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S U M M A R Y
This paper presents the mathematical derivation of an explicit relation for the apparent (or
effective) phase velocity of Rayleigh waves in a vertically heterogeneous, isotropic elastic
half-space for harmonic excitation. As a kinematical feature, the apparent phase velocity
captures the superposition, in a spatial Fourier series, of the individual modes of propagation
of Rayleigh waves and describes the speed of propagation of a composite waveform generated
by a vertically oscillating point load. The relation, which is a function of the distance from
the source, frequency and depth, depends explicitly on the modal phase and group velocities
of Rayleigh waves, and their corresponding wavenumbers and eigenfunctions, which can be
computed directly from the solution of the Rayleigh-wave eigenproblem. A practical scenario
for the application of the notion of apparent Rayleigh-wave phase velocity is the modelling of
the dispersion curve in the well-known surface wave measurement methods ‘spectral analysis
of surface waves’ (SASW) and ‘multichannel analysis of surface waves’ (MASW). Apart
from a theoretical motivation, the availability in surface wave testing of an explicit formula
for the calculation of the apparent Rayleigh-wave phase velocity may lead to the development
of a new class of inversion algorithms capable of taking into account the influence of all the
modes of surface wave propagation. To demonstrate the exactness of the explicit relation, the
predicted values of apparent phase velocity are compared to those computed synthetically
from a numerical simulation of SASW and MASW testing for three case studies, which show
both single as well as multiple mode dominance effects.

Key words: Surface waves and free oscillations.

1 I N T RO D U C T I O N

Since the prediction of surface Rayleigh waves by Lord Rayleigh (1887), their conditions of existence and propagation characteristics in
elastic solids have been studied in great detail (e.g. Lamb 1904; Knopoff 1952; Achenbach 1984). In the context of seismology, in the 1950s
and early 1960s researchers concentrated on the theoretical analysis of surface wave excitation and the existing relationship between group
and phase velocities and elastic parameters of a crustal model (e.g. Ewing et al. 1957; Brune et al. 1961; Sato et al. 1962; Aslop 1963;
Harkrider 1964; Haskell 1964). For a vertically heterogeneous, isotropic elastic half-space, several methods have been developed to solve
the Rayleigh-wave eigenproblem (e.g. Gilbert & Backus 1966; Saito 1967; Takeuchi & Saito 1972; Wiggins 1976; Woodhouse 1980, 1988;
Buland & Gilbert 1984). This requires determining modal wavenumbers (or alternatively the phase velocities) and eigenfunctions associated
with a vertically heterogeneous half-space, knowing the elastic moduli (or equivalently the speeds of propagation of longitudinal P and
transversal S waves), mass density and their variability with depth. The Rayleigh-wave eigenproblem is a forward problem. The inverse
problem is that of computing the distribution with depth of one or more elastic moduli from the inversion of a set of experimentally measured
dispersion functions. This inverse problem is the subject of geophysical prospecting and exploration seismology. A detailed review of the
development of surface wave inversion algorithms in crustal-scale applications is presented by Romanowicz (2002).

The use of surface waves in engineering applications emerged in the 1950s with the Steady-State Rayleigh-wave Method (Jones 1958),
followed by the SASW (spectral analysis of surface waves) technique introduced by Stokoe et al. (1994), the multistation methods commonly
termed MASW (multichannel analysis of surface waves) explored by Lai & Rix (1998), Park et al. (1999) and Foti (2000), and more recently
the refraction microtremor (ReMi) method developed by Louie (2001). All these aforementioned techniques exploit two important properties
enjoyed by Rayleigh waves propagating in vertically heterogeneous half-spaces. These are ‘geometric dispersion’, which is the fact that their
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674 C. G. Lai, M.-D. Mangriotis and G. J. Rix

speeds of propagation is frequency-dependant, and ‘geometric attenuation’, which is smaller in the direction of propagation if compared with
that of corresponding P and S body waves.

Due to geometric dispersion, surface waves traveling in vertically heterogeneous half-spaces will not travel with a single phase and
group velocity, but velocities which are a multivalued function of the frequency of excitation (Kennett 1983; Aki & Richards 2002). This
phenomenon arises from a condition of constructing interference, within the heterogeneity of the medium, among rays that are either bent
or reflected/refracted. Geometric dispersion is responsible for the existence of several modes of propagation, each traveling at a different
phase and group velocity. For Rayleigh waves generated by harmonic sources, the various modes of propagation are superimposed in a spatial
Fourier series. The corresponding phase velocity of the waveform, which is the result of interference among different modes, is termed in the
literature ‘apparent’ or ‘effective’ Rayleigh-wave phase velocity. Tokimatsu et al. (1992) published a study on the effects of multiple modes
of wave propagation in the dispersion characteristics of Rayleigh waves. In their paper, the authors provided a formal solution for the average
apparent phase velocities (radial and vertical components), which is averaged over a range of offsets from a point source. Their analytical
expressions involve the medium response, phase velocities and amplitude ratios between horizontal and vertical motions of each mode of
propagation using the formulae obtained by Harkrider (1964) for the solution of the Rayleigh-wave eigenproblem, which was extended from
the theory of Haskell (1953).

In this paper an exact, analytical relation for the apparent Rayleigh-wave phase velocity is derived, which is explicit in terms of
fundamental quantities computed directly from the solution of the Rayleigh-wave eigenproblem. These fundamental quantities are the
Rayleigh-wave wavenumbers (or alternatively the phase velocities) and eigenfunctions. The relation is of general validity in that it can
be applied to any algorithm used to solve the Rayleigh-wave eigenproblem (e.g. matrix propagator method, thin layer method, numerical
integration). The notion of apparent phase velocity leads naturally to the definition of a ‘dispersion surface’ that generalizes the concept of
dispersion curve, which is valid for modal phase velocities. The dispersion surface reflects the dependence of the apparent phase velocity on
the source characteristics, including the source type and orientation, its frequency, as well as the relative ratios of excitation amplitudes for
different modes, and the source–receiver offset of. Thus, it is a ‘local’ quantity for it depends on the spatial position where it is measured.

The analytical relation derived in this paper is specific to a vertical point load on the free surface. The derivation assumes a far-field
approximation, namely that the body waves generated by the vertically oscillating point load can be neglected. As suggested by Tokimatsu
(1995), near-field effects are important up to a distance of λ

2 and 2λ for, respectively, normally dispersive half-spaces (i.e. media where the
mechanical impedance increase monotonically with depth) and inversely dispersive half-spaces (i.e. media where the mechanical impedance
varies irregularly with depth).

To demonstrate the exactness of the analytical expressions derived for computing the apparent Rayleigh-wave phase velocity, the apparent
dispersion curves calculated with the proposed formulae are compared with those obtained from synthetic seismic data using SASW and
MASW processing techniques. Three examples of normally as well as inversely dispersive media are illustrated. For normally dispersive
media, the fundamental mode prevails in the vertical and horizontal motions. On the other hand, in inversely dispersive media like in the case
of a stiff top layer overlying the half-space, higher modes are expected to dominate the response. The apparent phase velocity involves the
contribution of single as well as multiple mode dominance with a relative modal weight, which, in general, changes with frequency.

Aside from a theoretical contribution, the explicit relation derived for computing the apparent phase velocity of Rayleigh waves may
have a practical application in the solution of the Rayleigh-wave inverse problem. Traditionally, surface wave testing methods such as SASW
and MASW techniques relied on the inversion of the fundamental mode, with only recent examples of inversions of single higher modes or
a limited number of modes (Beaty 2000; Xia et al. 2000, 2003). An encouraging step on multimode inversion was presented by Ikeda et al.
(2012) who compared observed phase velocities by the extended spatial autocorrelation method (ESPAC) to the effective phase velocities
calculated using the Tokimatsu et al. (1992) formulae. In their study, the authors acknowledge the importance of having a theoretical solution
for the (average) apparent phase velocity, which does not have aliasing constraints, and hence renders it continuous in the frequency range. On
the other hand, Ikeda et al. (2012) suggest that inversion using apparent phase velocities may require prior information about the underlying
half-space to obtain a better constrained shear wave velocity profile. A different approach, which extends to the full wavefield, is the inversion
of expansion coefficients for recorded shallow-seismic wavefields presented by Forbriger (2003). In his procedure, which is robust even
without a priori information, the entire full signal content is exploited including dispersion of higher modes, leaky modes and their true
amplitudes. Last, but not least, Friederich (2003) proposed a waveform inversion scheme, which successfully takes into account mode coupling
to infer the S-velocity structure using the multiple scattering theory of Friederich (1999).

The availability of our derived explicit, easy-to-implement formula to compute the Rayleigh-wave apparent phase velocity may help to
develop algorithms for the measurement and the inversion of surface wave data, which take into account all the modes of propagation. Further
efforts are needed on the experimental side for enhancing the ability of current methods of surface wave testing to measure the Raleigh
apparent dispersion surface with a good degree of resolution.

2 A P PA R E N T P H A S E V E L O C I T Y O F R AY L E I G H WAV E S I N A V E RT I C A L LY
H E T E RO G E N E O U S I S O T RO P I C E L A S T I C H A L F - S PA C E

It is well known (e.g. Aki & Richards 2002) that Rayleigh waves in vertically heterogeneous, isotropic, elastic half-spaces are dispersive and
the main characteristics of wave motion are described by the Rayleigh-wave dispersion equation. The latter is nothing but a statement of
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Figure 1. Material parameters and sign convention for the vertically heterogeneous, isotropic, elastic half-space.

Figure 2. Example of dispersion surface showing the dependence of the effective Rayleigh-wave phase velocity with frequency and distance from the source.
Geometry and medium parameters are defined in case study I of the applications.

the dependence of the speed of propagation of these waves upon frequency. In turn, the velocity of propagation is a multivalued function of
frequency since in general at a given frequency different modes may co-exist.

If k is the wavenumber, ω the circular frequency and z the depth from the free surface (Fig. 1), the set {k j (ω), wi (z, k j , ω)} ( j = 1, M)
defines a jth mode of propagation, and it is characterized by eigenvalues kj and eigenfunctions wi (z, k j , ω)(i = 1, 4). The positive integer
M = M(ω) represents the total number of modes associated with frequency ω, which may be finite or infinite depending on the z-dependence
of the elastic moduli and mass density of the half-space and on the specific value of the excitation frequency. It can be shown that if the
medium is composed of a finite number of homogeneous layers overlaying a homogeneous half-space, the total number of Rayleigh-wave
modes is always finite (Ewing et al. 1957).

Rayleigh waves can be generated by mechanical sources applied at the boundary or in the interior of a half-space. If these sources are
harmonic in time, the different modes of propagation are superimposed (Foti 2000). The phase velocity of the resulting waveform is the
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Table 1. Case study I: medium parameters used for the validation of the
explicit relation for the apparent Rayleigh-wave phase velocity. Parameters
for case I are similar to those studied by Foti (2000).

Layer Density (g cc−1) Vp (m s−1) Vs (m s−1) Thickness (m)

1 1.8 600 300 5
2 1.8 700 400 10
3 1.8 800 450 ∞

Table 2. Case study II: medium parameters used for the validation of the
explicit relation for the apparent Rayleigh-wave phase velocity. Parameters
for case II are similar to those studied by Foti (2000).

Layer Density (g cc−1) Vp (m s−1) Vs (m s−1) Thickness (m)

1 1.8 800 450 3
2 1.8 600 350 5
3 1.8 700 400 10
4 1.8 800 450 ∞

‘apparent’ or ‘effective’ Rayleigh-wave phase velocity. In this section an explicit, analytical relation for the apparent Rayleigh-wave phase
velocity is directly derived from the solution of the Rayleigh-wave eigenproblem.

In a vertically heterogeneous, isotropic elastic half-space, Rayleigh waves generated from point sources acting in a direction perpendicular
to the boundary of the half-space propagate along cylindrical wave fronts (Ewing et al. 1957). It can be shown (Ben-Menahem & Singh 1981)
that the wavefield originated by a harmonic vertical point source located at a position r = 0, z = zs can be expanded, in the radial direction,
in a series of p-th order Hankel functions (p is an integer). For large values of r, the p-th order Hankel functions can be approximated by
their asymptotic expansions involving complex exponentials. As a result, the particle displacement u (r, z, ω) = [ur (r, z, ω)er + uz(r, z, ω)ez]
resulting from the superposition of M distinct Rayleigh-wave modes can be written in cylindrical coordinates {r, z, θ} as follows (Aki &
Richards 2002):

uβ (r, z, ω) =
M∑

j=1

[
Aβ (r, z, ω)

]
j
.ei(ωt−k j r+φβ ), (1)

where β = r, z and [Aβ (r, z, ω)] j is the Rayleigh-wave displacement amplitude associated with the j-th mode of propagation. Finally,
ϕβ = −π

/
4 for β = r and ϕβ = π

/
4 for β = z. Eq. (1) shows, as expected, that uβ (r, z, ω) is independent from the azimuthal angle θ . The

actual particle displacement is obtained by taking either the real or imaginary part of eq. (1). By choosing the latter, this equation becomes:

� [
uβ (r, z, ω)

] = �
⎧⎨
⎩

M∑
j=1

[
Aβ (r, z, ω)

]
j
ei (ω·t−k j ·r + ϕβ)

⎫⎬
⎭ =

M∑
j=1

[(
Cβ

)
j
sin (ωt) − (

Dβ

)
j
cos (ωt)

]
, (2)

where (Cβ ) j = (Aβ ) j · cos (k j · r − ϕβ ) and (Dβ ) j = (Aβ ) j · sin (k j · r − ϕβ ). As shown in Appendix A, using simple trigonometric identities
eq. (2) can be rewritten as follows:

� [
uβ (r, z, ω)

] = Uβ (r, z, ω) · sin
[
ωt − ψβ (r, z, ω)

]
, (3)

where

Uβ (r, z, ω) =
⎧⎨
⎩

M∑
i=1

M∑
j=1

[
Aβ (r, z, ω)

]
i

[
Aβ (r, z, ω)

]
j
cos

[
r (ki − k j )

]⎫⎬⎭
0.5

, (4)

ψβ (r, z, ω) = tan−1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M∑
i=1

[
Aβ (r, z, ω)

]
i
sin (kir + ϕβ )

M∑
j=1

[
Aβ (r, z, ω)

]
j
cos (k jr + ϕβ )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (5)

Table 3. Case study III: medium parameters used for the validation of the
explicit relation for the apparent Rayleigh-wave phase velocity.

Layer Density (g cc−1) Vp (m s−1) Vs (m s−1) Thickness (m)

1 1.8 400 200 5
2 1.8 200 100 10
3 1.8 600 300 15
4 1.8 800 400 ∞

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/199/2/673/617858 by guest on 15 Septem

ber 2020



Apparent phase velocity of Rayleigh waves 677

Figure 3. Case study I: synthetic shot gather for z-component (top panel) and r-component (bottom panel). Plotted for visual clarity are traces every 10 m
offset.

From eq. (3), the expression:[
ωt − ψβ (r, z, ω)

] = constant (6)

represents the equation of a wave front, since it is the locus of points having constant phase. Assuming the function ψβ (r, z, ω) to be sufficiently
smooth in r, eq. (6) can be differentiated with respect to time, to give:

ω − ∂ψβ (r, z, ω)

∂r
· dr

dt
= 0, (7)

which yields

V̂β (r, z, ω) = ω[
∂ψβ (r,z,ω)

∂r

] , (8)

where the symbol V̂β (r, z, ω) has been used to denote the ‘apparent’ or ‘effective’ Rayleigh-wave phase velocity.
It is evident from eq. (8) that the apparent Rayleigh-wave phase velocity is a local quantity, which means that its value depends on the

spatial position where it is evaluated. At a fixed depth from the free surface z = zc, the function V̂β (r, zc, ω) describes a ‘dispersion surface’,
that is, a 2-D surface showing the variation of the effective Rayleigh-wave phase velocity with frequency and distance from the source
(Fig. 2).

Eq. (8) shows that different components of effective Rayleigh-wave phase velocity V̂β (r, z, ω) will, in general, travel at different phase

velocities. Furthermore, since
∂ V̂β

∂t = − ω·V̂β
∂ψβ
∂r[

∂ψβ
∂r

] 2 is not, in general, equal to zero, the plane of constant phase accelerates (or decelerates) as it

propagates along the free surface of the half-space.
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678 C. G. Lai, M.-D. Mangriotis and G. J. Rix

Figure 4. Case study II: synthetic shot gather for z-component (top panel) and r-component (bottom panel). Plotted for visual clarity are traces every 10 m
offset.

In eq. (8), the term
∂ψβ

∂r can be interpreted as an apparent Rayleigh-wave wavenumber and denoted as k̂β (r, z, ω). However, a decomposition
of the argument of eq. (3) in the form (ωt − k̂βr ), which is common for monochromatic waves, is no longer possible given that the apparent
wavenumber

∂ψβ

∂r being a local quantity, must be integrated over r to yield the phase ψβ (r, z, ω).
Considering the definition of ψβ (r, z, ω) given by eq. (5), it is possible to obtain from eq. (8), an explicit relation for the apparent

Rayleigh-wave phase velocity. The result of the derivation, shown in Appendix B, is given by:

V̂β (r, z, ω) = 2ω ·

M∑
i=1

M∑
j=1

{
(Aβ )i (Aβ ) j cos

[
r (ki − k j )

]}
M∑

i=1

M∑
j=1

{
(Aβ )i (Aβ ) j (ki + k j ) cos

[
r (ki − k j )

]} . (9)

For a harmonic point source Fzeiωt located at r = 0, z = zs , the Rayleigh-wave displacement amplitudes [Aβ (r, z, ω)] j of the individual
modes of propagation are related to the displacement eigenfunctions w1(z, k, ω) andw2(z, k, ω), and to other modal parameters by the
following expression (Aki & Richards 2002):

[
Aβ (r, z, ω)

]
j
=
[

Ar (r, z, ω)
Az(r, z, ω)

]
j

= Fz · w2(zs, k j , ω)

4Vj U j I j

√
2πrk j

·
[

w1(z, k j , ω)
w2(z, k j , ω)

]
, (10)

where Vj , U j and k j are the phase, group velocity and wavenumber of the Rayleigh-wave j-th mode of propagation ( j = 1, M), respectively.
The term I j (z, k j , ω) is the first Rayleigh-wave energy integral associated with the j-th mode of propagation and is defined (Aki & Richards
2002) by

I j (z, k j , ω) = 1

2

∞∫
0

ρ(z)
[
w2

1(z, k j , ω) + w2
2(z, k j , ω)

]
dz. (11)
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Figure 5. Case study III: synthetic shot gather for z-component (top panel) and r-component (bottom panel). Plotted for visual clarity are traces every 10 m
offset.

By substituting eq. (10) into eq. (9), the expression for the apparent Rayleigh-wave phase velocity finally becomes

V̂r (r, z, ω) =
2ω

M∑
i=1

M∑
j=1

{
w1(z, ki )w1(z, k j )w2(zs , ki )w2(zs , k j ) cos[r (ki −k j )]

(Vi Ui Ii )(Vj U j I j )
√

ki k j

}
M∑

i=1

M∑
j=1

{
w1(z, ki )w1(z, k j )w2(zs , ki )w2(zs , k j )(ki +k j ) cos[r (ki −k j )]

(Vi Ui Ii )(Vj U j I j )
√

ki k j

} , (12a)

V̂z(r, z, ω) =
2ω

M∑
i=1

M∑
j=1

{
w2(z, ki )w2(z, k j )w2(zs , ki )w2(zs , k j ) cos[r (ki −k j )]

(Vi Ui Ii )(Vj U j I j )
√

ki k j

}
M∑

i=1

M∑
j=1

{
w2(z, ki )w2(z, k j )w2(zs , ki )w2(zs , k j )(ki +k j ) cos[r (ki −k j )]

(Vi Ui Ii )(Vj U j I j )
√

ki k j

} , (12b)

where V̂r (r, z, ω) and V̂z(r, z, ω) denote the components of the apparent Rayleigh-wave phase velocity along directions r and z, respectively.
To reduce the length of the above expressions, the frequency dependence of the eigenfunctions w1(z, k, ω) and w2(z, k, ω) has been omitted.

As a final remark, it is noted from eqs (12a) and (12b) that the apparent Rayleigh-wave phase velocity is completely determined from
the solution of the Rayleigh-wave eigenproblem and the nature (type, orientation and depth) of the source. In fact, recalling that Vj = ω

k j
and

U j = dω

dk j
( j = 1, M), all of the modal quantities appearing in eqs (12a) and (12b) can be calculated from the set {k j , wi (z, k j , ω)}(i = 1, 4).

3 VA L I DAT I O N T H RO U G H N U M E R I C A L M O D E L L I N G

The explicit relations derived in the previous section for the apparent Rayleigh-wave phase velocity are hereby validated by comparing the
predictions of eqs (12a) and (12b) with the dispersion curves computed using synthetic surface wave data generated from a simulation of
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680 C. G. Lai, M.-D. Mangriotis and G. J. Rix

Figure 6. Rayleigh-wave phase velocity spectra computed from f–k analysis of MASW synthetic data for case studies I, II and III. Note that for case III,
multiple modes dominate, which results in multiple Rayleigh-wave phase velocity for each individual frequency in the frequency range of ∼20–35 Hz.

Figure 7. Case study I: comparison of phase velocity dispersion curves showing (i) modal phase velocities, (ii) effective phase velocity, and phase velocity
computed from synthetic data using (iii) SASW and (iv) MASW methods.

SASW and MASW testing configuration. The comparison has been carried out for both the radial and the vertical components (r and z) of
motion. In what follows, the procedure adopted to construct the apparent dispersion curves from synthetic surface wave data will be briefly
reviewed.

When using harmonic sources, the SASW method yields an apparent dispersion curve since the generated wavefield is made up of the
superposition of all the modes of propagation. Thus in the two-station SASW configuration, the measured Rayleigh-wave speed of propagation
is the apparent and not the modal phase velocity. On the other hand, the MASW array configuration should yield in principle, well-separated
modal dispersion curves. However, in many practical applications of MASW testing, it may not be possible to separate all the modes due, for
instance, to a limited array length, inadequate interreceiver spacing, the presence of leaky waves, near-field effects and existence of osculation
points.

Another important issue related to SASW and MASW testing configurations concerns the relative amplitudes of the different modes
of propagation. If only one mode dominates the wavefield at a specific frequency, then the phase difference computed from the two-station
SASW method varies smoothly with the distance from the source. This will yield a relatively constant estimate of phase velocity, regardless
of the position of the receiver pairs. Similarly, in MASW testing, when a single mode dominates, the f–k spectrum will provide a single
dominant value of phase velocity at that frequency. If, however, multiple modes have similar amplitudes, spatial beating effects may occur.
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Apparent phase velocity of Rayleigh waves 681

Figure 8. Case study II: comparison of phase velocity dispersion curves showing (i) modal phase velocities, (ii) effective phase velocity, and phase velocity
computed from synthetic data using (iii) SASW and (iv) MASW methods.

Figure 9. Case study III: comparison of phase velocity dispersion curves showing (i) modal phase velocities, (ii) effective phase velocity, and phase velocity
computed from synthetic data using (iii) SASW and (iv) MASW methods. Please note that in the frequency range ∼20–35 Hz, picking of the dispersion curve
for MASW is not straightforward (part of dispersion curve shown as dots as opposed to a line), if not ambivalent, given that multiple modes have similar
magnitudes, as was also seen in Fig. 6.

This will cause the phase velocity measured with SASW configuration to vary significantly with receiver offset, whereas in MASW testing
multiple values of phase velocity are obtained (e.g. Foti 2000; Forbriger 2003; Strobbia & Foti 2006; Ikeda et al. 2012).

To compare the apparent Rayleigh-wave phase velocity computed from eqs (12a) and (12b) with the dispersion curves derived from
SASW and MASW testing configurations, three case studies are considered. The first is that of a normally dispersive half-space, where
the mechanical impedance increases regularly with depth. The other two cases, have a stiff top layer with lower velocity zones existing at
intermediate depths (Tables 1–3). Due to the local nature of the apparent phase velocity, the construction of the apparent dispersion curve
from eqs (12a) and (12b) was carried out by using the heuristic approach of eliminating the dependence of these equations on the distance
from the source by averaging the apparent phase velocity over the length of the receiver array, which was adopted in the simulations of MASW
and SASW testing configurations.

Synthetic seismograms were computed with the wavenumber integration method using the ‘Computer Programs in Seismology’
(http://www.eas.slu.edu/eqc/eqc_cps/CPS/CPS330/) written by R.B. Herrmann (1994). Since the explicit relations obtained for the ap-
parent Rayleigh-wave phase velocity do not account for body waves, synthetic traces with source–receiver offsets larger than 100 m are
considered, which is well above the 2λ limit set to avoid near-field effects in inversely dispersive half-spaces and the λ/2 limit for normally
dispersive media (Holzlohner 1980; Herrmann 1994; Tokimatsu 1995). The model receiver spacing was set equal to 1 m, and the maximum
source–receiver distance at 256 m, yielding a total of 157 synthetic traces. Total record length was set to 4 s, and sampling rate to 2 ms.
Figs 3 to 5 show the synthetic shot gathers of vertical and horizontal components of particle velocity for the three case studies considered.
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Figure 10. Comparison of apparent phase velocity as a function of offset using the explicit formula (eq. 12b), and SASW method. Three frequencies are
selected for display: 13 Hz (blue), 28 Hz (red) and 61 Hz (black).

Using the SASW and MASW methodologies, we constructed synthetic dispersion curves using a frequency step of 0.2 Hz and frequency
bandwidth from 5 to 150 Hz. In the case of SASW technique, the phase differences between 155 receiver pairs are calculated with an
interreceiver distance of 2 m. In this way the synthetic Rayleigh-wave phase velocity was computed at 1 m intervals. For SASW testing
configuration, the mean of the individual experimental phase velocities was taken over the entire model array to simulate the measurement
of an experimental apparent Rayleigh-wave phase velocity. To analyse the synthetic data with the MASW technique, the computer program
GEOPSY (Wathelet 2008; http://www.geopsy.org/) has been used to calculate the f–k spectrum for each case study using the complete set of
traces (157 traces).

Fig. 6 shows the vertical component of the velocity spectra for the three case studies derived from the f–k transform of the MASW array
configuration. The dispersion curve from the f–k spectra was computed as the average value between a lower and upper envelope around
the f–k spectra peaks (recommendation by C. Cornou, personal communication, 2010). Equivalent results were obtained from the horizontal
component of the synthetic data. Note that for the third case study, multiple modes have similar spectral amplitudes in the frequency range ∼
20–35 Hz resulting in multiple values of phase velocity.

Figs 7 to 9 show for the three case studies the apparent dispersion curves computed from SASW and MASW synthetic data, along with
the effective dispersion curve calculated using eqs (12a) and (12b) and denoted ‘apparent’ in the figures. The agreement between SASW and
MASW curves and the ‘apparent’ dispersion curve is good for all the three case studies. A perfect match among the curves would have been
unattainable due to significantly different procedures adopted to construct the three types of apparent dispersion curves. In addition to the
apparent Rayleigh-wave phase velocity, also plotted are the modal phase velocities, computed with the computer code ‘Hisalai’ written by
C.G. Lai in 1997, a modification of computer code created by Y. Hisada (1994, 1995). As expected for case study I, which is a normally
dispersive soil profile, the contribution to the apparent phase velocity is primarily from the fundamental mode. On the other hand, for cases II
and III contributions from higher modes become significant. This implies that an inversion process, which does not take into account higher
modes when their contribution is important, may yield unreliable results. A sensible remedy would be to invert the measured dispersion curve
for the apparent and not the modal Rayleigh-wave phase velocity.

The results plotted in Figs 7 to 9 are for the vertical component of wave motion. Similar processing was performed for the radial
component, which, however, yielded essentially identical results. For the idealized situation (i.e. ‘perfect’ source and receiver orientation
and absence of background noise) the vertical and radial components of wave motion will in general be different in terms of the computed
seismograms (Figs 3 to 5). On the other hand, the apparent phase velocity (both theoretical from eqs 12a and 12b as well as that computed
from synthetic traces) turn out to be equivalent for the two components. This result is consistent with the expectation that the average
information carried by the two components of ground motion should be the same, in the sense that they both reflect the signature of the
specific characteristics of a half-space (i.e. the number and thicknesses of the layers, the elastic moduli and the mass density variation with
depth). In real physical experiments, however, it is expected that the theoretical formula for the apparent Rayleigh-wave phase velocity will
be best validated with the vertical components of the experimental array, given that they isolate the Rayleigh wave, and that they typically
have higher signal-to-noise ratio for vertically oriented sources.
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Fig. 10 shows the monochromatic computation of the apparent phase velocity as a function of offset from the source, using eq. (12b),
for the medium properties of case III, at three selected frequencies: 13, 28 and 61 Hz. The apparent phase velocity fluctuates as a function
of distance from the source, and is averaged to a single value, as displayed Fig. 9. For comparison, the SASW-derived phase velocities are
also plotted for receiver pairs, one located at the offset and the other at the offset plus 1 m. From Fig. 10 we see good agreement between
our derived formula for the apparent phase velocity and that derived from SASW, however, further testing, both numerical and in the field,
is required to assess the practicality of using the SASW configuration for inversion of apparent phase velocity. Finally, for the numerical
validation, a rather ideal configuration of the synthetic array has been chosen, both in terms of receiver spacing as well as receiver array
length, merely to confirm the predictions for the explicit relation with the results from SASW and MASW methods. A complete analysis of
the parameters used for SASW and MASW computation of apparent phase velocity is outside the scope of this paper.

4 C O N C LU D I N G R E M A R K S

This paper illustrated the mathematical derivation of an explicit, analytical relation for the apparent phase velocity of Rayleigh waves
propagating in a vertically heterogeneous, isotropic, elastic half-space and generated by an oscillating, vertical point source applied at the
free surface of the ground. The derivation assumes that the wavefield is only composed of surface Rayleigh waves and thus it is valid in the
far-field approximation where the contribution of the body waves can be neglected. The relation has been obtained for both the vertical and
radial component of ground motion. Its practical implementation only requires knowledge of the modal wavenumbers (or alternatively the
phase velocities) and eigenfunctions, which constitute the solution of the Rayleigh-wave eigenproblem. Thus, its applicability is general and
independent of the particular algorithm used to calculate wavenumbers and eigenfunctions.

In a layered half-space, the apparent phase velocity results from the superposition of a finite number of modes of propagation of Rayleigh
waves, each traveling at a different phase velocity. It is a local quantity in the sense that, at a given frequency, its value varies continuously
with distance from source. The validation of the formulae to compute the apparent Rayleigh-wave phase velocity was carried out through
a series of numerical simulations of surface wave testing using both SASW and MASW array configurations. The analysis was performed
for three case studies corresponding to both normally dispersive and inversely dispersive soil profiles. The explicit relation for the apparent
phase velocity matches well the dispersion curves calculated from synthetic SASW and MASW surface wave data, thereby confirming the
correctness of the relation.
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A P P E N D I X A

Starting from eq. (2):

� [uβ (r, z, ω)
] = �
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]
. (A1)

This equation can be rewritten as

� [uβ (r, z, ω)
] = Uβ (r, z, ω) · sin
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ωt − ψβ (r, z, ω)

]
(A2)
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and
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. (A4)

Using simple algebra, the argument of the square-root term of eq. (A3) can be rewritten as(
M∑
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i
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+
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=
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. (A5)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/199/2/673/617858 by guest on 15 Septem

ber 2020



Apparent phase velocity of Rayleigh waves 685

Assuming eq. (A5) to be true for M = n, it suffices to prove that it is also true for n + 1:(
n+1∑
i=1

[Ai cos (νi )]

)2

+
(

n+1∑
i=1

[Ai sin (νi )]

)2

=
(

n∑
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[Ai cos (νi )]

)2

+ (An+1)2 cos2 (νn+1)

+ 2An+1

(
n∑

i=1

[Ai cos (νi )]

)
cos (νn+1)

+
(

n∑
i=1

[Ai sin (νi )]

)2

+ (An+1)2 sin2 (νn+1)

+ 2An+1

(
n∑

i=1

[Ai sin (νi )]

)
sin (νn+1). (A6)

In eq. (A6) for ease of notation, the subscript β has been dropped and the term kir + ϕβ has been replaced by the νi term. Eq. (A6) can
be written as

n∑
i=1

n∑
j=1

[
Ai A j

]
cos

[
νi − ν j )
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[
n∑
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]
, (A7)

which using simple trigonometry can be rewritten as
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A P P E N D I X B

Starting from eq. (8), namely

V̂β (r, z, ω) = ω[
∂ψβ (r,z,ω)

∂r

] . (B1)

Given the definition of ψβ as:
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and differentiating with respect to r, yields
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It is straightforward to show that � = 0: From eq. (10),[
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Differentiating with r yields
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Hence the numerator of � yields:
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With � = 0, eq. (B3) becomes:
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Finally, eq. (B1) becomes
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As shown in eq. (A5), an alternative representation for the numerator of eq. (B7) holds which is formally given by as a double summation.
To obtain eq. (9) it must be shown that:
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Using induction, assuming eq. (B8) is true for M = n, it suffices to prove that it is also true for n + 1:
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i=1

Ai cos(kir+ϕβ ) cos (kn+1r + ϕβ )

+
n∑

i=1

Ai cos (kir + ϕβ )
n∑

i=1

Ai ki cos (kir + ϕβ ) + (An+1)2 kn+1 sin2(kn+1 + ϕβ ) + An+1

n∑
i=1

Ai ki sin (kir + ϕβ ) sin (kn+1r + ϕβ )

+An+1kn+1

n∑
i=1

Ai sin (kir+ϕβ ) sin (kn+1r + ϕβ ) +
n∑

i=1

Ai sin (kir + ϕβ )
n∑

i=1

Ai ki sin (kir + ϕβ ). (B10)

By the assumption used in induction:

Sn+1 = A2
n+1kn+1 cos (kn+1 − kn+1) + An+1

n∑
i=1

Ai ki cos (ki − kn+1) + An+1kn+1

n∑
i=1

Ai cos (ki − kn+1)

+1

2

n∑
i=1

n∑
j=1

[
Ai A j (ki + k j ) cos (r [ki − k j ])

]
. (B11)
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It is remarked that:

S′
n+1 =

n+1∑
i=1

n+1∑
j=1

[
Ai A j ki cos (r [ki − k j ])

]

=
n+1∑
i=1

n∑
j=1

[
Ai A j ki cos (r [ki − k j ]) + Ai An+1ki cos (r [ki − kn+1])

]

=
n∑

i=1

n∑
j=1

[
Ai A j ki cos (r [ki − k j ])

]+ An+1

n∑
i=1

[Ai ki cos (r [ki − kn+1])]

+An+1kn+1

n∑
j=1

[
A j cos (r [k j − kn+1])

]+ A2
n+1kn+1 cos (kn+1 − kn+1). (B12)

Finally:

1

2

n+1∑
i=1

n+1∑
j=1

[
Ai A j (ki + k j ) cos (r [ki − k j ])

] = 1

2

n∑
i=1

n∑
j=1

[
Ai A j (ki + k j ) cos (r [ki − k j ])

]+ An+1

n∑
i=1

[Ai ki cos (r [ki − kn+1])]

+An+1kn+1

n∑
j=1

[
A j cos (r [k j − kn+1])

]+ A2
n+1kn+1 cos (kn+1 − kn+1) = Sn+1. (B13)
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