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Abstract 12 

We define consciousness as the category of all conscious experiences. This immediately raises 13 

the question: What is the essence in which every conscious experience in the category of 14 

conscious experiences partakes? We consider various abstract essences of conscious experiences 15 

as theories of consciousness. They are: (i) conscious experience is an action of memory on 16 

sensation, (ii) conscious experience is experiencing a particular as an exemplar of a general, (iii) 17 

conscious experience is an interpretation of sensation, (iv) conscious experience is referring 18 

sensation to an object as its cause, and (v) conscious experience is a model of stimulus. 19 

Corresponding to each one of these theories we obtain a category of models of conscious 20 

experiences: (i) category of actions, (ii) category of idempotents, (iii) category of two sequential 21 

maps, (iv) category of brain-generalized figures, and (v) functor categories with intuition as base 22 

and conceptual repertoire as exponent, respectively. For each theory of consciousness we also 23 

calculate its truth value object and characterize the objective logic intrinsic to the corresponding 24 

category of models of consciousness experiences.  25 
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Introduction 26 

What is consciousness? Consciousness, according to Koch, ―is everything you experience. It is 27 

the tune stuck in your head, the sweetness of chocolate mousse, the throbbing pain of a 28 

toothache, the fierce love for your child and the bitter knowledge that eventually all feelings will 29 

end‖ (Koch, 2018, p. S9). This raises two foundational questions: 30 

1. What is the nature of conscious experiences? 31 

2. What is the nature of consciousness? 32 

How are we to think of the totality of conscious experiences i.e., consciousness? How are we to 33 

think of the constituents of consciousness i.e., conscious experiences? One obvious answer: 34 

Conscious experiences are objects of the category of all conscious experiences and 35 

consciousness is the category of conscious experiences. In other words, every conscious 36 

experience has the essence of the category of conscious experiences, whatever the essence(s) 37 

maybe. This characterization is in the spirit of asserting that a chair is an object of the category 38 

of chairs. 39 

   Let us consider a visual experience: a face. A first-order approximation would represent the 40 

experience as a point in a feature-space or as a set of features i.e., Face = {eyes, nose, mouth} 41 

(Fodor, 1998). Sensory features are obviously structured, unlike the structureless elements of sets 42 

(Lawvere and Rosebrugh, 2003, p. 1). Equally importantly, sensory features of a visual object 43 

are related to one another in specific ways resulting in a cohesive object that is conscious 44 

experience, which cannot be modelled as a set with its zero internal cohesion (Lawvere and 45 
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Schanuel, 2009, p. 146). Elementism, notwithstanding the Gestalt demonstrations (Albright et 46 

al., 2000, p. S34), continues to be the default terminology as in analysing ―perceptual experience 47 

into a collection of simple sensory elements‖ (Albright, 2013a, p. 19). Along similar lines, mind 48 

is defined as a set of brain functions (Bunge, 1981, p. 68; Kandel, 2013, p. 546). The claim that 49 

‗mind is a set‘ is repeatedly asserted in the textbook Principles of Neural Science (Kandel et al., 50 

2013, p. 5, 334, 384), which takes on added significance in light of its pedagogical value in 51 

training neuroscientists. Of course, this terminology does not reflect any failure to recognize that, 52 

in terms of the above example of face perception, the constituent eyes, nose, and mouth, unlike 53 

the structureless elements of a set, are figures of various shapes; these figures constituting a face 54 

are related to one another in specific ways (cf. Croner and Albright, 1999). Nevertheless, it does 55 

highlight the absence and the significance of having a conceptual repertoire that fits the reality of 56 

conscious experiences. Here we put forward mathematical category as a construct suited for the 57 

study of consciousness (Lawvere, 1994; Lawvere and Schanuel, 2009, p. 21, 135-148). In line 58 

with the commonplace understanding of the notion of category, a mathematical category consists 59 

of objects all of which partake in the essence that is characteristic of the category; since every 60 

object of the category partakes in the essence, the transformations of objects preserve the essence 61 

(e.g. in the category of dogs, a transformation of an young dog into an old dog preserves the 62 

―dogness‖). We find that defining conscious experience as an object of the category of conscious 63 

experiences, instead of as cohesion-less set of structure-less elements, provides the conceptual 64 

repertoire—basic shapes, figures, and incidence relations—needed to reason about the essence of 65 

conscious experiences and the essence-preserving transformations of conscious experiences. 66 

 67 
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Theory of Conscious Experiences 68 

What is the essence of conscious experiences? Continuing with our example of face perception, 69 

an experience of a face can be said to consist of figures of various shapes: two eye-shaped 70 

figures, one nosed-shaped figure, and one mouth-shaped figure. Of these shapes, we can say that 71 

eye, nose, and mouth are the basic shapes, and their incidence relations determine the mutual 72 

relations between various basic-shaped figures constituting the face (Lawvere and Schanuel, 73 

2009, pp. 82-83, 250-253, 369-371). When considering conscious experience in general, we may 74 

treat sensory features (e.g. colour, shape), modalities (visual, tactile, etc.), and emotion, among 75 

others, as basic shapes. For illustration, anger (in conscious experience) can be considered as an 76 

emotion-shaped figure (in the experience) just as redness can be thought of as a colour-shaped 77 

figure. The mutual relations between basic shapes, say, emotion and colour, determine the 78 

mutual relations between figures of the corresponding shapes (anger and redness). 79 

   Basic shapes along with their incidence relations constitute the abstract essence or theory of the 80 

category of conscious experiences (Lawvere, 2003, p. 215, 217; Lawvere, 2004a, pp. 10-12; 81 

Lawvere and Rosebrugh, 2003, pp. 154-155, 235-236; Lawvere and Schanuel, 2009, pp. 149-82 

151, 369-371). First, every experience has the essence [of the category of conscious experiences] 83 

given by the basic shapes and their incidence relations. Next, every experience can be 84 

represented as a structure formed of basic-shaped figures and their mutual relations induced by 85 

the incidences of basic shapes (see Fig. 4 in Posina, Ghista, and Roy, 2017). Since every 86 

experience has the essence of experiences, transformations of experiences are required to 87 

preserve the essence of experiences, and as such are natural transformations (Lawvere and 88 

Schanuel, 2009, p. 378). Geometrically speaking, natural transformations ‗do not tear‘ the 89 



6 

  

structure transformed (ibid, p. 210). Philosophically, a natural transformation is: Becoming 90 

consistent with Being (e.g. biological growth; Posina, 2016). 91 

   What are we to make of the totality of all conscious experiences along with their essence-92 

preserving transformations? Objects along with essence-preserving morphisms of objects form a 93 

category. With experiences as objects [with a given structural essence] and essence-preserving 94 

transformations of experiences as structure-preserving morphisms of objects, consciousness—the 95 

totality of conscious experiences—can be construed as a category of conscious experiences. Note 96 

that any experience can remain the same (identity transformation). If I went from sad to happy 97 

and from happy to detached, then I went from sad to detached (composition of transformations of 98 

experiences). Along these lines, other axioms and laws, which are required to be satisfied in 99 

order for us to talk about a category of experiences, can be verified (Lawvere and Schanuel, 100 

2009, p. 21, 149-160). Within this categorical framework, the structure of consciousness is an 101 

external reflection of the structural essence of conscious experiences (Lawvere, 1972, p. 10). 102 

More immediately, a category embodies a mode of cohesion (Lawvere and Schanuel, 2009, p. 103 

146), which is the most basic attribute of conscious experience. For example, parts of a body 104 

(hands, legs, etc.) have a mode of cohesion, which is different from the mode of cohesion of 105 

parts of a perceptual object (colour, shape). Note that ‗part‘ is both itself and its relationship to 106 

the whole (Lawvere, 1994, p. 53). Formally, a part of an object is not merely a subobject, but a 107 

monomorphism specifying the inclusion of the subobject into the object (Lawvere and Schanuel, 108 

2009, p. 335). 109 

   As illustrations of theory of a category and its basic shapes, we present simple theories 110 

(abstract essences) of conscious experiences (in the spirit of Lawvere, 1999). More explicitly, the 111 
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mathematical method, according to F. William Lawvere, ―consists of taking the main structure 112 

[of an object] by itself as a first approximation to a theory of the object, i.e. mentally operating as 113 

though all further structure of the object simply did not exist‖ (Lawvere, 1972, pp. 9-10). An 114 

example of an abstract theory of conscious experiences is ‗particular as an exemplar of a general‘ 115 

(cf. categorical perception; Albright, 2013b, pp. 628-630; Grossberg, 1976), whose models form 116 

a category of idempotents (Lawvere and Schanuel, 2009, pp. 99-106), with exemplar as its basic 117 

shape. The truth value object of the category of idempotents has three global truth values. With 118 

‗interpretation of sensation‘ (Albright and Stoner, 1995; Croner and Albright, 1999; Schlack and 119 

Albright, 2007) as a theory of conscious experiences, we obtain a category of two sequential 120 

processes as the category of conscious experiences. Here, the basic shapes are physical stimuli, 121 

neural sensation of stimuli, and conscious interpretation of sensation. With conscious experience 122 

as an object of the category of two sequential functions, we find that the objective logic intrinsic 123 

to consciousness has four truth values (Posina, Ghista, and Roy, 2017, pp. 172-174). We also 124 

consider ‗action of memory on sensation‘ (Albright, 2012, Fig. 5, 8; Hopfield, 1982; Lawvere 125 

and Schanuel, 2009, p. 218), ‗referring sensation to an object as its cause‘ (Albright, 2015, p. 22; 126 

Lawvere and Rosebrugh, 2003, pp. 125-126, 148-152), and ‗model of stimulus‘ (Chalmers, 127 

2006; Posina, Ghista, and Roy, 2017) as theories of conscious experiences. 128 

   Given a category of experiences, how do we abstract the theory (essence) of experiences? 129 

Theorization begins with measurements of properties of the objects of the given category. 130 

Oftentimes, we find that there is small subcategory of properties (and their determinations) 131 

within the category of all properties that constitutes the abstract essence shared by all objects of 132 

the given category. This abstract essence in which every object of a given category partakes is 133 
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the theory of the given category (Lawvere, 1994, pp. 44-47; Lawvere and Rosebrugh, 2003, pp. 134 

154-155; Lawvere and Schanuel, 2009, pp. 149-150; see also Fig. 5 in Posina, Ghista, and Roy, 135 

2017). In geometric terminology, we consider a subcategory of basic shapes and their incidence 136 

relations, and examine if figures with objects in the subcategory as shapes are adequate to 137 

completely characterize every object of the category and tell apart transformations between 138 

objects (Lawvere, 1994, p. 49; Lawvere and Schanuel, 2009, pp. 369-371). In the following we 139 

focus on the calculation of truth value objects corresponding to various theories of conscious 140 

experiences and the subsequent characterization of the objective logic intrinsic to various 141 

categories of models of conscious experiences (ibid, pp. 335-357). 142 

 143 

Action of Memory on Sensation 144 

Conscious experience of a given physical stimulus can be thought of as an action of memory on 145 

the sensation elicited by the stimulus (for a vivid illustration of the action of memory on 146 

sensation, see Fig. 5 and 8 in Albright, 2012). A formalization of conscious experience as an 147 

action of memory on sensation is provided by Hopfield (1982). Here sensation S is a 1 × n 148 

feature vector, with each one of the elements of the vector S representing the activity of each one 149 

of the n feature-selective neurons. Memory M, or the n × n synaptic weight matrix, is a result of 150 

associative learning, and can be expressed as a product of the sensation S with its transpose S
T
, 151 

i.e. 152 

M = S
T
 × S 153 
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Conscious experience C(S) corresponding to sensation S is: 154 

C(S) = S × M. 155 

For a given memory, conscious experiences corresponding to various sensations have the 156 

structure of idempotents (as discussed in detail in appendix A1). Categorical perception, wherein 157 

particulars (stimuli) are perceived as exemplars of a general (category; Albright, 2013b, pp. 628-158 

630), also has the structure of idempotents. The abstract essence or theory of the category of 159 

idempotents consists of one basic shape: exemplar, along with an idempotent endomap as the 160 

structural map. Unlike the classical Boolean logic of sets, we find that the truth value object of 161 

the category of idempotents consists of three truth values. Also, two dual forms of negation—162 

not, non—can be defined (Lawvere, 1986, 1991). We find that double negation can be greater or 163 

less than identity depending on the exact nature of negation. Furthermore, the category of 164 

idempotents admits logical contradiction (Lawvere, 2003, p. 214-215; or boundary operation 165 

defined as the intersection of a part with its negation; Lawvere, 1994, p. 48; Lawvere and 166 

Rosebrugh, 2003, p. 201). 167 

 168 

Interpretation of Sensation 169 

Conscious experience involves two sequential processes of sensation (of stimulus) followed by 170 

interpretation of the sensation. A classic illustration of the two sequential processes involved in 171 

conscious experience is R. C. James‘s image (Miller, 1999). When looking at the image one 172 

initially sees black and white blobs of various sizes and shapes, which subsequently, in light of 173 



10 

  

the concept DALMATIAN, is perceptually interpreted as a dog. That conscious experience is 174 

mediated by the two processes of sensation followed by interpretation is well-established in 175 

various perceptual modalities (e.g. Albright and Stoner, 1995; Croner and Albright, 1999). Thus 176 

the abstract theory of consciousness consists of three basic shapes i.e. objects (Physical Stimuli, 177 

Neural Codes, and Conscious Experiences) and two incidence relations i.e. maps (sensation and 178 

interpretation) organized as shown below: 179 

Physical Stimuli –sensation→ Neural Codes –interpretation→ Conscious Experiences 180 

The truth value object of the category of models of conscious experiences of the above theory of 181 

consciousness consists of four global truth values (Fig. 6c in Posina, Ghista, and Roy, 2017 182 

depicts the internal diagram of the truth value object; see Appendix A2 in Posina and Roy, 2018 183 

for the calculation of the truth value object; see also Linton, 2005).   184 

 185 

Brain-generalized Figures 186 

Everyday experience of effectively interacting with objects of conscious experience indicates 187 

that conscious experience of objects is recovery of the objects based on the sensation elicited by 188 

the objects (i.e. constructing an object isomorphic to the cause of sensation; Albright, 2015, p. 189 

22; Lawvere and Rosebrugh, 2003, pp. 125-126, 148-152). In reconstructing objects in conscious 190 

experience, we encounter the possibility of not only the commonplace isomorphism between 191 

objects and conscious experience of objects, but also illusory conscious experiences with no 192 

correspondent underlying objects. We now present a mathematical framework rich enough to 193 
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capture both veridical perception and illusions (Lawvere, 2004b). Given a stimulus A, we define 194 

sensation p as a brain V-valued property of the stimulus A, i.e. 195 

p: A → V 196 

Next, we consider brain V-valued properties of sensations, i.e. 197 

q: V
A
 → V 198 

which may be considered as a special case of interpretation of sensation, i.e. a neural measure of 199 

sensation. Perceived element is defined as a brain V-generalized point of A satisfying naturality 200 

conditions (discussed in detail in appendix A2). Within this mathematical framework, we find 201 

that defining brain V as neuronal states of ‗firing‘ and ‗not firing‘, i.e. as a two-element property 202 

type, can give rise to illusions. However, defining brain V in terms of all possible changes in 203 

neuronal firing rate, i.e. as a three-element set V = {decreased firing rate, constant firing rate, 204 

increased firing rate}, ensures illusion-free perception, or isomorphism between elements of a 205 

stimulus set and perceived elements. As we have been emphasizing, physical stimuli, neural 206 

sensations, and conscious experiences are much more structured than structureless sets; as such 207 

we are working on refining the mathematical framework to accommodate conscious experience 208 

defined as brain-generalized figure of stimuli (for basic shapes and their incidences of the 209 

categories corresponding to physical stimuli and neural sensation). 210 

 211 

 212 
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Model of Physical Stimulus 213 

Of the various abstract essences (theories) of conscious experiences, the most basic 214 

characterization of conscious experience is: conscious experience of a stimulus is a model of the 215 

stimulus (Chalmers, 2006). This immediately suggests functorial semantics, which provides a 216 

mathematical account of constructing models of particulars, as an abstract theory of conscious 217 

experience (Lawvere, 1994, 2004a). Given a category of physical stimulus, a model or conscious 218 

experience of the stimulus is calculated by abstracting the essence (mental concepts) of its brain-219 

valued properties i.e. sensation. Thus abstracted mental concepts are then interpreted into a 220 

background category of intuition to obtain models of the physical stimuli or conscious 221 

experiences. The objective logic of conscious experiences construed as functor categories, with 222 

intuition as base and mental concepts as exponent, is not classical (Posina, Ghista, and Roy, 223 

2017). Furthermore, subjectivity (understood as viewpoint; cf. Sen, 1993) is captured by the 224 

framework of functorial semantics; more specifically, the mathematical construct of monad 225 

determines how a category of particulars is [subjectively] generalized into the adjoint pair of 226 

functors: mental concepts (theories) and conscious percepts (defined as functorial interpretation 227 

of concepts into a background of intuition or models; Eilenberg and Moore, 1965; Lawvere, 228 

1994, 2004a). As such, functorial semantics is the objective logic (as defined in Lawvere, 1994, 229 

p. 43) of consciousness. 230 

   231 

 232 

 233 



13 

  

Conclusions 234 

We defined conscious experience as an object of the category of conscious experiences, which 235 

aligns with the intuitions engendered by our everyday experiences with objects (cf. a table is an 236 

object of a category of tables). It is fascinating to note that the most advanced scientific 237 

understanding of object (as an object of a category of objects; Lawvere, 2015) is in accord with 238 

our ordinary experience. The category of conscious experiences provides the conceptual 239 

repertoire—basic shapes, figures, and incidences—needed to develop an adequately explicit 240 

theory of conscious experience. Given that the objective logic intrinsic to conscious experiences 241 

is not classical for a variety of abstract essences of consciousness that we considered, it would be 242 

interesting to compare the objective logic of consciousness with quantum logic that was found to 243 

better account for cognition compared to the classical logic (Roy, 2016). 244 

 245 
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Appendices 252 

A1. Category of Idempotents 253 

Let‘s consider, within the framework of Hopfield model (1982), a neural network consisting of 254 

two neurons coding for two features. For a given stimulus, a neuron can respond with a decrease, 255 

constant, or increase in its firing rate. So, we have nine 1 × 2 vectors as possible sensations S: 256 

S1 = [-1 -1] 257 

S2 = [-1 0] 258 

S3 = [-1 +1] 259 

S4 = [0 -1] 260 

S5 = [0 0] 261 

S6 = [0 +1] 262 

S7 = [+1 -1] 263 

S8 = [+1 0] 264 

S9 = [+1 +1] 265 

We define memory as a synaptic weight matrix M with entries given by associative learning: 266 

mij = si × sj 267 
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where (subscripts) i, j index the two neurons. For example, memory M1 of sensation S1 is: 268 

M1 = S1
T
 × S1 269 

(T denotes transpose), which is a 2 × 2 weight matrix. Substituting the values of sensation S1, we 270 

find: 271 

 272 

Next, we define perception P as an action of memory M on sensation S: 273 

P = S × M 274 

With memory M = M1, we find the percepts resulting from the action of memory M1 on the nine 275 

sensations: 276 

P1 = S1 × M1 = 2[-1 -1] 277 

P2 = S2 × M1 = [-1 -1] 278 

P3 = S3 × M1 = [0 0] 279 

P4 = S4 × M1 = [-1 -1] 280 

P5 = S5 × M1 = [0 0] 281 

P6 = S6 × M1 = [+1 +1] 282 

P7 = S7 × M1 = [0 0] 283 

1 1 

1 1 
M1 = 
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P8 = S8 × M1 = [+1 +1] 284 

P9 = S9 × M1 = 2[+1 +1] 285 

Note that P1, P5, and P9 are fixed-points (with, say, S1 as initial state and P1 (= S1) as final state in 286 

the language of dynamical systems), while sensations S1, S2, and S4 perceived as P1; sensations 287 

S3, S5, and S7 perceived as P5; sensations S6, S8, and S9 perceived as P9. The dynamics of action 288 

of memory on sensation has the structure of idempotents as displayed below: 289 

 290 

 291 

 292 

 293 

The above neural network can be formalized with action P of memory M on sensation S defined 294 

as a map: 295 

P: S × M → S 296 

For a neural network of N neurons, memories M are N × N matrices, which when thought of 297 

endomaps N → N, and with matrix multiplication as composition (of endomaps; MacLane, 1998, 298 

p. 11), form a monoid (Lawvere and Rosebrugh, 2003, p. 167). The N × N matrix with all 299 

diagonal elements as 1 serves as monoid identity (ibid, p. 77), while the N × N matrix with all 300 

S4 S2 

S1 

S8 S6 

S9 

S7 

S5 

S3 
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entries as 0 is a constant C, since C × M = C for all memories M. Since this is the only constant 301 

of the monoid of memories, the category of actions (Lawvere and Schanuel, 2009, p. 360): 302 

P: S × M → S 303 

forms a topos of idempotents (ibid, p. 367), i.e. a category with truth value object. The truth 304 

value object of the category of idempotents has three truth values: 305 

V = {false, u, true} 306 

equipped with an idempotent endomap: 307 

v: V → V 308 

defined as 309 

v(false) = false, v(u) = true, and v(true) = true. 310 

   Categorical perception, wherein a particular (rose) is perceived as an exemplar of a general 311 

(flower), also has the structure of idempotents (see also Lawvere and Schanuel, 2009, p. 106): 312 

 313 

 314 

 315 

Given the splitting of idempotent endomaps into section-retract pairs, the category of 316 

idempotents can also be characterized in terms of the opposite pair of section-retract maps, 317 

lily rose 

flower 
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wherein the basic shapes are particulars and generals, while sorting and exemplifying are the 318 

incidence relations between the two basic shapes (Kathpalia, Posina, and Nagaraj, 2017). 319 

   We now calculate the truth value object of the category of idempotents. Truth value object of 320 

the category of idempotents is an object of the category of idempotents (just as in the case of 321 

sets, where a two-element set 2 = {false, true} is the truth value object of the category of sets). 322 

An object of the category of idempotents (modelled in the category of sets) is a set A equipped 323 

with an idempotent endomap 324 

a: A → A 325 

satisfying 326 

a ◦ a = a. 327 

where ‗◦‘ denotes composition of maps. A map f from an idempotent a to an idempotent b 328 

(where b: B → B satisfying b ◦ b = b) is a function 329 

f: A → B 330 

satisfying 331 

f ◦ a = b ◦ f. 332 

The truth value object of a category is defined as an object representing every part 333 

(monomorphism) of any object of the category. The truth value object can be calculated in terms 334 

of the inverse images of parts of basic shapes along incidence relations (structural maps). Basic 335 
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shapes along with incidence relations constitute the abstract essence or the theory of a given 336 

category. What are the basic shapes and their incidences constituting the theory of category of 337 

idempotents? The theory of idempotents consists of a generic idempotent E, along with an [non-338 

identity] idempotent endomap e on E (as shown below): 339 

 340 

 341 

 342 

 343 

The basic shape E along with the incidence relation e together constitute the theory subcategory 344 

E of the category of idempotents. The basic shape E has three parts false, u, and true (shown 345 

below), which, by the definition of truth value object, correspond to three E-shaped figures (truth 346 

values) in the truth value object of the category of idempotents. 347 

 348 

  349 

 350 

The idempotent endomap v: V → V, where V = {false, u, true}, is given by the inverse images of 351 

the three parts along the incidence relation e: E → E. The inverse image of the part false along e 352 

is false; the inverse image of the part u along e is true; and the inverse image of the part true 353 

E E 
e 

E 

E E 
true 

G E 
u 

0 E 
false 
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along e is also true. Putting it all together we obtain the truth value object v (depicted below) of 354 

the category of idempotents. 355 

 356 

 357 

Based on the truth value object v, logical operations negation, AND, and OR can be defined. 358 

Given a part P of an object A (of the category of idempotents), the familiar negation not(P) is 359 

defined as the largest part of A whose intersection with P is empty. Dually, another negation 360 

non(P) is defined as the smallest part of A whose union with P is the whole object A. In the 361 

category of sets, both negation operations—not, non—are identical. However, in the category of 362 

idempotents, these two negation operations can give different results (as shown below). The 363 

negation operation non allows logical contradiction: P AND non(P), which is boundary in 364 

geometric terminology (Lawvere, 1986, 1991; Lawvere and Rosebrugh, 2003, p. 201). 365 

 366 

 367 

 368 

 369 

Furthermore, double negation can be bigger or smaller than identity depending on the nature of 370 

negation as shown below: 371 

true 

v: V → V 

u false 

P 
non(P) 

not(P) 

non(P

) 

P 

non(P) AND P 
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 372 

 373 

 374 

 375 

 376 

A2. Illusion-free Perception 377 

Consider a set A and a set V of values of properties of A.  A function 378 

p: A → V 379 

is a V-valued property of the set A. The set of all V-valued properties of A (or more broadly, the 380 

set of all functions from the domain set A to the codomain set V) is the map set V
A
. The set V

A
 381 

of properties, in turn, has properties, which are functionals 382 

q: V
A
 → V 383 

where the functional q is a V-valued property of the set V
A
 of all V-valued properties of A. Our 384 

objective is to reconstruct the set A from the set V
(VA)

 of properties of its V-valued properties 385 

(Lawvere and Rosebrugh, 2003, pp. 125-126, 148-152). Towards this end, we define generalized 386 

point.  First recollect that a point of a set A is a function 387 

a: 1 → A 388 

P 

not(not(P)) 

not(P) 

P 

non(P) 

non(non((P)) 
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where 1 = {*} is the terminal set of the category of sets, i.e. a single-element set; hence points of 389 

a set correspond to its elements. Since elements of set completely characterize a set, we define 390 

generalized point so as to establish a 1-1 correspondence between points and generalized points 391 

(perceived elements). 392 

   A V-generalized point of the set A is a functional 393 

q: V
A
 → V 394 

such that for each V-valued property of A 395 

p: A → V 396 

and for every endomap of the property type V 397 

e: V → V 398 

the following equation is satisfied: 399 

q (e ◦ p) = e (q (p)) 400 

where ‗◦‘ denotes composition of functions and parentheses denote evaluation of functions. 401 

Let‘s first consider the left-hand side 402 

q (e ◦ p) 403 

The V-valued property of A 404 

p: A → V 405 
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is an element of the set V
A
 of all V-valued properties of A. Furthermore, since the codomain V 406 

of p is same as the domain V of 407 

e: V → V 408 

we can compose them to obtain a composite 409 

e ◦ p = A → V → V = A → V 410 

which is also an element of the set V
A
 of all V-valued properties of A; and hence when the 411 

functional 412 

q: V
A
 → V 413 

is evaluated at ‗e ◦ p‘ gives an element ‗v‘ of the set V of values 414 

q (e ◦ p) = v 415 

Let us now consider the right-hand side 416 

e (q (p)) 417 

Once again 418 

p: A → V 419 

is a V-valued property of A, i.e. an element of the set V
A
 of all V-valued properties of A. Hence 420 

evaluating the functional 421 

q: V
A
 → V 422 

at p gives a value 423 
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q (p) 424 

which is an element of the set V of values. Hence the endomap 425 

e: V → V 426 

when evaluated at the element ‗q (p)‘ of domain set V gives an element of V, i.e. 427 

e (q (p)) = v‘ 428 

Summing up, the functional 429 

q: V
A
 → V 430 

is a V-generalized point of A (perceived element of A) if for every 431 

p: A → V 432 

and for every 433 

e: V → V 434 

we find that 435 

q (e ◦ p) = e (q (p)) 436 

or in terms of our above example 437 

v = v‘. 438 
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   Returning to our main objective, i.e., establishing an isomorphism between points and 439 

perceived elements (generalized points) involves finding a property type V such that for every 440 

set A, the V-generalized points of A, i.e. the functionals 441 

q: V
A
 → V 442 

satisfying 443 

q (e ◦ p) = e (q (p)) 444 

for every 445 

p: A → V 446 

and for every 447 

e: V → V 448 

are in 1-1 correspondence with the points 449 

a: 1 → A 450 

of the set A. 451 

We give an example of perceived elements (generalized points) corresponding to points of a set. 452 

Let A = {a1, a2} be the object of our investigation and V = {0, 1} be the property type. There are 453 

two points in A 454 

a1: 1 → A 455 

and 456 
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a2: 1 → A 457 

Now let‘s calculate the number of generalized points. First, there are four functions from A to V, 458 

i.e., four V-valued properties of A, p: A → V (V
A
 = 2

2
 = 4) 459 

p1: A → V; p1(a1) = 0, p1(a2) = 0 460 

p2: A → V; p2(a1) = 1, p2(a2) = 0 461 

p3: A → V; p3(a1) = 0, p3(a2) = 1 462 

p4: A → V; p4(a1) = 1, p4(a2) = 1 463 

Thus, 464 

V
A
 = {p1, p2, p3, p4} 465 

Next, there are 16 functionals, q: V
A
 → V (V

(VA)
 = 2

(22)
 = 16) 466 

q1: V
A
 → V; q1(p1) = 0, q1(p2) = 0, q1(p3) = 0, q1(p4) = 0 467 

q2: V
A
 → V; q2(p1) = 1, q2(p2) = 0, q2(p3) = 0, q2(p4) = 0 468 

q3: V
A
 → V; q3(p1) = 0, q3(p2) = 1, q3(p3) = 0, q3(p4) = 0 469 

q4: V
A
 → V; q4(p1) = 1, q4(p2) = 1, q4(p3) = 0, q4(p4) = 0 470 

q5: V
A
 → V; q5(p1) = 0, q5(p2) = 0, q5(p3) = 1, q5(p4) = 0 471 

q6: V
A
 → V; q6(p1) = 1, q6(p2) = 0, q6(p3) = 1, q6(p4) = 0 472 

q7: V
A
 → V; q7(p1) = 0, q7(p2) = 1, q7(p3) = 1, q7(p4) = 0 473 



27 

  

q8: V
A
 → V; q8(p1) = 1, q8(p2) = 1, q8(p3) = 1, q8(p4) = 0 474 

q9: V
A
 → V; q9(p1) = 0, q9(p2) = 0, q9(p3) = 0, q9(p4) = 1 475 

q10: V
A
 → V; q10(p1) = 1, q10(p2) = 0, q10(p3) = 0, q10(p4) = 1 476 

q11: V
A
 → V; q11(p1) = 0, q11(p2) = 1, q11(p3) = 0, q11(p4) = 1 477 

q12: V
A
 → V; q12(p1) = 1, q12(p2) = 1, q12(p3) = 0, q12(p4) = 1 478 

q13: V
A
 → V; q13(p1) = 0, q13(p2) = 0, q13(p3) = 1, q13(p4) = 1 479 

q14: V
A
 → V; q14(p1) = 1, q14(p2) = 0, q14(p3) = 1, q14(p4) = 1 480 

q15: V
A
 → V; q15(p1) = 0, q15(p2) = 1, q15(p3) = 1, q15(p4) = 1 481 

q16: V
A
 → V; q16(p1) = 1, q16(p2) = 1, q16(p3) = 1, q16(p4) = 1 482 

Of these 16 functionals, there are only two V-generalized points of A corresponding to the two 483 

points of A = {a1, a2}. The two V-generalized points of A are 484 

q11: V
A
 → V; q11(p1) = 0, q11(p2) = 1, q11(p3) = 0, q11(p4) = 1 485 

and 486 

q13: V
A
 → V; q13(p1) = 0, q13(p2) = 0, q13(p3) = 1, q13(p4) = 1 487 

i.e. they both satisfy 488 

q (e ◦ p) = e (q (p)) 489 

Let‘s consider the functional 490 
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q11: V
A
 → V; q11(p1) = 0, q11(p2) = 1, q11(p3) = 0, q11(p4) = 1 491 

In order for the functional q11 to be a V-generalized point of A, it has to satisfy 492 

q11 (e ◦ p) = e (q11 (p)) 493 

for all four p: A → V and all four endomaps e: V → V.  They are 494 

e1: V → V; e1(0) = 0, e1(1) = 0 495 

e2: V → V; e2(0) = 1, e2(1) = 0 496 

e3: V → V; e3(0) = 0, e3(1) = 1 497 

e4: V → V; e4(0) = 1, e4(1) = 1 498 

So, the set of all endomaps of property type V is V
V
 = {e1, e2, e3, e4}. 499 

Thus, there are 16 cases we have to evaluate to show that the functional 500 

q11: V
A
 → V; q11(p1) = 0, q11(p2) = 1, q11(p3) = 0, q11(p4) = 1 501 

is a V-generalized point of A. 502 

Case 1: (p1, e1) 503 

q11 (e1 ◦ p1) = e1 (q11 (p1)) 504 

LHS: q11 (e1 ◦ p1) = q11 (p1) = 0 505 

RHS: e1 (q11 (p1)) = e1 (0) = 0 506 

Case 2: (p2, e1) 507 



29 

  

q11 (e1 ◦ p2) = e1 (q11 (p2)) 508 

LHS: q11 (e1 ◦ p2) = q11 (p1) = 0 509 

RHS: e1 (q11 (p2)) = e1 (1) = 0 510 

Case 3: (p3, e1) 511 

q11 (e1 ◦ p3) = e1 (q11 (p3)) 512 

LHS: q11 (e1 ◦ p3) = q11 (p1) = 0 513 

RHS: e1 (q11 (p3)) = e1 (0) = 0 514 

Case 4: (p4, e1) 515 

q11 (e1 ◦ p4) = e1 (q11 (p4)) 516 

LHS: q11 (e1 ◦ p4) = q11 (p1) = 0 517 

RHS: e1 (q11 (p4)) = e1 (1) = 0 518 

q11: V
A
 → V; q11(p1) = 0, q11(p2) = 1, q11(p3) = 0, q11(p4) = 1 519 

Case 5: (p1, e2) 520 

q11 (e2 ◦ p1) = e2 (q11 (p1)) 521 

LHS: q11 (e2 ◦ p1) = q11 (p4) = 1 522 

RHS: e2 (q11 (p1)) = e2 (0) = 1 523 

Case 6: (p2, e2) 524 
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q11 (e2 ◦ p2) = e2 (q11 (p2)) 525 

LHS: q11 (e2 ◦ p2) = q11 (p3) = 0 526 

RHS: e2 (q11 (p2)) = e2 (1) = 0 527 

Case 7: (p3, e2) 528 

q11 (e2 ◦ p3) = e2 (q11 (p3)) 529 

LHS: q11 (e2 ◦ p3) = q11 (p2) = 1 530 

RHS: e2 (q11 (p3)) = e2 (0) = 1 531 

Case 8: (p4, e2) 532 

q11 (e2 ◦ p4) = e2 (q11 (p4)) 533 

LHS: q11 (e2 ◦ p4) = q11 (p1) = 0 534 

RHS: e2 (q11 (p4)) = e2 (1) = 0 535 

q11: V
A
 → V; q11(p1) = 0, q11(p2) = 1, q11(p3) = 0, q11(p4) = 1 536 

Case 9: (p1, e3) 537 

q11 (e3 ◦ p1) = e3 (q11 (p1)) 538 

LHS: q11 (e3 ◦ p1) = q11 (p1) = 0 539 

RHS: e3 (q11 (p1)) = e3 (0) = 0 540 

Case 10: (p2, e3) 541 
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q11 (e3 ◦ p2) = e3 (q11 (p2)) 542 

LHS: q11 (e3 ◦ p2) = q11 (p2) = 1 543 

RHS: e3 (q11 (p2)) = e3 (1) = 1 544 

Case 11: (p3, e3) 545 

q11 (e3 ◦ p3) = e3 (q11 (p3)) 546 

LHS: q11 (e3 ◦ p3) = q11 (p3) = 0 547 

RHS: e3 (q11 (p3)) = e3 (0) = 0 548 

Case 12: (p4, e3) 549 

q11 (e3 ◦ p4) = e3 (q11 (p4)) 550 

LHS: q11 (e3 ◦ p4) = q11 (p4) = 1 551 

RHS: e3 (q11 (p4)) = e3 (1) = 1 552 

q11: V
A
 → V; q11(p1) = 0, q11(p2) = 1, q11(p3) = 0, q11(p4) = 1 553 

Case 13: (p1, e4) 554 

q11 (e4 ◦ p1) = e4 (q11 (p1)) 555 

LHS: q11 (e4 ◦ p1) = q11 (p4) = 1 556 

RHS: e4 (q11 (p1)) = e4 (0) = 1 557 

Case 14: (p2, e4) 558 
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q11 (e4 ◦ p2) = e4 (q11 (p2)) 559 

LHS: q11 (e4 ◦ p2) = q11 (p4) = 1 560 

RHS: e4 (q11 (p2)) = e4 (1) = 1 561 

Case 15: (p3, e4) 562 

q11 (e4 ◦ p3) = e4 (q11 (p3)) 563 

LHS: q11 (e4 ◦ p3) = q11 (p4) = 1 564 

RHS: e4 (q11 (p3)) = e4 (0) = 1 565 

Case 16: (p4, e4) 566 

q11 (e4 ◦ p4) = e4 (q11 (p4)) 567 

LHS: q11 (e4 ◦ p4) = q11 (p4) = 1 568 

RHS: e4 (q11 (p4)) = e4 (1) = 1 569 

Thus, the functional 570 

q11: V
A
 → V; q11(p1) = 0, q11(p2) = 1, q11(p3) = 0, q11(p4) = 1 571 

is a V-generalized point of A. Along similar lines, we can show that the functional 572 

q13: V
A
 → V; q13(p1) = 0, q13(p2) = 0, q13(p3) = 1, q13(p4) = 1 573 

is another V-generalized point of A. These two perceived elements (generalized points) 574 

correspond to the two points 575 
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a1: 1 → A 576 

a2: 1 → A 577 

of the set A = {a1, a2}. 578 

   Next, we give an example of a functional (one of the remaining 14 functionals of the total 16 579 

functionals) which is not a generalized point. Consider the functional 580 

q12: V
A
 → V; q12(p1) = 1, q12(p2) = 1, q12(p3) = 0, q12(p4) = 1 581 

In order to be a V-generalized point of A, the functional 582 

q12: V
A
 → V 583 

must satisfy 584 

q12 (e ◦ p) = e (q12 (p)) 585 

for all p in V
A
 = {p1, p2, p3, p4} and for all e in V

V
 = {e1, e2, e3, e4}, i.e., for all 16 cases we 586 

evaluated earlier.  Let‘s consider the case of p = p1 and e = e1. We have to check for the equality 587 

q12 (e1 ◦ p1) = e1 (q12 (p1)) 588 

LHS: q12 (e1 ◦ p1) = q12 (p1) = 1 589 

RHS: e1 (q12 (p1)) = e1 (1) = 0 590 

Since LHS is not equal to RHS, the functional 591 

q12: V
A
 → V; q12(p1) = 1, q12(p2) = 1, q12(p3) = 0, q12(p4) = 1 592 
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is not a V-generalized point of A. 593 

   Now we spell out how each point of a set gives rise to a generalized point (perceived element). 594 

Consider a set A and a type V. Since generalized point is a functional 595 

q: V
A
 → V 596 

we first construct a functional called evaluation functional for each element ‗a‘ of the set A. 597 

Recollect that the elements of domain set V
A
 of the functional q are V-valued properties of A, 598 

i.e. 599 

p: A → V 600 

and the functional q assigns to each p in V
A
 an element ‗v‘ of the codomain set V of the 601 

functional q. An evaluation functional corresponding to an element ‗a‘ of the set A is defined as 602 

qa: V
A
 → V 603 

with 604 

qa(p) = p(a) 605 

Now we show that this evaluation functional is a generalized point, i.e. satisfies 606 

qa(e ◦ p) = e (qa(p)) 607 

where 608 

e: V → V 609 

is an endomap on the type V of property. 610 
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LHS: qa(e ◦ p) = (e ◦ p) (a) = e(p(a)) 611 

RHS: e (qa(p)) = e(p(a)) 612 

Thus, the evaluation functional corresponding to each point of a set is a generalized point 613 

(Lawvere and Rosebrugh, 2003, p. 150). We now give an example of this general result. 614 

Consider a set A = {a1, a2, a3} and a property type V = {0, 1}.  The set V
A
 of all V-valued 615 

properties of A consists of 8 functions, i.e. 616 

V
A
 = {p1, p2, p3, p4, p5, p6, p7, p8} 617 

where 618 

p1: A → V; p1(a1) = 0, p1(a2) = 0, p1(a3) = 0 619 

p2: A → V; p2(a1) = 1, p2(a2) = 0, p2(a3) = 0 620 

p3: A → V; p3(a1) = 0, p3(a2) = 1, p3(a3) = 0 621 

p4: A → V; p4(a1) = 1, p4(a2) = 1, p4(a3) = 0 622 

p5: A → V; p5(a1) = 0, p5(a2) = 0, p5(a3) = 1 623 

p6: A → V; p6(a1) = 1, p6(a2) = 0, p6(a3) = 1 624 

p7: A → V; p7(a1) = 0, p7(a2) = 1, p7(a3) = 1 625 

p8: A → V; p8(a1) = 1, p8(a2) = 1, p8(a3) = 1 626 

Let us now consider a point 627 
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a1: 1 → A 628 

and the corresponding evaluation functional 629 

qa1: V
A
 → V 630 

defined as 631 

qa1(p) = p(a1) 632 

for all p in V
A
, i.e. 633 

qa1(p1) = p1(a1) = 0 634 

qa1(p2) = p2(a1) = 1 635 

qa1(p3) = p3(a1) = 0 636 

qa1(p4) = p4(a1) = 1 637 

qa1(p5) = p5(a1) = 0 638 

qa1(p6) = p6(a1) = 1 639 

qa1(p7) = p7(a1) = 0 640 

qa1(p8) = p8(a1) = 1 641 

Now we have to show that this evaluation functional 642 

qa1: V
A
 → V 643 
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satisfies 644 

qa1 (e ◦ p) = e (qa1 (p)) 645 

for all elements (V-valued properties of A) p in V
A
 = {p1, p2, p3, p4, p5, p6, p7, p8}, and for all 646 

elements (endomaps of property type V) e in V
V
 = {e1, e2, e3, e4} defined as 647 

e1: V → V; e1(0) = 0, e1(1) = 0 648 

e2: V → V; e2(0) = 1, e2(1) = 0 649 

e3: V → V; e3(0) = 0, e3(1) = 1 650 

e4: V → V; e4(0) = 1, e4(1) = 1 651 

Thus we have to test for the equality 652 

qa1 (e ◦ p) = e (qa1 (p)) 653 

in 32 cases. They are: 654 

Case 1: (p1, e1) 655 

qa1 (e1 ◦ p1) = e1 (qa1 (p1)) 656 

LHS: qa1 (e1 ◦ p1) = qa1 (p1) = 0 657 

RHS: e1 (qa1 (p1)) = e1 (0) = 0 658 

Case 2: (p2, e1) 659 

qa1 (e1 ◦ p2) = e1 (qa1 (p2)) 660 
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LHS: qa1 (e1 ◦ p2) = qa1 (p1) = 0 661 

RHS: e1 (qa1 (p2)) = e1 (1) = 0 662 

Case 3: (p3, e1) 663 

qa1 (e1 ◦ p3) = e1 (qa1 (p3)) 664 

LHS: qa1 (e1 ◦ p3) = qa1 (p1) = 0 665 

RHS: e1 (qa1 (p3)) = e1 (0) = 0 666 

Case 4: (p4, e1) 667 

qa1 (e1 ◦ p4) = e1 (qa1 (p4)) 668 

LHS: qa1 (e1 ◦ p4) = qa1 (p1) = 0 669 

RHS: e1 (qa1 (p4)) = e1 (1) = 0 670 

Case 5: (p5, e1) 671 

qa1 (e1 ◦ p5) = e1 (qa1 (p5)) 672 

LHS: qa1 (e1 ◦ p5) = qa1 (p1) = 0 673 

RHS: e1 (qa1 (p5)) = e1 (0) = 0 674 

Case 6: (p6, e1) 675 

qa1 (e1 ◦ p6) = e1 (qa1 (p6)) 676 

LHS: qa1 (e1 ◦ p6) = qa1 (p1) = 0 677 
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RHS: e1 (qa1 (p6)) = e1 (1) = 0 678 

Case 7: (p7, e1) 679 

qa1 (e1 ◦ p7) = e1 (qa1 (p7)) 680 

LHS: qa1 (e1 ◦ p7) = qa1 (p1) = 0 681 

RHS: e1 (qa1 (p7)) = e1 (0) = 0 682 

Case 8: (p8, e1) 683 

qa1 (e1 ◦ p8) = e1 (qa1 (p8)) 684 

LHS: qa1 (e1 ◦ p8) = qa1 (p1) = 0 685 

RHS: e1 (qa1 (p8)) = e1 (1) = 0 686 

Case 9: (p1, e2) 687 

qa1 (e2 ◦ p1) = e2 (qa1 (p1)) 688 

LHS: qa1 (e2 ◦ p1) = qa1 (p8) = 1 689 

RHS: e2 (qa1 (p1)) = e2 (0) = 1 690 

Case 10: (p2, e2) 691 

qa1 (e2 ◦ p2) = e2 (qa1 (p2)) 692 

LHS: qa1 (e2 ◦ p2) = qa1 (p7) = 0 693 

RHS: e2 (qa1 (p2)) = e2 (1) = 0 694 
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Case 11: (p3, e2) 695 

qa1 (e2 ◦ p3) = e2 (qa1 (p3)) 696 

LHS: qa1 (e2 ◦ p3) = qa1 (p6) = 1 697 

RHS: e2 (qa1 (p3)) = e2 (0) = 1 698 

Case 12: (p4, e2) 699 

qa1 (e2 ◦ p4) = e2 (qa1 (p4)) 700 

LHS: qa1 (e2 ◦ p4) = qa1 (p5) = 0 701 

RHS: e2 (qa1 (p4)) = e2 (1) = 0 702 

Case 13: (p5, e2) 703 

qa1 (e2 ◦ p5) = e2 (qa1 (p5)) 704 

LHS: qa1 (e2 ◦ p5) = qa1 (p4) = 1 705 

RHS: e2 (qa1 (p5)) = e2 (0) = 1 706 

Case 14: (p6, e2) 707 

qa1 (e2 ◦ p6) = e2 (qa1 (p6)) 708 

LHS: qa1 (e2 ◦ p6) = qa1 (p3) = 0 709 

RHS: e2 (qa1 (p6)) = e2 (1) = 0 710 

Case 15: (p7, e2) 711 
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qa1 (e2 ◦ p7) = e2 (qa1 (p7)) 712 

LHS: qa1 (e2 ◦ p7) = qa1 (p2) = 1 713 

RHS: e2 (qa1 (p7)) = e2 (0) = 1 714 

Case 16: (p8, e2) 715 

qa1 (e2 ◦ p8) = e2 (qa1 (p8)) 716 

LHS: qa1 (e2 ◦ p8) = qa1 (p1) = 0 717 

RHS: e2 (qa1 (p8)) = e2 (1) = 0 718 

Case 17: (p1, e3) 719 

qa1 (e3 ◦ p1) = e3 (qa1 (p1)) 720 

LHS: qa1 (e3 ◦ p1) = qa1 (p1) = 0 721 

RHS: e3 (qa1 (p1)) = e3 (0) = 0 722 

Case 18: (p2, e3) 723 

qa1 (e3 ◦ p2) = e3 (qa1 (p2)) 724 

LHS: qa1 (e3 ◦ p2) = qa1 (p2) = 1 725 

RHS: e3 (qa1 (p2)) = e3 (1) = 1 726 

Case 19: (p3, e3) 727 

qa1 (e3 ◦ p3) = e3 (qa1 (p3)) 728 
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LHS: qa1 (e3 ◦ p3) = qa1 (p3) = 0 729 

RHS: e3 (qa1 (p3)) = e3 (0) = 0 730 

Case 20: (p4, e3) 731 

qa1 (e3 ◦ p4) = e3 (qa1 (p4)) 732 

LHS: qa1 (e3 ◦ p4) = qa1 (p4) = 1 733 

RHS: e3 (qa1 (p4)) = e3 (1) = 1 734 

Case 21: (p5, e3) 735 

qa1 (e3 ◦ p5) = e3 (qa1 (p5)) 736 

LHS: qa1 (e3 ◦ p5) = qa1 (p5) = 0 737 

RHS: e3 (qa1 (p5)) = e3 (0) = 0 738 

Case 22: (p6, e3) 739 

qa1 (e3 ◦ p6) = e3 (qa1 (p6)) 740 

LHS: qa1 (e3 ◦ p6) = qa1 (p6) = 1 741 

RHS: e3 (qa1 (p6)) = e3 (1) = 1 742 

Case 23: (p7, e3) 743 

qa1 (e3 ◦ p7) = e3 (qa1 (p7)) 744 

LHS: qa1 (e3 ◦ p7) = qa1 (p7) = 0 745 
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RHS: e3 (qa1 (p7)) = e3 (0) = 0 746 

Case 24: (p8, e3) 747 

qa1 (e3 ◦ p8) = e3 (qa1 (p8)) 748 

LHS: qa1 (e3 ◦ p8) = qa1 (p8) = 1 749 

RHS: e3 (qa1 (p8)) = e3 (1) = 1 750 

Case 25: (p1, e4) 751 

qa1 (e4 ◦ p1) = e4 (qa1 (p1)) 752 

LHS: qa1 (e4 ◦ p1) = qa1 (p8) = 1 753 

RHS: e4 (qa1 (p1)) = e4 (0) = 1 754 

Case 26: (p2, e4) 755 

qa1 (e4 ◦ p2) = e4 (qa1 (p2)) 756 

LHS: qa1 (e4 ◦ p2) = qa1 (p8) = 1 757 

RHS: e4 (qa1 (p2)) = e4 (1) = 1 758 

Case 27: (p3, e4) 759 

qa1 (e4 ◦ p3) = e4 (qa1 (p3)) 760 

LHS: qa1 (e4 ◦ p3) = qa1 (p8) = 1 761 

RHS: e4 (qa1 (p3)) = e4 (0) = 1 762 
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Case 28: (p4, e4) 763 

qa1 (e4 ◦ p4) = e4 (qa1 (p4)) 764 

LHS: qa1 (e4 ◦ p4) = qa1 (p8) = 1 765 

RHS: e4 (qa1 (p4)) = e4 (1) = 1 766 

Case 29: (p5, e4) 767 

qa1 (e4 ◦ p5) = e4 (qa1 (p5)) 768 

LHS: qa1 (e4 ◦ p5) = qa1 (p8) = 1 769 

RHS: e4 (qa1 (p5)) = e4 (0) = 1 770 

Case 30: (p6, e4) 771 

qa1 (e4 ◦ p6) = e4 (qa1 (p6)) 772 

LHS: qa1 (e4 ◦ p6) = qa1 (p8) = 1 773 

RHS: e4 (qa1 (p6)) = e4 (1) = 1 774 

Case 31: (p7, e4) 775 

qa1 (e4 ◦ p7) = e4 (qa1 (p7)) 776 

LHS: qa1 (e4 ◦ p7) = qa1 (p8) = 1 777 

RHS: e4 (qa1 (p7)) = e4 (0) = 1 778 

Case 32: (p8, e4) 779 



45 

  

qa1 (e4 ◦ p8) = e4 (qa1 (p8)) 780 

LHS: qa1 (e4 ◦ p8) = qa1 (p8) = 1 781 

RHS: e4 (qa1 (p8)) = e4 (1) = 1 782 

Thus the evaluation functional 783 

qa1: V
A
 → V; qa1(p1)=0, qa1(p2)=1, qa1(p3)=0, qa1(p4)=1, qa1(p5)=0, qa1(p6)=1, qa1(p7)=0, qa1(p8)=1 784 

satisfying 785 

qa1 (e ◦ p) = e (qa1 (p)) 786 

(for all p: A → V and for all e: V → V) is a V-generalized point of A corresponding to the point 787 

a1: 1 → A 788 

Along the same lines, we can show that each of remaining two points of the set A = {a1, a2, a3} 789 

give rise to corresponding V-generalized points of A. 790 

   With property type V = 2 (two-element set), although there is a V-generalized point of A 791 

corresponding to each point of A, there can also be generalized points that do not correspond to 792 

any points of A, which we may call illusions (or ghost points). In order to obtain a 1-1 793 

correspondence between points of any set A and V-generalized points of A, i.e. isomorphism 794 

between objects and perceived objects, we need a 3-element set as the property type V. One of 795 

our objectives is to calculate objects analogous to the 3-element set (in the category of sets) in 796 

categories that are reflective of reality such as the category of categories. We plan to approach 797 

this goal by calculating the basic types of knowing (objects analogous to 3-element set in the 798 
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category of sets) in more structured categories such as dynamical systems, functions, graphs, and 799 

actions.  800 
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