) ( )e eq x q x v    .                      (62) 

The periodic boundary condition is specified for this test. The length of the road L  is 

10000m . The parameter values used are as follows: 

32 s  , 1.2  .                          (63) 

Other parameter values used are given in (25). The amplitude of the perturbation   is 

set to 0.006 veh/m  and the average density   is varied in simulations.  

Figure 27 illustrates the spatiotemporal evolution of the density for 0.015 veh/m   

and 0.025 veh/m   using 400 grid points. The results are computed by the CU-MP5 

scheme. When the traffic density is very low, the perturbation dissipates without 

amplification (see Fig. 27(a)). This means that the homogeneous traffic with a localized 

perturbation is stable at sufficiently low densities. As the density   increases to 

0.025 veh/m , small perturbations are amplified and lead to traffic instability. In Fig. 27(b), 

we can see that a single density cluster forms.  

When the initial density   continues to increase to 0.036 veh/m , a cascade of traffic 

jams appear, which corresponds to the stop-and-go traffic phenomenon. Figs. 28(a) and 

28(b) show the results obtained by the CU-MP5 scheme using 400 and 800 grid points, 

respectively. Figs. 28(c) and 28(d) show the results of the CU1 scheme. We observe from 

Fig. 28(c) that the CU1 scheme fails to capture all the stop-and-go waves when 400 grid 

points are used. When we increase the grid points to 1600, the CU1 scheme can capture 

the structure of all waves (see Fig. 28(d)). This illustrates that high-order and high-

resolution methods need fewer grid points to resolve the solution accurately. 
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Figure 29(a) shows that as the density is increased to 0.45, we can observe that a 

complex structure consisting of more clusters appears, but the amplitude of the clusters 

decreases comparing with Fig. 28(a). When the density increases even further, a stable 

congested traffic is reached (see Fig. 29(b)). The results in Fig. 29 are obtained using the 

CU-MP5 scheme with 400 grid points.  

These results are similar to those reported and discussed in [16,29,32, 62]. 

We next study how sensitive are the numerical solutions to the GKT parameters. In (25) 

and (63), only one parameter is varied while keeping others unchanged. The results 

obtained using the CU-MP5 scheme with 400 grid points are shown in Fig. 30, where the 

numerical solution is computed up to 1200st  . Fig. 30(a) illustrates the effect of the 

relaxation time. When 19s  , the initial perturbation travels downstream and a stable 

flow is obtained. As   is increased to 32s , a single cluster is formed. Increasing   

even further to 45s , the stop-and-go traffic appears. This indicates that the stability of 

traffic flow decreases with the increase of  . The effect of the safe time headway T  is 

shown in Fig. 30(b). When 1.5T   and 2.0T  , a single local cluster forms for both 

cases, but the amplitude of the cluster for the case of 2.0T   is smaller than that for the 

case of 1.5T  . As T  is decreased to 1.0, stop-and-go traffic emerges. This means that 

the stability of traffic flow is improved by increasing the safe time headway. By the similar 

discussion, we can find that the stability of traffic flow increases with the increase of the 

anticipation factor   or the desired velocity 
maxv (see Fig. 30(c) and Fig. 30(d)). These 

results are consistent with the theory results presented in [17]. Fig. 30(e) shows that the 

decrease of A  can increase the stability of traffic flow.  

Remark 2. For the GKT model, we need to calculate the anticipated variables 
a  and 

av  in (19) at the anticipated position 
ax . Considering the position 

ax  will usually not 

be an integer multiple of x  and jx j x  , we first determine the cell j kI  ,

( 0.5 )a jx x x

x
k

  


    , in which 
ax  is located. Here    is the floor function. Then, we choose 

a piecewise quadratic interpolation using the reconstructed values at the cell interfaces and 



31 

the point value at j kx   given by Eq. (49) to compute the anticipated variables. As an 

example, ( )a j  is computed by 

1 1 1 1
2 2 2 2

2

( ) 2 2
    

        

                      
a j k a j k

a j j k j kj k j k j k j k

x x x x

x x
       .  (64) 

This procedure is an extension of the idea in [17,32]. For non-periodic boundary 

conditions, if 
ax  is beyond the right boundary, we compute the anticipated variables 

based on the specification of boundary conditions suggested by Helbing and Treiber [62]. 

   
(a)                                         (b) 

Fig. 27. GKT model, the evolution of the density computed by the CU-MP5 scheme. (a) 0.015  ; (b) 

0.025  . 

 

   
(a)                                         (b)  

   
(c)                                         (d)  
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Fig. 28. GKT model, the evolution of the density for 0.036  . (a) CU-MP5 scheme with 400 points; 

(b) CU-MP5 scheme with 800 points; (c) CU1 scheme with 400 points; (d) CU1 scheme with 1600 

points. 

 

   
(a)                                       (b)  

Fig. 29. GKT model, the evolution of the density computed by the CU-MP5 scheme. (a) 0.045  ; (b) 

0.054  . 

 

   
(a)                                       (b)  

   
(c)                                       (d)  
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(e)                   

Fig. 30. GKT model, the density computed by the CU-MP5 scheme. The variation of the model 

parameters (a) the relaxation time   ( 0.031 veh/m  ); (b) the safe time headway T   

( 0.031 veh/m  ); (c) the anticipation factor   ( 0.03 veh/m  ); (d) the desired velocity maxv  

( 0.03 veh/m  ); (e) A ( 0.03 veh/m  ). 

5. Conclusions 

In this paper, high-resolution central-upwind approximation has been introduced and 

investigated to obtain numerical solutions of traffic flow models. A unified numerical 

discretization framework that can be applicable for different second-order models have 

been presented. The resulting method is simple and free of Riemann solvers and 

characteristic decomposition. Moreover, due to high-order reconstructions for spatial 

discretization, the method has higher accuracy. Numerical results show the superiority of 

higher-order discretization over the first-order one. They reduce the excessive numerical 

dissipation and produce sharper resolution. Furthermore, high-order methods need fewer 

grid points to achieve the desired accuracy and resolution and to resolve the problems in 

which solutions contain rich region structures. Thus, considering the performance on 

different second-order macroscopic traffic flow models, the CU scheme appears to be a 

very promising numerical method for traffic flow models and can be considered to apply 

to some new models and to real traffic simulations.  

Acknowledgments 

This work was supported by the National Natural Science Foundation of China (No. 

11772264). The first author would like to acknowledge the China Scholarship Council for 

sponsoring his visit to the University of Leeds. 



34 

Reference 

[1] M.D. Rosini, Macroscopic models for vehicular flows and crowd dynamics: theory and 

applications, Springer, 2013. 

[2] M.J. Lighthill, G.B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded 

roads, Proc. R. Soc. Lond. A 229 (1955) 317–345. 

[3] P.I. Richards, Shock waves on the highway, Oper. Res. 4 (1956) 42–51. 

[4] H.M. Zhang, R. Kuhne, P. Michalopoulos, Continuum flow models, in: N.H. Gartner, C.J. Messer, 

A. Rathi (Eds.), Traffic flow theory: a state-of-the-art report, Transportation Research Board, 

Washington, DC, 2001, (Chapter 5). 

[5] H.J. Payne, Model of freeway traffic and control, Mathematical Models of Public Systems 28 

(1971) 51–61. 

[6] G.B.Whitham, Linear and nonlinear waves, John Wiley and Sons, New York, 1974. 

[7] H.M. Zhang, A theory of nonequilibrium traffic flow, Transp. Res. Part B 32 (1998) 485–498. 

[8] A. Aw, M. Rascle, Resurrection of second order models of traffic flow, SIAM J. Appl. Math. 60 

(2000) 916–938. 

[9] H.M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transp. Res. Part B 36 

(2002) 275–290. 

[10] P. Zhang, S.C. Wong, C.W. Shu, A weighted essentially non-oscillatory numerical scheme for a 

multi-class traffic flow model on an inhomogeneous highway, J. Comput. Phys. 212 (2006) 739–
756. 

[11] S.K. Godunov, A difference method for numerical calculation of discontinuous solutions of the 

equations of hydrodynamics, Mat. Sb. 47 (1959) 271–306. 

[12] J.P. Lebacque, The Godunov scheme and what it means for first order traffic flow models. In: 

Proceedings of the 13th International Symposium on Transportation and Traffic Theory, 1996, pp. 

647–678. 

[13] C.F. Daganzo, The cell transmission model: A dynamic representation of highway traffic consistent 

with the hydrodynamic theory, Transp. Res. Part B 28 (1994) 269–287. 

[14] C.F. Daganzo, The cell transmission model, part II: network traffic, Transp. Res. Part B 29 (1995) 

79–93. 

[15] C.F. Daganzo, Requiem for second-order fluid approximations to traffic flow, Transp. Res. Part B 

29 (1995) 277–286. 

[16] M. Treiber, A. Hennecke, D. Helbing, Derivation, properties, and simulation of a gas-kinetic-based, 

nonlocal traffic model, Phys. Rev. E 59 (1999) 239–253. 

[17] M. Treiber, A. Kesting, Traffic flow dynamics: data, models and simulation, Springer-Verlag 

Berlin Heidelberg, 2013. 

[18] G.C.K. Wong, S.C. Wong, A multi-class traffic flow model-an extension of LWR model with 

heterogeneous drivers, Transp. Res. Part A 36 (2002) 827–841. 

[19] H.M. Zhang, A finite difference approximation of a non-equilibrium traffic flow model, Transp. 

Res. Part B 35 (2001) 337–365. 

[20] J.V. Morgan, Numerical methods for macroscopic traffic models, Ph.D. thesis, University of 

Reading, 2002. 

[21] W.L. Jin, H.M. Zhang, The formation and structure of vehicle clusters in the Payne-Whitham 

traffic flow model, Transp. Res. Part B 37 (2003) 207–223. 



35 

[22] W.L. Jin, Traffic flow models and their numerical solutions, Master thesis, University of California, 

Davis, 2000.  

[23] C. Niyitegeka, Numerical comparisons of traffic flow models, Master thesis, TU-Kaiserlautern and 

TU-Eindhoven, 2012. 

[24] M. Zhang, C.W. Shu, G.C.K. Wong, S.C. Wong, A weighted essentially non-oscillatory numerical 

scheme for a multi-class Lighthill-Whitham-Richards traffic flow model, J. Comput. Phys. 191 

(2003) 639–659. 

[25] G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 

(1995) 202–228. 

[26] J.K. Wiens, J.M. Stockie, J. Williams, Riemann solver for a kinematic wave traffic model with 

discontinuous flux, J. Comput. Phys. 242 (2011) 1–23. 

[27] M. Garavello, P. Goatin, The Aw-Rascle traffic model with locally constrained flow, J. Math. Anal. 

Appl. 378 (2011) 634–648. 

[28] D. Ngoduy, Instability of cooperative adaptive cruise control traffic flow: A macroscopic approach, 

Commun. Nonlinear Sci. Numer. Simul. 18 (2013) 2838–2851. 

[29] A.I. Delis, I.K. Nikolos, M. Papageorgiou, Macroscopic traffic flow modeling with adaptive cruise 

control: Development and numerical solution, Comput. Math. Appl. 70 (2015) 1921–1947. 

[30] J.Z. Chen, Z.K. Shi, Y.M. Hu, A relaxation scheme for a multi-class Lighthill-Whitham-Richards 

traffic flow model, J. Zhejiang Univ.- SCI. A 10 (2009) 1835–1844. 

[31] J.Z. Chen, Z.K. Shi, Y.M. Hu, Numerical solutions of a multiclass traffic flow model on an 

inhomogeneous highway using a high-resolution relaxed scheme, J. Zhejiang Univ.-SCI. C 13 

(2012) 29–36. 

[32] A.I. Delis, I.K. Nikolos, M. Papageorgiou, High-resolution numerical relaxation approximations 

to second-order macroscopic traffic flow models, Transp. Res. Part C 44 (2014) 318–349. 

[33] A. Kurganov, S. Noelle, G. Petrova, Semidiscrete central-upwind schemes for hyperbolic 

conservation laws and Hamilton–Jacobi equations, SIAM J. Sci. Comput. 23 (2001) 707–740. 

[34] A. Beljadid, A. Mohammadian, A. Kurganov, Well-balanced positivity preserving cell-vertex 

central-upwind scheme for shallow water flows, Computers & Fluids, 136 (2016) 193–206. 

[35] S. Khorshid, A. Mohammadian, I. Nistor, Extension of a well-balanced central upwind scheme for 

variable density shallow water flow equations on triangular grids, Computers & Fluids, 156 (2017) 

441–448. 

[36] X. Liu, J. Albright, Y. Epshteyn, A. Kurganov, Well-balanced positivity preserving central-upwind 

scheme with a novel wet/dry reconstruction on triangular grids for the Saint-Venant system, J. 

Comput. Phys. 374 (2018) 213–236. 

[37] B.M. Ginting, Central-upwind scheme for 2D turbulent shallow flows using high-resolution 

meshes with scalable wall functions. Computers & Fluids, 179 (2019) 394–421. 

[38] J.Z. Chen, Z.K. Shi, Y.M. Hu, Numerical solution of a two-class LWR traffic flow model by high-

resolution central-upwind scheme, Computational Science–ICCS 2007, Springer, 2007, pp.17–24. 

[39] Y.M. Hu, J.H. Feng, J.Z. Chen, A semi-discrete central-upwind scheme for a multi-class Lighthill-

Whitham-Richards traffic flow model, Chinese J. Comput. Phys. 31 (2014) 323–330. 

[40] A. Kurganov, A. Polizzi, Non-oscillatory central schemes for traffic flow models with Arrhenius 

look-ahead dynamics, Netw. Heterog. Media 4 (2009) 431–451. 

[41] H. Nessyahu, E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, J. 

Comput. Phys. 87 (1990) 408–463. 



36 

[42] S. Blandin, P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic 

flow modeling, Numer. Math. 132 (2016) 217–241.  

[43] R.D. Kuhne, Freeway speed distribution and acceleration noise: calculations from a stochastic 

continuum theory and comparison with measurements, The Proceedings of the Tenth International 

Symposium on Transportation and Traffic Theory, 1987, pp. 119–137. 

[44] B.S. Kerner, P. Konhäuser, Cluster effect in initially homogeneous traffic flow, Phys. Rev. E 48 

(1993) R2335–R2338. 

[45] J.M. Del Castillo, P. Pintado, F.G. Benitez, The reaction time of drivers and the stability of traffic 

flow, Transp. Res. Part B 28 (1994) 35–60.  

[46] B.S. Kerner, P. Konhäuser, Structure and parameters of clusters in traffic flow, Phys. Rev. E 50 

(1994) 54–83. 

[47] M. Hermann, B.S. Kerner, Local cluster effects in different traffic flow models, Physica A 255 

(1998) 163–198. 

[48] H.M. Zhang, Structural properties of solutions arising from a nonequilibrium traffic flow theory, 

Transp. Res. Part B 34 (2000) 583–603. 

[49] W.L. Jin, H.M. Zhang, Solving the Payne–Whitham traffic flow model as a hyperbolic system of 

conservation laws with relaxation, Technical Report, University of California, Davis, 2001. 

[50] J.M. Greenberg, Extensions and amplifications of a traffic model of Aw and Rascle, SIAM J. Appl. 

Math. 62 (2001) 729–745. 

[51] R. Jiang, Q.S. Wu, Z.J. Zhu, A new continuum model for traffic flow and numerical tests, Transp. 

Res. Part B 36 (2002) 405–419. 

[52] Y. Xue, S.Q. Dai, Continuum traffic model with the consideration of two delay time scales, Phys. 

Rev. E 68 (2003) 66123. 

[53] P. Zhang, S.C. Wong, S.Q. Dai, A conserved higher-order anisotropic traffic flow model: 

description of equilibrium and non-equilibrium flows, Transp. Res. Part B 43 (2009) 562–574. 

[54] J.Z. Chen, Z.K. Shi, Y.M. Hu, L. Yu, Y. Fang, An extended macroscopic model for traffic flow on 

a highway with slopes, Int. J. Mod. Phys. C 24 (2013) 1350061. 

[55] S. Mammar, J.P. Lebacque, H.H. Salem, Riemann problem resolution and Godunov scheme for 

the Aw-Rascle-Zhang model, Transport. Sci. 43 (2009) 531–545. 

[56] D. Helbing, A. Hennecke, V. Shvetsov, M. Treiber, MASTER: Macroscopic traffic simulation 

based on a gas-kinetic, non-local traffic model, Transp. Res. Part B 35 (2001) 183–211. 

[57] H.M. Zhang, Driver memory, traffic viscosity and a viscous vehicular traffic flow model, Transp. 

Res. Part B 37 (2003) 27–41.  

[58] R. Borges, M. Carmona, B. Costa, W.S. Don, An improved weighted essentially non-oscillatory 

scheme for hyperbolic conservation laws, J. Comput. Phys. 227 (2008) 3191–3211. 

[59] A. Suresh, H. Huynth, Accurate monotonicity-preserving schemes with Runge-Kutta time stepping, 

J. Comput. Phys. 136 (1997) 83–99. 

[60] S. Gottlieb, C.W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization 

methods, SIAM Rev. 43 (2001) 89–112. 

[61] J. Shi, C. Hu, C.W. Shu, A technique of treating negative weights in WENO schemes, J. Comput. 

Phys. 175 (2002) 108–127. 

[62] D. Helbing, M. Treiber, Numerical simulation of macroscopic traffic equations, Comput. Sci. Eng. 

1 (1999) 89–98.   

 


