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ABSTRACT
We present a 3D semi-analytic model of self-gravitating discs, and include a prescrip-
tion for dust trapping in the disc spiral arms. Using Monte-Carlo radiative transfer
we produce synthetic ALMA observations of these discs. In doing so we demonstrate
that our model is capable of producing observational predictions, and able to model
real image data of potentially self-gravitating discs. For a disc to generate spiral struc-
ture that would be observable with ALMA requires that the disc’s dust mass budget
is dominated by millimetre and centimetre-sized grains. Discs in which grains have
grown to the grain fragmentation threshold may satisfy this criterion, thus we predict
that signatures of gravitational instability may be detectable in discs of lower mass
than has previously been suggested. For example, we find that discs with disc-to-star
mass ratios as low as 0.10 are capable of driving observable spiral arms. Substruc-
ture becomes challenging to detect in discs where no grain growth has occurred or in
which grain growth has proceeded well beyond the grain fragmentation threshold. We
demonstrate how we can use our model to retrieve information about dust trapping
and grain growth through multi-wavelength observations of discs, and using estimates
of the opacity spectral index. Applying our disc model to the Elias 27, WaOph 6 and
IM Lup systems we find gravitational instability to be a plausible explanation for the
observed substructure in all 3 discs, if sufficient grain growth has indeed occurred.

Key words: planets and satellites: formation – accretion, accretion discs – gravitation
– instabilities – (stars:) circumstellar matter – stars: formation

1 INTRODUCTION

Discs around very young stars are typically heavily em-
bedded and optically thick to optical wavelengths (Dun-
ham et al. 2014). They will, however, emit thermal infrared
(IR) radiation and may be resolved by high-resolution,
sub-mm observations with the Atacama Large Millime-
ter/submillimeter Array (ALMA). Thanks to recent obser-
vational advances, spiral substructure, characteristic of mas-
sive self-gravitating protoplanetary discs, is now within our

? E-mail: cadman@roe.ac.uk

observing capabilities. (Pérez et al. 2016; Andrews et al.
2018; Huang et al. 2018a).

Non-axisymmetric structure will manifest as spiral den-
sity perturbations when (Durisen et al. 2007),

Q =
csκ

πGΣ
. 1.5 − 1.7, (1)

where Q is the Toomre parameter (Toomre 1964), cs is the
disc sound speed, κ is the epicyclic frequency (equal to the
angular frequency, Ω, in a Keplerian disc), G is the gravita-
tional constant and Σ is the disc surface density.

From inspection of Q, it is clear that more massive discs
(higher Σ) will be susceptible to gravitational instabilities
(hereafter GI), and it is likely that in the earliest stages of a
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2 J. Cadman et al.

protoplanetary disc’s lifetime they may be massive enough
to generate prominent spiral structure (Lin & Pringle 1987,
1990; Rice et al. 2010). The mass accretion rate in these mas-
sive discs is likely to be high (Rice et al. 2010) and, hence,
once a disc is no longer being replenished by envelope infall,
it will be rapidly depleted. Consequently, unless the enve-
lope is optically thin at the relevant observing wavelengths,
signatures of GI will only be detectable for about 104 years
after accretion through the disc begins to dynamically dom-
inate over infall from the envelope (Hall et al. 2019).

The Disk Substructures at High Angular Resolution
Project (DSHARP) ALMA survey recently performed an in
depth analysis of 20 nearby protoplanetary discs, 3 of which
exhibit possible spiral substructure reminiscent of GI (Pérez
et al. 2016; Andrews et al. 2018; Huang et al. 2018b).

Non-axisymmetric disc features are not unique to GI,
and may be explained through alternative mechanisms such
as planet-disc interactions (Lin & Papaloizou 1986; Tanaka
et al. 2002). It may be possible to distinguish between planet
and GI induced spiral structure through scattered light vs.
sub-mm observations, as dust trapping in spiral regions is
likely to be more effective in gravitationally unstable discs
(Rice et al. 2004; Dong et al. 2015a; Juhász et al. 2015).

Spiral density perturbations in self-gravitating discs act
as pressure traps for dust grains, which will radially mi-
grate and concentrate at the pressure maxima (Rice et al.
2004). Due to the negative outward gas pressure gradient, in
a smooth, laminar disc, gas particles orbit with slightly sub-
Keplerian velocities compared to solids at the same radii.
Since the outward gas pressure gradient doesn’t directly in-
fluence the solids, this can produce a significant gas drag
on the faster orbiting dust grains, resulting in their radial
migration. Micron-sized grains, however, will typically be
strongly coupled to the gas, hence will orbit with the same,
sub-Keplerian velocities and will closely trace the gas distri-
bution. Metre-sized, and larger, objects will be largely de-
coupled and will orbit with approximately Keplerian veloci-
ties. Intermediate, ∼mm-sized grains will however experience
a large radial drift.

In smooth, laminar discs radial drift results in migration
toward the disc centre where gas pressure is maximum. How-
ever, the propagation of GI induced spiral density perturba-
tions will generate a non-axisymmetric pressure gradient, re-
sulting in significant concentration of mm-sized grains at the
peaks of the spiral density waves. This will have important
consequences; producing enhanced emission in these regions
as well as potentially accelerating planetesimal growth (Rice
et al. 2004, 2006). Dipierro et al. (2014, 2015) have previ-
ously shown that GI induced spiral structure should be de-
tectable with ALMA at moderate distances (d ∼ 140 pc), and
that dust migration as a result of self-gravitating disc struc-
ture will produce detectable signatures in their observed
spectral index maps.

In this paper we build on previous work by Hall et al.
(2016) who developed a semi-analytic formalism for deter-
mining the structure of self-gravitating protostellar discs,
performed 3D Monte Carlo radiative transfer on these mod-
els and produced synthetic disc images using the ALMA
simulator. We add to this by including a prescription for the
effects of dust grain enhancement in the spiral density waves.
These models allow us to produce a suite of discs at little
computational expense when compared to approaches such

as Smoothed Particle Hydrodynamics (SPH). Therefore, we
are able to efficiently explore a wide range of disc parameter
space and produce observational predictions for telescopes
such as ALMA.

In Sections 2 and 3 we present our disc model setup,
and describe the radiative transfer approach as well as how
we used the ALMA simulator in our analysis. In Section 4
we use SPH to model the extent to which we might expect
grains to be enhanced in self-gravitating discs, allowing us
to inform our semi-analytic prescription. In Section 5 we
discuss grain growth and the fragmentation threshold. In
Section 6 we discuss our disc parameter setup and in Section
7 we apply our disc models to discs comparable to those
in the Taurus star-forming region, presenting observational
predictions for observing self-gravitating discs at distance
∼ 140 pc. In Section 8 we apply our models to three discs
from the DSHARP survey, analysing whether or not their
observed substructure may be the result of self-gravity. In
Section 9 we discuss and draw conclusions.

2 DISC MODELS: SETUP

We setup our discs using the 1D models introduced by
Clarke (2009) (see also Rice & Armitage 2009; Forgan &
Rice 2013) and further developed by Hall et al. (2016) to in-
clude 3D structure such as the spiral density waves charac-
teristic of self-gravitating discs. These models are described
in detail in Hall et al. (2016) and summarised in Section 2.1.
We refer the reader to Hall et al. (2016) for a comparison
of this simple functional formailsm’s ability to accurately
reproduce self-gravitating spiral shape and amplitudes from
SPH simulations. Dust grain enhancement is imposed semi-
analytically, in line with what we might expect from spiral
density structure in self-gravitating discs, and is described
in Section 2.2.

2.1 Self-gravitating Disc Models

We expect an accretion disc to settle into a quasi-steady
state (Paczynski 1978; Gammie 2001; Rice & Armitage
2009) with a constant mass accretion rate, ÛM, given by
(Pringle 1981),

ÛM =
3παc2

sΣ

Ω
= constant, (2)

where cs is the local sound speed, Σ is the disc surface den-
sity, α is the dimensionless viscosity parameter (Shakura &
Sunyaev 1973), and Ω is the Keplerian angular frequency.
Strictly speaking, a self-gravitating disc is not actually vis-
cous, but the stresses can still be represented by an effective
viscous-α parameter (Balbus & Papaloizou 1999; Gammie
2001; Lodato & Rice 2004). Assuming local angular momen-
tum transport, and that the disc is in thermal equilibrium,
this can be expressed as (Gammie 2001),

α =
4

9γ(γ − 1)tcoolΩ
, (3)

where γ is the ratio of specific heats and tcool is the local
cooling timescale.

Cooling is modelled in terms of a local cooling rate, Λ.
In the presence of external irradiation that we express as a
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temperature, Tirr, the local cooling rate can be expressed as
(Hubeny 1990),

Λ =
8σ(T4 − T4

irr)
3τ

, (4)

where σ is the Stefan-Boltzmann constant, T is the midplane
disc temperature and τ represents the optical depth. For all
the models considered here we assume that irradiation leads
to a constant background temperature, Tirr = 10 K. The local
cooling timescale is then the thermal energy per unit area
divided by this cooling rate, which we can write as,

tcool =
1
Λ

c2
sΣ

γ(γ − 1) . (5)

Disc instability is characterised by the Toomre Q pa-
rameter (equation 1, Toomre 1964) where a disc will be
susceptible to non-axisymmetric perurbations when Q <

1.5 − 1.7 (Durisen et al. 2007). Here we assume the disc to
be marginally unstable with Q = 2 at all radii. We can then
use equations 1, 2, 3 and 5 to self-consistently determine
values for α, Σ and cs. This then allows for calculation of
the local scale height, H = cs/Ω, and the midplane volume
density, ρ = Σ/2H. Values for T , γ and the local optical
depth, τ = Σκ(ρ, cs), are determined from ρ and cs using the
equation of state from Stamatellos et al. (2007). Tempera-
ture and surface density profiles are thus determined self-
consistently in these discs, as for any given ÛM and disc size
there is only one possible combination of T and Σ that will
satisfy equations 2−5. In this way we are able to construct
3D axisymmetric discs for any desired ÛM and disc size.

We then impose spiral density structure as described
in Hall et al. (2016). This is done by assuming logarithmic
spirals with azimuthal position,

θspiral =
1
b

log
( r

a

)
, (6)

where a and b are constants defining the shape of the spirals.
Here we use a = 13.5 and b = 0.38, in line with that used in
Hall et al. (2016).

At each azimuthal location in the disc, θx,y, we calcu-
late a fractional over-density, δΣ/Σ, characterised by a spiral
amplification factor, S, such that (Cossins et al. 2009),

〈δΣ〉
〈Σ〉 = Sα1/2, (7)

where here we define S = 2, and α is the effective viscous
alpha from Equation 3 which is determined self-consistently.

This fractional over-density is imposed sinusoidally at
each azimuthal location in the disc, θx,y such that,

δΣ(φ) = 〈δΣ〉cos(mφ). (8)

Here, m is the azimuthal wavenumber (i.e. the number of
spiral arms) and φ is the phase difference between the loca-
tion of the spiral arms and each azimuthal position in the
disc,

φ = θspiral − θx,y. (9)

We expect that the azimuthal wavenumber will be roughly
related to the disc-to-star mass ratio, q, as (Cossins et al.
2009; Dong et al. 2015b),

m ≈ 1/q. (10)

We use this in equation 8 to impose an azimuthal wavenum-
ber in a disc of mass-ratio, q, assuming a symmetrical re-
sponse (with m = 2, 4, 8...) and rounding m to the nearest
appropriate value.

Finally, we model the vertical density profile of the disc
as (Spitzer 1942),

ρ(z) = ρ0

[
1

cosh2
(

z
Hsg

) ]
, (11)

where Hsg is the self-gravitating scale height given as,

Hsg =
c2
s

πGΣ
. (12)

2.2 Grain Concentration

In the presence of spiral density waves, dust grains will radi-
ally migrate and concentrate at their density maxima (Rice
et al. 2004). The extent of this radial migration will be
strongly dependent on grain size, a. Small grains of ∼ µm
scale will be strongly coupled to the gas in the disc, will
experience very little radial drift and will closely trace the
gas distribution. The largest particles of ∼ m scale will be
decoupled and will be unaffected by the disc gas pressure,
therefore orbiting with approximately Keplerian velocities.

For intermediate-sized dust grains of ∼ mm − cm scale,
the impact of the gas drag will be significant. Radial drift
velocities will be large and, hence, grain concentration at
spiral pressure maxima will be high. The gas-dust coupling
is characterised by the Stokes number,

St =
aρsΩ

ρcs
, (13)

where ρs is the internal density of the dust grains and ρ is
the local gas density.

The solution of the momentum equation suggests that
the radial drift velocity has a 1/(St+ St−1) relation (Weiden-
schilling 1977). We therefore propose a grain enhancement
factor of the form,

ηi = 1 +
2d

Sti + St−1
i

− Sti
200

, (14)

where d is a constant, to be determined later, that represents
the peak dust concentration factor in spirals. Here, ηi is
defined as the local grain enhancement factor relative to the
mean dust-to-gas ratio in the disc for the ith grain size. The
local dust surface density for the ith grain size, Σd,i , will then
be enhanced as,

Σd,i = 〈εi〉(Σ0 + ηiδΣ), (15)

where 〈εi〉 is the average dust-to-gas ratio for each grain size
in the disc. Here we use the canonical value of 〈ε〉 = 0.01 to
represent the total dust-to-gas ratio over all grain sizes.

Particles with Sti � 1 will be strongly coupled to the
gas, experience minimal radial drift and will therefore have
ηi ≈ 1. The dust surface density will exactly trace the gas
distribution in this case, with Σd,i = 〈εi〉(Σ0+δΣ). Large solids
with Sti � 1 will be entirely decoupled from the gas and will
have constant surface density across the disc, with ηi ≈ 0 and
Σd,i = 〈εi〉Σ0. Note that we set a lower limit of ηi = 0 here.
Intermediate sized grains with Sti ≈ 1 will generate peak
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enhancement factors of ηi ≈ 1+d, and therefore dust surface
densities, Σd,i = 〈εi〉(Σ0 + (1 + d)δΣ).

In Equation 8, regions coincident with the spiral peaks,
where mφ = 0◦, will experience maximum enhancement by a
factor Σ0+ηi 〈δΣ〉, as δΣ = 〈δΣ〉 in these regions. Dust surface
density in inter-arm regions, where mφ = 180◦, will equally
be depleted by a factor Σ0 − ηi 〈δΣ〉, as δΣ = −〈δΣ〉 here.

To avoid Σd,i becoming negative in inter-arm regions,
we employ a correction factor,

Σd,i,corr =

{
ηi 〈δΣ〉 − Σ0, if Σ0 + ηiδΣ < 0
0, otherwise.

(16)

Thus our resultant dust surface density becomes,

Σd,i =
〈εi〉(Σ0 + ηiδΣ + Σd,i,corr)Σ0

Σ0 + Σd,i,corr
. (17)

This ensures Σd > 0 by increasing our dust distribution
by a factor Σd,i,corr in cases where Σ0 + ηiδΣ < 0. The de-
nominator is a normalisation which ensures our mean dust
surface density remains unchanged by Σd,i,corr, thus ensuring
mass conservation.

2.3 Monte Carlo Radiative Transfer: torus

Our disc is constructed within a mesh of grid cells, where
initially we begin with a parent cell centred on the disc cen-
tre. We repeatedly subdivide parent cells into 2D child cells
based on some mass resolution criteria, where D is the di-
mensions of our domain (3 dimensional here). If the mass in
a cell exceeds 1×10−4 M� then we further subdivide each cell
into 2D child cells such that child cells then become parent
cells. This continues until the mass in each cell is less than
or equal to our mass resolution criteria.

The dust temperatures are then calculated using the
torus radiation transfer code (Harries et al. 2019). Radia-
tive equilibrium is calculated using the Monte Carlo tech-
nique originally described in Lucy (1999). Our discs are il-
luminated by a central star, whose radiation field is here
represented by 109 photon packets. These photon packets
are emitted from the star isotropically and proceed to un-
dergo a random walk through the grid, experiencing both
absorption and scattering, until they escape the computa-
tional domain and the dust temperatures can be calculated
assuming radiative equilibrium. Another cycle of 109 photon
packets are then emitted, now with these updated tempera-
tures, until the dust temperatures are found to converge and
continuum images can be produced.

3 ALMA SIMULATIONS: CASA

The output continuum images from torus are then used
as inputs to the ALMA simulator in the Common Astron-
omy Software Application (casa) package (version 5.1) (Mc-
Mullin et al. 2007) to produce realistic synthetic ALMA im-
ages from our disc models. We use ALMA cycle 7 array con-
figurations to produce these images, exploring various array
sizes and resolutions in order to find optimal configurations
for each observing frequency.

We apply unsharp image masking (Malin 1977) to gen-
erate residual images from our synthetic observations by
subtracting a smoothed radial profile of the image flux from

itself. This technique highlights any non-axisymmetric fea-
tures in our images, specifically spiral arms, by reducing the
image flux range without reducing its dynamical range. We
subtract a 2D Gaussian profile of FWHM closely matched
to the beam size of our simulated images (we use 0.05”x0.05”
here), and scaled with the peak image flux.

4 SPH MODELS: DETERMINING PEAK
GRAIN ENHANCEMENT

Our semi-analytic prescription of dust trapping in Equation
14 requires that we determine the expected peak dust con-
centration factor, d, in disc spiral arms. To do this we employ
the 3D SPH code phantom (Price et al. 2018) to numeri-
cally model the behaviour of dust particles in self-gravitating
discs.

We set up three sets of discs with mass ratios q = 0.2,
0.3 and 0.4 around a central star of mass M∗ = 1 M�. Each
disc has initial inner and outer radii Rin = 1 AU and Rout =
100 AU, and are set up with initial surface density profiles
Σ ∝ R−1.5 and initial temperature profiles T ∝ R−0.5. We use
artificial viscosity terms αSPH = 0.1 and βSPH = 0.2. Cooling
is modelled using the radiative transfer method introduced
in Stamatellos et al. (2007).

We use 500,000 SPH particles to represent the disc gas
and we initially evolve the discs for 5 outer orbital periods
with the gas only. We then inject a population of 125,000
dust SPH particles and allow the discs to evolve for a fur-
ther orbital period. The final states of the gas-only discs are
shown in Figure 1. For each set of discs we run 20 sepa-
rate simulations for 20 different grain sizes distributed log-
normally between 0.1 µm and 200 cm. To minimise compu-
tational expense, we neglect the self-gravity of these dust
particles and treat them as test particles only.

Dust-gas mixtures are modelled using two evolution
models; the two-fluid method where the dust and gas are
represented by two distinct particle populations coupled by a
drag term (Laibe & Price 2012a,b), and the one-fluid method
where the mixture is represented by gas particles only and
the grain fraction is evolved along with the gas density for
each particle (Price & Laibe 2015). The one-fluid method is
implemented for smaller particle sizes at which the termi-
nal velocity approximation is valid (i.e. when the stopping
time is shorter than the computational timestep, see Youdin
& Goodman 2005), thus it is not appropriate for modelling
larger grains. We find an appropriate grain size boundary at
which to switch between these two methods at a ≈ 2 mm,
therefore modelling all discs with a ≤ 2 mm using the one-
fluid method, and discs with a > 2 mm using the two-fluid
method.

After evolving the dusty discs for a further orbital pe-
riod, peak dust-to-gas ratios are determined by taking a ra-
dial slice of the disc, of azimuthal width 5◦, and fitting a
Gaussian distribution to the dust mass fraction at the spiral
location. A demonstration of this is shown in Figure 2; we fit
curves to a radial slice of the q = 0.4 disc, where the spiral is
located at ≈ 60−70 AU. In Figure 3 we fit log-normal curves
to the best-fit dust-to-gas ratio peaks from the q = 0.3 and
q = 0.4 discs. We exclude the q = 0.2 disc from the remain-
der of this analysis as only weak spiral structure develops,
therefore we observe only moderate grain enhancement.

MNRAS 000, 000–000 (2020)
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Figure 1. Surface density structure of self-gravitating SPH discs with Rout = 100 AU after evolving for 5 outer orbital periods (t =

31420 yrs). Discs are constructed with 500,000 SPH gas particles and have mass ratios q = 0.2, 0.3, 0.4 from left to right.
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Figure 2. Gaussian fits to the dust-to-gas mass ratios taken from

a radial slice of the q = 0.4 disc, setup as described in Section 4.
We plot how the dust-to-gas ratios vary for grain sizes a = 20 mm,

50 mm, 100 mm, 200 mm, 400 mm and 2000 mm. Grains sizes a ≈
200 − 500 mm become highly concentrated reaching peak dust-to-
gas ratios ε ≈ 0.07 here.

Grain enhancement generally increases with increasing
disc mass, primarily due to stronger spiral structure as we in-
crease the disc-to-star mass ratio. This results in larger den-
sity gradients, greater radial drift velocities, and stronger
concentration of grains. It is possible that grain concen-
tration may continue to increase with increasing disc mass
above q = 0.4. However, for mass ratios q & 0.5 discs become
susceptible to fragmentation for the stellar mass considered
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Figure 3. Best-fit dust-to-gas ratios in SPH discs with mass ra-

tios q = 0.3, 0.4 and Rout = 100 AU. Each disc consists of 500,000
gas particles, 125,000 dust particles and has been allowed to

evolve for 6 outer orbital periods (t = 37700yrs). We show the

points with 1σ error bars obtained from their best-fit values. Log-
normal curves are fitted to the data.

here. This will act to disrupt any spiral arm structure thus
limiting grain concentration. We therefore only model disc
masses up to q = 0.4.

Grains become most concentrated for sizes a ≈ 200 −
500 mm, with peak dust-to-gas ratios ε ≈ 0.06 and ε ≈ 0.07
in the q = 0.3 and q = 0.4 discs respectively, giving values of
d ≈ 5 and d ≈ 6 for equation 14. For the discs generated in
Section 6, with disc masses q . 0.3, we assume a maximum
value of d = 5 in our models.

5 GRAIN GROWTH AND THE
FRAGMENTATION THRESHOLD

Appropriate grain size distributions for the equations in Sec-
tion 2 can be obtained using models of grain growth in
protoplanetary discs. Grain growth proceeds through steady
coagulation and accumulation during grain-grain collisions
(Testi et al. 2014). The tendency for grains to stick together

MNRAS 000, 000–000 (2020)
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and grow during these collisions will depend on their colli-
sional velocities. Particles with St < 1 (i.e. smaller grains)
have smaller relative azimuthal velocities, hence when they
collide they will likely coalesce in a so-called hit-and-stick
process (Chokshi et al. 1993; Dominik & Tielens 1997).

Larger particles will have higher relative azimuthal ve-
locities, reaching a constant maximum value for St ≥ 1.
Kothe et al. (2013) find a power-law mass dependence for the
affinity of solids, vth ∝ m−3/4, with less massive solids having
a greater threshold velocity for sticking. As particles grow,
their impact velocities will increase accordingly and colli-
sions will result in particles either bouncing off each other,
compacting their densities in the process (Güttler et al. 2010;
Zsom et al. 2010), or shattering into several smaller frag-
ments. These two growth barriers, known as the bouncing
barrier and the fragmentation threshold respectively, may
consequently limit the maximum size to which grains are
able to grow through collisional accumulation, therefore lim-
iting our value of amax.

The particle size at which the bouncing barrier is
reached will depend on a number of factors such as particle
porosity, density and material, and is therefore non-trivial to
calculate analytically. Instead, we reason that the wealth of
smaller, micron-sized solids dominating the dust-mass bud-
get in discs (see Williams & Cieza 2011) requires regular
replenishment through a cycle of growth and fragmentation,
as otherwise these smaller grain sizes would quickly be de-
pleted as they grow (Dullemond & Dominik 2008; Brauer
et al. 2008; Birnstiel et al. 2011). This indicates that parti-
cles are able to grow to at least as large as the fragmentation
threshold, and we therefore use this to define amax in our
models.

The fragmentation threshold velocity, vfrag, is the max-
imum relative velocity that particles can withstand before
collisions result in shattering. Relative azimuthal velocities
scale with Stokes number, and for large Stokes’ numbers par-
ticle’s relative velocities will be dominated by turbulence.
We can therefore calculate a maximum, threshold Stokes
number for particles as (Birnstiel et al. 2010, 2012),

Stmax ∝
v2

frag

αc2
s
, (18)

giving a maximum grain size of (Dipierro et al. 2015),

amax =
4〈Σg〉
3παρs

v2
frag

〈cs〉2
, (19)

where we use the azimuthally averaged gas surface density,
〈Σg〉, and sound speed, 〈cs〉, as spiral features are short lived
and grain growth timescales typically exceed these. We can
estimate the viscous−α here by assuming that in a quasi-
steady, self-gravitating disc dominated by turbulent motion,
the viscous stress will saturate at a maximum value α = 0.06
(Rice et al. 2005), therefore defining the limiting maximum
grain size.

We use this to set our value of amax in our disc models
assuming two cases of vfrag = 10 ms−1 and vfrag = 30 ms−1.
The mid-plane distributions of afrag are plotted in Figures
4 and 5 for discs of outer radius, Rout = 100 AU, and mass
accretion rates ranging from ÛM = 1 × 10−8 M� yr−1 to ÛM =
1 × 10−6 M� yr−1.

The fragmentation threshold decreases with increasing

Figure 4. Radial distribution of the fragmentation threshold
from Equation 19 for mass accretion rates ÛM = 1 × 10−6 M� yr−1,

5 × 10−7 M� yr−1, 1 × 10−7 M� yr−1, 5 × 10−8 M� yr−1 and 1 ×
10−8 M� yr−1, and where vfrag = 10 ms−1.

Figure 5. Radial distribution of the fragmentation threshold
from Equation 19 for mass accretion rates ÛM = 1 × 10−6 M� yr−1,

5 × 10−7 M� yr−1, 1 × 10−7 M� yr−1, 5 × 10−8 M� yr−1 and 1 ×
10−8 M� yr−1, and where vfrag = 30 ms−1.

ÛM (i.e. with increasing disc mass), and becomes smallest in
the outer disc where afrag is comparable for all disc masses.

In the most massive discs when vfrag = 10 ms−1, grains can
only grow to ∼mm sizes before collisions become destructive,
with this maximum grain size in the inner disc decreasing
by a factor of ∼ 5 as we increase the disc mass from q = 0.1
to q = 0.31. For the higher threshold of vfrag = 30 ms−1 the

value of afrag increases by a factor v2
frag for all disc masses (a

factor 9), and grains can grow to amax ∼ cm sizes here.

6 DISC MODELS: PARAMETERS

With the additional information from Sections 4 and 5, it
is now possible to use our models to efficiently predict for
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ÛM
(M�yr−1)

Mdisc/M∗ m

(1) (2) (3)

1 × 10−6 0.31 4

5 × 10−7 0.25 4

2.81 × 10−7 0.22 4

1.58 × 10−7 0.19 4

1 × 10−7 0.16 8

5 × 10−8 0.14 8

2.81 × 10−8 0.12 8

1.58 × 10−8 0.11 8

1 × 10−8 0.10 8

Table 1. (1) Mass accretion rates used for the discs setup in
Section 6 and analysed in Section 7. (2) Calculated disc-to-star

mass ratios. (3) Number of input spiral modes for each disc.

which disc parameters we expect self-gravitating disc sub-
structure to be observable with ALMA. We setup discs as
described in Section 2 exploring a range of parameter space
in disc masses, grain sizes and observing frequencies.

Our central star is modelled with M∗ = 1 M�, R∗ =
2.325 R� and Teff = 4350 K. We assume a canonical dust-to-
gas ratio of 0.01, and represent our grains as Draine & Lee
(1984) silicates with size distribution,

n(a) ∝ a−q, (20)

distributed between minimum and maximum grain sizes amin
and amax, and assume q = qism = 3.5 (Mathis et al. 1977). We
set here amin = 0.1 µm and vary the value of amax to represent
different stages of grain growth, using values amax = 10 µm
(minimal grain growth), 1 mm, 10 cm, 100 cm, afrag,10ms−1

and afrag,30ms−1 (the grain fragmentation thresholds as de-
scribed in Section 5). We use 50 dust grain sizes distributed
logarithmically between 0.1 µm and 2 × 106 µm, and set the
grain fraction for any grain size greater than amax in each
case to be zero.

We generate discs with 9 different mass accretion rates
(equation 2), where an increase in ÛM roughly corresponds to
an increase in disc mass. We use values of ÛM = [1× 10−6, 5×
10−7, 2.81×10−7, 1.58×10−7, 1×10−7, 5×10−8, 2.81×10−8, 1.58×
10−8, 1×10−8]M�yr−1, which correspond to disc-to-star mass
ratios, q ≈ 0.31, 0.25, 0.22, 0.19, 0.16, 0.14, 0.12, 0.11 and 0.10
respectively. Using the relation between mass ratio and the
number of spiral modes in equation 10, and assuming a sym-
metrical response where we have an even number of modes,
each of these discs are set up with m = 4 and m = 8 for the
more massive and less massive cases respectively. A sum-
mary of these disc setups is laid out in Table 1.

Continuum images of these discs are generated
for observing frequencies 115 GHz (λ = 2.6 mm), 230 GHz
(λ = 1.3 mm) and 690 GHz (λ = 0.4 mm), corresponding to
ALMA observing bands 3, 6 and 9 respectively. We consider
discs at a distance of 140pc, comparable to those in the
Taurus star forming region. Example torus output images
produced in this way are shown in Figure 6 for discs with
amax = 1 mm and accretion rates from Table 1.

We then use these continuum disc images as inputs to
the casa tasks simobserve and simanalyze and gener-
ate synthetic ALMA observations. Observing times, antenna
configurations and PWV values used as inputs to casa are

fobs tobs Antenna Config PWV Level

(1) (2) (3) (4)

115 GHz 1800 s alma.cycle7.8 5.186 mm

230 GHz 1800 s alma.cycle7.8 1.796 mm

690 GHz 1800 s alma.cycle7.6 0.472 mm

Table 2. Input parameters used here for generating synthetic

images with casa. (1) ALMA observing frequency. (2) Simulated

observing time. (3) ALMA antenna configuration used. (4) Pre-
cipitable Water Vapour (PWV) level.

laid out in Table 2. Unsharp image masking is applied to
these synthetic observations in order to highlight any non-
axisymmetric disc features present, as described in Section 3.
We demonstrate the process of generating synthetic ALMA
observations and then unsharp masked residual images from
torus continuum profiles in Figure 7.

7 DISC MODELS: RESULTS

Our focus here is to analyse the parameter space in
which self-gravitating disc structure may be observable with
ALMA. We present our results in this section considering
the effects of varying disc mass, grain size distribution and
observing frequency on our ability to distinguish spiral struc-
ture in our disc model. Galleries of unsharp masked synthetic
disc images where we explore this parameter space can be
found in Appendix A.

7.1 Analysing the impact of grain enhancement

We begin this section by first demonstrating the impact of
grain enhacement on observability. We showed in Section 4
that dust trapping of ∼cm sized grains significantly enhances
dust-to-gas ratios in spiral arm regions, therefore equally
acting to remove dust from interarm regions. Spiral struc-
ture consequently becomes sharper and more distinct, pro-
ducing higher flux ratios between arm and interarm regions
due to enhanced and depleted emission at these locations
respectively.

We illustrate our grain enhancement prescription in Fig-
ure 8 by plotting how dust-to-gas ratio varies across our disc
model for grains with sizes of a = 10 µm, 1 mm and 10 cm,
in a disc with ÛM = 1 × 10−6 M�yr−1, Rout = 100 AU and
grain size distribution n(a) ∝ a−3.5 with amin = 0.1µm and
amax = 100 cm. Grains of a = 10µm with St � 1 exactly trace
the gas distribution and display an entirely uniform dust-to-
gas ratio across the disc. The Stokes number, and therefore
also grain concentration factor, η, scales with grain size up
to St = 1. As we consider larger grain sizes up to a = 10 cm,
grains become enhanced in the spirals arms and clear non-
axisymmetric dust-to-gas ratios start to emerge.

It is useful here to quantify observability of spiral struc-
ture in terms of the ratio of the RMS fluxes in the disc arm
and interarm regions (i.e. FRMS,arm/FRMS,iarm). Arm and in-
terarm regions in our resultant disc images can be located
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8 J. Cadman et al.

Figure 6. torus disc continuum images at 230GHz (λ = 1.3 mm). Discs are set up with Rout = 100 AU, grain size distributions

n(a) ∝ a−3.5 with amin = 0.1 µm and amax = 1 mm, and mass accretion rates (from left to right) Top: ÛM = 1×10−6 M� yr−1, 5×10−7 M� yr−1,
2.81 × 10−7 M� yr−1. Middle: 1.58 × 10−7 M� yr−1, 1 × 10−7 M� yr−1, 5 × 10−8 M� yr−1. Bottom: 2.81 × 10−8 M� yr−1, 1.58 × 10−8 M� yr−1,

1 × 10−8 M� yr−1.

using equation 6, and we calculate the RMS fluxes between
radii 70 − 100 AU where we find spiral structure to be most
prominent. In Figure 9 we plot how these flux ratios vary
with mass accretion rate, and show comparison plots for
models that do not include dust grain enhancement in Fig-
ure 10. Flux ratios are calculated using the synthetic ALMA
observations prior to unsharp masking. Example like-for-like
unsharp masked disc images are also included for reference
in Figure 11.

For the same disc parameters we calculate considerably
higher flux ratios when including dust trapping in our model,
most notably when the dust mass budget is dominated
by millimetre/centimetre grains (i.e. when amax =mm−cm
sizes). Previously blurred arm and interarm regions become

distinct as millimetre emission is concentrated in the spi-
ral peaks. The key implication here is that with grain en-
hancement generating stronger spiral structure for the same
mass discs, we should expect to detect self-gravitating disc
structure for lower disc masses than previously predicted, if
sufficient grain growth has occurred. In discs with no grain
growth, or in which grains have grown well beyond centime-
tre sizes, the lack of dust mass in millimetre/centimetre ag-
gregates becomes detrimental to the observability of disc
substructure.

Given the short potential lifetime of a disc’s self-
gravitating phase its important to note how fast grains can
actually grow, and thus what likely maximum grain size
would be present in young, self-gravitating discs. Models of

MNRAS 000, 000–000 (2020)



Observing Dust Trapping in SG Discs 9

Figure 7. Demonstration of the process generating unsharp masked disc images from torus radiation transfer continuum profiles. Left:

Output continuum disc image from torus. Middle: Synthetic ALMA observation using casa. Right: Unsharp masked residual image.
Discs have properties ÛM = 5× 10−7 M�yr−1, Rout = 100 AU, amax = 1 mm and are observed at fobs = 115 GHz (λ = 2.6 mm) with observation

exposure time, array configuration and PWV level laid out in Table 2.

Figure 8. Plotted are the dust-to-gas ratios for individual grain species of different sizes in a disc with ÛM = 1×10−6 M�yr−1, Rout = 100 AU

and grain size distribution n(a) ∝ a−3.5 with amin = 0.1µm and amax = 100 cm. We plot the distributions for grains of sizes a = 10µm (Left),

a = 1 mm (Middle) and a = 10 cm (Right). We demonstrate the impact of our grain enhancement prescription outlined in Section 2.2 as
∼cm sized grains become highly concentrated in the disc spiral arms. Note that the colourbars are scaled to the maximum dust-to-gas

mass ratio in each respective grain size bin, εi,max.
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Figure 9. Ratios of RMS fluxes in spiral arm regions to RMS fluxes in interarm regions (FRMS,arm/FRMS, iarm) plotted against mass
accretion rate, log10( ÛM), for the discs modelled in Section 6 and presented in Appendix A. These plots are generated using the synthetic

ALMA observations prior to performing unsharp image masking.
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Figure 10. Ratios of RMS fluxes in spiral arm regions to RMS fluxes in interarm regions (FRMS,arm/FRMS, iarm) plotted against mass

accretion rate, log10( ÛM), for the discs modelled in Section 6. Here we do not account for grain enhancement in spiral arm regions, therefore
reducing the prominence of spiral structure in discs compared to their counterparts in Figure 9. These plots are generated using the

synthetic ALMA observations prior to performing unsharp image masking.

Figure 11. Unsharp masked disc images for ÛM = 1×10−6 M� yr−1

and amax = vfrag,30ms−1 , observed at frequencies Top: 115 GHz (λ =
2.6 mm), Middle: 230 GHz (λ = 1.3 mm) and Bottom: 690 GHz

(λ = 0.4 mm). We compare like for like disc models with our pre-

scription for grain enhancement included (right column) and not
included (left column) in the disc models.

grain growth predict that millimetre and centimetre-sized
grains form rapidly on timescales . 105 yrs (Dullemond &
Dominik 2005; Laibe et al. 2008). It therefore seems rea-
sonable to expect grains to have grown to at least as large
as the fragmentation threshold before the end of a disc’s
self-gravitating phase, and that enhanced emission in spiral
regions from these larger grains may be significant.

Multi-wavelength observations of discs allow us to probe
grain growth and dust trapping through calculation of the

disc opacity spectral index, β (Dipierro et al. 2015). In
the Rayleigh-Jeans limit of an optically thin disc the dust
opacity at sub-mm wavelengths will approximately scale as
κ ∝ νβ , where for interstellar dust grains βism ≈ 1.7. Obser-
vations of discs show βdisc < βism (e.g. Testi et al. 2003;
Ricci et al. 2010) which can be naturally accounted for
by the presence of larger grains in the disc and therefore
grain growth (Draine 2006). In Figure 12 we calculate the
β-parameter from our synthetic ALMA observations, con-
sidering fluxes ν1 = 460 GHz and ν2 = 100 GHz, and discs
with ÛM = 5× 10−7 M�yr−1 and amax = 1 mm and 10 cm. The
pixelwise β can be calculated as,

β =
lnF1 − lnF2
lnν1 − lnν2

− 2, (21)

where F1 and F2 are the pixelwise fluxes at frequencies ν1 and
ν2 respectively. Spiral regions display the lowest β values due
to dust trapping of larger grains, whilst depletion of these
same grains in inter-spiral regions produces comparatively
higher β values. Inner disc regions are optically thick and
consequently also display low β values. We calculate mean
β-values 1.197 and 0.525 for amax = 1 mm and amax = 10 cm
respectively, where the higher β value is consequence of less
grain growth in the amax = 1 mm disc. Note that both of
these discs display βdisc < βism.

Through calculation of the β−parameter in our disc
model we therefore demonstrate how it is possible to retrieve
information about the underlying grain distribution in discs,
and how our model may be used to probe grain properties
in discs which have been observed at multiple wavelengths.

7.2 Observing self-gravitating discs in Taurus

We now wish to make observational predictions of self-
gravitating discs, considering those at a distance d ∼ 140 pc
comparable to the Taurus star-forming region. We setup a
suite of discs as described in Section 6 and refer the reader
to the unsharp masked disc images presented in Appendix
A for this discussion.

Spiral amplitude in our models increases as δΣ/Σ ∝
α−1/2 (equation 7), hence is an increasing function of ac-
cretion rate (see equation 2). This is illustrated in Figure
13 for discs with amax = 1 mm observed at fobs = 115 GHz.
Low ÛM discs generally exhibit no observable substructure
for any grain size distribution, whilst the most massive discs
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Figure 12. Pixelwise opacity spectral index, β, derived from synthetic observations of discs with ÛM = 5 × 10−7 M�yr−1 and grain size
distributions n(a) ∝ a−3.5 where amax = 1 mm (Left) and amax = 10 cm (Right).

tend to be capable of generating detectable spirals at all fre-
quencies considered here. This does however depend on how
much grain growth has occurred, as we require that the dust
mass budget is dominated by millimetre/centimetre grains
(amax = mm − cm sizes) if we are to resolve any spirals.

Dust emissivity peaks for λ ≈ 2πa (Armitage 2009),
therefore emission from millimetre grains will peak at
≈millimetre wavelengths. The corresponding wavelengths to
the observing frequencies considered here are 2.6mm, 1.3mm
and 0.4mm for frequencies of 115GHz, 230GHz and 690GHz
respectively. When the dust mass budget is dominated by
micron grains or metre-sized objects (i.e. amax = 10 µm or
amax = 100 cm) disc substructure becomes invisible at the
ALMA bands considered here as the arm-interarm con-
trast is low. We illustrate this in Figure 14 which shows
how emission from spiral regions varies with grain size dis-
tribution in discs with ÛM = 5 × 10−7 M�yr−1 observed at
fobs = 115 GHz. Substructure only becomes recognisable in
discs with unfavourable grain size distributions when we ob-
serve at shorter wavelengths ( fobs = 690 GHz, λ = 0.4 mm),
but only in the most highly accreting cases.

Without including dust trapping in their model, Hall
et al. (2016) previously found a narrow region of parameter
space within which self-gravitating discs would display spi-
rals observable with ALMA. They predicted a 100 AU disc
must be accreting in the range 1 × 10−7 M�yr−1 . ÛM .
1 × 10−6 M�yr−1, where the maximum accretion rate here is
set by the limit at which discs become susceptible to frag-
mentation. We suggest that in fact spiral emission may be
distinct for lower accretion rates than previously predicted,
if sufficient grain growth has occurred. The discs in Figures
A2 and A3 observed at 230 GHz and 690 GHz respectively
continue to display detectable spiral structure down to the
lowest ÛM considered here, as long as the dust mass budget
is dominated by millimetre/centimetre grains. Note however
that we are observing these discs face-on and therefore in
favourable conditions for resolving spiral features. Inclining
and rotating these discs may well obscure them. However,
we would still expect to be able to detect spirals to lower ÛM
than previously suggested.

It is also intriguing that we calculate the fragmentation
threshold to fall almost exactly coincident with the ideal
amax values for detecting spirals (see Figures 4 and 5). We

should therefore not be surprised if we find that in fact the
grain size distributions of self-gravitating discs fall within
this ideal region of parameter space.

8 ANALYSING DISCS FROM THE DSHARP
SAMPLE

We now turn our model to analysing real observational data
of potential self-gravitating discs. The recent DSHARP sur-
vey studied 20 nearby protoplanetary discs using ALMA,
with 3 of these discs exhibiting spiral substructure (Andrews
et al. 2018; Huang et al. 2018b). The ALMA continuum im-
ages from this survey of the Elias 27, WaOph 6 and IM Lup
discs are shown in Figure 15.

We use our models to investigate if the observed sub-
structure in these 3 systems can be explained through the
gravitational instability, or if instead they require an alter-
native explanation.

Although well within the capability of our models, a
complete examination of the potential parameter space of
these discs is beyond the scope of the work presented here.
Instead, we simply model these 3 systems using the disc pa-
rameters derived in Andrews et al. (2018) and Huang et al.
(2018b), and make predictions as to whether we should ex-
pect these systems to produce self-gravitating spiral sub-
structure observable with ALMA. The disc parameters used
are laid out in Table 3. We setup these discs with dust size
distribution n(a) ∝ a−3.5, with amin = 0.1µm and set amax as
the fragmentation threshold where vfrag = 10 ms−1 (equation
19), and use the canonical dust-to-gas ratio of 0.01.

Residual images in Huang et al. (2018b) are produced
by deprojecting the discs and subtracting their median ax-
isymmetric radial profiles. We do the same here by binning
each disc into 1 AU-wide radial bins and subtracting the me-
dian azimuthal fluxes. We re-derive the residual images for
each of the original DSHARP observations in this way, as
well as for our disc models. For each disc observation and
model, we show deprojected continuum and residual images
(with PA = 0◦ and i = 0◦), presenting our results in Figures
16, 17 and 18. In each case we provide reference colorbars
for direct comparison between the fluxes of the disc models
and observations, and each disc model and counterpart ob-
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Figure 13. Unsharp masked disc images observed at fobs = 115 GHz (λ = 2.6 mm) in casa. Each disc model has maximum grain size

amax = 1 mm, Rout = 100 AU and ÛM = 5× 10−8 M�yr−1 (Left), ÛM = 1.58× 10−7 M�yr−1 (Middle), ÛM = 1× 10−6 M�yr−1 (Right). Observation

exposure time, array configuration and PWV level used for these observations are laid out in Table 2.

Figure 14. Unsharp masked disc images observed at fobs = 115 GHz (λ = 2.6 mm) in casa. Each disc has ÛM = 5 × 10−7 M�yr−1,

Rout = 100 AU and we vary amax in the grain size distributions as 10 µm (Left), 1 mm (Left middle), 10 cm (Right middle) and 100 cm

(Right). Observation exposure time, array configuration and PWV level used for these observations are laid out in Table 2.

servation is plotted between the same flux range for ease of
comparison.

Logarithmic spiral structure is imposed in each disc
model using values of a and b (equation 6) derived by Huang
et al. (2018b). Best-fit values of a and b that we find from
those quoted in Huang et al. (2018b) are laid out in Table
3.

We produce synthetic observations of each disc using
casa with observing setups consistent with those outlined in
Andrews et al. (2018). We observe each disc for tobs = 3600 s
using array configuration C40-8. For each observation we
use PWV values at the upper bound of the quoted range in
Andrews et al. (2018), setting values 1.35mm, 1.30mm and
1.05mm for Elias 27, IM Lup and WaOph 6 respectively.
Input parameters for casa used for each disc are laid out in
Table 4.

8.1 Elias 27

Elias 27 is a 0.8 Myr M0 star located in the ρ Oph star form-
ing region at a distance d = 116+19

−10 pc (Gaia Collaboration
et al. 2018; Andrews et al. 2018). The residual profile of the
Elias 27 continuum image (Figure 16) shows two symmetric
spiral arms extending from Rin ∼ 50 AU to Rout ∼ 230 AU,
with PA = 118.8◦ and i = 56.2◦ (Huang et al. 2018b).

The spiral structure of Elias 27 is probably the most
well-studied of the three discs here. The system has pre-

viously been modelled using both both grid-based and SPH
simulations, with authors such as Meru et al. (2017), Tomida
et al. (2017) and Hall et al. (2018) all finding GI to be a plau-
sible explanation for the observed morphology. Estimates of
the Toomre parameter in the disc however suggest that Elias
27 should be gravitationally stable at all radii (Pérez et al.
2016), but this comes with the caveat that estimates of Q
are subject to high levels of uncertainty. Further research
where the constraints on the disc mass and temperature are
improved may lead to different conclusions.

We set up our disc model with logM∗(M�) = −0.31,
R∗ = 2.3 AU, logTeff(K) = 3.59 and log ÛM(M�yr−1) = −7.2
(Andrews et al. 2018; Huang et al. 2018b). Logarithmic spi-
ral structure is imposed with a = 76.0 AU and b = −0.29
extending from R = 50 − 230 AU, where we use a mask to
remove the inner 50 AU from our observations to avoid the
spirals being washed out by the brighter central region.

Our model calculates Elias 27 to have a disc mass
Mdisc = 0.13 M� inside Rout = 230 AU, and therefore q = 0.27.
Figure 16 shows the resultant synthetic observations gener-
ated from our models, exhibiting clear self-gravitating spiral
structure in both the deprojected continuum and residual
images.
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Figure 15. ALMA 240GHz (1.3mm) continuum images of Elias 27 (Left), WaOph 6 (Middle) and IM Lup (Right) (Andrews et al.
2018). ALMA antenna configurations, observing times and PWV levels for these observations are laid out in Table 4.

Disc logM∗ [1] R∗ logTeff
[1] Rspirals

[2] log ÛM [1] d [2] i [2] PA [2] a [2] b [2]

(M�) (AU) (K) (AU) (M� yr−1) (pc) (◦) (◦) (AU)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Elias 27 −0.31+0.15
−0.11 2.3 3.59 ± 0.03 50-230 −7.2 ± 0.5 116+19

−10 56.2 118.8 110.9 -0.282

WaOph 6 −0.17+0.17
−0.09 3.2 3.62 ± 0.03 25-75 −6.6 ± 0.5 123±2 47.3 174.2 45.9 0.238

IM Lup −0.05+0.09
−0.13 2.5 3.63 ± 0.03 25-110 −7.9 ± 0.4 158±3 47.5 144.5 43 -0.181

Table 3. Disc model parameters used in our modelling of the DSHARP discs in Section 8. Columns are as follows. (1) Disc being

modelled. (2) Log stellar mass. (3) Stellar radius. (4) Log effective temperature of the star. (5) Spiral inner and outer radii considered

here. (6) Log mass accretion rate. (7) Distance to the system. (8) Disc inclination. (9) Disc position angle. (10) Best-fit logarithmic spiral
a (Equation 6). (11) Best-fit logarithmic spiral b (Equation 6).

Disc fobs tobs
Antenna

Config
PWV Level

(1) (2) (3) (4)

Elias 27 240 GHz 3600 s C40-8 1.35 mm

WaOph 6 240 GHz 3600 s C40-8 1.30 mm

IM Lup 240 GHz 3600 s C40-8 1.05 mm

Table 4. Input parameters used here for generating synthetic
images with casa for the modelled DSHARP discs. (1) ALMA

observing frequency. (2) Simulated observing time. (3) ALMA an-

tenna configuration used. (4) Precipitable Water Vapour (PWV)
level.

8.2 WaOph 6

WaOph 6 is a 0.3 Myr K6 star located in the ρ Oph star
forming region at a distance d = 123± 2 pc (Gaia Collabora-
tion et al. 2018; Andrews et al. 2018). After subtracting the
axisymmetric radial profile, two compact spiral arms are re-
vealed which extend from Rin ∼ 25 AU to Rout ∼ 75 AU, with
PA = 174.2◦ and i = 47.3◦ (Huang et al. 2018b).

In their analysis of the morphology of gravitationally
unstable discs, Dong et al. (2015b) suggest that for a disc to
be gravitationally unstable it must be compact (R ≤ 100 AU)

and highly accreting at a rate ÛM ≥ 10−6 M�yr−1. WaOph 6
has the highest accretion rate and the most compact spiral
structure of the 3 discs in question here, both of which are
close to matching these suggested criteria.

We setup our disc model with logM∗(M�) = −0.17, R∗ =
3.2 AU, logTeff(K) = 3.62 and log ÛM(M�yr−1) = −6.6 (Andrews
et al. 2018; Huang et al. 2018b). Logarithmic spirals are
imposed with a = 34.0 AU and b = 0.24 extending from R =
25−75 AU, where again we mask the inner 25 AU of the disc
images.

We calculate WaOph 6 to have a disc mass Mdisc =
0.16 M� and therefore q = 0.24. Our models reproduce dis-
tinct observable, self-gravitating spiral structure in both the
deprojected continuum and residual images shown in Figure
17.

8.3 IM Lup

IM Lup is a 0.5Myr K5 star in the Lupus II cloud at a
distance d = 158 ± 3 pc (Gaia Collaboration et al. 2018; An-
drews et al. 2018). Residual profiles of the IM Lup contin-
uum images reveal two spirals extending from Rin ∼ 25 AU
to Rout = 110 AU, with PA= 144.5◦ and i = 47.5◦ (Huang
et al. 2018b).

Previous detection of any spiral structure in the IM Lup
system has been minimal, with observed substructures being
classified as two concentric rings at R ≈ 95 AU and R ≈
320 AU, and only tenuous reports of the possibility of tightly
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Figure 16. Elias 27 discs images. Top: Deprojected ALMA

continuum image (left) and residual profile (right). Bottom: De-
projected disc model continuum image (left) and residual profile

(right). Input properties for the disc models and observation pa-

rameters are laid out in Tables 3 and 4.
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Figure 17. WaOph 6 discs images. Top: Deprojected ALMA
continuum image (left) and residual profile (right). Bottom: De-

projected disc model continuum image (left) and residual profile

(right). Input properties for the disc models and observation pa-
rameters are laid out in Tables 3 and 4.

wound spirals (Avenhaus et al. 2018). Cleeves et al. (2016)
report a massive, gravitationally stable disc with a minimum
Toomre parameter Qmin = 3.7 at R = 70 AU and an extended
CO disc to R = 970 AU, making IM Lup one of the largest
protoplanetary discs detected to date.

We model the disc here out to Rout = 110 AU, consis-
tent with the radial extent of the observed spiral struc-
ture reported in Huang et al. (2018b). Our disc model is
setup with logM∗(M�) = −0.05, R∗ = 2.5 AU, logTeff(K)
and log ÛM(M�yr−1) = −7.9 (Andrews et al. 2018; Huang
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Figure 18. IM Lup discs images. Top: Deprojected ALMA

continuum image (left) and residual profile (right). Bottom: De-
projected disc model continuum image (left) and residual profile

(right). Input properties for the disc models and observation pa-

rameters are laid out in Tables 3 and 4.

et al. 2018b). We impose logarithmic spiral structure with
a = 59.0 AU and b = 0.18 extending from R = 25 − 110 AU.

We calculate IM Lup to have a disc mass Mdisc =
0.098 M� and q = 0.11 within R = 110 AU, and therefore
the lowest disc-to-star mass ratio of the three discs mod-
elled here. The deprojected disc images in Figure 18 show
tightly wound spiral structure in the continuum and resid-
ual images, with geometry and spiral fluxes closely matching
those observed in the inner disc of the IM Lup system.

8.4 Conclusions on DSHARP sample

We present the results of our semi-analytic analysis of the
observed spiral structure in the Elias 27, WaOph 6 and IM
Lup systems. We note again that the purpose of this simple
functional formalism is not to exactly reproduce, but to ap-
proximate, the likely spiral morphologies and fluxes of the 3
systems in question, and to investigate whether systems of
their quoted disc and stellar properties should be capable of
generating detectable non-axisymmetric substructure when
observed with ALMA. We do this by imposing logarithmic
spiral structure characteristic of GI, with self-consistently
calculated amplitudes and realistic grain distributions. All
3 of the models presented here produce detectable spirals of
comparable structure and fluxes to their observed DSHARP
counterparts, indicating that GI may be the dominant mech-
anism responsible for the observed substructure in these
discs.

For Elias 27, WaOph 6 and IM Lup we derive disc
masses Mdisc = 0.13 M�, 0.16 M� and 0.098 M� and disc-to-
star mass ratios q = 0.27, 0.24 and 0.11 within their respec-
tive outer radii. Common assumption is that GI requires
q & 0.5, therefore rendering these discs too low mass to gen-
erate prominent self-gravitating structure. However it may
be possible for discs to display self-gravitating spirals for
much lower mass ratios than previously thought, with the
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critical mass ratio having a strong dependence on the host
star mass and disc opacity (Veronesi et al. 2019; Cadman
et al. 2020; Haworth et al. 2020). We therefore should cau-
tion against discarding GI as a plausible mechanism based
off this simple mass criterion alone.

It is important to note here that whilst we shouldn’t be
surprised that our models accurately reproduce the spiral
form of the systems considered here, as the geometry is im-
posed in equation 6, we should be more concerned with how
accurately our models are able the reproduce the spiral flux
amplitudes of the observed systems, as these are determined
self-consistently from the disc mass accretion rate and the
viscous-α. The self-consistently calculated spiral amplitudes
in our models all generate comparable fluxes to their coun-
terpart observations, indicating that self-gravity may be a
plausible explanation to these 3 systems.

In our model we assume that some grain growth has
occurred up to the fragmentation threshold. We note again
here that models of grain growth generally suggest that
centimeter aggregates form rapidly on timescales ∼ 105 yrs
(Dullemond & Dominik 2005; Laibe et al. 2008), therefore
given the ages of these 3 systems our assumption seems rea-
sonable. If, however, we modelled these systems assuming
no grain growth, it is likely that we would not find any sig-
natures of GI. Therefore, if these discs are indeed gravita-
tionally unstable, our models suggest that significant grain
growth must have also occurred. Future multi-wavelength
observations of these systems, and derivation of the discs’
β-parameter (equation 21), will help to establish if this is
the case.

An alternative explanation for the observed spiral struc-
ture in the DSHARP discs may be the presence of a stellar or
planetary-mass companion. Planet-disc gravitational inter-
actions can generate disc perturbations, and massive com-
panions may be capable of triggering two-armed symmetric
spiral responses similar to those observed in DSHARP (e.g.
Dong et al. 2015a, 2016; Bae & Zhu 2018a,b; Kurtovic et al.
2018). However in order to drive the spiral modes observed,
for example in the Elias 27 system, would require a wide-
orbit companion of potentially tens of Jupiter masses, thus
rendering any companion likely detectable at sub-mm/IR
wavelengths (Meru et al. 2017). To our knowledge no com-
panion has as yet been detected in any of the 3 discs observed
here. More commonly associated features of planet-disc in-
teractions are the presence of annular substructures such as
rings and planet-driven gaps. Elias 27, WaOph 6 and IM
Lup all display these features, as do a total of 18 discs in
the DSHARP sample (Huang et al. 2018a). The DSHARP
collaboration report no companion detections in any of these
18 discs despite many of the observed features being sugges-
tive of massive companions which ought to be observable at
such high angular resolution. It may then be the case that
either massive planets are fainter than previously thought
(Dong et al. 2018), or that the observed rings are driven
by lower mass, fainter planets which remain invisible to the
DSHARP survey. If the latter, then these lower mass com-
panions may not be capable of driving the observed spiral
structure in Elias 27, WaOph 6 and IM Lup alone, but a
combination of both GI and planet-disc interactions may be
a plausible scenario (e.g. Pérez et al. 2016).

More detailed analysis of these systems, investigating
the effect of varying accretion rate, disc irradiation, the dom-

inant spiral mode and grain size distribution will be the sub-
ject of future work.

9 SUMMARY AND CONCLUSION

We present our updated self-consistent, semi-analytic model
of self-gravitating discs that also includes a prescription for
dust trapping. We capitalise on the efficient nature of the
model by generating a suite of disc models at little compu-
tational expense, and examine the parameter space within
which we predict self-gravitating discs will generate spiral
structure that can be resolved when imaged with ALMA.
Monte-Carlo radiative transfer is employed here to produce
synthetic observations of these model discs, allowing us to
make realistic predictions about the strength of the pertur-
bations and the grain size distribution required to generate
observable spiral structure.

Realistic dust trapping is modelled using a semi-
analytic prescription in which particles with St = 1 may
reach grain concentration factor η ≈ 6 at the density peaks
of the spiral perturbations, where η represents the local dust
enhancement relative to the mean dust-to-gas ratio in the
disc, assumed to be 0.01 in all the models considered here.
We find that particles of millimetre and centimetre sizes
concentrate most strongly in spiral arms resulting in signifi-
cantly enhanced millimetre emission in these regions. When
the dust mass budget is dominated by these millimetre and
centimetre sized grains we find self-gravitating structure to
be observable in much lower mass discs than previously
predicted. Through calculation of the grain fragmentation
threshold in the discs modelled here we find that grains may
only grow to as large as a few centimetres before grain-grain
collisions become destructive. Therefore it may be the case
that grain size distributions in self-gravitating discs satisfy
this dust mass budget criterion.

Our synthetic unsharp masked images of discs in the
Taurus star forming region (d ∼ 140 pc) exhibit distinguish-
able spiral structure for disc masses as low as q = 0.1 given
sufficient grain growth. These images are generated using
realistic ALMA observing setups with reasonable observing
times and PWV levels. We do however note that we only
consider face-on discs during this evaluation and that inclin-
ing and rotating them may well obscure any substructure,
likely most adversely in low mass discs with the weakest
spirals.

Through multi-wavelength observations and derivation
of the β−parameter we show how it is possible to retrieve in-
formation about grain growth and the dust-to-gas ratio dis-
tribution from our model discs. Through comparison of our
predicted β−values to those calculated from future multi-
wavelength observations of self-gravitating discs, it may be
possible to utilise our disc model to examine grain distribu-
tions in the observed discs.

Applying our disc model to systems from the DSHARP
sample, we find the quoted disc parameters for Elias 27,
WaOph 6 and IM Lup suggest that they are all capable of
driving observable, self-gravitating spiral structure provid-
ing that grains have grown to as large as the fragmentation
threshold. We calculate disc-to-star mass ratios q = 0.27, 0.24
and 0.11, within their published outer radii, respectively for
the 3 systems. A more detailed analysis exploring the po-
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tential parameter space of the DSHARP sample will be left
to future work.
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APPENDIX A: GALLERY OF DISCS

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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Figure A1. Gallery of discs observed at fobs = 115GHz (λ = 2.6 mm). Disc setups are described in Section 6. casa observing inputs are

laid out in Table 2.
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Figure A2. Gallery of discs observed at fobs = 230GHz (λ = 1.3 mm). Disc setups are described in Section 6. casa observing inputs are
laid out in Table 2.
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Figure A3. Gallery of discs observed at fobs = 690GHz (λ = 0.4 mm). Disc setups are described in Section 6. casa observing inputs are

laid out in Table 2.
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