THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Electrostatic potential between charged particles at an oil-water interface

Citation for published version:
Morozov, A, Muntz, I, Thijssen, JHJ \& Marenduzzo, D 2020, 'Electrostatic potential between charged particles at an oil-water interface', Physical Review E, vol. 102, no. 2, 020801(R).
https://doi.org/10.1103/PhysRevE.102.020801

Digital Object Identifier (DOI):
10.1103/PhysRevE.102.020801

Link:

Link to publication record in Edinburgh Research Explorer

Document Version:

Peer reviewed version

Published In:

Physical Review E

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Electrostatic potential between charged particles at an oil-water interface

Alexander Morozov, Iain Muntz, Job H. J. Thijssen, and Davide Marenduzzo* SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, Scotland, United Kingdom

Abstract

Electrostatic interactions between point charges embedded into interfaces separating dielectric media are omnipresent in soft matter systems and often control their stability. Such interactions are typically complicated and do not resemble their bulk counterparts. For instance, the electrostatic potential of a point charge at an air-water interface falls off as r^{-3}, where r is the distance from the charge, exhibiting a dipolar behaviour. This behaviour is often assumed to be generic, and is widely referred to when interpreting experimental results. Here we explicitly calculate the in-plane potential of a point charge at an interface between two electrolyte solutions with different, finite dielectric permittivities and Debye screening lengths, such as oil and water. We show that the asymptotic behaviour of this potential is neither a dipole, which characterises the potential at airwater interfaces, nor a screened monopole, which describes the bulk behaviour in a single electrolyte solution. By considering the same problem in arbitrary dimensions, we find that the physics behind this difference can be traced to the asymmetric propagation of the interaction in the two media. Our results should be relevant to understand the effective potential acting between interfacial proteins in biofilms, and the self-assembly of charged colloids at droplet surfaces in oil-water emulsions.

The physics of charged objects at, or near, liquid interfaces is full of subtle and non-trivial effects [1-12]. For instance, charged particles trapped at the air-water interface interact electrostatically via a long-range dipoledipole repulsion, even if mobile ions screen any Coulombic interaction in the water phase $[2,13]$ - this interaction can be harnessed to create tunable plasmonic materials [14]. An oil-water interface can itself acquire a negative charge due to the adsorption of hydroxyl ions [15], leading to a generic repulsion between uncharged hard spheres trapped at the interface [16]. Interfacial electrostatics is also important in biological physics, as it underlies the self-assembly of charged proteins within biofilms [17], or at the droplet surfaces in water-oil emulsions studied in food science [18].

A popular approximate treatment for electrostatic effects in a bulk electrolyte is the Debye-Hückel theory [19], which is valid when the electrostatic potential is small everywhere in the system so that non-linear effects can be disregarded. Whilst simplified, this theory includes the effects of ionic fluctuations at a Gaussian level [3]. The main successful prediction of the Debye-Hückel theory is that mobile ions in an electrolyte generically screen charges, so that the potential of a point charge is proportional to $e^{-\kappa r} / r$, instead of being $\sim 1 / r$. The quantity κ is the inverse of the Debye screening length: it depends on ionic charge and concentration, and quantifies the efficiency of screening.

The Debye-Hückel theory has been generalised for systems with an interface [1-3, 13], with most results focussing on the case where one of the electrolytes has no mobile ions, so that its Debye length is infinite. In this case, which is directly relevant to air-water interfaces, the interaction potential of a point charge along the interface was shown to decay as r^{-3} [13], as for bulk dipolar interactions. While this result is not directly applicable
to interfaces separating media with finite, yet different screening lengths, like oil-water interfaces, it is often assumed that there should at least be a large range of distances over which the r^{-3}-decay is observed in such situations as well (as reviewed, for instance, in [20]). Here we demonstrate that this is in general not the case. We study the simple but fundamental problem of a point charge at an interface between two electrolytes with different (but finite) Debye screening lengths (Fig. 1). We show that the in-plane potential at the interface decays with an anomalous scaling, which differs from both the screened Coulomb potential characterising charge interactions in bulk electrolytes and the dipolar decay, relevant for water-air interfaces. We argue that the potential we derive should regulate the self-assembly of colloidal monolayers at oil-water interfaces, such as those formed in "bijels" $[21,22]$ or Pickering emulsions [23, 24].

The problem we are interested in is sketched in Fig. 1. Two point particles, each with charge Q, lie at the interface between two dielectric media, with dielectric permittivities ϵ_{1} and ϵ_{2} respectively. The interface is normal to the z axis and located at $z=0$, whereas \mathbf{r} denotes positions on the plane parallel to it (Fig. 1). While there are mobile ions in each of the two media, there are no ions at the interface (the case of a salty interface with mobile ions is qualitatively similar, and can be dealt with via a modified boundary condition $[3,26]$). We want to find the interparticle potential $U(r)=Q \phi(r)$, where r is interparticle distance and $\phi(r)$ is the value of the electrostatic potential generated by the first particle at the position of the second particle. The equation for ϕ is given by the Maxwell equation $\nabla \cdot \mathbf{D}=\rho$, where \mathbf{D} is the electric displacement field and $\rho=Q \delta(\mathbf{r}) \delta(z)+\rho_{\text {ion }}(\mathbf{r}, z)$ is the total charge density, which includes the interfacial point charge and the ionic charges in the two media, $\rho_{\text {ion }}(\mathbf{r}, z)$ (note $\delta(\mathbf{r})$ refers to a two-dimensional Dirac delta func-
tion).
Following [1], we can find ϕ by using the PoissonBoltzmann theory in each of the two media to approximate $\rho_{\text {ion }}=n_{0} e^{-\frac{Z e_{0} \phi}{k_{B} T}}$, with n_{0} the ionic concentration in the bulk of that medium, Z the valence of the ions, e_{0} the elementary charge, k_{B} the Boltzmann constant, and T the temperature. The linearised version of this equation, valid for $\frac{Z e_{0} \phi}{k_{B} T} \ll 1$, is given by

$$
\begin{equation*}
\nabla \cdot(\epsilon(z) \nabla \phi)-\epsilon(z) \kappa^{2}(z) \phi=-Q \delta(\mathbf{r}) \delta(z) \tag{1}
\end{equation*}
$$

where $\kappa(z)$ is the inverse Debye length and $\epsilon(z)$ the dielectric permittivity of the medium. For our geometry, the parameters $(\epsilon(z), \kappa(z))$ equal $\left(\epsilon_{1}, \kappa_{1}\right)$ for the first medium $(z<0)$, and $\left(\epsilon_{2}, \kappa_{2}\right)$ for the second medium $(z>0)$. For an oil-water interface, such as dodecane-water, typical values are $\kappa_{1} \sim 10 \kappa_{2} \sim 1 \mu \mathrm{~m}^{-1}$, and $\epsilon_{1} \sim 40 \epsilon_{2} \sim 80 \epsilon_{0}$ (with ϵ_{0} the dielectric permittivity of free space).

Introducing the in-plane Fourier transform, so that $\phi(\mathbf{r}, z)=(2 \pi)^{-2} \int d \mathbf{q} e^{i \mathbf{q} \cdot \mathbf{r}} \hat{\phi}(\mathbf{q}, z)$, in Eq. (1), we obtain the electrostatic potential in the two half-spaces,

$$
\begin{array}{lc}
\hat{\phi}(\mathbf{q}, z)=A e^{\sqrt{q^{2}+\kappa_{1}^{2}} z} & z<0 \tag{2}\\
\hat{\phi}(\mathbf{q}, z)=B e^{-\sqrt{q^{2}+\kappa_{2}^{2}} z} & z>0 .
\end{array}
$$

FIG. 1: Schematics of the problem we consider. A pair of charged point particles lies at the interface between two electrolytes with different screening length and dielectric permittivities. The lines connecting the two particles are examples of Debye strings contributing to the calculation of the interparticle potential (see text).

From Eq. (1), it can be seen that the potential needs to be continuous at $z=0$, so that $A=B$, and that there needs to be a discontinuity in its derivative, such that,

$$
\begin{equation*}
\epsilon_{2}\left[\frac{\partial \phi}{\partial z}\right]_{z \rightarrow 0^{+}}-\epsilon_{1}\left[\frac{\partial \phi}{\partial z}\right]_{z \rightarrow 0^{-}}=-Q . \tag{3}
\end{equation*}
$$

As a result, the potential as a function of position on the interface is given by the following (2-dimensional) inverse Fourier transform $[1,3,13]$,

$$
\begin{equation*}
\phi(r)=\frac{Q}{4 \pi^{2}} \int d^{2} \mathbf{q} \frac{e^{i \mathbf{q} \cdot \mathbf{r}}}{\epsilon_{1} \sqrt{\kappa_{1}^{2}+q^{2}}+\epsilon_{2} \sqrt{\kappa_{2}^{2}+q^{2}}} . \tag{4}
\end{equation*}
$$

We can also write $\phi(r)=\frac{Q}{2 \pi r} I(r)$, in terms of the following integral,

$$
\begin{equation*}
I(r)=\int_{0}^{\infty} d x \frac{x J_{0}(x)}{\epsilon_{1} \sqrt{\kappa_{1}^{2} r^{2}+x^{2}}+\epsilon_{2} \sqrt{\kappa_{2}^{2} r^{2}+x^{2}}} \tag{5}
\end{equation*}
$$

where we have defined $r=|\mathbf{r}|$, and we have introduced the zero-th order Bessel function of the first kind, J_{0}. The asymptotic behaviour of the interaction potential between two interfacial point charges, $U(r)=Q \phi(r)=$ $Q^{2} I(r) /(2 \pi r)$ is determined by the integral $I(r)$, which we study below.

Tailoring the procedure in [13] to our system, we express the integral $I(r)$ as

$$
\begin{equation*}
I(r)=\frac{1}{\epsilon_{1}^{2}-\epsilon_{2}^{2}}\left[\epsilon_{1} I_{1}(r)-\epsilon_{2} I_{2}(r)\right], \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{i}(r)=\int_{0}^{\infty} d x \frac{x J_{0}(x) \sqrt{\kappa_{i}^{2} r^{2}+x^{2}}}{\alpha r^{2}+x^{2}}, \quad i=1,2 \tag{7}
\end{equation*}
$$

with $\alpha=\left(\epsilon_{1}^{2} \kappa_{1}^{2}-\epsilon_{2}^{2} \kappa_{2}^{2}\right) /\left(\epsilon_{1}^{2}-\epsilon_{2}^{2}\right)$.
As detailed in the Supplementary Material [26], these integrals can be computed exactly to give, as a final result,

$$
\begin{equation*}
I_{i}=e^{-\kappa_{i} r}-e^{-\kappa_{i} r} \frac{r \delta_{i}}{\kappa_{i}} \sum_{p=0}^{\infty} \frac{(-1)^{p}}{2 p+1}\left(\frac{\delta_{i}}{\kappa_{i}^{2}}\right)^{p}{ }_{1} F_{1}\left(2 p+1 ; \frac{3}{2}+p ;-\frac{r \delta_{i}}{2 \kappa_{i}}\right), \tag{8}
\end{equation*}
$$

where we have introduced $\delta_{i} \equiv \alpha-\kappa_{i}^{2}$, and ${ }_{1} F_{1}$ is the confluent hypergeometric function of the first kind [25].

The asymptotic behaviour for large values of $r \delta_{i} /\left(2 \kappa_{i}\right)$ is
given by

$$
\begin{equation*}
I_{i} \sim-e^{-\kappa_{i} r}\left[\frac{\kappa_{i}}{r \delta_{i}}+\frac{3 \kappa_{i}^{2}}{r^{2} \delta_{i}^{2}}+\frac{1}{r^{2} \delta_{i}}+\mathcal{O}\left(\frac{1}{r^{3}}\right)\right] . \tag{9}
\end{equation*}
$$

For an oil-water interface, the integral I is dominated by I_{2} for $r \rightarrow \infty\left(\right.$ as $\left.\kappa_{2}<\kappa_{1}\right)$. The corresponding leading asymptotic behaviour for the interaction potential U between two interfacial point charges is

$$
\begin{equation*}
U(r) \sim \frac{Q^{2}}{2 \pi} \frac{\epsilon_{2} \kappa_{2}}{\epsilon_{1}^{2}\left(\kappa_{1}^{2}-\kappa_{2}^{2}\right)} \frac{e^{-\kappa_{2} r}}{r^{2}} . \tag{10}
\end{equation*}
$$

As $\kappa_{2} \rightarrow 0$, which is relevant for an air-water interface, Eq. (10) vanishes, so that we need to take the next term in the expansion, and we recover the dipole contribution, $U(r) \sim 1 / r^{3}$, previously found and discussed in $[2,13]$. Notably, however, if $\kappa_{2} \neq 0$, Eq. (10) differs from, and decays faster than, a screened monopole with decay constant κ_{2} : we obtain $U(r) \sim e^{-\kappa_{2} r} / r^{2}$, rather than $\sim e^{-\kappa_{2} r} / r$. As expected, a simple screened monopole behaviour is found, from Eq. (4), in the limiting case in which $\kappa_{1}=\kappa_{2}$, where there is no interface.
The exact functional form of $U(r)$, obtained by numerically evaluating the integral in Eq. (4), is compared to the asymptotic behaviour coming from Eq. (9) in Fig. 2, for an oil-water interface. A good fit to the numerical solution for all r is provided by

$$
\begin{equation*}
U(r) \simeq \frac{Q^{2}}{2 \pi \epsilon_{1}}\left[\frac{e^{-\kappa_{1} r}}{r}+\frac{\epsilon_{2}}{\epsilon_{1} \kappa_{1}^{2}} \frac{e^{-\kappa_{2} r}}{r^{3}}+\frac{\epsilon_{2} \kappa_{2}}{\epsilon_{1} \kappa_{1}^{2}} \frac{e^{-\kappa_{2} r}}{r^{2}}\right] \tag{11}
\end{equation*}
$$

where we have accounted for the fact that $\kappa_{2} \ll \kappa_{1}$ for an oil-water interface. Eq. (11) describes a crossover between a screened monopole-like behaviour at small r - with the decay length equal to that of the first medium, κ_{1} - and the $\sim e^{-\kappa_{2} r} / r^{2}$ behaviour at large r. At intermediate r the second term, which is a dipolelike contribution (with screening, as $\kappa_{2} \neq 0$), can in principle play a role. For an oil-water interface the crossover between screened monopole and dipole is at $r_{c, 1}=-\frac{2}{\kappa_{1}-\kappa_{2}} W_{-1}\left(-\frac{1}{2} \sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}} \frac{\kappa_{1}-\kappa_{2}}{\kappa_{1}}\right)$ where W_{-1} denotes the negative branch of the Lambert function [25]; the crossover between dipole and asymptotic behaviour instead occurs at $r_{c, 2}=\kappa_{2}^{-1}$ [27]. For parameters relevant to a dodecane-oil interface (Fig. 1), $r_{c, 1} \simeq 9 \mu \mathrm{~m}$ and $r_{c, 2} \sim 10 \mu \mathrm{~m}$, so that the dipole regime is essentially absent. For water-oil interfaces with $\epsilon_{1} / \epsilon_{2} \sim 40-100$, the screened dipole regime is of practical relevance only if $\kappa_{1} / \kappa_{2} \gg 10$ (see Fig. 3 and [26]).

Eq. (11) holds for point-like particles and under the assumption of weak electrostatic potential, or $\frac{e_{0} \phi}{k_{B} T} \ll 1$. To see whether relaxing these two simplifications changes the results significantly, we also numerically solved the nonlinear Poisson-Boltzmann equation for a charged colloidal particle of finite radius R at an oil-water interface (see [26] for details). Figure 4 shows the solution in 3D

FIG. 2: Log-log plot of the numerical solution of $U \epsilon_{1} / Q^{2}$ versus $\kappa_{1} r$, showing the crossover between small r behaviour, corresponding to a screened monopole with decay constant κ_{1}, and asymptotic behaviour, computed via Eq. (9). The approximation in Eq. (11) is also shown. Parameters are: $\kappa_{1}=10 \kappa_{2}, \epsilon_{1}=40 \epsilon_{2}$, relevant for a water-oil interface.

FIG. 3: Diagram showing the ranges in r where each of the regimes in Eq. (11) dominates for the potential between two point charges at an oil-water interface with $\epsilon_{1}=80 \epsilon_{2}$.
space and at the interface, for three different colloidal charge distributions - uniform (Fig. 4A), localised at the colloidal surface in the water phase (Fig. 4B), or dissociated in water around the surface (Fig. 4C, this case is inspired by the physics discussed in [7]). Notably, Eq. (11) - with a renormalised, or effective, charge - provides the far field (large r) behaviour in all cases, and yields an excellent semi-quantitative description for a large range of distances. Details of the charge distribution matter for small r, and determine the location of the crossover to far field behaviour (Figs. 4Aiii,Biii,Ciii) and [26].

Experimental studies of charged colloids at an oil-water interface typically report a good fit to a dipole potential, as for air-water interfaces [9, 10]. However, analysing the potential obtained by particle tracking in blinking optical traps for pairs of weakly charged particles shows that a screened $1 / r^{2}$ potential provides a better fit than a dipole for the far field behaviour at a dodecane-water interface (Fig. S5 [26]). Interestingly, the near field in these experiments is poorly predicted by Eq. (11), whereas it is better described by Poisson-Boltzmann simulations accounting for charge dissociation near the colloidal surface, as in Fig. 4C (see Fig. S6 [26]).

To gain more physical insight into the physics behind Eq. (10), it is useful to consider the same interfacial

FIG. 4: Results of nonlinear Poisson-Boltzmann simulations for a charged colloid with $\kappa_{1} R=1.2$ at an oil-water interface $\left(\epsilon_{1}=40 \epsilon_{2}\right.$, and $\left.\kappa_{1}=10 \kappa_{2}\right)$. In (A) the charge is uniformly distributed within the colloid; in (B) it is at the colloid surface in the water phase; in (C) there is additionally a charge distribution in the water phase which decays exponentially from the colloid surface (decay length equal to κ_{1}^{-1}). (i) Heat map of the logarithm of the input charge distribution. (ii) Heat map of the logarithm of the electrostatic potential solving the nonlinear Poisson-Boltzmann equation. (iii) Electrostatic potential on the interface $(z=0)$, as a function of r. The solid line is the fit to the Debye-Hueckel (DH) solution, Eq. (11), with an effective charge. For a full parameter list, see [26].

Debye-Hückel problem defined by Eq. (1) in arbitrary dimension, d. This problem is equivalent to that of finding the d-dimensional Yukawa interaction at an interface. We find that, for generic $d \geq 3$, the interfacial potential $\phi(r)$ is given by [26]

$$
\begin{align*}
\phi(r) & =\frac{Q}{(2 \pi)^{\frac{d-1}{2}} r^{d-2}} I_{d} \tag{12}\\
I_{d} & =\int_{0}^{\infty} d x \frac{x^{\frac{d-1}{2}} J_{\frac{d-3}{2}}(x)}{\epsilon_{1} \sqrt{\kappa_{1}^{2} r^{2}+x^{2}}+\epsilon_{2} \sqrt{\kappa_{2}^{2} r^{2}+x^{2}}},
\end{align*}
$$

where $J_{\alpha}(x)$, with α a real number, denotes the Bessel function of the first kind of order α.

In the case when $\kappa_{2} \neq 0$ (and $\kappa_{2} \ll \kappa_{1}$), which gives the d-dimensional analogue of an oil-water interface, we find [26] the following generic form for the potential in $d \geq 3$ and for large r,

$$
\begin{equation*}
\phi(r) \sim \frac{e^{-\kappa_{2} r}}{r^{\frac{d+1}{2}}} \tag{13}
\end{equation*}
$$

As in $d=3$, while the dominant contribution is an exponential screening with a typical lengthscale κ_{2}^{-1}, there
is a different power law correction with respect to the Yukawa potential in the bulk, which is $\phi(r) \sim \frac{e^{-\kappa_{2} r}}{r^{\frac{d-1}{2}}}$. In this d-dimensional case, a suitable approximation for the potential is therefore

$$
\begin{equation*}
\phi(r) \simeq A_{d} \frac{e^{-\kappa_{1} r}}{r^{\frac{d-1}{2}}}+B_{d} \frac{e^{-\kappa_{2} r}}{r^{\frac{d+1}{2}}} \tag{14}
\end{equation*}
$$

where A_{d} and B_{d} are d-dependent constants. [For simplicity we neglect here intermediate regimes, which leads to a slightly poorer approximation with respect to the $d=3$ case [26].]
Mathematically, the difference in the power law correction for a particle at the interface arises due to the different structure in the branchcut singularities in Eqs. $(5,12)$ with respect to the bulk case $\left(\kappa_{1}=\kappa_{2}\right)$. Specifically, as $q \rightarrow i \kappa_{2}$ there is a divergence in the bulk case, but not at the interface. This is similar to what happens in polymer physics for a random or self-avoiding walk close to a surface [28], where a similar change in the nature of the singularity leads to a change in the entropic exponent γ (the power law correction), with no change in the connective constant (the leading exponential behaviour). For instance, the probability that a random walk with N steps forms a loop in $d=1$ decays with N as $N^{-1 / 2}$, but close to a hard surface the same probability is $\sim N^{-3 / 2}$ [29].

Physically, these considerations suggest a mechanism for the change in asymptotic behaviour for the potential between two point charges at the interface, $U(r)$. The integral determining this potential may be viewed as an integral of a propagator of a field, with $\kappa_{1,2}$ playing the role of the inverse mass, or as a correlator in LandauGinzburg theory [30]. Therefore the potential can be viewed as a sum of all contributions from interactions propagating from one particle to the other. The propagation occurs through lines which we call "Debye strings" (Fig. 1). Computing the potential then involves a summation over all fluctuating Debye strings. Because the two endpoints of a string are fixed at the interface (at the point charge positions), and because the screening in the first phase (i.e., water) is stronger, the strings are more likely to propagate through the second phase (i.e., oil). The statistics of the Debye strings contributing to the interaction is therefore different than in the bulk, where the propagation is symmetric, and the problem becomes qualitatively similar to that of a polymer close to a surface, thereby providing a simple physical picture to explain the change in the power law correction, or the anomalous asymptotic decay of the potential.
In summary, we have computed the potential of a point charge at an interface between two electrolytes with distinct Debye length and dielectric permittivity, such as oil and water. We found that the asymptotic behaviour of the potential is anomalous, and, quite notably, it differs from a screened charge monopole - which characterises the interactions in the bulk - and from a dipole - which
describes interactions at an air-water interface. An analysis of experimental data for the interaction of charged colloidal particles at a dodecane-water interface confirms that this anomalous far field describes observations more accurately than a dipole potential.

It will be of interest to extend our study to particles with prescribed shapes, such as anisotropic colloids [31], spherocylinders [32], RNA or DNA viruses, or interfacial proteins encountered in biofilms or food [17, 18]. It would also be desirable to study situations where the interface is curved, such as in a bijel or a water-oil Pickering emulsion. In the latter case, the Debye strings linking interfacial particles could either follow geodesics on the interface, or straight lines through the water phase, according to which liquid is inside the droplets. This can lead to further tunability and potential for self-assembly, which could be experimentally probed by the methods in [7]. In bijels, the asymmetry in Debye strings may create an effective coupling between interfacial curvature and particle concentration, potentially affecting the macroscopic properties of the emerging composite material [33].

* Electronic address: dmarendu@ph.ed.ac.uk
[1] F. H. Stillinger, J. Chem. Phys. 35, 1584 (1961).
[2] P. Pieranski, Phys. Rev. Lett. 45, 569 (1980).
[3] R. R. Netz, Phys. Rev. E 60, 3174 (1999); R. R. Netz, Eur. Phys. J. E 3, 131 (2000).
[4] B. Jancovici, J. Stat. Phys. 28, 43 (1982).
[5] P. Attard, R. Kjellander, D. J. Mitchell, and B. Jönsson, J. Chem. Phys. 89, 1664 (1988).
[6] P. A. Pincus and S. A. Safran, EPL 42, 103 (1998).
[7] M. E. Leunissen, A. van Blaaderen, A. D. Hollingsworth, M. T. Sullivan, and P. M. Chaikin, Proc. Natl. Acad. Sci. USA 104, 2585 (2007).
[8] A. Naji, M. Ghodrat, H. Komaie-Moghaddam, and R. Podgornik, J. Chem. Phys. 141, 174704 (2014).
[9] K. Masschaele, B. J. Park, E. M. Furst, J. Fransaer and J. Vermant, Phys. Rev. Lett. 105, 048303 (2010).
[10] R. Aveyard et al., Phys. Rev. Lett. 88, 246102 (2002).
[11] D. Frydel, S. Dietrich, and M. Oettel, Phys. Rev. Lett. 99, 118302 (2007).
[12] A. Slosar and R. Podgornik, EPL 75, 613 (2006).
[13] A. J. Hurd, J. Phys. A 18, L1055 (1985).
[14] Y. Brasse, V. Gupta, H. C. T. Schollbach, M. Karg, T. A. F. König, and A. Fery, Adv. Mater. Interfaces 1901678 (2019).
[15] K. G. Marinova, R. G. Alargova, N. D. Denkov, O. D. Velev, D. N. Petsev, I. B. Ivanov, and R. P. Borwankar, Langmuir 12, 2045 (1996).
[16] I. Muntz, F. Waggett, M. Hunter, A. B. Schofield, P. Bartlett, D. Marenduzzo, J. H. J. Thijssen, arXiv:1812.10299; Phys. Rev. Res. 2, 023388 (2020).
[17] K. M. Bromley, R. J. Morris, L. Hobley, G. Brandani, R. M. C. Gillespie, M. McCluskey, U. Zachariae, D. Marenduzzo, N. R. Stanley-Wall, and C. E. MacPhee, Proc. Natl. Acad. Sci. USA 112, 5419 (2015).
[18] A. Boire, D. Renard, A. Bouchoux, S. Pezennec, T. Croguennec, V. Lechevalier, C. Le Floch-Fouéré, C., S. Bouhallab, and P. Menut, Annu. Rev. Food Sci. Technol. 10, 521 (2019).
[19] P. W. Debye and E. Hückel, Z. Phys. 24, 185 (1923).
[20] B. P. Binks, Curr. Opin. Colloid Interface Sci. 7, 21 (2002).
[21] M. E. Cates and P. S. Clegg, Soft Matter 4, 2132 (2008).
[22] E. Sanz, K. A. White, P. S. Clegg, and M. E. Cates, Phys. Rev. Lett. 103, 255502 (2009).
[23] S. U. Pickering, J. Chem. Soc., Trans. 91, 2001 (1907).
[24] W. Ramsden, Proc. R. Soc. Lond. 72, 156 (1903).
[25] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (New York) (1972).
[26] See online SI for more details on analytical calculations.
[27] Neglecting the intermediate dipole regime, the crossover between screened monopole regime and the asymptotic behaviour, Eq. (10), occurs at $r_{c}=-\frac{1}{\kappa_{1}-\kappa_{2}} W_{-1}\left(-\frac{\left(\kappa_{1}-\kappa_{2}\right) \kappa_{2} \epsilon_{2}}{\kappa_{1}^{2} \epsilon_{1}}\right)$.
[28] B. Duplantier, J. Stat. Phys. 54, 581 (1989).
[29] A. Maritan, M. P. Riva, A. Trovato, J. Phys. A 32, L275 (1999).
[30] P. M. Chaikin, T. C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press, Cambridge (1995).
[31] S. C. Glotzer and M. J. Solomon, Nat. Mater. 6, 557 (2007).
[32] T. Li, G. Brandani, D. Marenduzzo, and P. S. Clegg, Phys. Rev. Lett. 119, 018001 (2017).
[33] M. Reeves, A. T. Brown, A. B. Schofield, M. E. Cates, and J. H. J. Thijssen, Phys. Rev. E 92, 032308 (2015).

