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ABSTRACT Real-world networks contain many cliques since they are usually built from them. The analysis
that goes behind the cliques is fundamental because it discovers the real structure of the network. This
article proposed new high-order closed trail clustering and closure coefficients for evaluation of the network
structure. These coefficients are able to describe the inner structure of the network concerning its randomized
or organized behavior. Moreover, the coefficients can cluster networks with similar structures together.
The experiments show that the coefficients are useful in both the local and global context.

INDEX TERMS Closed trail distance, clustering coefficient, closure coefficient, cyclic structure,
higher-order structure.

I. INTRODUCTION
The networks that are built in real life have many
standard features. The most important feature is related
to their evolution and the process through which they are
created. Co-authorship networks depict the fact that authors
co-authored a book or a paper. If the book has three authors,
a clique on three vertices is added to the network, similarly for
more authors. Social networks suggest a connection between
members according to the current relationship, regardless
of whether it is on the internet or in real life. Therefore,
the analysis that goes behind the cliques is fundamental.

The global clustering coefficient (or transitivity [1])
is a standard approach to characterizing networks and
the tendency of vertices to clustering. In the article [2],
a higher-order clustering coefficient as a natural general-
ization of the traditional clustering coefficient is defined.
Higher-order cliques beyond triangles are crucial to an under-
standing of complex networks and the clustering behavior
of their vertices concerning the standard metric on network
structures.

The local closure coefficient [3] is defined in a similar way
to the standard local clustering coefficient. It is a metric quan-
tifying head-node-based edge clustering, and it is defined as
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the fraction of length-2 paths starting from the head node that
induces a triangle. This small difference in definition, leads to
different properties than the traditional clustering coefficient
has. Benson et al. [4] developed a generalized framework
for clustering networks based on higher-order connectiv-
ity patterns. Their results show that networks exhibit rich
higher-order organizational structures detected by clustering
based on higher-order connectivity patterns. The article [5]
continues with the idea of higher-order graph clustering, and
the authors present a class of local graph clustering methods
that incorporate higher-order network information captured
by network motifs. The higher-order structure is also the
focus of the article [6]. The authors found that tie strength
and edge density are the competing positive indicators of
higher-order organization. These trends are consistent across
interactions that involve a different number of nodes.

The measuring of the distances between two nodes in
a graph is a frequent task. The standard measure for this
distance is the shortest path (dSP(u, v)) between two nodes
u, v in a graph [7], [8]. Another way that can be used is the
expected lengths of the commuting time distance [9]. Variants
of node distances are described in detail in [10]–[13].

The closed trail distance (dCT (u, v)) as a metric in the
graph is based on the definition of a biconnected component.
The distance between two vertices in the graph is defined
as the length of the shortest closed trail that contains these
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two vertices. A k − CT component is maximal subgraph
that contains those vertices for which the closed trail distance
among the vertices is less than or equal to k .
The k−CT components that are detected highlight locally

and cyclic connected subgraphs.Moreover, these components
are not based on the biconnectivity property and, therefore,
they can easily partition densely connected biconnected
components. These components are more difficult to parti-
tion and detect the structure of communities. A list of the
largest biconnected component in the selected networks was
published by Leskovec et al. [14].
Local clustering and closure coefficients measure the

tendency of vertices to be in a cluster. Both are based on the
expansion of the clique. The higher-order clustering and clo-
sure coefficients are based on higher-order (bigger) cliques.
In the graph, we can detect a dense subgraph, which is not
a clique, but it is very close to a clique. This subgraph can
be composed of numerous smaller cliques, and they create
the k − CT component. The new approach to clustering and
closure coefficient is based on the expansion of k−CT com-
ponents to a (k + 1)−CT subgraph. Higher-order clustering
and closure coefficients are integrated into the clustering and
closure k − CT coefficients because all 3− CT components
are cliques. Sparser subgraphs, which can contain structural
holes of the graph or chains of k − CT components with
a smaller k , are detectable via k − CT components with a
higher k .

The organization of the article is as follows. First, the ter-
minology and the notation, which is used in the article,
are introduced. In the next section, the closed trail distance
in connected undirected graphs without bridges is defined.
Moreover, the new coefficients based on k−CT components
are introduced. These coefficients extend the clustering and
closure coefficient and characterize the tendency of vertices
to participate in some (k+1)−CT subgraph. Section IV con-
tains the experimental results of selected real networks and
two types of generated networks. In conclusion, the advan-
tages and limitations of the coefficients that are defined are
discussed.

II. TERMINOLOGY AND NOTATION
In this section, knowledge of graph theory will be required.
The definitions of the following terms were taken from [15]:

A walk on a graph is an alternating series of vertices and
edges

W (v0, vk ) = v0e1v1e2 . . . vk−1ekvk ,

such that for j = 1, . . . , k the vertices vj−1 and vj are the
endpoints of the edge ej. A closed walk is a walk in which the
initial vertex is also the final vertex. The length of a walk is
the number of edges. We will denote the length of a walk as
|W (u, v)|. A trail is a walk in which no edge occurs more than
once. A closed trail is a closed walk with no repeated edges.
We will denote a closed trail which contains the vertices u, v
as

CT (u, v) = ue1 v1e2 . . . v . . . eku.

A path is a walk in which no edge or internal vertex occurs
more than once (a trail in which all the internal vertices are
distinct). We will denote a path with an initial vertex u and a
final vertex v as P(u, v). A circuit is a closed trail. A cycle is
a closed path with a length at least one and an induced cycle
of length four or more is a hole. A clique is a subgraph in
which each vertex is adjacent to every other vertex. We will
denote the clique with k vertices as Qk . A diameter of graph
is the maximum of distances between any pair of vertices in
the graph.

A connected graph is a graph such that between every pair
of vertices, there exists a walk. A biconnected graph is a con-
nected and ‘‘nonseparable’’ graph, meaning that if any vertex
were to be removed, the graph would remain connected.
A component of a graph is a maximal connected subgraph.
An edge e is a bridge (cut-edge) of the connected graph G
if {e} is a disconnecting edge-set of G. An articulation is a
vertex of a graphwhich removal increases the number of com-
ponents. Therefore, a biconnected graph has no articulation
vertices. A biconnected component is a maximal biconnected
subgraph.

III. COEFFICIENTS BASED ON CLOSED TRAIL DISTANCE
The closed trail distance is a metric between vertices in a
connected graph without bridges and loops. It is useful for the
detection of subgraphs with a specified CT−distance among
the vertices.

A. CLOSED TRAIL DISTANCE IN AN
UNDIRECTED GRAPH
Definition 1: A graph is a k-closed trail connected graph

(k − CT ) if every two vertices lie on the closed trail (circuit)
with a length ≤ k . The k − CT component of the graph is a
maximal k − CT subgraph.
A maximal k − CT subgraph is a k − CT subgraph that

cannot be extended by including one more adjacent vertex.
Definition 2: Let G = (V ,E) be a graph. Let dCT : V ×

V → R+0 be defined by the equation

dCT (u, v) = minCT (u,v)∈G|CT (u, v)|,

where CT (u, v) is a closed trail that contains the vertices
u, v. Then the function dCT is called the closed trail distance
(CT -distance).
Theorem 1: The CT−distance is a metric on the set V.
The theorem was proven in the article [16].
Lemma 1: Every 3− CT component is a clique.
The lemma was proven in the article [16].
Lemma 2: dCT (u, v) is a metric in any connected graph

without bridges and defines the distance between two nodes
u and v.

We can define the CT−distance for a disconnected or
connected graph with bridges in this way:
Definition 3: TheCT−distance between the vertices u and

v is equal to∞ (dCT (u, v) = ∞) if not closed trail containing
these vertices exists.
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TABLE 1. The list of the coefficients. The first column contains the formulas of the coefficients, and the other columns are examples of starting subgraphs
(cliques or k − CT components), starting subgraphs with an added edge, that is centered or headed in the vertex u and checked subgraphs (cliques or
(k + 1)− CT subgraphs.

B. HIGHER-ORDER CLUSTERING AND CLOSURE
COEFFICIENTS
The local clustering coefficient [17] of a vertex u in the
network G = (V ,E) is the fraction of wedges centered at
the vertex u that are closed. The wedge W c

2 is a subgraph
composed of a clique Q2 and an edge which are connected in
the vertex u (see Table 1 coefficientC2 – 2-wedge ). The local
higher-order clustering coefficient for the vertex u is defined
in [2] as:

Ck (u) =
k|Kk+1(u)|
|W c

k (u)|
=

k|Kk+1(u)|
(du − k + 1)|Kk (u)|

,

where Kk (u) is the set of k-cliques containing u,W c
k (u) is the

set of k-wedges (see Table 1 coefficient C4 – 4-wedge) with
its center in the vertex u and du is the degree of the vertex
u. If |W c

k (u)| = 0, then Ck (u) is undefined. The average
kth-order clustering coefficient Ck is the mean of the local
kth-order clustering coefficients,

Ck =
1
|Vk |

∑
u∈Vk

Ck (u),

where Vk is the set of nodes in the network in which the local
kth-order clustering coefficient is defined.

The global higher-order clustering coefficient of the net-
work G = (V ,E) is defined in [2] as:

Ck =
(k2 + k)|Kk+1|
|W c

k |
,

where Kk+1 is the set of (k+1)-cliques inG andW c
k is the set

of k-wedges, where a k-wedge is composed of a clique with k

vertices and an edge. They are connected in the vertex uwhich
is common for the clique and the edge.

A closure coefficient [3] is defined in a similar way.
The local closure coefficient of a vertex u in the network

G = (V ,E) is the fraction of the wedges headed at the vertex
u that are closed. The wedgeW h

2 is a subgraph composed of a
cliqueQ2 and an edge which are connected in the vertex v and
the vertex u is the head of the edge (see Table 1 coefficient
H2 – 2-wedge ). The local higher-order closure coefficient for
the vertex u is defined as:

Hk (u) =
k|Kk+1(u)|

|W h
k (u)|

,

where Kk (u) is the set of k-cliques containing u andW h
k (u) is

the set of k-wedges (see Table 1 coefficient H4 – 4-wedge)
headed in the vertex u. If |W h

k (u)| = 0, then Hk (u) is
undefined. The average kth-order closure coefficient H k is
the mean of the local kth-order closure coefficients,

H k =
1
|Vk |

∑
u∈Vk

Hk (u),

where Vk is the set of nodes in the network in which the local
kth-order closure coefficient is defined.

C. CLUSTERING AND CLOSURE COEFFICIENTS BASED
ON k − CT COMPONENTS
We denote the set of all k − CT subgraphs containing the
vertex u as k −CT (u). The set of all the k −CT components
which contain the vertex u is denoted as Mk (u). From the
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TABLE 2. Overview of networks parameters used for experiments.

FIGURE 1. Example of 9− CT components where the first component
(chain of triangles) has – dimSP = 3, dimCT = 9, length of the largest
cycle is 3 and the second component (cycle) has – dimSP = 4, dimCT = 9,
length of the largest cycle is 9.

definition 1 it follows that the set Mk (u) contains all the
maximal k − CT subgraphs with the vertex u. We define an
k − CT wedge centered at u as consisting of an k − CT
component and an adjacent edge for k ≥ 3 (see Fig. 1,
row CCT

4 ). A centered k − CT wedge is denoted as W c
k−CT .

A k − CT wedge headed at u is defined in a similar way
(see Table 1, row HCT

4 ) and it is denoted as W h
k−CT .

The shortest closed trail which contains two vertices has to
have a length greater than or equal to 3. It is the reason why
coefficients are defined for k ≥ 3.

The local k − CT clustering coefficient of a vertex u in
the network G = (V ,E) is the fraction of the CT wedges
centered at the vertex u that are closed. The local higher-order
k − CT clustering coefficient for the vertex u is defined as:

CCT
k (u) =

|(k + 1)− CT (u)|
|W c

k−CT (u)|
.

If |W c
k−CT (u)| = 0, then CCT

k (u) is undefined. The average

kth-order clustering CT coefficient C
CT
k is the mean of the

local kth-order clustering CT coefficients,

C
CT
k =

1
|Vk |

∑
u∈Vk

CCT
k (u),

where Vk is the set of nodes in the network where the local
kth-order clustering CT coefficient is defined.
The interpretation of the local k − CT clustering coeffi-

cient, is described as the expansion of k−CT components to
(k + 1)− CT subgraphs (see Table 1, row CCT

4 ). The global
k−CT clustering coefficientCCT

k is defined as the fraction of
the k−CT wedges centered at u that are closed, meaning that
they induce a (k + 1)−CT subgraph in the network. We can
formulate this as:

CCT
k =

1
|Mk |

∑
k−CT∈Mk

|(k + 1)− CT |
|W c

k−CT |
.

The local k − CT closure coefficient of a vertex u in the
network G = (V ,E) is the fraction of the CT wedges headed
at the vertex u that are closed. The local higher-order k −CT
closure coefficient for the vertex u is defined as:

HCT
k (u) =

|(k + 1)− CT (u)|

|W h
k−CT (u)|

.

If |W h
k−CT (u)| = 0, then HCT

k (u) is undefined. The average

kth-order closure CT coefficientH
CT
k is the mean of the local

kth-order closure CT coefficients,

H
CT
k =

1
|Vk |

∑
u∈Vk

HCT
k (u),

where Vk is the set of nodes in the network in which the local
kth-order closure CT coefficient is defined.

D. METHODS FOR k − CT COMPONENTS COMPUTATION
In the graph G = (V ,E) we need to detect all the maximal
k−CT subgraphs (k−CT components) for the computation
of the coefficients. k−CT components are detected from the
matrix of closed trail distances. We denote this full matrix
as T and Tij = dct (i, j).

All the triangles and quadrangles in the graph are detected
to fill the matrix T . the Chiba and Nishizeki algorithm [18] is
used for these computations. The CT− distances dct (i, j) ≥ 5
are detected via the connection of the two shortest disjoint
paths [19] between i and j, where the connection of these
shortest paths creates a closed trail.

The k − CT component in the graph G = (V ,E) is the
maximal clique in the weighted graph Gk = (V ,Ek ) where
{i, j} ∈ Ek ⇔ Ti,j ≤ k . Maximal cliques in Gk are detected
with the Bron-Kerbosch algorithm [20].

IV. EXPERIMENTAL RESULTS
The experiments concentrate on comparing standard coeffi-
cients and k − CT coefficients in selected real networks and
two types of generated networks. Real networkswere used for
the experiments, as in the article [2]. Biological networks are
represented by dataset C.elegans (a complete neural system)
and Dros.-medulla (neural connections). Zachary Karate
Club is a real small social network, and fb-Stanford and
fb-Cornell are online friendship social networks on Facebook
among students at universities since 2005. Two co-authorship
networks are constructed from arxiv submission cate-
gories (arxiv-AstroPh and arxiv-HepPh). Human communi-
cation networks are created from emails (email-Enron-core,
email-Eu-core) and Facebook-like messages among colleges
(CollegeMsg). Oregon2-01052 is a technological network of
an autonomous system.

A Barabási-Albert (BA) model [21] of a network was used
for generating 14 networks with increasing numbers of edges
(2, 3, 5, 7, . . . , 50) attached from a new node to existing
nodes. The process of generating was repeated 15 times with
5 various random seeds, and the maximal number of vertices
was n ∈ {100, 150, 200}. The result of the generating is 210
networks.

A Watts-Strogatz (WS) model [17] of the network is
the second model which was used for generating 20 networks
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TABLE 3. A short description of the largest connected components without bridges in selected real networks. The shortest path distance and CT−
distance between vertices in the largest connected components without bridges were used for the computation of diameters and average distances.

TABLE 4. List of selected real networks with number of k − CT components.

FIGURE 2. Coefficients CCT
k , C

CT
k and H

CT
k of selected real networks.

with an increasing rewiring probability p, the number of
vertices is n ∈ {100, 150, 200} and the number of neighbors
in the ring topology is k ∈ {10, 15}. 5 various random seeds
were used with a combination of the number of vertices
and number of neighbors (100, 10), (150, 10), (200, 15). The
result of the generating is 300 networks.

FIGURE 3. Graphs of global k − CT clustering coefficients in the BA and
WS network models; the dashed line represent the average CT−diameter
of generated networks with specific parameters.

A brief description of network parameters for all types of
networks are summarized in table 2.

Table 3 contains two specific networks (arxiv-HepPh and
arxiv-AstroPh) that have the biggest average shortest path
distances and theirCT−diameters (dimCT ) are not (2∗dimSP)
or (2∗dimSP+1). Figure 1 describes a situation in which the
dimCT is bigger than the (2 ∗ dimSP + 1).
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FIGURE 4. Comparison of local clustering, closure, and 3− CT clustering
and 3− CT closure coefficients (C2, H2, CCT

3 , HCT
3 ) in terms of the

dependency on the node degree.

All the k − CT coefficients are calculated for smaller
networks. Bigger networks have a huge number of k − CT
components (see Table 4) which leads to more expensive
computation of the k − CT coefficients for k ≥ 4.
Higher-order clustering and closure coefficients use cliques
of various sizes, as do the CCT

3 and HCT
3 coefficients.

The global coefficientCCT
k is a fraction of k−CT centered

wedges that are closed, meaning that they induce a (k + 1)−
CT subgraph. In the situation when k = (dimCT − 1) then
every k−CT centered wedge has to be closed to the (k+1)−
CT subgraph because the dimCT is the maximal value of the
CT−distance between the vertices and the closed wedge has
to have a maximal CT−distance between the vertices equal
to dimCT of the graph. Then the coefficient CCT

(dimCT−1)
has a

value equal to one (see Figure 2(a)).
The average clustering and closure k − CT coefficients

C
CT
k , H

CT
k have similar behavior for selected networks to the

global coefficient CCT
k (see Figure 2). Figure 2(b) shows the

tendencies of average coefficients.
With an increase in the parameterm, networks created with

the BA model (see Figure 3(a)) have higher density and then
a smaller diameter of the network and an increasing value
of CCT

k , which goes to one, either faster or slowly. These

FIGURE 5. Comparison of coefficients’ values (Figure 5(a)) and a detailed
view of the average 3− CT clustering coefficients (Figure 5(b)) of real
networks compared with the BA and WS network models. The networks
were grouped into categories according to the origin of the network and
relabeled for better illustration of plots and better readability. The group
of biological networks – C.elegans (B1), Dros.-medulla (B2), social
networks – Zachary (S1), fb-Stanford (S2), fb-Cornell (S3), collaboration
networks arxiv-HepPh (A1) and arxiv-AstroPh (A2), communication
networks email-Enron-core (C1), email-Eu-core (C2), CollageMsg (C3), and
finally the technological network oregon2-010526 (T1).

networks with m ≥ 5 have dimCT ≤ 7 and then the value
of CCT

6 is equal to one.
Networks created with the WS model (see Figure 3(b))

started with a regular graph and an increasing rewiring
probability p, causing a random graph with the same den-
sity and with a smaller CT−diameter. The coefficient CCT

6
increases in the range {5, . . . , 11} of the CT−diameter with
increasing p. The coefficient CCT

3 for increasing p decreases
to zero because the CT−diameter decreases to 8 and the
density is the same as in the regular network.

The 3−CT clustering coefficient is calculated with cliques
of all sizes and the resulting value is appropriate to the cumu-
lative value of the higher-order clustering coefficients. The
coefficients CCT

3 and C2 have very often a similar tendency
(see Figure 4) when they depend on the node degree. The
same tendency is more significant for the closure coefficients
HCT
3 and H2 in the selected network (see Figure 4(b)).

101150 VOLUME 8, 2020



P. Prokop et al.: Clustering and Closure Coefficient Based on k − CT Components

The selected real networks have different values for their
global and average local coefficients (see Figure 5(a)).
The 3 − CT coefficients have mostly a greater range and
a higher value. The calculation of the coefficients is not
restricted only to cliques. The 3 − CT coefficients represent
the fraction of 4−CT subgraphs to wedges based on cliques.
The 4−CT subgraphs are still dense, but they are not as strict
as the cliques. The extension to the k−CT components allows
the calculation with parts of the graph with k − CT distance
between the vertices.

V. CONCLUSION
This article suggests a new higher-order closed trail based
clustering and closure coefficients that were designed for the
discovery of the features of networks that are behind their
clique-based structure. In many networks, cliques represent
the way the network is built. The co-authorship networks
contain cliques of co-authors connected with other cliques
using common authors. Actor-Actor networks are build using
the interconnection of cliques of actors. Therefore, the struc-
ture behind the cliques is the real structure of the networks.
The coefficients CCT

3 and HCT
3 , as well as their averaged

values C
CT
3 and H

CT
3 , provide completely new knowledge

about networks. The coefficients’ values can identify the
nature of the networks and consider their chaotic or orga-
nized behavior. Moreover, we demonstrated the relationship
between the selected networks with the Barabási-Albert and
Watts-Strogatz models. We computed coefficients for both
models with different parameters, and any network may be
compared to them, and the most similar parameter for each
model may be chosen. Both parameters may be used as
features for network similarity measurements because of the
differences in the behavior of each model. The experiments
were performed on the largest connected components without
bridges of 11 well-known networks with hundreds of nodes
up to seventeen thousand and up to eight hundred thousand
edges. The results show that the coefficients are able to
distinguish between different types of networks and cluster
the networks across the source area.
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