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ABSTRACT

Acoustic propagation through water su�ers from attenuation that

increases with both signal frequency and transmission range, with

time-varying long propagation delays. The power spectral density

of underwater ambient noise also changes with frequency. As a

result, the usable channel bandwidth is heavily constrained and

Medium Access Control (MAC) protocol design for Underwater

Acoustic Sensor Networks (UASNs) is challenging. Striking a bal-

ance between channel utilisation and network end-to-end delay

is particularly di�cult. The Combined Free/Demand Assignment

Multiple Access (CFDAMA) protocol has been shown to e�ectively

minimise end-to-end delay and maximise channel utilisation, but

existing approaches are reliant on synchronisation which is hard

to achieve underwater. This paper introduces a novel robust MAC

protocol, based on CFDAMA, exclusively designed for UASNs and

called CFDAMA-NoClock. It is capable of providing an adaptive

MAC solution without the need for synchronisation amongst in-

dependent node clocks. The protocol demonstrates a high level of

practicality and simplicity. Both analytical models and comprehen-

sive event-driven simulation of several underwater scenarios show

that CFDAMA-NoClock can o�er excellent delay/utilisation perfor-

mance under two distinct tra�c types and with various network

parameters selected based on practical UASN technologies.
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1 INTRODUCTION

Underwater Acoustic Sensor Networks (UASNs) are the means of

enabling a wide range of ocean monitoring applications, ranging

from scienti�c and industrial to military and homeland security

applications [2]. Underwater acoustic channels are known as a com-

plex and time-variant transmission medium. The propagation of

an acoustic signal through water is characterised with attenuation

that increases with both the signal frequency and transmission

range. The background noise also changes with the frequency. The

channel capacity is a function of the transmission range and can

be extremely limited [18].

To maximise utilisation of the available capacity, central co-

ordination of a number of acoustic transmissions from di�erent

terminals is desirable. Scheduling-based techniques are preferred

over other separation techniques. They support adaptive channel

capacity allocation and allow variable data rates [5] [13]. However,

underwater acoustic channels feature long time-varying propaga-

tion delays, leading to temporal and spatial uncertainty [9], the

phenomena of space unfairness [3] and momentary connection

losses. This brings about scheduling di�culties. The most popular

approach is the use of "a global scheduler" o�ering the requirements

of a globally scheduled solution, with the use of guard intervals

and the exchange of relative-timing signals. To this end, single-hop

topologies are preferred where feasible to minimise the complexity

of scheduling algorithms and increase their feasibility. Applications

of UASNs are still evolving, and it is envisioned that primarily two

types of data tra�c will characterise such sensing networks: event-

driven and periodic sensing [5] [8]. The two types signi�cantly

di�er in their tra�c patterns. This makes it more challenging to

design a single Medium Access Control (MAC) protocol that can

be adaptive to various applications.

Given the above facts, UASNs require MAC solutions featuring

simplicity and assuring maximum achievable channel utilisation,

minimum end-to-end delays, fairness and adaptiveness to tra�c

changes. The combined round-robin free and demand assignment

schemes can provide adaptive TDMA-based MAC solutions, allow-

ing UASNs to alleviate the impact of long propagation delays as

well as limited channel capacity, overcome the space unfairness

phenomena and adapt to varying tra�c demands. For a more robust

CFDAMA scheme that can operate reliably despite the potential syn-

chronisation di�culties, this paper introduces CFDAMA without

clock synchronisation (CFDAMA-NoClock) scheme. The scheme

provides an adaptive TDMA solution enabling back-to-back packet

reception at the gateway node without the need of global timing

(i.e. a synchronised clock at every node).
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The rest of the paper is organised as follows: Section 2 reviews

some related work; Section 3 describes the CFDAMA-NoClock

scheme; Section 4 presents the simulated underwater scenarios,

parameters and illustrates the outcomes of this study; and �nally,

Section 5 concludes the paper.

2 MOTIVATION AND RELATEDWORK

CFDAMA combines two capacity assignment strategies: free as-

signment and demand assignment. The major advantage of the

CFDAMA protocol is that it exploits the contention-less nature of

free assignment and the e�ectiveness of demand assignment in

achieving high channel utilisation. This combination can optimise

the balance between the end-to-end delay and channel utilisation.

Prior to this work, a number of publications introduce several CF-

DAMA variants as MAC solutions for UASNs. [4] is a study limited

to a conventional CFDAMA variant based on a random access re-

quest strategy. Following that, [6] introduces a new scheme based

on CFDAMA, called CFDAMA with Intermediate Scheduler, which

enhances the overall delay/utilisation performance by minimis-

ing the average round-trip time between sensor nodes and the

CFDAMA central scheduler. Following that, [5] introduces a CF-

DAMA scheme, namely CFDAMA with Systematic Round Robin

requests (CFDAMA-SRR). It increase the e�ectiveness of CFDAMA

underwater by systematising the distribution of request slots based

on the location of nodes with respect of the network gateway. This

can allow CFDAMA to have a bias against transmissions associated

with long round-trip demand assigned slots. When request slots

are given to adjacent nodes successively starting from the centre

to the edge of the network, positioning of nodes relative to the

gateway will have a correlation with the availability of packets in

their queues. The farther away the node is, the larger number of

packets will be served in a single request opportunity [5].

The functionality of a scheduling-based MAC protocol should

be stable despite any synchronisation di�culties. They should be

able to operate under long, unknown propagation delays and pos-

sible clock drift. [13] introduces an underwater MAC protocol,

called Transmit Delay Allocation MAC (TDA-MAC), incorporating

a scheduling algorithm that allows a TDMA-like slotted packet re-

ception at the gateway without the need for local synchronisation

to a global clock [14]. There, for each data transmission cycle (i.e.

TDMA frame), the gateway broadcasts a single packet, REQ packet,

to trigger the transmission of one data packet, if any, per sensor

node, in a timely manner. In every sensor node, the transmission

of a data packet is timed to happen in a certain instructed period of

time referenced to the reception of the REQ packet. The develop-

ers of TDA-MAC highlight some protocol limitations in utilising

the channel; limitations which are overcome via an enhanced vari-

ant called Accelerated TDA-MAC (ATDA-MAC) [13]. ATDA-MAC

works similarly, but it uses two channels, one of which is dedicated

to data packets only, while the other is dedicated for REQ packets.

Like with any other �xed TDMA protocols, achieving high chan-

nel utilisation is subject to the presence of a full bu�er tra�c source.

TDA-MAC does not incorporate a mechanism allowing adaptation

to the changes in the statistical behaviour of the data tra�c source

and the instantaneous demand of individual sensor nodes. If every

node is enabled to transmit a run of successive packets as demanded
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Figure 1: A centralised UASN where the CFDAMA-NoClock

protocol is employed

after receiving the REQ packet, then the protocol will act as an adap-

tive TDMA scheme. This paper introduces a new CFDAMA variant

inspired by the notion of no clock synchronisation. The primary

motivations for this new scheme can be summarised as follows:

• It increases the practicality of CFDAMA by allowing opera-

tion with no clock synchronisation amongst nodes.

• It enables high channel utilisation and allows it to approach

the theoretical maximum with controlled delay performance.

• It enables instantaneous adaptation to the variation in data

tra�c conditions in terms of the duration of a speci�c burst,

inter-burst gaps, the duty cycle of bursts and the channel

load level.

3 THE CFDAMA-NOCLOCK SCHEME

Detailed discussion on CFDAMA can be found in [4][5][6]. With

respect to Figure 1, the gateway node, acting as a usual CFDAMA

coordinator, needs to be able to estimate the propagation delay

to every sensor node and piggyback timing instructions in the ac-

knowledgement packet transmitted during the CFDAMA forward

frame [5]. An original CFDAMA variant suitable for this new capa-

bility is CFDAMA with Piggy-Backed requests (CFDAMA-PB) [10],

which piggybacks capacity requests onto data packets. Being a

TDMA-like protocol increases its compatibility with the NoClock

scheduling algorithm presented in this paper. The implementation

of CFDAMA-PB in the context of ATDA-MAC requires an initial

set-up stage prior to the actual data transmissions. In this initial

stage, the propagation delays between the gateway and every sen-

sor node are accurately measured via a handshaking technique

exchanging PING packets [13]. This process lasts for a short period

of time typically of the order of several minutes, depending on the

density of nodes and their spatial distribution.

Once the propagation delay is estimated, the scheme can begin

the data packet transmission stage. To enable CFDAMA-PB to op-

erate without a synchronised clock, a number of adjustments are
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required. The acknowledgement packets sent during the CFDAMA

forward frame will be replaced by a packet acting similarly to the

REQ packet of TDA-MAC, but with an extra payload. Instead of

sending an exclusive packet to every sensor node to inform them

with their allocated free or demand slots, a single packet denoted

by ACK-REQ is broadcast to inform every node the number of

successive slots allocated (Nrs) to it and the amount of time, i.e.

delay-to-slot (DTS), the node has to wait before it can start a run

of successive packet transmissions as allocated. DTS acts similarly

to the TDI packet of TDA-MAC, but the Tx delays are calculated

di�erently. The CFDAMA return frame will remain operating as

usual, except for the fact that at every sensor node, the transmission

of Nrs data packet(s) cannot begin until it receives the ACK-REQ

and waits the amount of time that is stated in the DTS segment of

the ACK-REQ packet. This process is depicted in Figure 2. There,

the gateway broadcasts an ACK-REQ packet on the forward chan-

nel to be received by every node at di�erent arrival times due to

them being positioned at di�erent locations. Upon the arrival of

the ACK-REQ packet, the concerned node waits the appropriate

amount of time, and then, transmits a run of Nrs data packets. On

condition that the appropriate CFDAMA frame length and forward

frame delay are used, this process leads to CFDAMA-like packet

arrival at the gateway without the need for clock synchronisation

amongst sensor nodes. This packet reception timing is illustrated

in Figure 2.

3.1 CFDAMA-NoClock: Calculating
Delay-to-Slots

The gateway node constructs the DTS segment of the ACK-REQ

packet that needs to be transmitted to every sensor node on a frame-

by-frame basis in order to assign the Tx delays. The Tx delay for

the nth node, where n = 2, 3, ...,N is given by:

τtx[n] = 2(τp[N ] − τp[n]) +

n−1
’

i=1

(Nas[i]τslot) (1)

where τp[n] is the propagation delay from the gateway to the nth

sensor node, N th sensor node is the farthest node from the gateway,

τtx[n] is the delay-to-slot assigned to the n
th sensor node, Nas is the

number of data slots assigned to the nth node in the current frame

and τslot the duration of data slot which must satisfy the following

constraint:

τslot > Tdp[n] +Tg[n] (2)

Where Tdp[n] is the duration of the nth node’s data packet in-

cluding the segment of its capacity requests and Tg[n] is the guard

interval after thenth node’s data packet reception at the gateway. In

every round of transmitting an ACK-REQ packet, two vectors: τtx =

(τtx[1],τtx[2], ...,τtx[N ]) and Nas = (Nas[1],Nas[2], ...,Nas[N ]) are

constructed at the gateway node, sorted based on the nth node’s

location from nearest to farthest from the gateway and loaded onto

the ACK-REQ packet. In the absence of slot requests, the scheduler

assigns a free slot to every sensor node, for example, the case of

the �rst round in which capacity requests have not been made at

this point in time. The gateway is able to periodically assess the

accuracy of the measured propagation delays by comparing the

Algorithm 1 CFDAMA-NoClock algorithm implementation on the

gateway node; ACK-REQ - CFDAMA acknowledgement and data

request packet

1: for every sensor node (n = 1, 2, 3, ...N ) do

2: Transmit PING packet to nth sensor node

3: Wait for PING packet back from n
th sensor node

4: Calculate propagation delay τp[n] to n
th sensor node

5: end for

6: Calculate Tx delay τtx[n] for every n using (1)

7: Determine the demand/free slot allocation according to

CFDAMA-PB rules

8: Construct τtx and Nas vectors and load them onto ACK-REQ

packet

9: Broadcast the ACK-REQ packet

10: while CFDAMA slot jitter is below threshold (no collisions)

do

11: Measure the errors between expected and actual data packet

arrivals

12: if CFDAMA slot jitter is above a threshold then

13: Compensate for propagation delay estimation errors using

the actual value

14: Go to Step 6

15: end if

16: end while

Algorithm 2 CFDAMA-NoClock algorithm implementation on a

sensor node; TDI - ACK-REQ - CFDAMA acknowledgement and

data request packet

1: if PING packet received from gateway node then

2: Transmit PING packet back to gateway node

3: end if

4: if ACK-REQ packet received from gateway node then

5: Schedule packet transmission with allocated delay and for

Nas successive data packets

6: end if

expected and the actual time of arrival of data packets. If error

values exceed a certain sustainable limit, the gateway node can

then update the the Tx delays accordingly.

Algorithm 1 shows the implementation steps taken at the gate-

way node to run the CFDAMA-NoClock protocol. Algorithm 2

shows the implementation steps taken at every sensor node to op-

erate in accordance with the proposed protocol. The complexity

and computational requirements are low at the sensor nodes; the

algorithm demonstrates these vital features with only two basic

reactive operations. Most of the processing requirements of the

scheme are at the gateway node.

3.2 CFDAMA-NoClock: Scheduling the
CFDAMA Forward Frame

Following the process of measuring all propagation delays to the

sensor nodes, the gateway has to establish the o�set time between

the CFDAMA forward and return frames. In other words, it has to

determine during the current return frame the proportion of slots
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Figure 2: An arbitrary CFDAMA-NoClock transmission cycle with its two channels working concurrently; ACK-REQ - ac-

knowledgement and data request packet

over which the transmission of the next ACK-REQ packet takes

precedence. For instance, the illustrative chronology in Figure 2

shows that the gateway brings forward its ACK-REQ packet trans-

mission by more than 1.5 data slots. This proportion is denoted by

Tadv in the following description. Theoretically, the larger the Tadv
is, the smaller the gap between successive CFDAMA return frames

will be, which results in better channel throughput. However, a

constraint has to be satis�ed in order not to over accelerate the

next return frame and cause frame overlap with the current return

frame at the gateway:

Tadv = max
n=1...N

n

n |nτslot 6 0.5τp[N ]
o

(3)

where Tg,rp is the guard interval between the transmission of

an ACK-REQ packet and the adjacent data packet reception. This

constraint ensures that, for every slot over which the transmission

of ACK-REQ takes precedence, the new ACK-REQ packet does not

arrive at the concerned node, which will utilise this slot, before it

completes the transmission of the previous data packet.

3.3 CFDAMA-NoClock: Optimal CFDAMA
Frame Length

Whilst the maximum limit of the CFDAMA return frame interval is

extendible based on the desired delay/utilisation performance, its

shortest interval has a certain limit given the no-synchronised-clock

circumstances. Ideally, the gateway node is required to transmit

at least one broadcast ACK-REQ packet during the interval over

which the data packets from all sensor nodes assigned capacity are

received. This interval will then be the minimum duration of the

CFDAMA return frame Tframe. Therefore, this Tframe has to satisfy

the two constraints:

Tframe ≥ Tmin,delay

Tframe ≥ Tmin,demand
(4)

where Tmin,delay is the constraint placed by the longest round-

trip propagation delay, τp[N ], between the gateway and the sensor

nodes, and Tmin,demand is another important constraint placed by

the channel in terms of its data carrying capacity, i.e. if the former

constraint is not the limiting factor, the latter is, in which case the

performance is limited by the packet duration, capacity demand

and statistical behaviour of the data tra�c source.

The �rst constraint Tmin,delay is calculated using the following

expression:

Tframe ≥ max
n

τp[n] −min
n

τp[n] (5)

where Tframe is the frame interval. This expression states that

the frame length cannot be shorter than the di�erence between the

longest and the shortest round-trip delays to ensure receiving at

least one data packet, if any, from the farthest sensor node.

In the second case, the data carrying capacity constraint on

Tframe is given by the following expression:

Tmin,demand =

N
’

n=1

Nas[n]
⇣

Tdp[n] +Tg[n]
⌘

(6)
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Figure 3: Riverbed-based underwater acoustic channel [5]

The expression ensures that the minimum Tframe should not be

smaller than the duration of all data packets of the current cycle

plus the guard intervals amongst them. Taking both constraints into

account, the minimum possible interval between two consecutive

ACK-REQ packet transmissions can then be expressed as:

Tframe,min = max (Tmin,delay,Tmin,demand) (7)

In practice, this frame interval is typically speci�ed to a given ap-

plication based on how frequently the sensor readings require gath-

ering. The CFDAMA-PB scheme can give its best delay/utilisation

performance when Nτslot is set to be close to the 2maxn τp[n], com-

posed of Nslots data slots where Nslots > N . This ensures that

a larger number of nodes, if not all nodes, can make a capacity

request in every return frame. The suitable frame and data-slot du-

rations are chosen on the basis of the desired channel capacity and

transmission rate of a given application taking into consideration

constraint 7.

3.4 CFDAMA-NoClock: Achievable Channel
Utilisation

The maximum achievable channel utilisation of CFDAMA-NoClock

is limited to themaximum channel utilisation of the no-synchronised-

clock algorithm and CFDAMA-PB capacity overhead, which can be

approximated as follows:

γmax =

(1 − ϑ )

Nslots
’

n=1

Tdp[n]

Nslots
’

n=1

⇣

Tdp[n] +Tg[n]
⌘

(8)

Where ϑ is the fraction of packet overhead due to the embedded

capacity requests. This expression states that the guard intervals

and packet overheads are the primary cause of throughput loss.

Guard intervals are an essential design parameter allowing adaptive

timing to accommodate typical motion of "�xed" nodes. For exam-

ple, a 100 ms guard period between data packets can allow tolerance

to the changes in a node location of up to 150 m before propagation

delays require re-estimating. Achieving this throughput is condi-

tional on the elimination of any potential gaps interleaving adjacent

CFDAMA-PB frames (i.e. gaps separating every set of packet recep-

tion). To achieve this optimal throughput performance, the interval

of the frame should be at least 2τp[N ], and the proportion of data

slots over which the transmission of the next ACK-REQ packet

takes precedence should be: Tadv = 0.5τp[N ].

4 PERFORMANCE EVALUATION OF
CFDAMA-NOCLOCK

In this section, the performance of CFDAMA-NoClock is evaluated

using a CFDAMA simulation model developed in Riverbed Mod-

eller [7] for the UASN model depicted in Figure 1. The performance

of the proposed scheme is compared with the performance of both

standard CFDAMA-PB and ideal synchronised TDMA, under both

periodic data gathering obeying Pareto ON/OFF tra�c and random

Poisson tra�c conditions. The simulation setup is described in this

section.

4.1 Simulation Setup

4.1.1 Underwater acoustic channel model. The simulated acous-

tic link works based on the Riverbed Modeller stages shown in

Figure 3. The BELLHOP program [16] is employed to provide the

acoustic links with the actual acoustic propagation delay based on a

realistic Sound Speed Pro�le (SSP) of a case derived by Dushaw [1]

from the 2009World Ocean Atlas temperature, pressure and salinity

data at (56.5oN , 11.5oW ) in April, i.e. around the North Atlantic

Ocean o� the coast of the UK and Ireland. An empirical model

[17] is used to predict the underwater ambient noise. The Thorp

model [19] is used to determine the absorption coe�cient, used

to estimate the received power. The fourteen Riverbed Modeller

stages are executed on a per-receiver basis whenever a packet is

transmitted. Through these stages, the signal to noise ratio (SNR) of

each received packet is calculated, and subsequently, the Bit Error

Rate (BER) is estimated using a look-up table. Both the proportion

of bit errors due to noise and the level of interference with other

packets determine the packet’s eligibility for successful reception

at its receiver. The receiver rejects all packets involved in over-

lapped arrivals and the packets whose number of bit errors exceeds

a certain threshold.

4.1.2 Network Topology and Simulation Parameters. With ref-

erence to Figure 1, several scenarios of various network sizes (20,

50 and 100 nodes) and packet durations are investigated. In the

simulator, sensor nodes are deployed randomly over an area of

6 × 6 km with a centralised gateway at a 20m depth. The depths

of sensor nodes are uniformly distributed between 470 and 490 m.

These parameters corresponds to a typical oil reservoir seismic

monitoring scenario, e.g. [12]. They are also within the range of

operating parameters of some acoustic modems, e.g. the EvoLogics

S2CR 15/27 modem [15]. These scenarios allow di�erent test op-

tions for performance evaluation and enable comparison with other
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Table 1: Simulation parameters

Attribute Value

Transmission Range 6 × 6 km

Number of Nodes 20, 50 or 100

Bandwidth 30 kHz

Data Rate 9600bps

Packet Size 64, 256, 512 bits

Packet Duration 6.66, 26.66, 53.33 ms

Request Slot Size 8 bit

Request Slot Duration 0.833 ms

Number of Data Slots in Frame 650, 256 and 128

Tra�c Load Range 0.1 - 1 Erlangs

approaches in the literature. The simulation parameters are listed in

Table 1. In all the results presented, channel load refers to the level

of demand placed on a channel, measured in Erlangs and expressed

as a percentage of the overall data carrying capacity of the chan-

nel. To re�ect on the wide-ranging underwater applications, two

distinct tra�c models (Poisson OFF and Pareto ON/OFF) [11] are

developed in Riverbed Modeller for this performance evaluation.

4.2 Analysis of The Results

Figure 4 is a bar chart representing the network throughput achieved

at the gateway working as a sink receiving collected data from all

sensor nodes. Here, throughput is de�ned as the proportion of the

successful data transmission that is e�ectively used to transfer new

information after an amount of tra�c is placed on the channel, ex-

pressed as a percentage of the channel capacity, i.e the overall data

carrying capacity. The chart shows the throughput performance of

CFDAMA-NoClock and the synchronised CFDAMA-PB for a base-

line comparison. It also compares with the analytical predictions of

the optimal CFDAMA-NoClock throughput given by Equation (8).

The results in Figure 4 indicate that there is a negligible di�er-

ence in throughput performance between CFDAMA-NoClock and

synchronised CFDAMA-PB in all three simulated scenarios. This

demonstrates that CFDAMA-NoClock can achieve the performance

of ideal CFDAMA-PB without the need for a synchronised clock in

every sensor node. The primary source of capacity waste in the case

of CFDAMA-NoClock is the guard intervals amongst data packets,

suggested as 5% of the data packet length. In practice, the length of

the guard interval can be set to be a more realistic value suited to a

given network deployment experiencing certain motion of nodes,

and/or propagation delay jitter.

Furthermore in Figure 4, the comparison with the analytically

predicted values of the network throughput indicates that Equa-

tion (8) provides a good performance estimate based on the sys-

tem parameters, e.g. packet duration, guard intervals and packet

overhead. The very slight disagreement between the analytically

predicted optimal throughput performance of CFDAMA-NoClock

and the simulation outcome is attributable to the collection time,

i.e. the time between the very �rst ACK-REQ packet and the subse-

quent set of data collection (i.e. �rst CFDAMA return frame). This

inevitable gap in channel utilisation cannot be �lled due to not

being preceded by any data packets and followed by the �rst set
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Figure 4: Network throughput achieved by CFDAMA-

NoClock and CFDAMA-PB under Poisson data tra�c. The

simulation results are compared with the analytical predic-

tion given by Equation (8); packet size 512 bit and data rate

9.2 kbit/s

of data packet reception. This gap is proportional to the longest

round-trip propagation delay.

Another important performance metric is the end-to-end delay

achieved by our NoClock scheme under the two distinct tra�c

conditions, i.e. Poisson and Pareto ON/OFF. CFDAMA-NoClock

should not experience very di�erent delay/utilisation performance

from the typical CFDAMA-PB delay performance. Figure 5 shows

the delay/utilisation performance of CFDAMA-NoClock with the

two tra�c types (Poisson and Pareto ON/OFF), di�erent numbers

of nodes (20, 50 and 100) and di�erent data packet sizes (64, 256

and 512 bits) at a data rate 9.2 kbit/s. In general, the mean end-to-

end delay starts to increase exponentially as the o�ered load value

approaches the maximum network throughput of a given scenario.

Like CFDAMA-PB, the CFDAMA-NoClock scheme is still capable

of providing the expected end-to-end delay performance with both

tra�c types. At low to medium channel loads, the mean end-to-end

delay with both tra�c models is similar. When the channel load is

50% of the channel capacity, the end-to-end delay is much higher

with the Pareto ON-OFF tra�c. With full channel load, 100 nodes

and di�erent packet sizes (64, 256 and 512 bit), the shortest mean

end-to-end delay achieved with the shortest packet duration of 6.66

ms. There, as Figure 5a-5b shows, a data packet can be collected

approximately every 19 s with Poisson tra�c and 135 s with Pareto

ON/OFF. With full channel load and di�erent numbers of nodes,

the shortest mean end-to-end delay is achieved with the smallest

network size of 20 nodes. There, as Figure 5c-5d shows a data packet

can be collected approximately every 5.8 s on average with Poisson

tra�c and 96 s with Pareto ON/OFF.

CFDAMA-NoClock vs. TDMA. With a moderate tra�c load, the

classical TDMAMACprotocol is a good solution in terms of through-

put as data packets are transmitted without MAC overhead. How-

ever, its delay/utilisation performance is dependent on the accuracy

of node clock synchronisation. Figure 6 shows the mean end-to-end



An Adaptive TDMA-based MAC Protocol for Underwater Acoustic Sensor NetworksWUWNet’19, October 23–25, 2019, Atlanta, GA, USA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered Load in Erlang

5

10

15

20

25

30

35

40

45

50

E
n

d
-t

o
-E

n
d

 D
e

la
y
 i
n

 s
e

c

CFDAMA-NoClock, with 64-bit packets

CFDAMA-NoClock, with 256-bit packets

CFDAMA-NoClock, with 512-bit packets

CFDAMA-PB, with 64-bit packets

CFDAMA-PB, with 256-bit packets

CFDAMA-PB, with 512-bit packets

(a) with Poisson tra�c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Offered Load in Erlang

20

40

60

80

100

120

140

160

E
n

d
-t

o
-E

n
d

 D
e

la
y
 i
n

 s
e

c

CFDAMA-NoClock, with 64-bit packets

CFDAMA-NoClock, with 256-bit packets

CFDAMA-NoClock, with 512-bit packets

CFDAMA-PB, with 64-bit packets

CFDAMA-PB, with 256-bit packets

CFDAMA-PB, with 512-bit packets

(b) with Pareto ON/OFF tra�c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered Load in Erlang

2

4

6

8

10

12

14

16

18

20

E
n

d
-t

o
-E

n
d

 D
e

la
y
 i
n

 s
e

c

CFDAMA-NoClock, with 20 nodes

CFDAMA-NoClock, with 50 nodes

CFDAMA-NoClock, with 100 nodes

CFDAMA-PB, with 20 nodes

CFDAMA-PB, with 50 nodes

CFDAMA-PB, with 100 nodes

(c) with Poisson tra�c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Offered Load in Erlang

5

10

15

20

25

30

35

40

45

50

E
n

d
-t

o
-E

n
d

 D
e

la
y
 i
n

 s
e

c
CFDAMA-NoClock, with 20 nodes

CFDAMA-NoClock, with 50 nodes

CFDAMA-NoClock, with 100 nodes

CFDAMA-PB, with 20 nodes

CFDAMA-PB, with 50 nodes

CFDAMA-PB, with 100 nodes

(d) with Pareto ON/OFF tra�c

Figure 5: The delay/utilisation performance of CFDAMA-NoClock vs CFDAMA-PB with di�erent 20, 50 and 100 nodes; 64, 256

and 512 bit packets and 9.2 kbit/s; and two distinct tra�c types

delay performance of the CFDAMA-NoClock scheme against the

performance of the ideal synchronised TDMA protocol with both

Poisson and Pareto ON/OFF tra�c types o�ered by 20 and 100

nodes. The results in Figure 6a indicate that with moderate chan-

nel loads, both schemes perform almost the same with 20 and 100

nodes. This is attributable to the limited burstiness of the Poisson

tra�c which is unable to o�er substantial demands for an excessive

period of time long enough to allow the demand assigned slots of

CFDAMA to contribute e�ectively. In this instance, the free assign-

ment scheme, underlying CFDAMA, contributes more e�ectively

and the performance is similar to TDMA. At high o�ered load val-

ues, CFDAMA-NoClock has a small advantage over TDMA in terms

of end-to-end delay. This is attributable to the increased demand

made for packets and the fact that the TDMA slots, assigned peri-

odically, cannot be as e�ective as the on-demand slots assigned by

CFDAMA-NoClock at such high load levels. At a high channel load

of 90% and 100 nodes, the mean end-to-end delays are around 13 s

with CFDAMA-NoClock, and above 20 s with TDMA.

With the Pareto ON/OFF tra�c source, increasing the tra�c

load level causes a signi�cant increase in the spread of end-to-end

delay values between the two schemes with a considerable increase

in the proportion of packets experiencing very long end-to-end

delay. TDMA begins to su�er from instability after the channel load

exceeds 80%. At such very high channel load, the tra�c sources be-

come able to o�er instantaneous load levels exceeding the channel

capacity over a signi�cant periods of time. During these periods,

packets continue to build up in the sensor node queues until the load

level drops below the channel capacity. The CFDAMA-NoClock

scheme can cope with such statistical variations in the tra�c source

level up to higher channel load levels.

5 CONCLUSIONS

This paper introduced a new robust MAC solution for UASNs. It is

referred to as CFDAMA-NoClock (CFDAMAwithout clock synchro-

nisation). It is based on CFDAMA and is a more feasible MAC solu-

tion when synchronisation amongst node clocks cannot be attained.
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Figure 6: Comparative delay/utilisation performance of CFDAMA-NoClock vs. TDMA with 64-bit data slots

The elimination of synchronised clocks increases the practicality of

this scheme. The MAC operations required to be processed on the

sensor nodes are minimal. All the complexity associated with the

functionality of the scheme is at the gateway node. The CFDAMA-

NoClock scheme exhibits excellent delay/utilisation performance

superiority over the performance of ideal synchronised TDMA.

Comprehensive event-driven Riverbed simulations of a network

deployed on the sea bed show that the proposed protocol is able to

closely match its underlying scheme CFDAMA-PB with the advan-

tage of independent unsynchronised node clocks. In all simulated

scenarios, ranging from a network of 20, 50 to 100 nodes and packet

sizes from 64, 256 to 512 bits, with a data rate of 9.2 kbit/s and two

data tra�c types (Poisson and Pareto ON/OFF), the proposed proto-

col achieves the expected very close delay/utilisation performance

to that can be achieved with the underlying CFDAMA variant.
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