
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Putting the Squeeze on Molecule-Based Magnets: Exploiting
Pressure to Develop Magneto-Structural Correlations in
Paramagnetic Coordination Compounds

Citation for published version:
Etcheverry-berrios, A, Parsons, S, Kamenev, KV, Probert, MR, Moggach, SA, Murrie, M & Brechin, EK
2020, 'Putting the Squeeze on Molecule-Based Magnets: Exploiting Pressure to Develop Magneto-
Structural Correlations in Paramagnetic Coordination Compounds', Magnetochemistry, vol. 6, no. 3, pp. 32.
https://doi.org/10.3390/magnetochemistry6030032

Digital Object Identifier (DOI):
10.3390/magnetochemistry6030032

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Magnetochemistry

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Sep. 2020

https://www.research.ed.ac.uk/portal/en/persons/simon-parsons(8efcd4f8-cd05-49f5-86e2-c7c1c2fff154).html
https://www.research.ed.ac.uk/portal/en/persons/konstantin-kamenev(ff307ddb-16c8-49c0-af9f-aab2f0a9f1e5).html
https://www.research.ed.ac.uk/portal/en/persons/euan-brechin(f645e02c-9b12-40fa-a481-b009ec597144).html
https://www.research.ed.ac.uk/portal/en/publications/putting-the-squeeze-on-moleculebased-magnets-exploiting-pressure-to-develop-magnetostructural-correlations-in-paramagnetic-coordination-compounds(8925e6f6-aafe-4bc1-bc05-79cd4ed036f3).html
https://www.research.ed.ac.uk/portal/en/publications/putting-the-squeeze-on-moleculebased-magnets-exploiting-pressure-to-develop-magnetostructural-correlations-in-paramagnetic-coordination-compounds(8925e6f6-aafe-4bc1-bc05-79cd4ed036f3).html
https://doi.org/10.3390/magnetochemistry6030032
https://doi.org/10.3390/magnetochemistry6030032
https://www.research.ed.ac.uk/portal/en/publications/putting-the-squeeze-on-moleculebased-magnets-exploiting-pressure-to-develop-magnetostructural-correlations-in-paramagnetic-coordination-compounds(8925e6f6-aafe-4bc1-bc05-79cd4ed036f3).html


magnetochemistry

Review

Putting the Squeeze on Molecule-Based Magnets:
Exploiting Pressure to Develop Magneto-Structural
Correlations in Paramagnetic
Coordination Compounds

Alvaro Etcheverry-Berrios 1 , Simon Parsons 1,*, Konstantin V. Kamenev 2,*,
Michael R. Probert 3,*, Stephen A. Moggach 4,*, Mark Murrie 5,* and Euan K. Brechin 1,*

1 EaStCHEM School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh,
David Brewster Road, Edinburgh EH9 3FJ, UK; alvaro.et@ed.ac.uk

2 School of Engineering and Centre for Science at Extreme Conditions, The University of Edinburgh,
Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK

3 School of Natural and Environmental Sciences, Newcastle University, Kings Road, Newcastle NE1 7RU, UK
4 School of Molecular Sciences and Centre for Microscopy, Characterisation and Analysis, University of

Western Australia, 35 Stirling Highway, Crawley, Perth 6005, Australia
5 School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
* Correspondence: Simon.Parsons@ed.ac.uk (S.P.); K.Kamenev@ed.ac.uk (K.V.K.);

michael.probert@ncl.ac.uk (M.R.P.); stephen.moggach@uwa.edu.au (S.A.M.);
Mark.Murrie@glasgow.ac.uk (M.M.); ebrechin@ed.ac.uk (E.K.B.)

Received: 20 July 2020; Accepted: 10 August 2020; Published: 12 August 2020
����������
�������

Abstract: The cornerstone of molecular magnetism is a detailed understanding of the relationship
between structure and magnetic behaviour, i.e., the development of magneto-structural correlations.
Traditionally, the synthetic chemist approaches this challenge by making multiple compounds that
share a similar magnetic core but differ in peripheral ligation. Changes in the ligand framework induce
changes in the bond angles and distances around the metal ions, which are manifested in changes to
magnetic susceptibility and magnetisation data. This approach requires the synthesis of a series of
different ligands and assumes that the chemical/electronic nature of the ligands and their coordination
to the metal, the nature and number of counter ions and how they are positioned in the crystal
lattice, and the molecular and crystallographic symmetry have no effect on the measured magnetic
properties. In short, the assumption is that everything outwith the magnetic core is inconsequential,
which is a huge oversimplification. The ideal scenario would be to have the same complex available in
multiple structural conformations, and this is something that can be achieved through the application
of external hydrostatic pressure, correlating structural changes observed through high-pressure single
crystal X-ray crystallography with changes observed in high-pressure magnetometry, in tandem
with high-pressure inelastic neutron scattering (INS), high-pressure electron paramagnetic resonance
(EPR) spectroscopy, and high-pressure absorption/emission/Raman spectroscopy. In this review,
which summarises our work in this area over the last 15 years, we show that the application of
pressure to molecule-based magnets can (reversibly) (1) lead to changes in bond angles, distances,
and Jahn–Teller orientations; (2) break and form bonds; (3) induce polymerisation/depolymerisation;
(4) enforce multiple phase transitions; (5) instigate piezochromism; (6) change the magnitude and
sign of pairwise exchange interactions and magnetic anisotropy, and (7) lead to significant increases
in magnetic ordering temperatures.

Keywords: high pressure X-ray crystallography; high pressure magnetometry; high pressure
absorption spectroscopy; molecule-based magnets; single-molecule magnets; single-ion magnets
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1. Introduction

Over the last 50 years, there has been a significant increase in the number of high-pressure
single-crystal and powder diffraction studies performed on molecular systems, with several
comprehensive reviews on the subject, including the effect of pressure on amino acids [1], metal
complexes [2] and metal–organic frameworks [3,4]. The complexity of molecular systems examined
under pressure has grown significantly with the first molecules consisting of just a handful of atoms,
such as benzene, which was first published in 1969 [5]. More recently, molecular porous systems
containing thousands of atoms and with unit cell volumes in excess of 55,000 Å3 have been studied
(Figure 1) [6]. In all, some 3328 structures in the Cambridge Structural Database (CSD) have been
collected at pressure to date (CSD version 5.41).
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Figure 1. Cell volume versus publication year for all high-pressure structures collected in the Cambridge
Structural Database (CSD) (version 5.41) that contain the required field ‘pressure’ in the cif.

Advances in pressure cell technology, and in particular the size and ease of use of diamond
anvil cells (DACs) such as the Merrill Bassett cell [7], turnbuckle cell [8], and other miniature
diamond anvil cells [9] has made possible the study of molecular systems of increasing complexity.
One area where the use of pressure has seen a significant rise in popularity is in the study of
functional materials where high-pressure diffraction studies performed in conjunction with other
high-pressure measurements on the same sample have helped develop structure–property relationships.
Supplementary techniques have included high-pressure UV-Vis [10], fluorescence emission [11],
conductivity [12], Mössbauer [13], and magnetic measurements. These combined studies have revealed
how structural distortions, caused by increasing pressure, have enforced changes in the physical
properties of materials. Examples include measuring changes in conductivity and band structure in
molecular conductors [12], monitoring framework ‘breathing effects’ on the uptake of guest species
within porous metal–organic framework materials [14], and how structural changes in encapsulated
fluorophores affect emission properties [11]. One area where this approach has made a significant
impact is in the field of magnetism. Herein, we highlight our efforts in developing magneto-structural
correlations in transition metal molecule-based magnets; we do not attempt to cover examples from
other researchers, which are many and varied [15–31]. At the outset, what we hoped to observe was
that applied pressure would change bond lengths and angles around the metal centres, and that that
would lead to changes in magnetic exchange interactions and/or magneto-anisotropies. Our reasons
for choosing particular complexes to study were, at least initially, influenced by those whose ambient
structure–property relations had been well established in the literature. Some came from our own
back catalogue of compounds, the structures and physical properties of which we understood well.
All exchange interactions (J) in this review are quoted in the H = Σ−2JijSiSj formalism.
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2. Mn Complexes

The compounds we chose to study first were those containing MnIII. This was for a number of
reasons. At the beginning of our combined research efforts in 2006, we were making MnIII-based
Single-Molecule Magnets (SMMs) and had a large library of complexes from which to choose, many of
which had very interesting structural/magnetic features [32,33]. Aligned to this was the presence of the
Jahn–Teller (JT) axis of the octahedral MnIII ion. Given the well-known dynamic JT effect observed in
numerous coordination compounds [34], we speculated that hydrostatic pressure would be capable of
changing JT bond lengths/orientations, and that that would have a pronounced effect on both magnetic
exchange interactions and magnetic anisotropy.

The compounds [Mn6O2(Et-sao)6(O2CPh(Me)2)2(EtOH)6] (1) and [Mn6O2(Et-sao)6(O2C-
naphth)2(EtOH)4(H2O)2] (2; sao2− is the dianion of salicylaldoxime) are part of a well-studied
family of SMMs for which detailed magneto-structural correlations under ambient conditions have
been developed [35–37]. The general structure of these complexes (Figure 2) describes two parallel,
off-set [MnIII

3(µ3-O)]7+ triangular subunits linked via two central oximate O-atoms and two peripheral
phenoxide O-atoms, leading to a [MnIII

6(µ3-O)2(µ3-ONR)2(µ-ONR)4]8+ core. The bridging between
neighbouring Mn ions within each triangle occurs through an NO oximate group, such that each
Mn2 pair forms a −Mn−N−O−Mn− moiety, and thus the Mn3 triangle, a (−Mn−O−N−)3 ring.
The coordination spheres of the Mn ions are completed by two terminal carboxylates (one on
each triangle) and by terminal solvent molecules. All Mn ions are in the 3+ oxidation state and
are six-coordinate adopting distorted (pseudo) octahedral geometry, with their axially elongated
JT axes approximately perpendicular to the [Mn3O]7+ planes [38]. All family members can be
categorised into two subsections according to their magnetic behaviour: those possessing intra-triangle
antiferromagnetic exchange interactions, and those possessing intra-triangle ferromagnetic exchange
interactions. All family members display inter-triangle ferromagnetic exchange. This results in
compounds with S = 12 ground states in the latter and 4 ≤ S < 12 ground states in the former.
Interestingly, the sign and magnitude of the magnetic exchange is controlled through R-saoH2

ligand design, with larger, non-rigid R (in the main, e.g., R = Me, Et) causing puckering of the
−Mn−N−O−Mn−moiety. The change in torsion angle from near planar (when R = H for example) to
non-planar decreases the antiferromagnetic contribution to the nearest-neighbour exchange, and at
approximately 31◦, the pairwise interaction switches to being ferromagnetic [39]. Given that such
enormous changes in magnetic behaviour are observed through very small changes in structure,
aligned to the fact that the magnitude of the exchange (J) is very small (and thus the absolute difference
in J is small) made compounds 1 and 2 ideal candidates for the first ever combined HP single crystal
X-ray diffraction/HP magnetic study of a SMM.
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Hydrostatic high-pressure (HP) single-crystal X-ray diffraction (XRD) measurements were
performed on 1 and 2 in petroleum ether at T = 300 K to a maximum pressure of 1.5 GPa [40].
1 and 2 crystallise in the monoclinic space groups P21/n and P21/c, respectively, and remain so in the full
pressure range. The most obvious initial effect for both is a compression of the unit cell, by approximately
6.5% (1) and 10% (2), which is assigned to a reduction of void space given the lack of significant
intermolecular interactions (H-bonds or π–π stacking). The closest intermolecular interactions (H···H)
reduce by a maximum of approximately 0.9 Å in 1 and just 0.07 Å in 2. The intramolecular changes
are more remarkable (Figure 3), with the Mn–N–O–Mn torsion angles flattened considerably, and the
JT axes compressing and re-aligning differently with respect to the plane of the three metal centres
in the triangle (Tables 1 and 2). The Mn–N–O–Mn torsion angles decrease by up to approximately
5.1◦ (1), 5.7◦ (2). Significantly, the Mn1–N–O–Mn3 torsion angle in both cases falls from above to
below the angle expected to switch the pairwise exchange from ferromagnetic to antiferromagnetic;
34.8(5)→29.7(11)◦ (1), 33.2(2)→27.5(17)◦ (2). Note that Mn3 lies at the periphery of the molecule, away
from the more structurally rigid core, and it is the only metal ion bonded to two solvent molecules,
which sit on its JT axis. The changes in the JT axes with pressure are less consistent. For 1, the JT axes
of Mn1 and Mn2 are compressed with pressure (2.132(2), 2.434(3) Å→ 2.093(5), 2.359(5) Å; 2.196(3),
2.480(3) Å→ 2.151(6), 2.423(7) Å, respectively). However, the JT of Mn3 actually elongates at 0.5 GPa,
before compressing at all other (higher) pressures, resulting in a small overall compression of one
bond and a small overall elongation of the other. All three JT axes move to become slightly more
perpendicular to the mean plane of the [Mn3] triangle, albeit by just approximately 0.9–1.6◦. In 2,
the JT axes all compress with pressure (Mn1, 2.102(3), 2.508(3) Å→ 2.033(7), 2.486(9) Å; Mn2, 2.205(3),
2.397(3) Å→ 2.141(9), 2.387(11) Å; Mn3, 2.395(3), 2.188(3) Å→ 2.398(7), 2.107(7) Å) and variations in
the alignment of the axes are within the statistical error, although the trend appears analogous to that
seen for 1.Magnetochemistry 2020, 6, x FOR PEER REVIEW 5 of 28 

 

 
Figure 3. Comparison of Jahn–Teller bond lengths and Mn–O–N–Mn torsion angles in 1 at (a) ambient 
pressure and (b) 1.5 GPa. Colour code as Figure 1. 

HP susceptibility and magnetisation data were collected to 2 GPa using Daphne 7373 oil as the 
pressure transmitting medium. The magnetic behaviour of 1 and 2 at ambient pressure has been 
described in detail previously [32,41]. In the following text, the numbers in brackets refer to complex 
2. Data measured in the cell, but with zero applied pressure (T = 300–5 K, B = 0.1 T), can be simulated 
with the parameters g = 1.99(2.03) and J = +1.75 (+1.31) cm−1 in a model assuming all exchange 
interactions are the same. With increasing pressure, the value of χMT increases more slowly with 
decreasing temperature and has a much smaller maximum for both complexes, which is clearly 
indicative of a weaker (less positive) ferromagnetic exchange interaction, and/or the presence of 
antiferromagnetic exchange. Indeed, simulation of the susceptibility data for 1 at the highest 
pressures measured requires the introduction of a 2J model in which the Mn1–Mn3 exchange 
interaction is antiferromagnetic (J1 = +1.10 (+1.00) cm−1, JMn1-3 = −0.10 (−0.45) cm−1), which is consistent 
with the structural changes in the torsion angles. Simulations suggest the spin ground state remains 
S = 12 at lower pressures, but it switches to S = 11 (or smaller) at higher pressures. A fit of the 
magnetisation data for compound 1 measured in the cell, but with zero applied pressure (T = 2–7 K, 
B = 0.5–5.0 T) to an axial zero-field splitting (zfs) plus Zeeman Hamiltonian (Giant Spin Model) affords 
S = 12, g = 1.99, and D = −0.38 cm−1, which is consistent with that observed for all ferromagnetically 
coupled members of the family. At the highest pressures measured, these parameters become S = 11, 
g = 1.98, and D = −0.34 cm−1. The data for 2 could not be fitted, but qualitatively show a similar trend 
in behaviour. As expected with decreasing |J| and the introduction of antiferromagnetic exchange, 
the barrier to magnetisation reversal in these SMMs is reduced dramatically (Figure 4). There is a 
clear pressure and frequency-dependent decrease in the out-of-phase, χM″, peak positions in the ac 
susceptibility data from T ≤ 6 K. For example, for 1, the peak at 300 Hz at 0(1.75) GPa occurs at 
approximately 6.3(4.8) K; for 2, the peak at 100 Hz at 0(1.4) GPa occurs at 3.9(3.0) K. A fit of the HP 
χM″ data to the Arrhenius equation revealed a decrease in Ueff in 1(2) from 83(63) K to 63(47) K. This 
is also manifested in the change in the appearance of the magnetisation hysteresis loops that show a 
clear reduction in coercivity with increased pressure (Figure 4). 

Figure 3. Comparison of Jahn–Teller bond lengths and Mn–O–N–Mn torsion angles in 1 at (a) ambient
pressure and (b) 1.5 GPa. Colour code as Figure 1.



Magnetochemistry 2020, 6, 32 5 of 28

Table 1. Comparison of the Mn–O–N–Mn torsion angles (◦) at ambient pressure and at 1.5 GPa for
complexes 1 and 2.

At Ambient
Pressure in 1

At 1.5 GPa
in 1

At Ambient
Pressure in 2

At 1.5 GPa
in 2

Mn1–O–N–Mn2/◦ 43.0(2) 42.2(10) 41.1(2) 41.1(1.7)
Mn2–O–N–Mn3/◦ 39.1(2) 34.6(11) 40.5(2) 36.5(1.8)
Mn3–O–N–Mn1/◦ 34.8(5) 29.7(11) 33.2(2) 27.5(1.7)

Table 2. Comparison of the bond lengths (Å) of the Jahn–Teller axes at ambient pressure and at 1.5 GPa
for complexes 1 and 2.

Mn1–O2/Å Mn1–O92/Å Mn2–O15/Å Mn2–O11/Å Mn3–O14/Å Mn3–O124/Å

At ambient pressure in 1 2.132(2) 2.434(3) 2.196(3) 2.480(3) 2.242(3) 2.333(3)
At 1.5 GPa in 1 2.093(5) 2.359(5) 2.151(6) 2.423(7) 2.275(6) 2.320(7)

Mn1–O24/Å Mn1–O92/Å Mn2–O15/Å Mn2–O11/Å Mn3–O17/Å Mn3–O16/Å

At ambient pressure in 2 2.102(3) 2.508(3) 2.205(3) 2.397(3) 2.395(3) 2.188(3)
At 1.5 GPa in 2 2.033(7) 2.486(9) 2.141(9) 2.387(11) 2.398(7) 2.107(7)

HP susceptibility and magnetisation data were collected to 2 GPa using Daphne 7373 oil as
the pressure transmitting medium. The magnetic behaviour of 1 and 2 at ambient pressure has
been described in detail previously [32,41]. In the following text, the numbers in brackets refer to
complex 2. Data measured in the cell, but with zero applied pressure (T = 300–5 K, B = 0.1 T), can
be simulated with the parameters g = 1.99(2.03) and J = +1.75 (+1.31) cm−1 in a model assuming
all exchange interactions are the same. With increasing pressure, the value of χmT increases more
slowly with decreasing temperature and has a much smaller maximum for both complexes, which is
clearly indicative of a weaker (less positive) ferromagnetic exchange interaction, and/or the presence of
antiferromagnetic exchange. Indeed, simulation of the susceptibility data for 1 at the highest pressures
measured requires the introduction of a 2J model in which the Mn1–Mn3 exchange interaction is
antiferromagnetic (J1 = +1.10 (+1.00) cm−1, JMn1−3 = −0.10 (−0.45) cm−1), which is consistent with
the structural changes in the torsion angles. Simulations suggest the spin ground state remains
S = 12 at lower pressures, but it switches to S = 11 (or smaller) at higher pressures. A fit of the
magnetisation data for compound 1 measured in the cell, but with zero applied pressure (T = 2–7 K,
B = 0.5–5.0 T) to an axial zero-field splitting (zfs) plus Zeeman Hamiltonian (Giant Spin Model) affords
S = 12, g = 1.99, and D = −0.38 cm−1, which is consistent with that observed for all ferromagnetically
coupled members of the family. At the highest pressures measured, these parameters become S = 11,
g = 1.98, and D = −0.34 cm−1. The data for 2 could not be fitted, but qualitatively show a similar trend
in behaviour. As expected with decreasing |J| and the introduction of antiferromagnetic exchange,
the barrier to magnetisation reversal in these SMMs is reduced dramatically (Figure 4). There is a
clear pressure and frequency-dependent decrease in the out-of-phase, χM

′′, peak positions in the
ac susceptibility data from T ≤ 6 K. For example, for 1, the peak at 300 Hz at 0(1.75) GPa occurs at
approximately 6.3(4.8) K; for 2, the peak at 100 Hz at 0(1.4) GPa occurs at 3.9(3.0) K. A fit of the HP χM”
data to the Arrhenius equation revealed a decrease in Ueff in 1(2) from 83(63) K to 63(47) K. This is also
manifested in the change in the appearance of the magnetisation hysteresis loops that show a clear
reduction in coercivity with increased pressure (Figure 4).
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Figure 4. (a) Arrhenius plots based on out-of-phase ac susceptibility measurements of 1 at different
pressures. (b) Hysteresis loops for 1 recorded at the indicated pressures at 2 K.

The second SMM to be the focus of a combined HP crystallography/magnetism study was
the compound [Mn3(Hcht)2(bpy)4](ClO4)3·Et2O·2MeCN (3·Et2O·2MeCN; Hcht2− is the dianion of
cis,cis-1,3,5-cyclohexanetriol and bpy is 2,2′-bipyridine) [42,43]. The structure of 3 (Figure 5) contains a
linear [MnIIIMnII

2O4]3+ core with the central MnIII centre (Mn1) bound to the peripheral MnII ions
(Mn2 and symmetry equivalent, s.e.) by four alkoxide O-atoms (O15 and s.e.) provided by two Hcht2−

ligands, which are positioned one above and one below the trimetallic chain. One protonated oxygen
atom (O20 and s.e.) from the tripodal alcohol defines the JT axis of Mn1. The MnIII–O–MnII angle is
approximately 102◦, with the coordination sites of each MnII ion completed by four N-atoms from two
2,2′-bipyridine (bpy) ligands. Mn2 (and s.e) are in highly distorted octahedral geometries with cis angles
in the range 72.30(16)–105.65(15)◦ and trans angles in the range 156.0(2)–158.17(14)◦. When viewed
perpendicular to the bc plane, the disposition of the [Mn3] cations resembles a honeycomb-type
lattice where the MeCN molecules of crystallisation are H-bonded to the terminal bonded arm of
the tripodal ligand (N···O, approximately 2.8 Å), while the perchlorate anions are H-bonded to the
ring of carbon atoms (O···H–C, ≥2.3 Å) and lie between the bpy groups of adjacent [Mn3] molecules.
The closest intermolecular contacts between cations occur between off-set π-stacked bpy groups (C···C,
approximately 3.5 Å).
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counterions are omitted for clarity.

HP single crystal XRD measurements were performed in petroleum ether at T = 300 K and three
different pressures to a maximum of 1.25 GPa [44]. Complex 3 crystallises in the monoclinic space
group I2/m and remains so in the full pressure range. Remarkably, by 0.16 GPa, there is complete
elimination of the MeCN and Et2O solvent of crystallisation. It has literally been squeezed out of
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the crystal, representing the very first example of pressure-induced solvent elimination to have been
observed from the crystal structure of any molecular coordination compound. This leaves large
void spaces in the structure, equating to approximately 9.3% of the total volume that are gradually
reduced to approximately 5.5% at 1.25 GPa. The total change in volume over the entire pressure
range is approximately 10.5%, resulting in intermolecular distances shortening by approximately 0.5 Å.
For example, separations between MnIII ions along the three dimensions shift from 11.919(2), 13.385(2),
and 22.044(4) Å at ambient pressure to 11.331(3), 13.586(3), and 21.547(4) Å at 1.25 GPa, respectively.
Despite significant changes in intermolecular interactions, there are only minor intramolecular changes.
The Mn–O15 bonds contract from 1.898(3) Å at ambient pressure to 1.858(5) Å at the highest pressure
measured, the Mn1···Mn2 separation decreases from 3.143(1) Å to 3.118(2) Å, and the planes of the bpy
rings become a little more ‘twisted’ with respect to each other (15.4(1)◦→16.6(2)◦).

Direct current (dc) magnetic susceptibility data collected at ambient pressure (T = 300–5 K,
B = 0.1 T) reveal weak ferromagnetic exchange between the MnIII and MnII ions with J = +1.15 cm−1.
Fitting of the magnetisation data (T = 2–7 K, B = 1–7 T) afforded the parameters S = 7, D = −0.17 cm−1

with g = 1.99. With increasing pressure, the susceptibility data clearly indicate a weakening interaction,
χmT increases more slowly with the increasing pressure as the temperature decreases, reaching a
smaller maximum at T = 5 K. Simulation of the HP susceptibility data (Table 3) shows that the exchange
decreases by close to 50%, to a value of J = +0.60 cm−1 at 0.85 GPa. This behaviour is consistent with
the observed shortening of the Mn1–O15 bond distance and Mn1···Mn2 separation, which would
increase the antiferromagnetic contribution to the exchange. Magnetisation data at all pressures are
super-imposable and can be fitted with the same parameter set as those obtained at ambient pressure,
which is consistent with the lack of change in geometry at the JT distorted MnIII site and the retention
of ferromagnetic nearest neighbour exchange.

Table 3. Comparison of the J values and the energy differences between the ground state and first/second
excited spin states at ambient pressure and at 0.85 GPa for complex 3 as calculated from an isotropic fit
of the susceptibility data.

P/GPa S J/cm−1 E1/cm−1 E2/cm−1

Ambient pressure 7 +1.15 4.6 (S = 6) 9.2 (S = 5)
0.85 7 +0.60 2.4 (S = 6) 4.8 (S = 5)

The complex [Mn12O12(O2CCH2
tBu)16(H2O)4]·CH2Cl2·MeNO2 (4·CH2Cl2·MeNO2) belongs to

the prototype [Mn12O12(O2CR)16(H2O)4] family of SMMs [45,46]. The general structure of these
complexes consists of a ring of eight MnIII centres surrounding a central MnIV

4O4 cube, which is
bridged by oxide and carboxylate ligands (Figure 6). In the case of Mn12acetate, the MnIII ions occupy
two crystallographically independent sites with the eight JT axes lying in near alignment with the
magnetic easy axis, affording D = −0.457(2) cm−1. In combination with a S = 10 spin ground state,
this leads to an effective barrier to magnetisation reversal of approximately 60 K [47]. However, bulk
[Mn12] samples often contain a small percentage of a fast-relaxing (FR) JT isomer, which display a
misaligned/horizontal JT axis and a much lower barrier height, Ueff ≈ 40 K, and initial HP studies of the
static magnetic properties of Mn12acetate at low temperatures, and HP inelastic neutron scattering (INS)
measurements, had suggested some conversion of the slow relaxing (SR) isomer to the FR isomer with
pressure [48–50]. However, both studies lacked any crystallographic confirmation. In order to address
this, we turned our attention to [Mn12O12(O2CCH2

tBu)16(H2O)4]·CH2Cl2·MeNO2 (4·CH2Cl2·MeNO2)
because it exists as the 100% FR isomer, with the JT axis on Mn8 oriented equatorially rather than
axially (Figure 6).
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Figure 6. (a) The molecular structure of complex 4. (b) The structure of the Mn–O core of 4 at ambient
pressure and (c) at 2.5 GPa. The ‘vertical’ JT bonds are coloured orange, and the JT bonds on Mn8,
which switches with applied pressure, are coloured green. Colour code: Mn = lilac, O = red, C = grey,
H = pale green. H atoms (except on H2O ligands shown in (b,c)) and solvent molecules are omitted
for clarity.

HP single crystal XRD measurements were performed in Daphne oil at T = 298 K and at three
different pressures up to 2.5 GPa [51]. Complex 4 crystallises in the triclinic space group P-1 and remains
so in the full pressure range. At ambient pressure, the formula unit contains one MeNO2 and CH2Cl2
of solvation. At 1.5 GPa, the occupancies of the solvent decreases to 0.75MeNO2 and 0.5CH2Cl2 per
formula unit, and at 2.5 GPa, the solvent is removed completely—suggesting that the solvent is released
into the hydrostatic medium and reabsorbed on decompression. The main structural changes within the
cluster occur at the MnIII centres. At 1.5 GPa, the JT elongated bonds on Mn5, Mn6, and Mn12 become
more asymmetric, while those on Mn7 and Mn9–Mn11 decrease, but only by approximately 0.02 Å on
average. At Mn8, the JT bond (O208–Mn8–O25; 2.049(2) Å, 2.145(3) Å) lengths decrease, and at 1.5 GPa,
the six Mn–O distances span the range 1.94(2) to 2.082(15) Å (Table 4), suggesting that the disorder
present at ambient pressure persists. At 2.5 GPa (Figure 6), the horizontal JT bonds at Mn8 switch to
vertical JT bonds, O14–Mn8–O26 (2.105(17) Å, 2.19(2) Å). Between 1.5 and 2.5 GPa, the JT bonds on the
remaining MnIII sites do not change significantly. Release of pressure re-establishes the coordination
seen at ambient pressure. Note that FR→SR isomer conversion had been previously reported to be
affected by solvent loss, which is consistent with this HP crystallographic data [45,46].

Table 4. Mn–O bond lengths at Mn8 as a function of pressure. Values for significantly elongated bonds
are shown in bold.

T/K 150 298 298 298 298

P/GPa 0 0 1.5 2.5 0

Distance/Å

Mn8–O108 1.893(3) 1.930(4) 1.98(2) 1.88(3) 1.932(4)
Mn8–O13 1.963(3) 2.002(5) 2.02(3) 1.89(3) 1.994(4)

Mn8–O208 2.049(2) 1.966(4) 1.94(2) 1.90(3) 1.956(4)
Mn8–O25 2.145(3) 2.025(4) 2.04(3) 2.03(3) 2.022(5)
Mn8–O14 1.961(2) 2.012(5) 2.082(15) 2.105(17) 2.015(5)
Mn8–O26 1.956(3) 2.010(5) 2.034(17) 2.19(2) 2.005(5)
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High-pressure alternating current (ac) susceptibility data (Figure 7) from ambient pressure to a
maximum of 1.44 GPa was collected in Daphne oil. The ambient pressure data reveals only one peak at
low temperature (Tmax = 2.1 K at 1 Hz) due to the FR species. At 0.47 GPa, the low temperature peak
shifts to higher temperature (approximately 2.3 K) with a significant decrease in its intensity, and a new
broader peak appears at approximately 4 K, i.e., both FR and SR isomers are now present. This trend
continues to higher pressures, and at 1.44 GPa, the low temperature peak disappears and only the high
temperature peak is observed (Tmax = 4.1 K at 1 Hz) due to the exclusive presence of the SR species.
The switch is fully reversible. Arrhenius analysis of the frequency dependence affords Ueff(FR) = 41 K,
τ0 = 4 × 10−10 s, increasing to Ueff(FR) = 46 K, τ0 = 8 × 10−10 s at 1.12 GPa. The energy barrier of
the pressure-induced SR species, Ueff(SR) = 63 K, compares well to the value, Ueff = 62 K, which was
previously reported for the SR species [Mn12O12(O2CCH2

tBu)16(H2O)4]·CH2Cl2·MeCN. The switch
from FR→SR isomer is also evidenced in the evolution of the hysteresis loop under pressure at 2 K
(Figure 7), whose coercive field increases with pressure. An estimation of the axial zero-field splitting
(zfs) from the 1.44 GPa magnetisation data affords, D = −0.61 K, which is in excellent agreement with
that obtained from single-crystal low-temperature hysteresis loops.
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ligands completing the octahedral coordination around each Mn ion. Charge balance is maintained 
by the presence of three [ClO4]− (5·3MeCN) or three [PF6]− (6·2MeCN·H2O) counter ions. Mn1 is in the 
3+ oxidation state, with the JT axis defined by the N29–Mn1–N41 vector, which lies approximately 
perpendicular to the [Mn2O2] plane. The Mn–Mn separation and the Mn-O–Mn bridging angles are 
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In both cases, the solvent molecules and anions are hydrogen bonded to the protons of the bpy 
ligands, and the closest inter-cluster interaction is between staggered π–π stacked bpy rings. 

Figure 7. (a) High-pressure ac susceptibility data for compound 4 measured at a fixed frequency of
1 Hz (left). Conversion of the fast-relaxing (FR) to the slow-relaxing (SR) species can be seen through
the disappearance of the peak at approximately 2K and the emergence of the peak at approximately 4K.
(b) High-pressure hysteresis loops for 4 at T = 2 K from ambient to 1.44 GPa.

The compounds [Mn2O2(bpy)4](ClO4)3·3MeCN (5·3MeCN) and [Mn2O2(bpy)4](PF6)3·2MeCN·H2O
(6·2MeCN·H2O) belong to a family of mixed-valence oxo-bridged MnIII/MnIV dimers originally
synthesised as models for metalloenzymes [52]. Their structures (Figure 8) contain a central
[MnIIIMnIVO2]3+ asymmetric core with two bridging µ-O2− ligands and two 2,2′-bipyridine (bpy)
ligands completing the octahedral coordination around each Mn ion. Charge balance is maintained by
the presence of three [ClO4]− (5·3MeCN) or three [PF6]− (6·2MeCN·H2O) counter ions. Mn1 is in the
3+ oxidation state, with the JT axis defined by the N29–Mn1–N41 vector, which lies approximately
perpendicular to the [Mn2O2] plane. The Mn–Mn separation and the Mn-O–Mn bridging angles are
2.7058(4) Å, 96.42(7)◦, 96.09(7)◦ in 5·3MeCN and 2.7177(7) Å, 97.00(11)◦, 96.97(11)◦ in 6·2MeCN·H2O.
In both cases, the solvent molecules and anions are hydrogen bonded to the protons of the bpy ligands,
and the closest inter-cluster interaction is between staggered π–π stacked bpy rings.
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Figure 8. (a) The molecular structure common to complexes 5·3MeCN and 6·2MeCN·H2O. (b) Variations
in the bond lengths from ambient pressure to 2.00 GPa in 5·3MeCN. Only statistically significant
changes are shown. Colour code: Mn = lilac, O = red, N = blue, C = grey. H atoms, counterions and
solvent molecules are omitted for clarity.

HP single-crystal XRD measurements were performed in petroleum ether at room temperature [53].
Data were collected at four different pressures to a maximum pressure of 2.00 GPa for 5 and six
different pressures to a maximum pressure of 4.55 GPa for 6. Complex 5 crystallises in the triclinic
space group P-1, and complex 6 crystallises in the monoclinic space group P21/n; both remain in the
same space groups in the full pressure range. The main effect of applying pressure is the contraction of
the unit cell volume (2517.49(9)→ 2239.1(11) Å3; 5150.7(2)→ 4207.5(6) Å3, respectively), due to the
reduction of void space and aided by the lack of any significant intermolecular interactions. The main
intramolecular changes are to the Mn–Mn distance, which contracts from 2.7058(4)→ 2.676(4) Å at
2.0 GPa in 5 and from 2.7177(7)→ 2.672(3) Å at 4.55 GPa in 6. In the case of 5, this change is likely
due to the contraction of both Mn–O4 bonds (Table 5); however, for 6, the variations observed for
the Mn–O distances and the Mn–O–Mn angles are not statistically significant. In 5, there are also
significant changes in the Mn1–N bond lengths, which see two of the four decreasing and one (N32)
increasing. The JT axis (N41–Mn1–N29) is significantly shortened, with the Mn1–N29 bond contracting
from 2.2221(18) Å to 2.142(6) Å. For Mn2, the changes are less significant, except for the Mn2–N5 bond,
which increases from 2.078(5) Å at 0.18 GPa to 2.144(8) Å at 2.00 GPa. A similar change is also seen in 6.

Table 5. Selected bond lengths (Å) and angles (◦) for 5·3MeCN and 6·2MeCN·H2O at ambient and
maximum pressure.

5·3MeCN 6·2MeCN·H2O

Ambient Pressure 2.00 GPa Ambient Pressure 4.55 GPa

Mn1–O3 1.8419(15) 1.817(11) 1.847(2) 1.828(10)
Mn1–O4 1.8621(15) 1.78(2) 1.850(2) 1.821(11)

Mn1–N44 2.1093(19) 2.072(8) 2.134(3) 2.084(9)
Mn1–N41 2.2053(18) 2.194(7) 2.220(3) 2.156(8)
Mn1–N32 2.1666(19) 2.245(16) 2.2128(3) 2.085(9)
Mn1–N29 2.2221(18) 2.142(6) 2.212(3) 2.148(8)
Mn2–O3 1.7867(15) 1.79(2) 1.781(2) 1.752(12)
Mn2–O4 1.7753(15) 1.740(10) 1.779(2) 1.791(11)
Mn2–N5 2.0971(18) 2.144(8) 2.077(3) 2.029(8)
Mn2–N8 2.0160(18) 2.002(6) 2.008(3) 1.998(8)
Mn2–N17 2.0813(18) 2.060(13) 2.078(3) 2.017(9)
Mn2–N20 2.0165(18) 2.021(5) 2.017(3) 1.982(8)
Mn1–Mn2 2.7058(4) 2.676(4) 2.7177(7) 2.672(3)

Mn1–O3–Mn2 96.42(7) 95.6(11) 97.00(11) 96.5(4)
Mn1–O4–Mn2 96.09(7) 98.7(11) 96.97(11) 95.4(5)
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High pressure dc susceptibility data (T = 350–20 K, B = 0.1 T) were collected to a maximum pressure
of 0.87(0.84) GPa for 5(6) using Daphne oil as hydrostatic medium. The behaviour of both complexes
is analogous to that previously reported for 5(6) across the whole temperature and pressure regime,
which is consistent with the lack of any significant intramolecular structural change at low pressures.
Simulations of the susceptibility data afford J = −177 cm−1 and g = 1.96 for 5 and J = −185 cm−1 and
g = 1.98 for 6.

3. Cu Complexes

The choice of investigating CuII complexes was partly influenced by our initial success in MnIII

chemistry where we repeatedly saw large structural changes associated with JT axes. Aligned with
this was the well-known coordinative flexibility of the CuII ion, which is commonly four, five, or six
coordinate, adopting a variety of geometries, and consequently, colours. Therefore, such species
offered another potential variable to examine high-pressure absorption/emission spectroscopy, which
would allow us to correlate changes in the metal coordination sphere to piezochromism. The Cu
dimer [GuH][Cu2(OH)(cit)(Gu)2] (7, H4cit = citric acid, Gu = guanidine) is somewhat unusual, in that
it was the first reported example of a coordination compound containing neutral guanidine ligands
bonded to a transition metal ion (Figure 9) [54]. At ambient pressure, complex 7 crystallises in
the orthorhombic space group Pnma. The two CuII ions have a distorted square pyramidal [4 + 1]
coordination environment. They are bridged by a µ-OH− ligand (O6), the citrate alkoxide (O1), and
the citrate α-carboxylate group (O4). The latter forms the long ‘axial’ bond (Cu1···O4, 2.740(4) Å).
The coordination environment of each metal ion is completed by one citrate β-carboxylate (O2) and one
neutral guanidine ligand (N1). The region of the sixth coordination site of the CuII ion is occupied by an
uncoordinated β-carboxylate O-atom from a neighbouring molecule (Cu1···O3, 3.217(4) Å. The GuH+

cation is located in a pocket between the two neutral Gu ligands and is H-bonded to the anion.
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HP single-crystal XRD measurements were performed in pentane–isopentane at room temperature
at four different pressures, to a maximum of 4.23 GPa. Little intramolecular changes are seen to 1.8 GPa,
but one significant intermolecular change is observed: the Cu1···O3 distance shortens by 0.264 Å to
2.953(2) Å. On increasing the pressure to 2.9 GPa, complex 7 undergoes a single-crystal-to-single-crystal
phase transition to the non-centrosymmetric space group P212121 (Phase II). The Cu1···O3 contact
is now defined by two independent interactions, Cu1···O30 (2.879(7) Å) and Cu2···O3 (2.610(6) Å),
and the metal coordination environment changes from [4 + 1] → [4 + 2] with the long contacts
now defined by the intramolecular Cu–O4 bond and the intermolecular Cu1–O30 (Cu2–O3) contact.
The result of these changes is the formation of a polymer via the conversion of intermolecular contacts
to intramolecular bonds (Figure 10): the first example of the polymerisation of a transition metal
complex with pressure. A second single-crystal-to-single-crystal phase transition occurs between
2.95 GPa and 4.23 GPa, this time to the centrosymmetric monoclinic space group P21/c, forming Phase
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III, which consists of two crystallographically independent polymeric chains. One of these chains
(based on Cu1, Cu2) remains largely unchanged, while the other (based on Cu10, Cu20) undergoes
significant rearrangement. Specifically, the bridging α-carboxylate ligand twists, forcing the Cu–O–Cu
moiety to be more asymmetric, the Cu10–O44 and Cu20–O44 bonds measuring 2.816(7) and 2.497(7)
Å, respectively. Simultaneously, one polymer-forming bond, Cu10–O330, shortens to 2.449(6) Å,
while the second (Cu20···O33, 3.098(6) Å) breaks. Thus, while the integrity of the second chain is
retained, the polymerisation only involves only one CuII centre, i.e., half the CuII ions become [4 + 1]
coordinate again.
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A second, structurally related citrate/guanidine-based CuII dimer, [GuH]4[Cu2(cit)2]·2H2O (8),
was also studied [55]. Compound 8 (Figure 11) crystallises in the orthorhombic space group Pbca
and consists of two symmetry equivalent CuII ions bridged by two alkoxide O-atoms (O7 and s.e.)
from the citrate ligands, the metals being further coordinated by the β-carboxylate O-atoms from each
ligand (O1, O3). The four-coordinate, pseudo-tetrahedral metal centre has approximate D2d symmetry.
In addition, each α-carboxylate group is oriented toward one of the CuII centres at a Cu1–O5 distance
of 2.628(3) Å, with the O5–Cu–Cu angle being 73.05(6)◦. Therefore, an alternative description of the
coordination sphere of the metal centre is a highly distorted [4 + 1] geometry.
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a-axis. Colour code: Cu = orange, O = red, N = blue, C = grey. H atoms and counter ions (in (a)) are
omitted for clarity.

HP single-crystal XRD measurements were performed on 8 in a 1:1 mixture of pentane–isopentane
to a maximum pressure of 2.20 GPa. The crystal packing of 8 consists of alternate layers of cations
and anions (Figure 11b), in which the GuH+ ions direct an extensive hydrogen-bonding network
with the citrate ligand O-atoms and lattice H2O molecules. The main effect of applying pressure is
a compression along the direction of the layer-stacking in the b-axis (which also contains the largest
voids), which decreases in length by 8.9% to 2.20 GPa (14.713(9) Å→ 13.4098(7) Å). The shortening of
the a and b axes allied to the diamond-like packing motifs formed by the guanadinium cations causes
the c axis to lengthen, which is an early example of negative linear compressibility in molecular solids.
The most significant intramolecular change is in the Cu-O5 distance, which decreases from 2.628(3) Å at
ambient pressure to 2.407(3) Å at 2.20 GPa. Therefore, the metal geometry is now 5-coordinate [4 + 1]
with approximate C4v symmetry. Interestingly, the Cu–O5 bonds also lie along the b-axis, meaning
that the largest intramolecular compression correlates with the largest intermolecular compression.
HP single-crystal electronic spectroscopy measurements reveal that 8 undergoes a colour change from
blue to green, which is due to a reduction in absorption in the 18,500–14,000 cm−1 region. This is directly
related to the reduction in the Cu–O5 bond length and the rearrangement of the Cu coordination sphere.
The d–d spectrum (Figure 12) at ambient pressure consists of two bands at 15,300 and 12,800 cm−1,
which are observed in the full pressure range to a maximum of 5.5 GPa. Both bands blue shift linearly
with pressure at a rate of 140 and 100 cm−1 GPa−1, respectively. The 15,300 cm−1 band intensity
decreases with pressure and almost disappears above 2.5 GPa. The intensity ratio in the 0–2.5 GPa range
decreases in line with the reduction in the Cu–O5 distance, suggesting this to be chiefly responsible for
the observed piezochromism. The main effects observed in the electronic spectra can be explained
in terms of simple monomeric CuII units (Figure 12b). At ambient pressure, the Cu–O5 interaction
is weak, and though the Cu site symmetry is C1, the spectrum can be interpreted by considering a
pseudo-tetrahedral (D2d) 4-coordinate Cu moiety, showing two allowed transitions (e→ b2 and a1

→ b2). At higher pressures, the Cu–O5 interaction becomes much shorter, and the spectrum can be
interpreted by considering a single allowed transition in the (C4v) 5-coordinate Cu moiety (e→ b2).
In short, the gradual reduction of the ‘axial’ Cu–O bond length induces a continuous transformation
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of the local Cu site symmetry from approximately D2d at ambient pressure to approximately C4v,
in which e→ b2 is the only allowed transition.
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The complexes [Cu2(OH)2(H2O)2(tmen)2](ClO4)2 (9, tmen = tetramethylethylenediamine),
[Cu2(OH)2(tben)2](ClO4)2 (10, tben = di-tbutylethylenediamine), and [Cu2(OH)2(bpy)2](BF4)2 (11,
bpy = 2,2′-bipyridine) are part of a large family of hydroxo-bridged CuII dimers that have been
studied since the 1970s when Hatfield and Hodgson first developed a quantitative magneto-structural
correlation relating the bridging CuII–O–CuII angles in the diamond-shaped [Cu2(µ-OH)2] core to the
magnitude of the exchange interaction [56]. Complex 9 (Figure 13) has each CuII ion in a [CuO3N2]
square pyramidal coordination sphere, while in 10, the bulky tBu groups of the tben ligands force the
geometries of the metal ions to be intermediate between square planar and tetrahedral, with additional
solvent ligation impossible, such that the CuII ions are four coordinate with [CuO2N2] coordination
spheres (Figure 14a). The CuII ions in 11 are in a JT distorted [CuO2N2F2] octahedral geometry, with the
F–Cu–F vector defining the JT axis (Figure 14b). The Cu–O–Cu angles are 102.03(13)◦ in 9, 102.72(6)◦

and 101.62(6)◦ in 10, and 97.40(14)◦ in 11. At ambient pressure, they crystallise in the monoclinic space
groups P21/c (9), C2/c (10), and C2/m (11).
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HP single-crystal XRD measurements were performed using petroleum ether as hydrostatic
medium [57]. Data were collected at 0.25, 0.70, 1.20, and 2.50 GPa for 9, at 0.21 and 0.90 GPa for
10, and at 0.30, 0.80, 1.53, 2.25, 2.80, 3.50, 4.00, 4.30, and 4.70 GPa for 11. Crystals of 10 and 11
remain in the same space group in the full pressure range, whereas complex 9 undergoes a phase
transition between 1.20 and 2.50 GPa from monoclinic P21/c to triclinic P-1. In all cases, the primary
effect of applying pressure is a reduction of the unit cell, the compressions being assigned to the
removal of void space due to the absence of any significant intermolecular interactions. The secondary
effect is intramolecular. In 9, the Cu–O–Cu angle becomes smaller, from 102.03(13)◦ to 99.7(7)◦ at
1.20 GPa, with a concomitant shortening of the Cu···Cu distance from 2.9784(12) Å to 2.939(3) Å
(Table 6). At ambient pressure, one H2O molecule is bonded to each CuII ion, which is approximately
perpendicular to the Cu2O2 plane (Cu–Cu–O = 91.41(16)◦; Figure 13), but it becomes severely distorted
at higher pressures (Cu–Cu–O = 80.4(7)◦). The reason for this bending appears to be the shortening
of the intermolecular O(ClO4)···O(H2O) distance to just 3.50 Å. Further increases in pressure lead to
a phase transition from the monoclinic space group P21/c to the triclinic space group P-1 between
1.20 and 2.50 GPa, with the asymmetric unit now containing two full dimers and four perchlorate
anions. The loss of symmetry is caused by the elimination of one H2O molecule from half the dimers,
producing two different complexes: one with two H2O molecules (one bonded to Cu1 and Cu1*) and
one with only one H2O molecule (bonded to Cu3; Figure 13). This was the first reported example of
pressure-induced H2O elimination. In both dimers, the decreasing Cu···Cu distance with increasing
pressure continues, reaching 2.914(3) Å for Cu1–Cu1* and 2.849(9) Å for Cu3–Cu4 at the highest
pressure (2.5 GPa) measured.

Complexes 10 and 11 are less affected by the application of pressure. In 10, the Cu···Cu distance
decreases from 2.9784(3) Å at ambient pressure to 2.908(7) Å at 0.90 GPa, with the Cu–O–Cu angles
changing from 102.76(6)◦ and 101.62(6)◦ to 99.3(10)◦ and 104.2(11)◦. The shortening of the Cu···Cu
distance is likely due to the contraction of the bond between Cu2 and the two bridging hydroxide
ions decreasing from 1.9198(12) Å to 1.77(3) Å, thus becoming one of the shortest CuII–OH distances
ever reported. The presence of the two BF4

– anions in 11 results in a more rigid structure, reducing
the effect of applying pressure. The Cu–F distances decrease from 2.775(2) Å to 2.503(3) Å (ambient
pressure→ 4.7 GPa), the Cu···Cu distance changes from 2.8663(17) Å to 2.8210(19) Å, and the Cu–O–Cu
angles decrease from 97.40(14)◦ at ambient pressure to 95.6(2)◦ at 4.7 GPa.
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Table 6. Selected distances (Å) and angles (◦) in compounds 9–11 as a function of pressure (GPa).

P/GPa 9

Cu1···Cu1* Cu1–O10–Cu1* Cu1–Cu1*–O11
ambient 2.9784(12) 102.03(13) 91.41(16)

0.25 2.9578(19) 101.2(3) 88.7(3)
0.70 2.946(2) 101.1(3) 87.4(3)
1.20 2.939(3) 99.7(7) 80.4(7)

Cu1···Cu2 Cu1–O1–Cu2 Cu1–O2–Cu2 Cu1–Cu2–O5 Cu2–Cu1–O6
2.50 2.914(3) 98.4(4) 99.5(6) 91.2(4) 80.1(4)

Cu3···Cu4 Cu3–O3–Cu4 Cu3–O4–Cu4 Cu3–Cu4–O7
2.50 2.004(16) 93.9(13) 94.0(7) 67.4(6)

10

Cu1···Cu2 Cu1–O1–Cu2 Cu1–O2–Cu2
ambient 2.9784(3) 102.72(6) 101.62(6)

0.21 2.964(3) 103.3(5) 102.4(5)
0.90 2.908(7) 99.3(10) 104.2(11)

11

Cu1···Cu1* Cu1–O10 Cu1–F1 Cu1–O10–Cu1*
ambient 2.8663(17) 1.908(2) 2.775(2) 97.40(14)

0.30 2.8689(17) 1.910(2) 2.768(3) 97.37(17)
0.80 2.8649(14) 1.911(2) 2.711(2) 97.13(14)
1.53 2.8544(12) 1.9069(19) 2.655(2) 96.91(13)
2.25 2.8427(15) 1.908(2) 2.609(3) 96.33(16)
2.80 2.8422(12) 1.907(2) 2.577(2) 96.35(14)
3.50 2.8331(13) 1.914(2) 2.548(2) 95.49(14)
4.00 2.8313(14) 1.913(3) 2.530(3) 95.45(18)
4.30 2.8374(17) 1.920(3) 2.543(4) 95.3(2)
4.70 2.8210(19) 1.904(3) 2.503(3) 95.6(2)

HP dc magnetic susceptibility data (T = 350–20 K, B = 0.1 T) were collected at ambient pressure to
a maximum pressure of 0.84 GPa (9), 0.87 GPa (10), and 0.86 GPa (11) using Daphne oil. Simulation
of the susceptibility data at ambient pressure reveals strong antiferromagnetic exchange in 9 and
10 (J = −260 cm−1 and J = −252 cm−1, respectively) and moderate ferromagnetic exchange in 11
(J = +22 cm−1). The χmT value for complexes 9 and 10 at low temperatures (up to 90 K) are 0 cm3

mol K−1 at all pressures. As the temperature increases, the χmT value of 9 increases, following
different paths as a function of the applied pressure, reaching a maximum value of 0.28 cm3 mol−1 K
at ambient pressure and 0.39 cm3 mol−1 K at 0.84 GPa. The data follow a similar trend for complex
10 with χmT changing from 0.30 cm3 mol−1 K to 0.34 cm3 mol−1 K (ambient pressure→ 0.87 GPa)
at T = 350 K. This behaviour reveals a weakening of the antiferromagnetic interaction between the
CuII ions. The parameters obtained from the simulations at different pressures (Table 7) show that J
decreases from −260 cm−1 to −203 cm−1 for 9 and from −252 cm−1 to −228 cm−1 for 10 with increasing
pressure, which is in agreement with magneto-structural correlations developed for [Cu2(OH)2] dimers
in which decreasing Cu–O–Cu angles, Cu–O, and Cu···Cu distances are all expected to decrease |J| [58].
HP susceptibility measurements of 11 show a small increase in the χmT value with increasing pressure,
with J increasing from +22.0 cm−1 at ambient pressure to +29.4 cm−1 at 0.86 GPa.
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Table 7. Comparison of the J values as a function of pressure for complexes 9–11, with g = 2.09 for 9
and 10, and g = 2.11 for 11.

9 10 11

P (GPa) J (cm−1) P (GPa) J (cm−1) P (GPa) J (cm−1)

ambient −260 ambient −252 ambient +22
0.22 −222 0.30 −246 0.40 +24
0.59 −220 0.58 −234 0.61 +25.5
0.84 −203 0.87 −228 0.86 +29.4

Previous HP powder XRD (PXRD) and magnetic susceptibility measurements on the coordination
polymer [CuIIF2(H2O)2(pyz)] (12, pyz = pyrazine) had shown successive structural phase transitions and
a pronounced change in the effective dimensionality of the extended CuII

···CuII exchange interactions
from 2D to 1D [59]. To further complement this study, we performed detailed HP single-crystal XRD
and HP single-crystal electron paramagnetic resonance (EPR) spectroscopy on 12 in order to provide
direct information regarding any pressure-induced reorientation of the JT (dz2) axes and magnetic
(dx2−y2 ) orbitals. At ambient pressure, complex 12 crystallises in the monoclinic space group P21/c with
one CuII ion in the asymmetric unit (Figure 15). The six-coordinate, JT distorted octahedral CuII ion
is bonded to two O-atoms (1.984(4) Å) from the two H2O ligands, two F- ions (1.908(4) Å), and two
N-atoms (2.454(6) Å) from the pyz ligands. The latter define the orientation of the JT axis, whereby
the pyz ligands direct the formation of 1D chains along the a-axis of the unit cell. In the bc plane,
these chains are linked into a 2D network by short Cu–OH···F–Cu H-bonds (2.623(4) Å and 2.607(4)
Å). Therefore, the magnetic dx2−y2 orbital of the CuII ion lies in the CuF2O2 (bc) plane, as confirmed
by ambient low temperature magnetisation data, which show a 2D antiferromagnetic magnetic order
with TN = 2.54 K.
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O1, 2.22(3) Å, Cu2-F6*, 2.28(2) Å), and adjacent Cu ions within the dimerised chains are now bridged 
directly by F- ions (Cu2–F6, 1.908(18) Å; Cu2–F6–Cu2*, 103.0(8)°). A separate study has revealed a 
third transformation route at 3.3 GPa which leads to a phase in which the chemical connectivity and 
orientation of the JT axes in Phase II were retained but its symmetry is reduced to triclinic, and the 
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Figure 15. The molecular structure of complex 12 showing (a) the 2D network in the bc-plane, and
(b) the 1D chains directed by the pyz ligands along the a-axis. The dashed light blue lines highlight
the Cu–OH···F–Cu H-bonds. Colour code: Cu = orange, O = red, N = blue, C = grey, F = yellow,
H = pale green.

HP single-crystal XRD measurements were performed in petroleum ether, with room temperature
data collected at 0.50, 0.90, 1.20, 1.80, 2.20, 2.50, 2.85, and 3.30 GPa [60]. The initial effect of pressure is a
compression of the unit cell, and while the Cu–N, F, and O distances do not change significantly up
to 1.2 GPa; both Cu–OH···F–Cu hydrogen bonds compress to 2.515(13) Å. This value is exceptionally
short for this type of interaction and hints at a build-up of strain in the bc plane. At 1.8 GPa, the phase
modification (Phase II) observed in the PXRD measurements occurs. The crystallographic symmetry
is maintained, but the Cu–N bond lengths decrease by approximately 0.4 Å to 2.039(3) Å, and the
Cu–O bonds increase by 0.3 Å to 2.316(3) Å. This reflects the reorientation of the JT axis from the
N–Cu–N direction to the O–Cu–O direction, and it means the magnetic dx2−y2 orbital is now oriented
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along the 1D pyrazine chains. This structural reorganisation simultaneously relieves the tension in
the OH···F hydrogen bonds, which increase to 2.702(3) and 2.626(3) Å, respectively. 12 undergoes
a second, even more disruptive, pressure-induced phase transition between 2.85 and 3.30 GPa to
the triclinic space group P-1 (Phase IV). During this transition, one H2O molecule per Cu unit from
two-thirds of the chains is lost, forcing a dimerisation of the chains through the F- ions (Figure 16).
The remaining one-third of the chains are unchanged. Interestingly, and in contrast to 3 where the
solvent was ejected from the lattice, the expelled water molecules remain in the crystal lattice and sit
between the monomeric and dimeric chains, which are held in place by the OH···F H-bonding network.
In Phase IV, the JT axes are now oriented along the O–Cu–F bonds (Cu2-O1, 2.22(3) Å, Cu2-F6*, 2.28(2)
Å), and adjacent Cu ions within the dimerised chains are now bridged directly by F- ions (Cu2–F6,
1.908(18) Å; Cu2–F6–Cu2*, 103.0(8)◦). A separate study has revealed a third transformation route at
3.3 GPa which leads to a phase in which the chemical connectivity and orientation of the JT axes in
Phase II were retained but its symmetry is reduced to triclinic, and the orientation of the pyrazine
ligands changes [61].Magnetochemistry 2020, 6, x FOR PEER REVIEW 18 of 28 
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Figure 16. Phases I, II, and IV observed in the HP single-crystal XRD for complex 12. The green bonds
highlight the orientation of JT axis (dz2 ) of the CuII ion along the a-axis of the cell. The magnetic dx2−y2

orbital lies perpendicular to this, in the bc plane. Phase III observed in the pXRD measurements [59]
was not seen in the single-crystal XRD measurements. Colour code is the same as in Figure 15. H atoms
are omitted for clarity.

HP single-crystal EPR measurements at 0.67 GPa (Figure 17) as a function of field orientation at
69.3 GHz and 10 K show a single, sharp peak with strong angle dependence and g-value extrema of g||

= 2.42 and g⊥ = 2.08. The former corresponds to the direction parallel to the JT axis. At 1.82 GPa and
65.7 GHz two signals are observed, one with a similar angle dependence to the low-pressure signal
and a second with a weaker angle dependence and g-values in the 2.05–2.10 range. This corresponds
to field rotation within the plane of the dx2−y2 orbital, i.e., the ⊥ orientation. Measurements at 96 GHz
(Figure 17b) also suggest that part of the sample has transformed to Phase II, i.e., the mechanism of the
phase transformation occurs in domains rather than via a concerted transition over the whole crystal;
this is local information only visible through spectroscopy and not recognised from the crystallographic
data, which yields only an average structure. The strongly angle-dependent signal vanishes completely
upon increasing the pressure to 2.1 GPa, and the EPR intensity is observed only in a single, broad
low g-value signal that displays weak angle dependence. This is direct evidence that the magnetic
dx2−y2 orbital has switched from the CuF2O2 plane to the CuF2N2 plane. Access to the pressure at
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which the second phase transition was observed (i.e., to Phase IV) was beyond the technological
capabilities of the plastic EPR cells.
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Figure 17. (a) Experimental electron paramagnetic resonance (EPR) spectra recorded at 10 K as a
function of field orientation within the ab plane of a single crystal (transmission offset). The three panels
correspond to three different pressures and microwave frequencies. Spectra were recorded every 10◦,
with 0◦ corresponding to the field along the a-axis; the field orientations corresponding to the top and
bottom traces are indicated in each panel. (b) EPR peak positions taken from (a) together with data
obtained at other frequencies (not shown), which are plotted as their corresponding g-factors versus
the orientation of the applied field within the ab plane of the crystal.

4. Ni Compounds

Research in the field of Single-Ion Magnets (SIMs) has focussed on achieving precise control
over the coordination geometry of a single paramagnetic (d-/f-block) metal ion in order to construct a
specific ligand field that generates first order spin-orbit coupling (SOC) [62–64]. An attractive option
for HP measurements is NiII, for which a range of 4-/5-coordinate, air-/moisture-stable species are
known. For example, ambient pressure magnetic measurements and HF-EPR studies performed
on both oriented single crystals and powder samples of the complex [Ni(MeDABCO)2Cl3](ClO4)
(13, MeDABCO = 1-methyl-4-aza-1-azoniabicyclo[2.2.2]octanium) had shown it to possess |D| ≥ 400
cm−1 [65]. Given that |D| is highly sensitive to changes in coordination geometry, it appeared to
be an ideal candidate to explore the effects of pressure. Complex 13 (Figure 18) crystallises in the
orthorhombic space group Pca21. The structure describes a simple 5-coordinate, slightly distorted
trigonal prismatic NiII ion bonded to two axial MeDABCO+ ligands and three equatorial Cl- ions
(Table 8). The structural distortions away from ideal D3h symmetry arise from the JT effect, which
splits the degeneracy of the dxz − dyz and dx2−y2−dxy pairs of orbitals [66].

Table 8. Selected distances (Å) and angles (◦) in compound 13 as a function of pressure (GPa).

P/GPa Ni1–N11 Ni1–N21 Ni1–Cl1 Ni1–Cl2 Ni1–Cl3

ambient 2.230(2) 2.215(2) 2.293(1) 2.3016(9) 2.305(1)
1.65 2.199(6) 2.190(6) 2.295(2) 2.298(3) 2.311(2)

N11–Ni1–N21 Cl1–Ni1–Cl2 Cl2–Ni1–Cl3 Cl1–Ni1–Cl3
ambient 177.1(1) 123.2(1) 119.0(1) 117.7(1)

1.65 176.2(2) 124.3(1) 123.4(1) 112.3(1)
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Figure 18. (a) The molecular structure of the cation of 13. Colour code: Ni = cyan, N = blue, C = grey,
Cl = green. H atoms and counterions are omitted for clarity. (b) NEVPT2-LFT computed d-orbital
energies of the NiII ion at ambient pressure along with the most significant excitations that contribute
to the total D value: (i) −488 cm−1; (ii) +22 cm−1; (iii) +19 cm−1; (iv) +8 cm−1.

HP single-crystal XRD measurements were performed using Fluorinert FC-77 at four different
pressures, to a maximum of 1.65 GPa; unit cell parameters were determined over the pressure range
0.58–3.51 GPa [67]. 13 remains in the same space group in the full pressure range without major
changes in the relative orientation of the molecules in the lattice (the volume decreases from 2145.0(4)
Å3 at ambient to 1936.4(3) Å3 at 1.65 GPa), and the effect of applying pressure on the bond lengths
around the NiII ion is negligible (Table 8). In contrast, there are significant changes to the equatorial
bond angles: Cl1–Ni1–Cl2 and Cl2–Ni1–Cl3 increase to 124.3(1)◦ and 123.4(1)◦, respectively, while
Cl1–Ni1–Cl3 decreases to 112.3(1)◦. A small decrease in the trans N–Ni–N angle is also observed
(177.1(1)→176.2(2)◦). The net result is a further lowering of the symmetry around the metal centre,
as confirmed by continuous shape measures, which reveal S(D3h) = 0.09 at ambient pressure and S(D3h)
= 0.23 at 1.65 GPa [68].

Ab initio calculations performed on the four structures collected at 0.58, 0.90, 1.40, and 1.65 GPa
were employed to extract the zfs parameters (D, E) associated with the gradual loss of symmetry
(Table 9). At ambient pressure, the computed DZZ axis is found to lie along the pseudo-C3 axis (the
N–Ni–N direction), and the computed gzz is found to coincide with this axis. The origin of the very
large D value is the closely lying dx2−y2 and dxy orbitals (their separation is approximately 239 cm−1),
which contribute −488 cm−1 to the total D parameter. Significant, but smaller, positive contributions
stem from excitations from the dxz and dyz orbitals to the dxy orbital. Calculations on the structure
collected at higher pressure suggest a decrease in D by approximately one-third, from −399 cm−1 at
0 GPa to −264 cm−1 at 1.4 GPa, highlighting the extreme sensitivity of the magnetic anisotropy to
small structural changes in the Cl–Ni–Cl angles (Table 9). Specifically, these changes lead to a larger
separation between the dxy and dx2−y2 orbitals, which directly correlates with a decrease in the major
contribution to |D|. This is accompanied by an increase in the rhombic anisotropy, |E|, from 0.10 cm−1

at ambient pressure to 0.86 cm−1 at 1.4 GPa, which originates from the increased separation between
the and dyz orbitals and an increase in the tunnel splitting between the MS = ±1 states. Using the ab
initio calculations and HF-EPR data as a starting point, simulations of HP dc magnetic susceptibility
data (T = 290–2 K, B = 1 T) collected at four different pressure points to a maximum pressure of
1.08 GPa show clear agreement with a decrease in |D| and an increase in |E| with pressure (Table 10).
The availability of theoretical methods for the calculation of anisotropy, exchange coupling, and other
magnetic parameters, together with elucidation of the orbital interactions that influence them, is a
major development in the field of high-pressure coordination chemistry. We anticipate that it will
not only enable meaningful conclusions to be drawn from data which can on occasion suffer from
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poor statistics, but, as this and the next study show, it also pinpoints the electronic source of the
magneto-structural correlations seen experimentally.

Table 9. NEVPT2 calculated D and E values computed from the high-pressure single-crystal X-ray data
along with the most prominent contribution to D, the tunnel splitting of the MS = ±1 levels, and the δ
value computed for the structure.

P/GPa D/cm−1 E/cm−1
Contribution from

1st Excited State
(NEVPT2)/cm−1

Tunnel
Splitting/cm−1

Sum of Cl–Ni–Cl
Angle Deviation, δ/◦

ambient −399 0.104 −488 0.21 6.49
0.58 −347 0.208 −435 0.42 7.64
0.90 −317 0.419 −403 0.84 10.44
1.40 −264 0.861 −346 1.72 15.19
1.65 −264 0.871 −346 1.75 15.4

Table 10. Parameters used for the simulation of the magnetic data for complex 13.

P/GPa gz gx gy D/cm−1 E/cm−1

ambient 3.36 2.05 2.05 −399 0.10
0.52 3.28 2.12 2.13 −349 0.22
0.79 3.24 2.16 2.18 −323 0.33
1.08 3.20 2.20 2.22 −295 0.52

5. Re Compounds

Our interest in single ions possessing large magneto-anisotropies next led to ReIV [69].
The complexes [ReCl4(MeCN)2]·MeCN (14) and [ReBr4(bpym)] (15, bpym = 2,2′-bipyrimidine)
(Figure 19) are characterised by large magnetic anisotropies and significant intermolecular magnetic
exchange interactions mediated through Re–X···X–Re type contacts (X = halogen), resulting in spin
canting (the non-collinearity of neighbouring spin centres) and magnetic order at low temperature
(TC (14) = 6.5 K, TC (15) = 18.0 K) [70,71]. The dipolar exchange pathways arise as a result of the
spin density from the ReIV ion being significantly delocalised onto the peripheral atoms of the ligand.
Intermolecular magnetic exchange interactions can be modified by changing intermolecular distances,
i.e., making these distances shorter would be expected to increase the strength of the exchange and
increase the ordering temperature, and one way of achieving this is to exert hydrostatic pressure.
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grey, Cl = green, Br = light brown. H atoms and solvent molecules are omitted for clarity.

Compounds 14 (Pnma) and 15 (P212121) crystallise in orthorhombic space groups, with the
metal ion occupying a distorted octahedral environment, bonded to two N-atoms and four halides.
The extended structures display staggered zig-zag chains that propagate along the a-axis of the unit
cell via interhalide dispersive interactions (Figure 20). Under pressures of up to 4.30 GPa, unit cell
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volumes decrease by 20% (14) and 14% (15), the principal component of compression occurring
down the c-axis of the unit cell in both cases [72]. Complex 15 undergoes a phase transition between
1.93 and 3.06 GPa to a monoclinic phase with space group P21, and when subjected to complete
compression–decompression cycles to 4 GPa, both complexes return to their original ambient pressure
unit cell/space group. In addition, ambient pressure crystal structures solved at T = 4 K show that both
species retain their room temperature structures. The most significant structural changes observed
under pressure in 14 and 15 occur in the intermolecular Re-X···X–Re distances. For compound 14,
the Re–Cl4···Cl2–Re distance shortens by approximately 0.6 Å to 3.362(11) Å, while for compound 15,
the Re-Br2···Br4-Re distance decreases by 0.31 Å to 3.5718(2) Å.
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Cl = green, Br = light brown. H atoms and solvent molecules are omitted for clarity. The dashed lines
show the halide···halide interactions.

High-pressure SQUID magnetometry was performed on microcrystalline samples of 14 and
15 using Daphne oil as the hydrostatic medium. HP dc magnetic measurements (T = 50.0–2.0 K,
B = 0.01 T) were collected at ambient pressure to a maximum pressure of 4.1 GPa for 14 (4.2 GPa for 15).
These experiments show that the application of hydrostatic pressure leads to an increase in ordering
temperature (Figure 21). At the highest pressures measured, TC (determined from field cooled and
zero-field cooled measurements as a function of temperature) reaches 28 K at 4.10 GPa for 14, and 42 K
at 4.30 GPa for 15. For 14, this represents a four-fold enhancement, with the rate at which TC increases
being 5.1 and 5.4 K GPa−1 for 14 and 15, respectively. The phase transition observed for compound 15
does not affect the monotonic increase of the ordering temperature, and in both cases, the changes in
TC are reversible; recovery of the ambient pressure TC is observed when the pressure is released from
the cell.
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Density functional calculations show that the shortest Re-X···X-Re pathways generate the most
efficient magnetic exchange interactions at all pressures, and that an increase in the magnitude of J in
14 and 15 is observed when external pressure is applied, which is in agreement with increasing TC in
both systems. The correlation between parameters is simple; the external applied pressure produces a
linear increase in J and a linear increase in TC (Figure 22).
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6. Conclusions

Despite HP single-crystal XRD being available since the 1950s, reports of its combination with
other HP techniques (magnetometry, INS, EPR, absorption/emission/Raman spectroscopy) to examine
magneto-structural relationships in molecule-based magnets remain rather rare. This is surprising
given the enormous potential benefits on offer. This may be partly due to technology—the design and
manufacture of pressure cells for other types of measurements (e.g., magnetometry, EPR) lag behind
that of DACs for single-crystal XRD, and these pressure cells often do not reach the same high pressures.
Sod’s law dictates this is often where the structural changes occur. However, this is not always the
case, and as we have summarised above, it is possible to extract a wealth of fascinating and useful
information. Looking just at magnetic coordination compounds, we have discovered that pressure can
lead to significant changes in bond angles and distances around metal centres, reorientation of JT axes,
the breaking and forming of bonds, polymerisation/depolymerisation, multiple phase transitions that
can depend on the hydrostatic medium, colour changes, switching of the sign of magnetic exchange
interactions (F↔AF), and enormous changes in zero-field splitting parameters and magnetic ordering
temperatures. This is far more than we had first anticipated, and it clearly goes well beyond the
removal of voids. This wealth of intramolecular effects distinguishes coordination complexes from
purely organic materials, where, except for leading to changes in conformation, the effects of pressure
are usually exclusively intermolecular, albeit with some notable exceptions [73]. While it is currently
not possible to predict what distortion will occur a priori, it is clear that intermolecular effects are
extremely important in determining the sensitivity to pressure of individual bond lengths, angles,
and torsions. For example, in a related study on the (non-magnetic) Ni complexes of 6-fluoro and
6-methoxy salicylaldoxime, the Ni–O bonds were more sensitive to pressure in the former, and the
Ni–N bonds were more sensitive in the latter [74]. The effect could be traced to the distribution of
interstitial voids formed between the complexes, the less sensitive bonds being oriented toward the
voids. In the Mn12 acetate derivative discussed in Section 2, the directions of greatest linear strain
lay in the direction of the isomeric Jahn–Teller axis, so that its reorientation can be similarly viewed
as being driven by the local intermolecular structure distortion. More research into the role played
by intermolecular interactions in the intramolecular pressure response of these materials would be
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very welcome. More generally, high-pressure work requires high quality, mechanically robust crystals.
The body of a diamond anvil cell limits the volume of the reciprocal space that can be sampled,
and so high symmetry is an advantage. The same effect tends to limit the complexity of refinement
models, and so the absence of disorder and relatively low thermal motion are also highly desirable.
With ever-improving cell design now making a breadth of characterisation techniques available to
HP studies, we hope that this review article highlighting our own work can serve as an example, and
as a stimulus, for other researchers to realise that HP techniques may be a valuable addition to their
experimental toolkit. One area that we feel will benefit in the short term from combined HP studies is
the understanding of the magnetisation relaxation dynamics of SIMs. The latter depend on symmetry,
coordination geometry, crystal field, ligand donor strength, and crystal packing. All of these factors
are sensitive to pressure, and even small changes to metal geometries can have a profound effect on
magnetic anisotropy. Thus, HP structural studies in combination with HP magnetometry, INS, EPR,
Raman spectroscopy, and electronic spectroscopy would provide detailed insight into the mechanisms
of the relaxation behaviour, including the role of optical and acoustic phonons.
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