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Abstract 18 

Notions such as Sunyata, Catuskoti, and Indra‘s Net, which figure prominently in Buddhist 19 

philosophy, are difficult to readily accommodate within our ordinary thinking about everyday 20 

objects.  Famous Buddhist scholar Nagarjuna considered two levels of reality: one called 21 

conventional reality and the other ultimate reality.  Within this framework, Sunyata refers to the 22 

claim that at the ultimate level objects are devoid of essence or ―intrinsic properties‖, but are 23 

interdependent by virtue of their relations to other objects.  Catuskoti refers to the claim that four 24 

truth values, along with contradiction, are admissible in reasoning.  Indra‘s Net refers to the 25 

claim that every part of a whole is reflective of the whole.  Here we present category theoretic 26 

constructions which are reminiscent of these Buddhist concepts.  The universal mapping 27 

property definition of mathematical objects, wherein objects of a universe of discourse are 28 

defined not in terms of their content, but in terms of their relations to all objects of the universe is 29 

reminiscent of Sunyata.  The objective logic of perception, with perception modeled as [a 30 

category of] two sequential processes (sensation followed by interpretation), and with its truth 31 

value object of four truth values, is reminiscent of the Buddhist logic of Catuskoti.  The category 32 

of categories, wherein every category has a subcategory of sets with zero structure within which 33 

every category can be modeled, is reminiscent of Indra‘s Net.  Our thorough elaboration of the 34 

parallels between Buddhist philosophy and category theory can facilitate better understanding of 35 

Buddhist philosophy, and bring out the broader philosophical import of category theory beyond 36 

mathematics.  37 
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Introduction 38 

Buddhist philosophy, especially Nagarjuna‘s Middle Way (Garfield, 1995; Siderits and Katsura, 39 

2013), is intellectually demanding (Priest, 2013).  The sources of the difficulties are many.  First 40 

it argues for two realities: conventional and ultimate (Priest, 2010).  Next, ultimate reality is 41 

characterized by Sunyata or emptiness, which is understood as the absence of a fundamental 42 

essence underlying reality (Priest, 2009).  Equally importantly, contradictions are readily 43 

deployed, especially in Catuskoti, as part of the characterization of reality (Deguchi, Garfield, 44 

and Priest, 2008; Priest, 2014).  Lastly, reality is depicted as Indra‘s Net—a whole, whose parts 45 

are reflective of the whole (Priest, 2015).  The ideas of relational existence, admission of 46 

contradictions, and parts reflecting the whole are seemingly incompatible with our everyday 47 

experiences and the attendant conceptual reasoning used to make sense of reality.  However, 48 

notions analogous to these ancient Buddhist ideas are also encountered in the course of the 49 

modern mathematical conceptualization of reality.  These parallels may be, in large part, due to 50 

‗experience‘ and ‗reason‘ that are treated as the final authority in both mathematical sciences and 51 

Buddhist philosophy.  Here, we highlight the similarities between Buddhist philosophy and 52 

mathematical philosophy, especially category theory (Lawvere and Schanuel, 2009).  The 53 

resultant cross-cultural philosophy can facilitate a proper understanding of reality—a noble goal 54 

to which both Buddhist philosophy and mathematical practice are unequivocally committed. 55 

 56 

Two Realities 57 

There are, according to Buddhist thought, two realities: the conventional reality of our everyday 58 

experiences and the ultimate reality (Priest, 2010; Priest and Garfield, 2003).  In our 59 
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conventional reality, things appear to have intrinsic essences.  It is sensible, at the level of 60 

conventional reality, to speak of essences of objects, but at the level of ultimate reality there are 61 

no essences, and everything exists but only relationally.  There is an analogous situation in 62 

mathematics.  On one hand, mathematical objects can be characterized in terms of their relations 63 

to all objects, in which case the nature of an object is determined by the nature of its relationship 64 

to all objects.  In a sense, there is nothing inside the object; an object is what it is by virtue of its 65 

relations to all objects.  The objects of mathematics are, as Resnik (1981, p. 530) notes, 66 

―positions in structures‖, which is in accord with the Buddhist understanding of things as ―loci in 67 

a field of relations‖ (Priest, 2009, p. 468).  However, there is another level of mathematical 68 

reality, wherein we can speak of essences of objects (e.g. theories of objects; Lawvere and 69 

Rosebrugh, 2003, pp. 154-155).  For example, one can characterize a set as a collection of 70 

elements or ―sum‖ of basic-shaped figures (1-shaped figures, where 1 = {•}), with basic shapes 71 

understood as essences (Lawvere, 1972, p. 135; Lawvere and Schanuel, 2009, p. 245; Reyes, 72 

Reyes, and Zolfaghari, 2004, p. 30).  Similarly, every graph is made up of figures of two basic-73 

shapes (arrow- and dot-shaped figures; Lawvere and Schanuel, 2009, p. 150, 215).  This 74 

characterization of an object in terms of its contents i.e. basic shapes or essences (Lawvere, 75 

2003, pp. 217-219; Lawvere, 2004, pp. 11-13) can be contrasted with the relational 76 

characterization, wherein each and every object of a universe of discourse (a mathematical 77 

category; Lawvere and Schanuel, 2009, p. 17) is characterized in terms of its relationship to all 78 

objects of the universe or category (see Appendix A1).  The relational nature of mathematical 79 

objects, as elaborated below, is reminiscent of the Buddhist notion of emptiness—an assertion 80 

that objects are what they are not by virtue of some intrinsic essences but by virtue of their 81 

mutual relationships. 82 
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 83 

Emptiness 84 

According to Buddhist philosophy, everything is empty and the totality of empty things is empty.  85 

Here, emptiness is understood as the absence of essences.  Things, in the ultimate analysis, are 86 

what they are and behave the way they do not because of [some] essences inherent in them, but 87 

by virtue of their mutual relationships (Priest, 2009).  This idea of relational existence has 88 

parallels in mathematical practice.  Mathematical objects of a given mathematical category (e.g. 89 

category of sets) are what they are not by virtue of their intrinsic essences but by virtue of their 90 

relations to all objects of the category.  For example, a single-element set is a set to which there 91 

exists exactly one function from every set (Lawvere and Schanuel, 2009, p. 213, 225).  Note that 92 

the singleton set is characterized not in terms of what it contains (a single element), but in terms 93 

of how it relates to all sets of the category of sets.  In a similar vein, the truth value set Ω = 94 

{false, true} is defined in terms of its relation to all sets of the category of sets.  The truth value 95 

set, instead of being defined as a set of two elements ‗false‘ and ‗true‘, is defined as a set Ω such 96 

that functions from any set X to the set Ω are in one-to-one correspondence with the parts of X 97 

(ibid, pp. 339-344).  To give one more example, product of two sets is defined not by specifying 98 

the contents of the product set (pairs of elements), but by characterizing its relationship to all 99 

sets.  More explicitly, the product of two sets A and B is a set A × B along with two functions 100 

(projections to the factors) pA: A × B → A, pB: A × B → B such that for every set Q and any pair 101 

of functions qA: Q → A, qB: Q → B, there is exactly one function q: Q → A × B satisfying both 102 

the equations: qA = pA ◦ q and qB = pB ◦ q, where ‗◦‘ denotes composition of functions (ibid, pp. 103 

339-344).  The universal mapping property definition of mathematical constructions brought to 104 

sharp focus the relational nature of mathematical objects.  It conclusively established that ―the 105 
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substance of mathematics resides not in Substance (as it is made to seem when ∈ [membership] 106 

is the irreducible predicate, with the accompanying necessity of defining all concepts in terms of 107 

a rigid elementhood relation) but in Form (as is clear when the guiding notion is isomorphism-108 

invariant structure, as defined, for example, by universal mapping properties)‖ (Lawvere, 2005, 109 

p. 7).  More broadly, Yoneda lemma (Lawvere and Rosebrugh, 2003, pp. 249-250; Appendix 110 

A1), according to which a mathematical object of a given universe of discourse (i.e. category) is 111 

completely characterized by the totality of its relations to all objects of the universe (category), is 112 

an unequivocal assertion of the relational nature of mathematical objects.  Yoneda lemma, as 113 

pointed out by Barry Mazur, establishes that ―an object X of a category C is determined by the 114 

network of relationships that the object X has with all the other objects in C‖ (Mazur, 2008).  115 

Thus the Buddhist idea of emptiness or relational existence finds resonance in mathematical 116 

practice, especially in terms of universal mapping properties and the Yoneda lemma. 117 

However, note that according to the Buddhist doctrine of emptiness, not only is 118 

everything empty, but the totality of empty things is also empty (Priest, 2009).  In other words, 119 

even the notion of relational existence is empty i.e., emptiness is not the essence of existence; 120 

emptiness is also empty.  This idea of emptiness being empty is much more challenging to 121 

comprehend.  When we say that objects are empty, we are saying that objects are mere locations 122 

in a network of relations.  But when we say that the totality of empty things is empty, we are 123 

asserting that the existence of totality is also relational just like that of the objects in the totality.  124 

What is not immediately clear is how are we to think of relations especially when all we have is 125 

the totality i.e., one object.  Within mathematics, note that the totality of all objects (along with 126 

their mutual relations) forms a category.  More importantly, categories are objects in the category 127 

of categories (Lawvere, 1966), and hence the totality of objects i.e. category is also empty or 128 
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relational as much as the objects of a category.  Thus the idea of Sunyata (everything is empty) 129 

resonates with the relational nature of objects and of the totality of objects (within the 130 

mathematical framework of the category of categories). 131 

Equally importantly, Nagarjuna‘s Middle Way, having gone to great lengths to 132 

distinguish two realities (conventional essences vs. ultimate emptiness) identifies the two: ―there 133 

is no distinction between conventional reality and ultimate reality‖ (Deguchi, Garfield, and 134 

Priest, 2008, p. 399).  Contradictions (such as these) within Buddhist philosophy, on a superficial 135 

reading, are diagnostic of irrational mysticism.  However, as we point out in the following, 136 

contradictions also figure prominently in the foundations of mathematical modeling of reality.  In 137 

light of these parallels, ‗contradiction‘ may be intrinsic to the nature of reality, which is the 138 

common subject of both Buddhist and mathematical investigations, and not a sign of faulty 139 

Buddhist reasoning. 140 

 141 

Contradiction 142 

Within the Buddhist philosophical discourse, one often encounters contradictions and these 143 

contradictions are treated as meaningful (Deguchi, Garfield, and Priest, 2008; Priest, 2014).  144 

There is an analogous situation in mathematics.  Though not every contradiction is sensible, 145 

there are sensible contradictions such as the boundary of an object A formalized as ‗A and not A‘ 146 

(Lawvere, 1991, 1994a, p. 48; Lawvere and Rosebrugh, 2003, p. 201).  More importantly, within 147 

mathematical practice, it is now recognized that contradictions do not necessarily lead to 148 

inconsistency (an inconsistent system, according to Tarski, is where everything can be proved; 149 

Lawvere, 2003, p. 214).  Of course, admitting a contradiction invariably leads to inconsistency in 150 
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classical Boolean logic.  In logics more refined than Boolean logic contradiction does not 151 

necessarily lead to inconsistency.  This recognition is very important, especially since 152 

contradiction plays a foundational role in mathematical practice.  Briefly, Cantor‘s definition of 153 

SET is, as pointed out by F. William Lawvere, ―a strong contradiction: its points are completely 154 

distinct and yet indistinguishable‖ (ibid, p. 215; Lawvere, 1994a, pp. 50-51).  Zermelo, and most 155 

mathematicians following him, concluded that Cantor‘s account of sets is ―incorrigibly 156 

inconsistent‖ (Lawvere, 1994b, p. 6).  Lawvere, using adjoint functors, showed that Cantor‘s 157 

definition is ―not a conceptual inconsistency but a productive dialectical contradiction‖ (Lawvere 158 

and Rosebrugh, 2003, pp. 245-246), which is summed up as the unity and identity of adjoint 159 

opposites (Lawvere, 1992, pp. 28-30; Lawvere, 1996). 160 

 A related notion is catuskoti, which is routinely employed in Buddhist reasoning (Priest, 161 

2014; Westerhoff, 2006).  To place it in perspective, in the familiar Boolean logic, any 162 

proposition is either true or false.  Put differently, there are only two possible truth values, and 163 

they are mutually exclusive and jointly exhaustive.  Unlike Boolean logic, in Buddhist reasoning 164 

more than two truth values are admissible.  In the Buddhist logic of Catuskoti, a proposition can 165 

possibly take, in addition to the familiar truth values of ‗true‘ or ‗false‘, the truth values of ‗true 166 

and false‘, or ‗not true and not false‘.  Given a proposition A, there are four possibilities: 1. A, 2. 167 

not A, 3. A and not A, 4. not A and not not A.  Here contradiction is admissible, i.e. ‗A and not 168 

A‘ is a possible state of affairs, which is reminiscent of the boundary operation and the unity and 169 

identity of adjoint opposites in mathematics, alluded to earlier.  Moreover, double negation is not 170 

same as identity operation as in the case of, to give one example, the non-Boolean logic of 171 

graphs (Lawvere and Schanuel, 2009, p. 355).  Note that if not not A = A, then the fourth truth 172 

value of catuskoti is equal to the third. 173 
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As an illustration of how the four truth values of catuskoti could be a reflection [of an 174 

aspect] of reality, we consider the category of percepts.  Perception involves two sequential 175 

processes of sensation followed by interpretation (Albright, 2015; Croner and Albright, 1999).  176 

So, we define the category of percepts as a category of two sequential functions of decoding after 177 

coding.  The truth value object of the category of percepts has four truth values (Appendix A2).  178 

Thus the objective logic of perception, with its truth value object of four truth values, is 179 

reminiscent of the Buddhist logic of catuskoti (see Linton, 2005). 180 

  181 

Indra’s Net and Zero Structure 182 

Another important concept in Buddhist philosophy is the idea of Indra‘s Net, wherein reality is 183 

compared to a vast network of jewels such that every jewel is reflective of the entire net (Priest, 184 

2015).  In abstract terms, reality is characterized as a whole wherein every part is reflective of 185 

the whole.  Admittedly, this Buddhist characterization of reality sounds mystifying, but there is 186 

an analogous situation, involving part-whole relations, in mathematics. 187 

How can a part of a whole reflect the whole?  First, note that mathematical structures of 188 

all sorts can be modeled in the category of sets (Lawvere and Schanuel, 2009, pp. 133-151).  Sets 189 

have zero structure (Lawvere, 1972, p. 1; Lawvere and Rosebrugh, 2003, p. 1, 57; Lawvere and 190 

Schanuel, 2009, p. 146).  Negating the structure (cohesion, variation) inherent in mathematical 191 

objects, Cantor created sets: mathematical structures with zero structure (Lawvere, 2003, 2016; 192 

Lawvere and Rosebrugh, 2003, pp. 245-246).  In comparing his abstraction of sets with zero 193 

structure to the invention of number zero, Cantor considered sets as his most profound 194 

contribution to mathematics (Lawvere, 2006).  Sets, by virtue of having zero structure, serve as a 195 
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blank page—an ideal background to model any category of mathematical objects (Lawvere, 196 

1994b; Lawvere and Rosebrugh, 2003, pp. 154-155).  However, structureless sets are a small 197 

part—the only part—of the mathematical universe which reflects all of mathematics.  It seemed 198 

so until Lawvere axiomatized the category of categories (Lawvere, 1966; Lawvere and Schanuel, 199 

2009, pp. 369-370).  Along the lines of Cantor‘s invention of structureless sets, Lawvere defined 200 

a subcategory of structureless (discrete, constant) objects within a category by negating its 201 

structure (cohesion, variation; Lawvere, 2004, p. 12; Lawvere and Schanuel, 2009, pp. 358-360, 202 

372-377).  Thus, within any category of mathematical objects, there is a part, a structureless 203 

subcategory, which is like the category of sets in having zero structure, and hence serves as a 204 

background to model all categories of mathematical objects (Lawvere, 2003; Lawvere and 205 

Menni, 2015; Picado, 2008, p. 21).  Modeling a category of mathematical objects requires, in 206 

addition to the subcategory with zero structure, another subcategory objectifying the structural 207 

essence(s) of the objects of the category, i.e. the theory of the given category of mathematical 208 

objects.  Finding the theory subcategory also depends on the structureless subcategory, by way of 209 

contrasting or negating the structureless subcategory (Lawvere, 2007).  Once we have the 210 

subcategory with zero structure and the subcategory objectifying the essence (theory) of a given 211 

category, interpreting the theory subcategory into the structureless subcategory gives us models 212 

of the given category of mathematical objects.  Thus, thanks to the recognition of significance of 213 

Cantor‘s zero structure, every mathematical category can be modelled in any category of the 214 

category of categories. 215 

If we compare the category of categories to Indra‘s net, then categories within the 216 

category of categories would correspond to jewels in Indra‘s net.  Just as in the case of Indra‘s 217 

net, wherein every jewel in the network of jewels is reflective of the entire network, in the 218 
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category of categories every category (part) of the category of categories (whole) reflects the 219 

whole.  For example, the category of dynamical systems is a part of the category of categories.  220 

Within the category of dynamical systems, we have the constant subcategory (obtained by 221 

negating the variation) of dynamical systems (wherein every state is a fixed point), which is like 222 

the category of sets, and within which any category can be modeled.  Similarly, the category of 223 

graphs is another part of the category of categories.  Within the category of graphs there is the 224 

discrete subcategory (obtained by negating the cohesion) of graphs (with one loop on each dot), 225 

which is also like the category of sets, and hence can model every category.  Thus, we find that 226 

within the category of categories, every part is reflective of the whole, which is reminiscent of 227 

the Buddhist depiction of reality as Indra‘s Net: a whole with parts reflective of the whole. 228 

 229 

Conclusion 230 

There are similarities between Buddhist philosophy and mathematical practice, especially with 231 

regard to essence vs. emptiness, contradictions, and part-whole relations.  These similarities 232 

might be a natural consequence of identical objectives—understanding reality and commitment 233 

to truth—and identical means—experience and reason—employed towards those ends.  It is in 234 

this respect that the practices of the two—mathematicians and Buddhists—can be compared. Our 235 

exercise, on one hand, can help better appreciate the rationality of Buddhist reasoning.  236 

Oftentimes, admission of contradiction (as in catuskoti) tends to be equated with irrational 237 

mysticism.  However, as we have seen, contradictions are also an integral and indispensable part 238 

of the mathematical understanding of reality.  On the other hand, in drawing parallels between 239 
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Buddhist thought and mathematical practice, we hope to have brought out the broad 240 

philosophical import of category theory beyond mathematics.  241 
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Appendices 242 

 243 

A1. Yoneda lemma 244 

We begin with an intuitive introduction to the mathematical content of Yoneda lemma (Lawvere 245 

and Rosebrugh, 2003, pp. 175-176, 249).  With simple illustrations of figures-and-incidences 246 

(along with [its dual] properties-and-determinations) interpretations of mathematical objects, we 247 

prove the Yoneda lemma (Lawvere and Schanuel, 2009, pp. 361, 370-371).  Broadly speaking, 248 

Yoneda lemma is about [properties of] objects [of categories] and their mutual determination. 249 

First, let us consider a function 250 

f: A → B 251 

We can think of the function f as (i) a figure of shape A in B, i.e., an A-shaped figure in B.  For 252 

example, in the category of graphs, a map 253 

d: D → G 254 

from a graph D (consisting of one dot) to any graph G is a D-shaped figure in G, i.e., a dot in the 255 

graph G.  We can also think of the same function f as (ii) a property of A with values in B, i.e., a 256 

B-valued property of A (Lawvere and Schanuel, 2009, pp. 81-85).  For example, with sets, say, 257 

Fruits = {apple, grape) and Color = {red, green}, a function 258 

c: Fruits → Color 259 

(with c (apple) = red and c (grape) = green) can be viewed as Color-valued property of Fruits. 260 
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 Now let us consider two figures: an X-shaped figure in A 261 

xA: X → A 262 

and a Y-shaped figure in A 263 

yA: Y → A 264 

Given a transformation from the shape X to the shape Y, i.e. an X-shaped figure in Y 265 

xY: X → Y 266 

we find that the X-shaped figure in Y (xY) induces a transformation of a Y-shaped figure in A 267 

into an X-shaped figure in A via composition of maps 268 

yA ◦ xY = xA 269 

(where ‗◦‘ denotes composition) displayed as a commutative diagram 270 

 271 

 272 

 273 

showing the transformation of a Y-shaped figure in A (yA) into an X-shaped figure in A (xA) by 274 

an X-shaped figure in Y (xY) via composition of maps. 275 

As an illustration, consider an object (of the category of graphs) i.e., a graph G (shown 276 

below): 277 

 278 

X 

Y 

A 

xA = yA ◦ xY 

xY 

yA 
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 279 

 280 

 281 

 282 

 283 

and a shape graph [arrow] A with exactly one arrow ‗a‘, along with its source ‗s‘ and target ‗t‘, 284 

as shown: 285 

 286 

along with an A-shaped figure in G 287 

aG: A → G 288 

displayed as: 289 

 290 

 291 

 292 

with, say, 293 

aG (a) = a1 294 

This A-shaped figure in G, i.e. the graph map aG maps the [only] arrow ‗a‘ in the shape graph A 295 

to the arrow ‗a1‘ in the graph G, while respecting the source (s) and target (t) structure of the 296 

d3 

G 

a1 a2 

d1 d2 

A 
a 

s t 

d3 

G 

a1 a2 

d1 d2 

A 
a 

s t 

aG 
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arrow ‗a‘, i.e., with arrow ‗a‘ in shape A mapped to arrow ‗a1‘ in the graph G, the source ‗s‘ and 297 

target ‗t‘ of the arrow ‗a‘ are mapped to the source ‗d1‘ and target ‗d3‘ of arrow ‗a1‘, respectively.  298 

Next, consider another shape graph [dot] D with exactly one dot ‗d‘ 299 

 300 

along with a D-shaped figure in A 301 

dA: D → A 302 

with 303 

dA (d) = s 304 

i.e., the graph map dA maps the dot ‗d‘ in the graph D to the dot ‗s‘ in the graph A, i.e. the source 305 

dot ‗s‘ of the arrow ‗a‘, as shown below: 306 

 307 

 308 

This graph map dA from shape D to shape A induces a transformation of the (above) A-shaped 309 

figure in graph G 310 

aG: A → G 311 

into a D-shaped figure in G 312 

dG: D → G 313 

via composition of graph maps 314 

dA 

D 
d 

s A t 
a 

D 

d 
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dG = aG ◦ dA 315 

i.e., dG (d) = aG ◦ dA (d) = aG (s) = d1  316 

as depicted below (Lawvere and Schanuel, 2009, pp. 149-150): 317 

 318 

 319 

 320 

 321 

In general, every X-shaped figure in Y transforms a Y-shaped figure in A into an X-322 

shaped figure in A i.e., every map 323 

xY: X → Y 324 

induces a map in the opposite direction (contravariant; Lawvere, 2017; Lawvere and Rosebrugh, 325 

2003, p. 103; Lawvere and Schanuel, 2009, p. 338) 326 

A
xY

: A
Y
 → A

X
 327 

where A
Y
 is the map object of the totality of all Y-shaped figures in A, A

X
 is the map object of 328 

the totality of all X-shaped figures in A, and with the map A
xY

 of map objects defined as 329 

A
xY

 (yA: Y → A) = yA ◦ xY = xA: X → A 330 

d3 

G 

a1 a2 

d1 d2 

dA 

D 
d 

s A t 
a 

dG 

aG 
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assigning a map xA in the map object A
X
 to each map yA in the map object A

Y
.  Thus, the figures 331 

in an object A of all shapes (all X-shaped figures in A for every object X of a category) along 332 

with their incidences 333 

A
xY

: A
Y
 → A

X
 334 

induced by all changes of figure shapes 335 

xY: X → Y 336 

(i.e. every map in the category) together constitute the geometry of figures in A, i.e., a complete 337 

picture of the object A.  Summing up, we have the complete characterization of the geometry of 338 

every object A of a category in terms of the figures of all shapes (objects of the category) and 339 

their incidences (induced by the maps of the category) in the object A (Lawvere and Schanuel, 340 

2009, pp. 370-371). 341 

Let us now examine how figures of a shape X in an object A are transformed into figures 342 

of the [same] shape X in an object B.  We find that an A-shaped figure in B 343 

aB: A → B 344 

induces a transformation of an X-shaped figure in A 345 

xA: X → A 346 

into an X-shaped figure in B 347 

xB: X → B 348 

via composition of maps 349 
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X xB = aB ◦ xA 

A B 

xA 

aB 

aB ◦ xA = xB 350 

displayed as a commutative diagram 351 

 352 

 353 

showing the transformation of an X-shaped figure in A (xA) into an X-shaped figure in B (xB) by 354 

an A-shaped figure in B (aB) via composition of maps.  Thus, every map 355 

aB: A → B 356 

induces a map in the same direction (covariant; Lawvere and Rosebrugh, 2003, pp. 102-103, 357 

109; Lawvere and Schanuel, 2009, p. 319) 358 

aB
X
: A

X
 → B

X
 359 

where A
X
 is the map object of all X-shaped figures in A, B

X
 is the map object of all X-shaped 360 

figures in B, and with the map aB
X
 defined as 361 

aB
X
 (xA: X → A) = aB ◦ xA = xB: X → B 362 

assigning a map xB in the map object B
X
 to each map xA in the map object A

X
.  Thus, the totality 363 

of maps aB
X
 of map objects (for all objects and maps of the category) induced by a map aB from 364 

A to B constitutes a covariant transformation of the figure geometry of object A into that of B, 365 

i.e., specifies how figures-and-incidences in A are transformed into figures-and-incidences in B. 366 

 Putting together these two transformations: (i) the covariant transformation of X-shaped 367 

figures in A into X-shaped figures in B induced by an A-shaped figure in B, and (ii) the 368 
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A 

Y 

X 

B xY 

xB 

xA 

yB 

aB 

yA 

contravariant transformation of Y-shaped figures in A into X-shaped figures in A induced by an 369 

X-shaped figure in Y, we obtain the diagram (Lawvere and Schanuel, 2009, p. 370): 370 

 371 

 372 

 373 

 374 

from which we notice that there are two paths to go from a Y-shaped figure in A (yA) to an X-375 

shaped figure in B (xB): 376 

Path 1. First we map the Y-shaped figure in A (yA) into an X-shaped figure in A (xA) along the 377 

X-shaped figure in Y (xY) via composition of the maps 378 

yA ◦ xY 379 

and then map the composite X-shaped figure in A (yA ◦ xY) into an X-shaped figure in B along 380 

the A-shaped figure in B (aB) via composition 381 

aB ◦ (yA ◦ xY) 382 

Path 2. First we map the Y-shaped figure in A (yA) into a Y-shaped figure in B (yB) along the A-383 

shaped figure in B (aB) via composition of the maps 384 

aB ◦ yA 385 

and then map the composite Y-shaped figure in B (aB ◦ yA) into an X-shaped figure in B along 386 

the X-shaped figure in Y (xY) via composition 387 
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(aB ◦ yA) ◦ xY 388 

Based on the associativity of composition of maps (Lawvere and Schanuel, 2009, pp. 370-371), 389 

we find that 390 

aB ◦ (yA ◦ xY) = (aB ◦ yA) ◦ xY 391 

i.e., the two paths of transforming a Y-shaped figure in A 392 

yA: Y → A 393 

into an X-shaped figure in B give the same map 394 

aB ◦ yA ◦ xY = xB: X → B 395 

Since the associativity of composition of maps hold for all maps of any category (Lawvere and 396 

Schanuel, 2009, p. 17), we find that every A-shaped figure in B induces a covariant 397 

transformation of the figure geometry of A into the figure geometry of B.  More explicitly, each 398 

A-shaped figure in B 399 

aB: A → B 400 

induces a commutative diagram (of maps of map objects) 401 

 402 

 403 

 404 

satisfying 405 

A
X
 B

X
 

aB
X
 

A
xY

 B
xY

 

aB
Y
 

A
Y
 B

Y
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aB
X
 ◦ A

xY
 = B

xY
 ◦ aB

Y
 406 

for every map in the category, and hence a natural transformation (compatible with the 407 

composition of maps) of the figure geometry of A into the figure geometry of B.  To see the 408 

commutativity, consider a Y-shaped figure in A, i.e. a map yA of the map object A
Y
 and evaluate 409 

the above two composites: 410 

aB
X
 ◦ A

xY
 (yA) = aB

X
 (yA ◦ xY) = aB ◦ (yA ◦ xY) 411 

B
xY

 ◦ aB
Y
 (yA) = B

xY
 (aB ◦ yA) = (aB ◦ yA) ◦ xY 412 

Again, according to the associativity of the composition of maps 413 

aB ◦ (yA ◦ xY) = (aB ◦ yA) ◦ xY = aB ◦ yA ◦ xY 414 

and hence both composites map each Y-shaped figure in A (a map in the map object A
Y
)  415 

yA: Y → A 416 

to the X-shaped figure in B (a map in the map object B
X
) 417 

aB ◦ yA ◦ xY = xB: X → B 418 

Since we have the above commutativity for every shape (object) and figure (map), i.e. for all 419 

objects and maps of the category, we conclude that an A-shaped figure in B corresponds to a 420 

natural transformation (respectful of figures-and-incidences) of the figure geometry of A into the 421 

figure geometry of B. 422 

 Now we formally show that every A-shaped figure in B 423 

aB: A → B 424 
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of a category C can be represented as a natural transformation 425 

n
aB

: C (–, A) → C (–, B) 426 

from the domain functor C (–, A) constituting the figure geometry of the object A to the 427 

codomain functor C (–, B) constituting the figure geometry of the object B, which is the core 428 

mathematical content of the Yoneda lemma (Lawvere and Rosebrugh, 2003, p. 249): ―maps in 429 

any category can be represented as natural transformations‖ (Lawvere and Schanuel, 2009, p. 430 

378).  Since natural transformations represent structure-preserving maps between objects, the 431 

domain (codomain) functor of a natural transformation represents the domain (codomain) object 432 

of the structure-preserving map. 433 

 Let us define the (domain) functor 434 

C (–, A): C → C 435 

as: for each object X of the category C 436 

C (–, A) (X) = A
X
 437 

where A
X
 is the map object of all X-shaped figures in A 438 

xA: X → A 439 

and, for each map 440 

xY: X → Y 441 

of the category C 442 

C (–, A) (xY: X → Y) = A
xY

: A
Y
 → A

X
 443 
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where A
Y
 is the map object of all Y-shaped figures in A, and with the map A

xY
 of map objects 444 

defined as 445 

A
xY

 (yA: Y → A) = yA ◦ xY = xA: X → A 446 

assigning a map xA in the map object A
X
 to each map yA in the map object A

Y
.  Thus the functor 447 

C (–, A): C → C 448 

in assigning to each map 449 

xY: X → Y 450 

(of the domain category C) its [induced] map [of map objects] 451 

C (–, A) (xY: X → Y) = C (–, A) (Y) → C (–, A) (X) = A
xY

: A
Y
 → A

X
 452 

(of the codomain category C) is contravariant, i.e. a transformation of a shape X into a shape Y 453 

induces a transformation (in the opposite direction) of Y-shaped figures in A into X-shaped 454 

figures in A (Lawvere and Rosebrugh, 2003, pp. 236-237). 455 

Now, we check to see if C (–, A) preserves identities, i.e. whether 456 

C (–, A) (1X: X → X) = 1C (–, A) (X) 457 

for every object X.  Evaluating 458 

C (–, A) (1X: X → X) = A
1X

: A
X
 → A

X
 459 

at a map 460 

xA: X → A 461 
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we find that 462 

A
1X

 (xA: X → A) = (xA ◦ 1X) = xA: X → A 463 

(for every map xA in the map object A
X
).  Next, evaluating 464 

1C (–, A) (X) = 1
AX: A

X
 → A

X
 465 

at the map 466 

xA: X → A 467 

we find that 468 

1
AX (xA: X → A) = (xA ◦ 1X) = xA: X → A 469 

(for every map xA in the map object A
X
).  Since 470 

A
1X

 = 1
AX 471 

i.e. 472 

C (–, A) (1X: X → X) = 1C (–, A) (X) 473 

for every object X of the category C, we say C (–, A) preserves identities. 474 

Next, we check to see if C (–, A) preserves composition.  Since C (–, A) is contravariant, 475 

we check whether 476 

C (–, A) (yZ ◦ xY) = C (–, A) (xY) ◦ C (–, A) (yZ) 477 

where yZ: Y → Z.  Evaluating 478 
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C (–, A) (yZ ◦ xY) = A
(yZ ◦ xY)

 479 

at any map zA in the map object A
Z
, we find that 480 

A
(yZ ◦ xY)

 (zA) = zA ◦ (yZ ◦ xY) 481 

Next, we evaluate 482 

C (–, A) (xY) ◦ C (–, A) (yZ) = (A
xY

 ◦ A
yZ

)  483 

also at the map zA 484 

(A
xY

 ◦ A
yZ

) (zA) = A
xY

 (zA ◦ yZ) = (zA ◦ yZ) ◦ xY 485 

Since 486 

zA ◦ (yZ ◦ xY) = (zA ◦ yZ) ◦ xY 487 

by the associativity of the composition of maps, we have composition preserved 488 

C (–, A) (yZ ◦ xY) = C (–, A) (xY) ◦ C (–, A) (yZ) 489 

Having checked that 490 

C (–, A): C → C 491 

with 492 

C (–, A) (X) = A
X
 493 

C (–, A) (xY: X → Y) = A
xY

: A
Y
 → A

X
 494 

where A
xY

 (yA) = yA ◦ xY, is a contravariant functor, we consider another contravariant functor 495 
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C (–, B): C → C 496 

with 497 

C (–, B) (X) = B
X
 498 

C (–, B) (xY: X → Y) = B
xY

: B
Y
 → B

X
 499 

where B
xY

 (yB) = yB ◦ xY. 500 

With the two functors C (–, A) and C (–, B) representing the [figure geometry of] objects 501 

A and B, respectively, we now show that every structure-preserving map 502 

aB: A → B 503 

is represented by a natural transformation 504 

n
aB

: C (–, A) → C (–, B) 505 

More explicitly, given a map aB, we can construct a natural transformation n
aB

.  A natural 506 

transformation n
aB

 from the functor C (–, A): C → C to the functor C (–, B): C → C assigns to 507 

each object X of the domain category C (of both domain and codomain functors) a map 508 

aB
X
: A

X
 → B

X
  509 

(in the common codomain category C) from the value of the domain functor at the object X, i.e. 510 

C (–, A) (X) = A
X
 to the value of the codomain functor at X, i.e. C (–, B) (X) = B

X
; and to each 511 

map xY: X → Y (in the common domain category C), a commutative square (in the common 512 

codomain category C) shown below: 513 

 514 



28 
 

 515 

 516 

 517 

 518 

 519 

satisfying 520 

aB
X
 ◦ A

xY
 = B

xY
 ◦ aB

Y
 521 

(Lawvere and Rosebrugh, 2003, p. 241; Lawvere and Schanuel, 2009, pp. 369-370).  We have 522 

already seen that with the composition-induced maps (of map objects): 523 

A
xY

 (yA) = yA ◦ xY 524 

aB
X
 (xA) = aB ◦ xA 525 

aB
Y
 (yA) = aB ◦ yA 526 

B
xY

 (yB) = yB ◦ xY 527 

the required commutativity: 528 

aB
X
 ◦ A

xY
 (yA) = aB

X
 (yA ◦ xY) = aB ◦ (yA ◦ xY) 529 

B
xY

 ◦ aB
Y
 (yA) = B

xY
 (aB ◦ yA) = (aB ◦ yA) ◦ xY 530 

is given by the associativity of the composition of maps 531 

A
X
 B

X
 

aB
X
 

A
xY

 B
xY

 

aB
Y
 

A
Y
 B

Y
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aB ◦ (yA ◦ xY) = (aB ◦ yA) ◦ xY = aB ◦ yA ◦ xY 532 

Thus, each A-shaped figure in B (aB) is a natural transformation (n
aB

; homogenous with respect 533 

to composition of maps) of the figure geometry C (–, A) of A into the figure geometry C (–, B) 534 

of B. 535 

Furthermore, we can obtain the set |B
A
| of all A-shaped figures in B based on the 1-1 536 

correspondence between A-shaped figures in B and the points (i.e. maps with terminal object T 537 

of the category C as domain; Lawvere and Schanuel, 2009, pp. 232-234) of the map object B
A
.  538 

This 1-1 correspondence, which follows from the universal mapping property defining 539 

exponentiation, along with the fact that the terminal object T is a multiplicative identity 540 

(Lawvere and Schanuel, 2009, pp. 261-263, 313-314, 322-323), involves the following two 1-1 541 

correspondences between three maps: 542 

 543 

 544 

 545 

Yoneda lemma says, in terms of our figures-and-incidences characterization of objects, 546 

that the set |B
A
| of A-shaped figures in B 547 

aB: A → B 548 

is isomorphic to the set |C (–, B)
C (–, A)

| of natural transformations 549 

n
aB

: C (–, A) → C (–, B) 550 

of the figure geometry of A into that of B.  The required isomorphism of sets 551 

T → B
A
 

T × A → B 

A → B 
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|B
A
| = |C (–, B)

C (–, A)
| 552 

follows from the 1-1 correspondence between A-shaped figures in B and the natural 553 

transformations (compatible with all figures and their incidences) of the figure geometry of A 554 

into that of B, which we have already shown (see also Lawvere and Rosebrugh, 2003, p. 104, 555 

174). 556 

 Dually, a map 557 

A → B 558 

viewed as a B-valued property on A induces a natural transformation 559 

C (B, –) → C (A, –) 560 

of the function algebra of B into that of A (Lawvere and Rosebrugh, 2003, p. 249).  Here also the 561 

proof of Yoneda lemma involves two transformations: (i) Contravariant: a map from an object A 562 

to an object B induces a transformation of properties of B into properties of A, for each type 563 

(object) of the category, and (ii) Covariant: a map from a type T to a type R (of properties) 564 

induces a transformation of T-valued properties into R-valued properties, for every object of the 565 

category.  The calculations involved in proving Yoneda lemma in this case of function algebras 566 

are same as in the case of figure geometries, except for the reversal of arrows due to the duality 567 

between function algebra and figure geometry (Lawvere and Rosebrugh, 2003, p. 174; Lawvere 568 

and Schanuel, 2009, pp. 370-371).  More specifically, function algebras and figure geometries 569 

are related by adjoint functors (Lawvere, 2016).  570 
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A2. Four Truth Values of the Logic of Perception 571 

Conscious perception involves two sequential processes of sensation followed by interpretation: 572 

Physical stimuli → Brain → Conscious Percepts 573 

(Albright, 2015; Croner and Albright, 1999), which can be thought of as 574 

X – coding → Y – decoding → Z 575 

and objectified as two sequential processes: 576 

A – f → B – g → C 577 

Without discounting that the processes of sensation and interpretation are much more structured 578 

than mere functions, and with the objective of simplifying the calculation of truth value object, 579 

we model percept as an object made up of three [component] sets C, B, and A, which are sets of 580 

physical stimuli, their neural codes, and interpretations, respectively, and two [structural] 581 

functions f and g specifying for each interpretation in A the neural code in B (of which it is an 582 

interpretation) and for each neural code in B the physical stimulus in C (of which it is a 583 

measurement), respectively (see Lawvere and Rosebrugh, 2003, pp. 114-117).  The logic of [the 584 

category of] perception, whose objects are two sequential functions is determined by its truth 585 

value object (Lawvere and Rosebrugh, 2003, pp. 193-212; Lawvere and Schanuel, 2009, pp. 586 

335-357; Reyes, Reyes, and Zolfaghari, 2004, pp. 93-107).  The truth value object of a category 587 

is an object Ω of the category such that parts of any object X are in 1-1 correspondence with 588 

maps from the object X to the truth value object Ω.  Since parts of an object are monomorphisms 589 

with the object X as codomain, for each monomorphism with X as codomain there is a 590 

corresponding X-shaped figure in Ω. 591 
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In order to calculate the truth value object, first we need to define maps between objects 592 

of the category of percepts.  A map from an object 593 

A – f → B – g → C 594 

to an object 595 

A‘ – f’ → B‘ – g’ → C‘ 596 

is a triple of functions 597 

p: A → A‘, q: B → B‘, r: C → C‘ 598 

satisfying two equations 599 

q ◦ f = f’ ◦ p, r ◦ g = g’ ◦ q 600 

which make the two squares in the diagram 601 

 602 

 603 

 604 

 605 

 606 

commute, i.e. ensure that maps between objects preserve the structural essence of the category 607 

(Lawvere and Schanuel, 2009, pp. 149-150). 608 

p 
A A‘ 

f’ f 

q 
B B‘ 

g’ g 

r 
C C‘ 
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Now that we have maps of the category of percepts defined, we can calculate its truth 609 

value object.  The truth value object of a category is calculated based on the parts of the basic 610 

shapes (essence) constituting the objects of the category.  In the category of sets, one-element set 611 

1 (= {•}) is the basic shape in the sense any set is made up of elements (see Posina, Ghista, and 612 

Roy, 2017 for the details of the calculation of basic shapes, i.e. theory subcategories of various 613 

categories).  Since the set 1 is the also the terminal object (i.e. an object to which there is exactly 614 

one map from every object; Lawvere and Schanuel, 2009, pp. 213-214) of the category of sets, 615 

and since every set is completely determined by its points (terminal object-shaped figures), we 616 

can determine the truth value object of the category of sets by determining its points, i.e. maps 617 

from 1 to the (yet to be determined) truth value object.  According to the definition of truth value 618 

object, 1-shaped figures in the truth value object are in 1-1 correspondence with parts of 1.  Since 619 

the terminal set 1 has two parts: 0 (= {}) and 1, the truth value set has two points (elements).  620 

Thus, the truth value object of the category of sets is 2 (= {false, true}). 621 

Along similar lines, let us calculate the terminal object of the category of percepts.  Since 622 

there is only one map from any object (two sequential functions) to the object T (two sequential 623 

functions from one-element set to one-element set): 624 

1 → 1 → 1 625 

the terminal object of the category of percepts is T.  Since parts of the terminal object T 626 

correspond to the points of the truth value object, let‘s look at the parts of the terminal object.  627 

The terminal object T 628 

1 → 1 → 1 629 

has four parts: 630 
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Part 1 (0: 0 → T) 631 

 632 

 633 

 634 

Part 2 (01: 01 → T) 635 

 636 

 637 

 638 

Part 3 (02: 02 → T) 639 

 640 

 641 

 642 

Part 4 (1: T → T) 643 

 644 

 645 

 646 

These four parts correspond to the four points (global truth values) of the truth value object, 647 

which means that the component set (of the truth value object) corresponding to the stage of 648 

1 → 1 

↓ 

1 → 1 

↓ 

1 → 

↓ 

1 

↓ 

0 1 

↓ 

0 1 

↓ 

1 → 1 

0 1 

↓ 

1 → 1 

↓ 

1 → 1 

↓ 

0 1 

↓ 

0 1 

↓ 

0 1 
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interpretations is a four-element set 4 = {0, 01, 02, 1}.  Since objects in the category of perception 649 

(two sequential functions) are not completely determined by points, we look for all other basic 650 

shapes that are needed to completely characterize any object of two sequential functions.  The 651 

other basic shapes, besides the terminal object T, are: domains of the parts 02 and 01 of the 652 

terminal object T, i.e. shape 02 653 

0     1 → 1 654 

and shape 01 655 

0     0     1 656 

Since the basic shape object 02 has three parts (0, 01, and 1), there are three 02-shaped figures in 657 

the truth value object, and since the object 01 has two parts (0 and 1), there are two 01-shaped 658 

figures in the truth value object, which means that the component set (of the truth value object) 659 

corresponding to the stage of neural coding is a three-element set 3 = {0, 01, 1}, while the 660 

component set (of the truth value object) corresponding to the stage of physical stimuli is a two-661 

element set 2 = {0, 1}.  Putting it all together we find that the truth value object of the category 662 

of percepts is: 663 

4 – j → 3 – k → 2 664 

We still have to determine the functions j and k, which can be done by examining the structural 665 

maps between the basic shapes 666 

01 – c → 02 – d → T 667 

which as a subcategory constitutes the theory (abstract essence) of the category of two sequential 668 

functions.  More explicitly, the incidence relations between the three basic-shaped figures in the 669 
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truth value object are calculated from the inverse images of the parts of the basic shapes (01, 02, 670 

and T) along the structural maps (d and c).  The inverse images of each one of the four points (0, 671 

01, 02, and 1 corresponding to the four parts of the terminal object T) along the structural maps 672 

decoding d and coding c give for each one of the four global truth values 4 = {0, 01, 02, 1} its 673 

value in the truth value sets 3 = {0, 01, 1} and 2 = {0, 1} of the previous stages of neural codes 674 

and physical stimuli.  For example, the global truth value 02 corresponds to the part 02 of the 675 

basic shape T, and its inverse image along the structural map d: 02 → T is the entire basic shape 676 

02, which corresponds to the truth value 1 (of stage 3); and the inverse image of the entire object 677 

02 along the structural map c: 01 → 02 is the entire basic shape 01, which corresponds to the truth 678 

value 1 (of stage 2).  Along these lines we find that 679 

j (0) = 0, j (01) = 01, j (02) = 1, j (1) = 1 680 

k (0) = 0, k (01) = 1, k (1) = 1 681 

which completely characterizes the truth value object 682 

4 – j → 3 – k → 2 683 

of the category of percepts.684 
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