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DISCRETE ANALOGUES OF MAXIMALLY MODULATED SINGULAR

INTEGRALS OF STEIN–WAINGER TYPE: ℓ2(Zn) BOUNDS

JORIS ROOS

Abstract. Consider the maximal operator

C f(x) = sup
λ∈R

∣

∣

∣

∑

y∈Z
n\{0}

f(x− y)e(λ|y|2d)K(y)
∣

∣

∣
, (x ∈ Z

n),

where d is a positive integer, K an appropriate Calderón–Zygmund kernel and n ≥ 1. This is a
discrete analogue of a real–variable operator studied by Stein and Wainger. The nonlinearity of
the phase introduces a variety of new difficulties that are not present in the real–variable setting.
We prove ℓ2(Zn)–bounds for C . Our arguments are inspired by the recent seminal paper of Krause
covering the case n = 1, earlier key partial progress by Krause and Lacey, and Bourgain’s classical
maximal multi–frequency lemma in combination with variation–norm estimates from recent joint
work of the author with S. Guo and P.-L. Yung.

1. Introduction

Let d and n be positive integers and K a homogeneous Calderón-Zygmund kernel on Rn, taking
the form

K(x) = p.v.
Ω(x)

|x|n
,

where Ω is a smooth function on Rn \{0} that is homogeneous of degree zero. We also assume that
´

Sn−1 Ω(x)dσ(x) = 0, where σ denotes the surface measure on the sphere Sn−1 ⊂ Rn. Consider the
following operator acting on functions f : Zn → C,

C f(x) = sup
λ∈R

∣∣∣
∑

y∈Zn\{0}

f(x− y)e(λ|y|2d)K(y)
∣∣∣, (x ∈ Zn), (1.1)

where |y| = (y21 + · · · + y2n)
1/2 and e(x) = e2πix. This is a discrete analogue of a maximal operator

studied by Stein and Wainger [12]. We also refer to C as a discrete Carleson operator. This is
motivated by the formal resemblance to Carleson’s operator given by the presence of a supremum
over the modulation parameters λ. However, we stress that the (substantial) difficulties encoun-
tered in the analysis of the present operator are of a fundamentally different nature than those
encountered in the analysis of Carleson’s operator. The nonlinearity of the phase causes a number
of new challenges arising from a curious fusion of number–theoretic and analytic phenomena which
are not present in the real–variable case. We refer to [7], [8] for further discussion of the history
motivating the study of the present operator and to [9], [10] for background and recent progress on
some other related discrete analogues in harmonic analysis. The following is our main result.

Theorem 1.1. There is a constant C ∈ (0,∞) such that

‖C f‖ℓ2(Zn) ≤ C‖f‖ℓ2(Zn). (1.2)

The constant C only depends on d, n and K.
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The case n = 1 was one of the main results in Krause’s seminal paper [7], where notably he
also gives ℓp(Z) bounds for a range of p including [2,∞). Important partial progress on the case
n = d = 1, p = 2 was made earlier by Krause and Lacey [8]. They considered a maximal operator
with the supremum over λ ∈ R replaced by a restricted supremum over λ ∈ Λ, imposing certain
arithmetic as well as analytic conditions on the set Λ. The case n = d = 1, p = 2 was also the
subject of a question posed by Lillian Pierce during a 2015 workshop at the American Institute of
Mathematics.
The purpose of this paper is to give a somewhat different proof for n = 1 in the special case of ℓ2.
At the same time we demonstrate that it generalizes to higher dimensions n > 1 without significant
additional effort. The specific choice of the phase in (1.1) and the assumptions made on the kernel
K are imposed primarily in favor of simplicity. The specific choice of phase function enables a fairly
direct application of the variation–norm estimates from [4], while the choice of the even integer ex-
ponent 2d is made in order not to introduce certain artificial additional number–theoretic issues.
Various interesting extensions for other phase functions could be topics for further investigation.

A key ingredient to our proof is given by appropriate variation–norm estimates for the associated
real–variable operators acting on functions f : Rn → C,

H(λ)f(x) =

ˆ

Rn

f(x− y)e(λ|y|2d)K(y)dy, (x ∈ Rn).

The following variation–norm estimate is proven in [4, Theorem 1.1]:

‖V r{H(λ)f : λ > 0}‖L2(Rn) ≤ Cd,n(r − 2)−1‖f‖L2(Rn), (1.3)

valid for all r ∈ (2, 3). Here Cd,n ∈ (0,∞) is a constant only depending on d, n and the r–variation
of a family a = (aλ)λ∈J ⊂ C (with J ⊂ R) of complex numbers is defined by

V r(a) = sup
λ0<···<λN

( N∑

j=1

|aλj
− aλj−1

|r
)1/r

,

where the supremum is taken over all finite subsets {λ0 < · · · < λN} ⊂ J . The dependence on r
is not stated explicitly in [4], but can be extracted from the proof (also see the comment following
Corollary 9.4 there for more details in the case n = 1).

In the proof of (1.2) we will make use of a slight variant of the estimate (1.3). The way in which
the precise estimate that we require differs from (1.3) should be regarded as a harmless technicality
(the precise estimate we shall need is (7.4) below). While that estimate does not seem to be a
formal consequence of (1.3), its validity is easily demonstrated by following certain preliminary
steps in the proof of (1.3) in [4] (see §7 for details). On a related note, in [7], the variation–norm
estimates from [4] form a key ingredient in the proof of certain pointwise ergodic theorems, which
we do not discuss here.

Variation–norm estimates enter the proof of (1.2) through a variant of the well–known maximal
multi–frequency lemma due to Bourgain [2], which we state as Theorem 2.2 below. Dependence
on Bourgain’s lemma is also the main reason for the limitation of the present result to ℓ2(Zn).
Indeed, all other components of the argument generalize readily to ℓp(Zn) with p ∈ (1,∞). More
precisely, the Propositions 3.1, 3.2, 3.3 below hold with ℓ2 replaced by ℓp for all p ∈ (1,∞) (by
standard interpolation arguments; with the respective decay rates γ additionally depending on p).
In contrast to this, it seems that the ℓp analogue of Proposition 3.4 below would necessarily feature
an exponential loss in s (this is a well–known limitation of the multi–frequency lemma). Thus, the
most we can reasonably expect from this particular route of attack are ℓp–bounds for p in a suffi-
ciently small neighborhood of 2. Not to distract the reader we do not pursue this in this article.
To obtain ℓp–bounds for large p > 2, it is more opportune to adapt the subtle square–function
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techniques of Ionescu and Wainger [5]. This is also the route taken in [7]. Another interesting open
problem is to determine whether C (even for n = d = 1) is also bounded on ℓp for all small p > 1.

Structure of the paper. In §2 we introduce several tools used throughout the proof. The most
substantial of these are certain known exponential sum estimates from [11] and a variant of Bour-
gain’s multi–frequency lemma [2].
In §3 we give the proof of Theorem 1.1. The basic strategy follows that of [8], splitting the mul-
tiplier into a number–theoretic approximate (’major arcs’) and an error term (’minor arcs’). This
approach goes back to Bourgain [2] and can be viewed as an instance of the Hardy–Littlewood circle
method. The proof involves four distinct components, which (with a slight abuse of terminology)
we refer to as ‘Minor arcs I/II’ and ’Major arcs I/II’. The main differences of this paper compared
to the previous works [7], [8] appear in the major arcs.
In §4 (’Minor arcs I’) we perform a preliminary TT ∗ argument to reduce the set of modulation pa-
rameters λ. This was one of the key novelties from [7], which we reproduce in a slightly simplified
form.
In §5 (’Minor arcs II’) we estimate the error terms from a number–theoretic approximation of the
multipliers. This is a standard argument using the fundamental theorem of calculus (which only
becomes possible after the crucial reduction from §4). This is already featured in [8].
In §6 (’Major arcs I’) we handle the number–theoretic component of the main contribution to the
multiplier by exploiting exponential sum estimates. A somewhat unanticipated dichotomy appears
here between the cases d = 1 and d ≥ 2.
In §7 (’Major arcs II’) we handle the analytic component of the main contribution. This is where we
reduce to Bourgain’s multi–frequency lemma and also give the proof of the required variation–norm
estimate by using results from [4]. This is the only part of the argument that distinguishes between
n = 1 and n ≥ 2.
Finally, §8 contains the proof of our version of Bourgain’s lemma. This is quite standard, following
Bourgain’s original argument [2].

Acknowledgement. The author is grateful to Ben Krause for many helpful discussions and for
introducing him to discrete harmonic analysis and in particular to this topic.

2. Preliminaries

We write A . B to denote existence of a constant C such that A ≤ C ·B, where the admissible
dependencies of the constant C will be specified, or clear from context. Throughout the text we
allow constants to depend on the ambient dimension n, the degree d and the kernel K. Similarly,
A ≈ B signifies that both, A . B and B . A. The notation A = B+O(X) stands for |A−B| . X.

2.1. Fourier transforms on Zn, Tn, Rn and transference. For Fourier transforms of functions
f : Zn → C, g : Tn → C we use the notations

f̂(ξ) = FZnf(ξ) =
∑

x∈Zn

e(−ξ · x)f(x) and

F−1[g](x) = F−1
Zn [g](x) =

ˆ

Tn

e(ξ · x)ĝ(ξ)dξ.

Here Tn = (R/Z)n. A function g : Rn → C that satisfies g(x + z) = g(x) for all z ∈ Zn will be
called periodic and be silently identified with the corresponding function on Tn.
For a function h : Rn → C we write

ĥ(ξ) = FRnh(ξ) =

ˆ

Rn

e(−ξ · x)h(x)dx and
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F−1[h](x) = F−1
Rn [h](x) = ĥ(−x).

In particular, Fourier transforms on Zn or Rn will be denoted by the same symbols unless the
distinction is not clear from context, or is emphasized for other reasons.

For a bounded periodic function m : Rn → C we denote by m(D), the associated Fourier
multiplier acting on Zn, defined as

m(D)f(x) = F−1
Zn [m · FZnf ](x), (x ∈ Zn).

We slightly abuse notation and also write m(D) for the Fourier multiplier acting on Rn, defined as

m(D)h(x) = F−1
Rn [m · FRnf ](x), (x ∈ Rn).

Let (mλ)λ∈Λ be a family of bounded functions supported on a fundamental domain of Tn (such
as a translate of the unit cube [0, 1)n) and denote their periodizations by

mλ(ξ) =
∑

z∈Zn

mλ(ξ + z), (ξ ∈ Rn).

We will make use of the following transference principle.

Lemma 2.1. Suppose that for some constant A > 0,

‖ sup
λ∈Λ

|mλ(D)f |‖L2(Rn) ≤ A‖f‖L2(Rn).

Then

‖ sup
λ∈Λ

|mλ(D)f |‖ℓ2(Zn) .n A‖f‖ℓ2(Zn),

where the implicit constant only depends on n.

The proof of this fact is standard (see [2, Lemma 4.4]; there in the case n = 1, but the argument
also works also for n ≥ 2).

2.2. Some notation and TT ∗. For a function K : Zn × Zn → C we denote by TK the operator
defined formally by

TKf(x) =
∑

y∈Zn

K(x, y)f(y). (2.1)

Then the operator TKT
∗
K is formally given by TKT

∗
K = TK♯ , where the kernel K♯ is

K♯(x, y) =
∑

z∈Zn

K(x, z)K(y, z).

2.3. Kernel decomposition. Let ψ be a smooth function on Rn supported in {1/2 ≤ |x| ≤ 2}
with 0 ≤ ψ ≤ 1 and

∑
j∈Z ψj(x) = 1 for every x 6= 0, where ψj(x) = ψ(2−jx). Decompose

K(x) =
∑

j≥1

Kj(x),

with K1(x) =
∑

j≤1 ψj(x)K(x) and Kj(x) = ψj(x)K(x) for j ≥ 2. Then for all j ≥ 1 and all

x ∈ Rn \ 0,

|Kj(x)| . 2−jn, |∇Kj(x)| . 2−j(n+1), supp Kj ⊂ {x : |x| ≤ 2j+1}. (2.2)
4



2.4. Variation–norm estimates imply multi–frequency L2 estimates. Here we record a
variant of Bourgain’s multi–frequency lemma [2, Lemma 4.13]. To expose the general principle, we
adopt a slightly more general perspective than required.

The setting is as follows. Fix a real number σ > 0. We are given a family of bounded functions
(mλ)λ∈Λ on Rn, indexed by a subset Λ of the real numbers such that

suppmλ ⊂ Bσ/2 for every λ ∈ Λ, and (2.3)

sup
λ∈Λ

‖mλ‖L∞(Rn) ≤ c0 (2.4)

for some constant c0 ∈ (0,∞). Here Br ⊂ Rn denotes the open ball of radius r centered at the
origin. We also fix a large integerM ≥ 2 and a vector θ = (θ1, . . . , θM ) ∈ (Rn)M with the separation
condition

|θj − θk| ≥ σ for every 1 ≤ j < k ≤M. (2.5)

The key assumption is that the Fourier multipliers mλ(D) obey the following variation–norm esti-
mate:

‖V r{mλ(D)f : λ ∈ Λ}‖L2(Rn) ≤ c0(r − 2)−γ‖f‖L2(Rn) (2.6)

for some γ > 0 and all r ∈ (2, 3). Observe that (2.4) and (2.6) imply

‖ sup
λ∈Λ

|mλ(D)f |‖L2(Rn) ≤ 2c0‖f‖L2(Rn). (2.7)

We define the maximal function MθF , acting on functions F : Rn → CM by

MθF (x) = sup
λ∈Λ

∣∣∣
M∑

j=1

e(θj · x)[mλ(D)Fj ](x)
∣∣∣, (x ∈ Rn).

For a ∈ CM we fix the Euclidean norm |a| = (|a1|
2 + · · ·+ |aM |2)1/2.

Theorem 2.2. Assume that θ and (mλ)λ∈Λ are such that (2.3), (2.4), (2.5), (2.6) hold. Then

‖MθF‖L2(Rn) ≤ Cn · c0(logM)1+γ‖F‖L2(Rn;CM ). (2.8)

Here Cn is a constant only depending on n.

This is a variant of [2, Lemma 4.13] (also see [8, Theorem 3.3, Theorem 3.5], [4, Theorem 9.1]).
The proof is in essence identical to that of Bourgain. For convenience and future reference, we
provide the details in §8.

Remarks. 1. By scaling invariance it suffices to consider the case σ = 1. We keep the parameter
σ only for later notational convenience.
2. Upon replacing the assumption (2.6) by a suitable jump–norm endpoint inequality (such as in
[4, Theorem 1.1]), the constant (logM)1+γ can be improved to logM . For n ≥ 2, such jump–norm
inequalities are available for the family of multipliers that we have in mind, but they seem to be
open for n = 1. Since the power of the logarithm is of no consequence in our arguments here,
we work with the slightly weaker assumption (2.6) which we can verify for our multipliers in all
dimensions n ≥ 1 using the results from [4].

2.5. Exponential sum estimates. Given integers x1, x2, . . . , xm at least one of which is non–zero
we often use the notation (x1, x2, . . . , xm) for the greatest common divisor of x1, . . . , xm. It will be
clear from context whether (x1, . . . , xm) refers to the greatest common divisor, or the vector of the
integers x1, . . . , xm. For a positive integer q we use the notation

[q] = Z ∩ [0, q).
5



The letter q always denotes a positive integer throughout the text. By a reduced rational we mean
a fraction a

q with a ∈ Z and (a, q) = 1. For a positive integer D ≥ 2, x ∈ Rn and real coefficients

ξ = (ξα)1≤|α|≤D we define the polynomial

P (ξ;x) =
∑

1≤|α|≤D

ξαx
α,

where α ∈ Nn
0 denotes a multiindex. A key ingredient will be the following exponential sum

estimate, due to Stein and Wainger [11, Proposition 3].

Proposition 2.3. Let ϕ be a smooth function on Rn such that |ϕ(x)| ≤ 1 and |∇ϕ(x)| ≤ (1+ |x|)−1

for all x ∈ Rn. For every ε > 0 there exists δ = δ(ε, n,D) > 0 such that the following holds: for
every N ≥ 1 and every ξ with the property that for some α0 with 1 ≤ |α0| ≤ D there exists a
reduced rational a

q ∈ Q such that

|ξα0 −
a
q | ≤

1
q2 and N ε ≤ q ≤ N |α0|−ε,

we have ∣∣∣
∑

x∈Zn,|x|≤N

e(P (ξ;x))ϕ(x)
∣∣∣ ≤ CNn−δ.

The constant C may only depend on ε, n, D.

2.6. Approximation of the multipliers. For j ≥ 1, λ ∈ R and ξ ∈ Rn we define the multipliers

mj,λ(ξ) =
∑

y∈Zn

e(λ|y|2d + ξ · y)Kj(y). (2.9)

This defines a periodic function both in λ and ξ. Following Bourgain [2], the starting point for
our arguments is an appropriate approximation for the value of mj,λ(ξ) when ξ and λ are close to
rationals with small denominator. To formulate the result, we define the exponential sums

S(aq ,
b

q ) =
1

qn

∑

r∈[q]n

e(aq |r|
2d + b

q · r) (2.10)

for rationals a
q ∈ Q, b

q ∈ Qn with (a,b, q) = 1 (note that this condition makes S(aq ,
b

q ) well–defined).

By a well–known exponential sum estimate (see [1, Theorem 2.6]) we have for every ε > 0,

|S(aq ,
b

q )| .ε,d,n q
−1/(2d)+ε.

A less precise version of this estimate can also be obtained from Proposition 2.3. While we will
not, strictly speaking, make use of this particular estimate, it does provide useful intuition. The
following observation will be crucial at various points in the proof of Theorem 1.1.

Lemma 2.4. Suppose that a
q ∈ Q, bq ∈ Qn, (a,b, q) = 1 and (a, q) > 1. Then S(aq ,

b

q ) = 0.

We postpone the standard proof of this to the end of this section. Next, we define the real–
variable versions of the multipliers mj,λ(ξ) by

Φj,λ(ξ) =

ˆ

Rn

e(λ|y|2d + ξ · y)Kj(y)dy. (2.11)

At this point we record the following standard oscillatory integral decay estimate in the spirit of
van der Corput’s lemma:

|Φj,λ(ξ)| . (1 + 22dj |λ|+ 2j |ξ|)−
1
2d . (2.12)

For the proof we refer to [12, Proposition 2.1]. This estimate does not enter in the proof of the
approximation result in this section, but will be important later on. Our basic approximation result
for the multipliers mj,λ(ξ) now reads as follows.
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Lemma 2.5. Let j, q be positive integers with q ≤ 2j−2. Let a ∈ Z,b ∈ Zn with (a,b, q) = 1.
Further, assume that λ ∈ R, ξ ∈ Rn are such that

|λ− a
q | ≤ δ2−(2d−1)j and |ξ − b

q | ≤ δ, (2.13)

where δ ∈ (2−j , 1). Then

mj,λ(ξ) = S(aq ,
b

q )Φj,λ−
a
q
(ξ − b

q ) +O(qδ), (2.14)

where the implicit constant depends only on d, n,K.

The proof is similar to that of the corresponding statement in [2] (see Lemma 5.12 there).

Proof of Lemma 2.5. Writing y = uq + r with u ∈ Zn, r ∈ [q]n, we can express mj,λ(ξ) as

q−n
∑

r∈[q]n

e(aq |r|
2d + b

q · r)Iq,r(λ− a
q , ξ −

b

q ),

where

Iq,r(ν, η) = qn
∑

u∈Zn

e(ν|uq + r|2d + η · (uq + r))Kj(uq + r).

It suffices to show that for every r ∈ [q]n and every (ν, η) ∈ R×Rn with

|ν| ≤ δ2−(2d−1)j , |η| ≤ δ

we have the relation

Iq,r(ν, η) =

ˆ

Rn

e(ν|t|2d + η · t)Kj(t)dt+O(δq). (2.15)

The integral on the right–hand side of (2.15) equals

qn
ˆ

Rn

e(ν|tq + r|2d + η(tq + r))Kj(tq + r)dt,

which in turn can be split as

qn
∑

u∈Zn

ˆ

[0,1]n
e(ν|uq + r + tq|2d + η · (uq + r + tq))Kj(uq + r + tq)dt. (2.16)

In this display it holds that

|ν|uq + r + tq|2d − ν|uq + r|2d| . δq

since |r| ≤ q, |uq + r + qt| ≈ |uq + r| ≈ 2j and ν ≤ δ2−(2d−1)j . Similarly,

|η · (uq + r + tq)− η · (uq + r)| . δq.

Using also that
´

Rn |Kj(t)|dt ≈ 1, this yields that (2.16) is

qn
∑

u∈Zn

ˆ

[0,1]n
e(ν|uq + r|2d + η · (uq + r))Kj(uq + r + tq)dt+O(δq). (2.17)

Finally, note from (2.2) that

|Kj(uq + r + tq)−Kj(uq + r)| . 2−j(n+1)q ≤ 2−jnδq.

Then we see that (2.17) can be written as

qn
∑

u∈Zn

e(ν|uq + r|2d + η · (uq + r))Kj(uq + r) +O(δq),

which establishes (2.15). �
7



Proof of Lemma 2.4. Let (a, q) = v > 1. Write a = a′v and q = q′v. Then

qnS(aq ,
b

q ) =
∑

u∈[v]n

∑

r∈[q′]n

e(a
′

q′ |uq
′ + r|2d + b

q · (uq′ + r))

=


 ∑

r∈[q′]n

e(a
′

q′ |r|
2d + b

q · r)




n∏

i=1

∑

ui∈[v]

e(bi
v · ui)

Since (a,b, q) = 1 and v > 1, there must exist i0 such that bi0 is not divisible by v. But that

implies
∑

ℓ∈[v] e(
bi0
v ℓ) = 0. �

3. Proof of Theorem 1.1

To prove the theorem, we need to obtain an ℓ2(Zn) bound for the maximal operator

sup
λ∈R

∣∣∣∣∣∣

∑

j≥1

mj,λ(D)f

∣∣∣∣∣∣
,

where mj,λ is defined in (2.9). A first observation is that for each fixed j,

‖ sup
λ∈R

|mj,λ(D)f |‖ℓ2(Zn) . ‖f‖ℓ2(Zn),

by the triangle inequality, Young’s convolution inequality and (2.2). As a consequence, we may in
the following assume that j ≥ j0, where j0 is a sufficiently large constant depending on d and n.

Before we proceed, we give a rough description of what will be done. For this purpose, we
will be deliberately vague when using the terms ’small’ and ’close’. At this point, the reader
should imagine these terms as being relative to appropriate fractional powers of 2j , which might
differ at each occurrence and will have to be chosen carefully in the sequel. Roughly speaking,
the approximation (2.14) tells us what mj,λ(ξ) is when λ and ξ are close to rationals with small
denominator. On the other hand, Proposition 2.3 tells us that |mj,λ(ξ)| is small if any of λ, ξ1, . . . , ξn
is not close to a rational with small denominator. This naturally leads to a decomposition of mj,λ

into two new functions. The first arises from summing the main contributions S(aq ,
b

q )Φj,λ−
a
q
(ξ− b

q )

over a suitable collection of rational (aq ,
b

q ) with small q. In the terminology of the Hardy–Littlewood

circle method, these are the major arcs. The second function is an error term, which will subsume
both the approximation error from (2.14) and the minor arcs, i.e. the cases when at least one
of λ, ξ1, . . . , ξn is not close to one of the chosen rationals. This decomposition is stated below as
(3.6). Following this approach naively already leads to a fundamental problem: the error term
crucially depends on λ, but we know only little more about except that its absolute value is small.
This leaves us with few strategies to handle the maximal operator corresponding to the error term.
This was one of the reasons for the restriction on the parameters λ imposed in [8]. A key insight
of Krause [7] was that by a preliminary TT ∗ argument on the multiplier mj,λ(ξ), we may discard
’most’ parameters λ: as long as we restrict to λ sufficiently close to a rational with sufficiently small
denominator, the TT ∗ argument yields summable decay in j (see Proposition 3.1 below). For each
j, this only leaves λ contained in a union of a few small intervals (see (3.2) below). This allows
us to bound the remaining maximal operator for the error term by a standard argument using the
fundamental theorem of calculus, the crucial size information on the error and a crude λ–derivative
estimate (see Proposition 3.2 below). We proceed with the precise estimates.
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3.1. Decomposition of the multiplier and minor arcs. Define

Aj = {a
q ∈ Q : (a, q) = 1, q ∈ Z ∩ [1, 2⌊jε1⌋)}, (3.1)

Xj =
⋃

α∈Aj

{λ ∈ R : |λ− α| ≤ 2−2dj+ε1j}, (3.2)

where ε1 ∈ (0, 2−5) is a small fixed number that will be determined depending on d. Observe that
the union in (3.2) is disjoint. The TT ∗ argument alluded to above yields the following result.

Proposition 3.1. There exists γ > 0 only depending on d and n such that for all j ≥ 1,

‖ sup
λ6∈Xj

|mj,λ(D)f |‖ℓ2(Zn) . 2−jγ‖f‖ℓ2(Zn).

The proof can be seen as somewhat parallel to that of Stein–Wainger [12] and is given in §4.
From now on we can restrict our attention to the multipliers mj,λ(ξ)1Xj (λ). In order to define the
major arc approximations we need to set up some notation. For a positive integer s define

Rs = {(aq ,
b

q ) ∈ Q×Qn : (a,b, q) = 1, q ∈ Z ∩ [2s−1, 2s)}.

Fix a smooth function χ on Rn with 0 ≤ χ ≤ 1 that is supported in {|ξ| ≤ 1/2} and equal to one
on [−1/4, 1/4]. For s ≥ 1 and ξ ∈ Rn we write χs(ξ) = χ(210sξ). Further define for s with s ≤ ε1j,

Ls
j,λ(ξ) =

∑

(α,β)∈Rs

S(α, β)Φ∗
j,λ−α(ξ − β)χs(ξ − β), (3.3)

where Φ∗
j,ν is given by

Φ∗
j,ν = Φj,ν · 1|ν|≤2−2dj+ε1j . (3.4)

From the definition of Rs it is clear that L
s
j,λ(ξ) is periodic in λ and ξ. Also note that if Ls

j,λ(ξ) 6= 0

(where s ≤ ε1j), then λ ∈ Xj. Define

Lj,λ =
∑

1≤s≤ε1j

Ls
j,λ. (3.5)

Next, the function Ej,λ is defined as the difference of mj,λ1Xj (λ) and Lj,λ so that

mj,λ · 1Xj (λ) = Lj,λ + Ej,λ. (3.6)

From the definitions, Lj,λ(ξ) and Ej,λ(ξ) are periodic in λ and ξ and vanish unless λ ∈ Xj .

Proposition 3.2. The constant ε1 can be chosen small enough depending on d so that there exists
γ > 0 only depending on d and n such that for all j ≥ 1,

‖ sup
λ∈Xj

|Ej,λ(D)f |‖ℓ2(Zn) . 2−jγ‖f‖ℓ2(Zn).

The proof is given in §5. The basic idea is that the absolute value of Ej,λ should be small (two
reasons to believe this are Lemma 2.5 and Proposition 2.3) and its λ–derivatives are not too large.
The structure of Xj then allows us to effectively deploy the fundamental theorem of calculus to
deal with the supremum over λ.
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3.2. Major arcs. It now remains to bound the maximal operator associated with the multiplier
∑

j≥1

Lj,λ =
∑

j≥1

∑

1≤s≤ε1j

Ls
j,λ =

∑

s≥1

Ls
λ,

where we have set
Ls
λ =

∑

j≥ε−1
1 s

Ls
j,λ. (3.7)

The proof of Theorem 1.1 will be completed if we can exhibit γ > 0 such that for all s ≥ 1,

‖ sup
λ∈R

|Ls
λ(D)f |‖ℓ2(Zn) .d,n 2−γs‖f‖ℓ2(Zn). (3.8)

Before proceeding we give a brief informal explanation of the proof strategy. The first step is an
appropriate factorization of the multipliers Ls

λ(ξ), exploiting that for each fixed (λ, ξ) at most one
summand in the sum over the rationals (α, β) is non–zero (this follows directly from the definitions).
The contributing α is determined by λ alone, but β depends on both λ and ξ. This dependence is
not compatible with the delicate multi–frequency theory such as presented in §8. We will resolve
this difficulty by factoring into two multipliers: one that carries the exponential sums S(α, β) and
preserves the exact dependence of β and one that carries the real–variable oscillatory integrals Φj

but which we will sum over a larger set of frequencies β, removing the dependence on λ. Each of
the factors will then be estimated separately, using very different techniques.

Remark. In view of this complication it seems natural to attempt to consider the multipliers in
question for each denominator q separately (thus sacrificing potential cancellation among different
q with 2s−1 ≤ q < 2s). While this would remove the troublesome dependence of β on λ and simplify
the arguments below, the resulting estimates for each q would not be summable in q. This means
that cancellation among different denominators is crucial.

We now begin the proof of (3.8) with the definition of some auxiliary sets of rationals:

As = {α ∈ Q : (α, β) ∈ Rs for some β},

Bs(α) = {β ∈ Qn : (α, β) ∈ Rs},

B♯
s = {b

q : b ∈ Zn, q ∈ Z ∩ [2s−1, 2s)}. (3.9)

By definition,
(α, β) ∈ Rs ⇐⇒ α ∈ As, β ∈ Bs(α)

and
Bs(α) ⊂ B♯

s for all α.

Also note that Bs(α) = ∅ if α 6∈ As. Fix a smooth function χ̃ with 0 ≤ χ̃ ≤ 1 that equals to one
on {|ξ| ≤ 1/2} (and hence on the support of χ) and is supported in {|ξ| ≤ 1}. Set χ̃s(ξ) = χ̃(210s).

We proceed to define Ls,1
λ (ξ), Ls,2

α (ξ) by

Ls,1
λ (ξ) =

∑

β∈B♯
s

Φs
λ(ξ − β)χs(ξ − β), (3.10)

Ls,2
α (ξ) =

∑

β∈Bs(α)

S(α, β)χ̃s(ξ − β), (3.11)

where we have set
Φs
λ =

∑

j≥ε−1
1 s

Φ∗
j,λ. (3.12)

We claim that the proof of (3.8) reduces to the following two estimates.
10



Proposition 3.3. There exists γ > 0 depending on d, n such that for every s ≥ 1

‖ sup
α∈As

|Ls,2
α (D)f |‖ℓ2(Zn) . 2−γs‖f‖ℓ2(Zn). (3.13)

This will be proven in §6 by making use of exponential sum estimates.

Proposition 3.4. For every s ≥ 1,

‖ sup
λ∈R

|Ls,1
λ (D)f |‖ℓ2(Zn) . s2‖f‖ℓ2(Zn). (3.14)

This is an application of Theorem 2.2, which in turn relies on a variation–norm estimate that is
similar to (1.3). We give the details in §7.

We finish this section by showing how Propositions 3.3 and 3.4 imply (3.8). By Kolmogorov–
Seliverstov linearization it suffices to show that for every function λ : Zn → R, the ℓ2(Zn) → ℓ2(Zn)
operator norm of the linear operator

f 7→ (x 7→ Ls
λ(x)(D)f(x))

is . 2−γs for some γ > 0, where both γ and the implicit constant only depend on d, n,K (and thus
in particular, are independent of the function λ(·)). From (3.3), (3.4), (3.7), (3.12) we deduce the
identity

Ls
λ(x)(ξ) =

∑

β∈Bs(α(x))

S(α(x), β)Φs
λ(x)−α(x)(ξ − β)χs(ξ − β), (3.15)

where for each x ∈ Zn, α(x) is defined as the unique α ∈ As such that |λ(x) − α| ≤ 2−3s (say), or
as an arbitrary value from the complement of As if no such α exists (in this case, Ls

λ(x)(ξ) = 0).

From (3.15), (3.10), (3.11) and disjointness of the supports of χs(· − β) for different β ∈ B♯
s,

Ls
λ(x)(ξ) = Ls,1

λ(x)−α(x)(ξ)L
s,2
α(x)(ξ).

Applying the linearizations of (3.13) and (3.14) this yields (3.8) .

4. Minor arcs I: Proof of Proposition 3.1

Since the output mj,λ(D)f(x) only depends on the values of f in a 2j+1–neighborhood of the
point x, a standard localization argument allows us to assume that f is supported in the set
Bj = {y ∈ Zn : |y| ≤ 2j}. Fix an arbitrary function λ : Zn → R \Xj and write

Tj,λf(x) = mj,λ(x)(D)(f1Bj )(x) =
∑

y∈Zn

f(y)Kj,λ(x, y),

where

Kj,λ(x, y) = e(λ(x)|x − y|2d)Kj(x− y)1Bj (y).

Then the kernel of Tj,λT
∗
j,λ is given by

K♯
j,λ(x, y) =

∑

z∈Zn

e(λ(x)|z|2d − λ(y)|y − x+ z|2d) (4.1)

×Kj(z)Kj(y − x+ z)1Bj (x− z).

Note that K♯
j,λ(x, y) = 0 unless

|x| ≤ 2j+2 and |y| ≤ 2j+2. (4.2)

Let δ0 > 0 and c0 > 0 be determined later and define

Ej,λ = {(x, y) ∈ Zn × Zn : |K♯
j,λ(x, y)| ≥ c02

−j(n+δ0)}.
11



Lemma 4.1. The constants c0 and δ0 can be chosen depending on d, n such that for every j ≥ 1
it holds that

|Ej,λ| . 22nj−
1
11

ε1j. (4.3)

where ε1 is as in (3.1), (3.2).

Before proving this statement we show how it can be used to finish the proof of Proposition 3.1.
By definition of Ej,λ,

|K♯
j,λ(x, y)| . 2−nj−δ0j1Bj+2×Bj+2(x, y) + 2−nj1Ej,λ

(x, y).

With (4.3) this implies

‖K♯
j,λ‖ℓ2(Zn×Zn) . 2−δ0j + 2−

1
22

ε1j . (4.4)

By the Cauchy–Schwarz inequality we have

|〈T
K♯

j,λ
f, g〉| ≤

∑

x∈Zn

∑

y∈Zn

|g(x)||f(y)||K♯
j,λ(x, y)| ≤ ‖f‖ℓ2(Zn)‖g‖ℓ2(Zn)‖K

♯
j,λ‖ℓ2(Zn×Zn),

which by (4.4) and ℓ2 duality leads to

‖Tj,λ‖ℓ2→ℓ2 = ‖T
K♯

j,λ
‖
1/2
ℓ2→ℓ2

. 2−γj

with γ = min(12δ0,
1
44ε1). It remains to prove Lemma 4.1.

In fact we will prove something stronger: the claim is that after choosing c0 and δ0 suitably, we
have for every fixed (x′, y∗) ∈ Zn−1 × Zn that

|{x1 ∈ Z : (x1, x
′, y∗) ∈ Ej,λ}| . 2j−

1
11

ε1j. (4.5)

In other words, each (x′, y∗)–slice of Ej,λ has small cardinality. By Fubini’s theorem and (4.2) this
implies the claimed inequality (4.3).

Our argument is based on [7, §6]. For future reference, we will be more careful with explicit
constants than strictly necessary in this proof. The reader can safely ignore all constants only
depending on d in the estimates that follow. Fixing (x′, y∗) ∈ Zn−1 × Zn, we define

E = {x1 ∈ Z : (x1, x
′, y∗) ∈ Ej,λ}.

Set ε0 =
1
11ε1.

Claim. The numbers c0 and δ0 can be chosen such that the following holds: for every u ∈ E there
exists a reduced rational a

q with q ≤ 2ε0j+1d such that

|(u− y∗1)λ(y
∗)− a

q | ≤ 2−j(2d−1)+ε0j (4.6)

Proof. Note that the coefficient of z2d−1
1 in the phase of (4.1) is equal to 2d(x1 − y1)λ(y). By

Dirichlet’s approximation theorem, there exists a reduced rational a
q with q ≤ 2j(2d−1)−ε0j such

that
|2d(u − y∗1)λ(y

∗)− a
q | ≤ q−12−j(2d−1)+ε0j ≤ 1

q2
.

Applying Proposition 2.3 (with N = 2j) we may choose c0 and δ0 (depending on the choice of ε0) so

that q ≤ 2ε0j (because |K♯
j,λ(u, x

′, y∗)| ≥ c02
−j(n+δ0)). Dividing through by 2d yields the claim. �

From now on we fix c0 and δ0 to make the statement in the claim valid. We will also assume
j ≥ j0, where j0 is a large constant depending only on d that will be determined later. Our goal is
now to show that |E| ≤ 2j−ε0j . Arguing by contradiction, we assume that

|E| > 2j−ε0j. (4.7)

It is clear that
E ⊂ [−2j+2, 2j+2]. (4.8)

12



We now exploit the three properties (4.6), (4.7), (4.8) to prove that λ(y∗) ∈ Xj , which establishes
the required contradiction. First, we claim that there exist u1, u2 ∈ E such that

1 ≤ u2 − u1 ≤ 2ε0j+5, (4.9)

Indeed, suppose that all elements of E were pairwise separated by at least 2ε0j+5. Then, by (4.8)
we would have |E| ≤ 2j−ε0j−1, which contradicts (4.7). Consequently, there must exist u1, u2 ∈ E

such that (4.9) holds. By (4.6) there exist reduced rationals a
q ,

a′

q′ with max(q, q′) ≤ 2ε0j+1d and

|(u1 − y∗1)λ(y
∗)− a

q | ≤ 2−j(2d−1)+ε0j,

|(u2 − y∗1)λ(y
∗)− a′

q′ | ≤ 2−j(2d−1)+ε0j.

Then,

|λ(y∗)− a∗

q∗ | ≤ 2−j(2d−1)+ε0j+1, (4.10)

where a∗

q∗ = (u2 − u1)
−1(a

′

q′ −
a
q ) is a reduced rational with

q∗ ≤ qq′(u2 − u1) ≤ 23ε0j+7d2. (4.11)

With (4.10) we have already obtained a somewhat decent rational approximation for λ(y∗). How-
ever, to conclude λ(y∗) ∈ Xj , we need to show that the approximation is actually tighter by
almost another factor of 2−j on the right–hand side (see (3.2)). Denote the set of reduced rationals
a
q ∈ [0, 1) with q ≤ 2ε0j+1d and a ∈ [q] by A . Then for each α ∈ A we define

Fα = {u ∈ E : |(u− y∗1)λ(y
∗)− α|T ≤ 2−(2d−1)j+ε0j},

where |ξ|T = minz∈Z |ξ + z| ≤ |ξ|. By (4.6), we have E = ∪α∈A Fα. Since also |A | ≤ d222ε0j+1, the
pigeonhole principle and (4.7) imply that there exists α0 =

a0
q0

∈ A such that

|Fα0 | ≥ 2j−3ε0j−1d−2.

Next we invoke the following general fact: for positive integers N and k with Nk−2 ≥ 2 and a
subset A ⊂ [−N/2, N/2] ∩ Z with |A| ≥ Nk−1 there exist a, b ∈ A with Nk−3 ≤ b − a ≤ Nk−2.
(Indeed, covering [−N/2, N/2] with k2 intervals of size Nk−2, there must exist at least one interval
I with |A ∩ I| ≥ Nk−3. Now choose b = maxA ∩ I and a = minA ∩ I.) Applying this observation
(with N = 2j+3, k = ⌈23ε0j+4d2⌉, A = Fα0) we obtain v1, v2 ∈ Fα0 such that

2j−9ε0j−10d−6 ≤ v2 − v1 ≤ 2j−6ε0j−5d−4. (4.12)

By definition of Fα0 there exist integers ℓ1, ℓ2 such that

|(v1 − y∗1)λ(y
∗)− (α0 + ℓ1)| ≤ 2−(2d−1)j+ε0j ,

|(v2 − y∗1)λ(y
∗)− (α0 + ℓ2)| ≤ 2−(2d−1)j+ε0j .

This implies, using the lower bound in (4.12), that

|λ(y∗)− ℓ2−ℓ1
v2−v1

| ≤ 2−2dj+10ε0j+11d6. (4.13)

We claim that
ℓ2−ℓ1
v2−v1

= a∗

q∗ . (4.14)

Indeed, suppose not. Then, from (4.12) and (4.11) we have

| ℓ2−ℓ1
v2−v1

− a∗

q∗ | ≥
1

(v2−v1)q∗
≥ 2−j+3ε0j−2d2.

On the other hand, from (4.10) and (4.13),

| ℓ2−ℓ1
v2−v1

− a∗

q∗ | ≤ 2−(2d−1)j+ε0j+2,
13



for j ≥ j0 large enough. This yields a contradiction (again, for j ≥ j0 large enough). Thus, (4.14)
holds. Summarizing, we have proven that

|λ(y∗)− a∗

q∗ | ≤ 2−2dj+11ε0j

for j ≥ j0 large enough (from (4.14) and (4.13)). Further, (a∗, q∗) = 1 and q∗ ≤ d223ε0j+7 ≤ 2⌊11ε0j⌋

for large enough j ≥ j0. Recalling that we set ε0 =
1
11ε1, this means precisely that λ(y∗) ∈ Xj.

Remarks. 1. The argument simplifies slightly in the case d > 1: in place of the upper bound in
(4.12), the trivial upper bound 2j+3 would be sufficient.
2. From the proof it is clear that the factor 1

11 appearing in (4.3) is not sharp. However, this is not
relevant for our discussion.

5. Minor arcs II: Proof of Proposition 3.2

We will make use of the following fact.

Lemma 5.1. Let Λ ⊂ R be a disjoint union of intervals (Ij)1≤j≤N with |Ij| ≤ δ, and (mλ)λ∈Λ a
family of bounded periodic functions on Rn such that

sup
λ∈Λ

‖mλ‖L∞(Tn) ≤ A, (5.1)

the function Ij → C, λ 7→ mλ(ξ) is absolutely continuous for a.e. ξ ∈ Rn and every j = 1, . . . , N ,
and

sup
λ∈Λ

‖∂λmλ‖L∞(Tn) ≤ B, (5.2)

Then

‖ sup
λ∈Λ

|mλ(D)f |‖ℓ2(Zn) ≤ (N1/2A+ (2NABδ)1/2)‖f‖ℓ2(Zn).

The proof is via a standard argument using the fundamental theorem of calculus which we
postpone to the end of this section. In order to apply Lemma 5.1 to the multipliers (Ej,λ)λ∈Xj

we
will prove that

|Ej,λ(ξ)| . 2−γj (5.3)

for some γ > 0 only depending on d, n (in particular, not depending on the choice of ε1) and all
λ ∈ R, ξ ∈ Rn, j ≥ 1. Moreover, we have directly from the definitions (3.6), (3.3), (2.11), (2.9) that
for a.e. λ ∈ R, ξ ∈ Rn and every j ≥ 1,

|∂λEj,λ(ξ)| . 22dj . (5.4)

Then Lemma 5.1 (with Λ = Xj ∩ [0, 1), mλ = Ej,λ, N = |Aj | ≤ 22ε1j , δ ≤ 2−2dj+ε1j+1) gives

‖ sup
λ∈Xj

|Ej,λ(D)f |‖ℓ2(Zn) . 2
1
2
(3ε1−γ)j‖f‖ℓ2(Zn). (5.5)

Thus we obtain the claimed decay in j as long as ε1 <
1
3γ. We turn our attention to proving (5.3).

Assume λ ∈ Xj (otherwise Ej,λ(ξ) = 0). Fix ε2 = 2−5 (this can be replaced by any sufficiently
small absolute constant with ε2 > ε1). We define the major arcs

Mj =
⋃

(α,β)∈Rs,
1≤s≤ε2j

Mj(α, β), where

Mj(α, β) = {(λ, ξ) ∈ R× Rn : |λ− α| ≤ 2−2dj+ε2j , |ξ − β| ≤ 2−j+ε2j}.

We need the following disjointness statement for the neighborhoods of the rationals involved in
the sum defining Lj,λ(ξ).
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Lemma 5.2. For each (λ, ξ) ∈ R × Rn there exists at most one (α, β) with (α, β) ∈ Rs for some
1 ≤ s ≤ ε2j such that

S(α, β)Φ∗
j,λ−α(ξ − β)χs(ξ − β) 6= 0. (5.6)

If that is the case and also s ≤ ε1j, then

Lj,λ(ξ) = Ls
j,λ(ξ) = S(α, β)Φ∗

j,λ−α(ξ − β)χs(ξ − β).

(Otherwise, Lj,λ(ξ) = 0.)

Proof. Fix (λ, ξ) ∈ R × Rn. Take (α, β) ∈ Rs, (α
′, β′) ∈ Rs′ such that (5.6) holds. Suppose that

α 6= α′. Then

2−2ε2j ≤ 2−(s+s′) ≤ |α− α′| ≤ 2−2dj+ε1j+1.

This is a contradiction. Thus, α = α′. Write (α, β) = (aq ,
b

q ), (α
′, β′) = (a

′

q′ ,
b′

q′ ) with (a,b, q) =

(a′,b′, q′) = 1 and 2s−1 ≤ q < 2s, 2s
′−1 ≤ q′ < 2s

′
. By Lemma 2.4 and (5.6) we have (a, q) = 1 and

(a′, q′) = 1. But since α = α′, this implies q = q′ and thus s = s′. Taking another look at (5.6) we
see that β = β′ (by inspecting the support of χs = χs′). The claim about Lj,λ(ξ) follows from the
claim we just proved and (3.5), (3.3). �

The proof of (5.3) naturally splits into several cases.

Case 1: (λ, ξ) ∈ Mj. Then there exist 1 ≤ s0 ≤ ε2j and (α0, β0) ∈ Rs0 such that (λ, ξ) ∈
Mj(α0, β0). From Lemma 2.5 (with δ = 2−j+ε2j , q ≤ 2ε2j) we gather that

mj,λ(ξ) = S(α0, β0)Φj,λ−α0(ξ − β0) +O(2−j+2ε2j) (5.7)

We distinguish two further cases.

Case 1.1: 1 ≤ s0 ≤ ε1j. From Lemma 5.2 we deduce

Lj,λ(ξ) = Ls0
j,λ(ξ) = S(α0, β0)Φj,λ−α0(ξ − β0).

With (5.7) this gives

|Ej,λ(ξ)| = |mj,λ(ξ)− Lj,λ(ξ)| . 2−j+2ε2j.

Case 1.2: ε1j < s0 ≤ ε2j. We may write α0 = a0
q0
, β0 = b0

q0
with (a0,b0, q0) = 1, 2s0−1 ≤ q0 < 2s0 .

In particular, q0 ≥ 2⌊ε1j⌋.
We claim that we must have (a0, q0) > 1. Indeed, suppose (a0, q0) = 1. Since λ ∈ Xj , there

exists a reduced rational a1
q1

with q1 < 2⌊ε1j⌋ and

|a1q1 − λ| ≤ 2−2dj+ε1j

Since q0 > q1, the reduced rationals a1
q1

and a0
q0

do not coincide. Therefore,

2−(ε1+ε2)j ≤ 1
q0q1

≤ |a1q1 − a0
q0
| ≤ 2−2dj+ε2j+1.

This is a contradiction. Thus we must have (a0, q0) > 1 and so S(α0, β0) = 0 by Lemma 2.4. In
particular, |mj,λ(ξ)| . 2−j+2ε2j by (5.7). Also, from Lemma 5.2 we see that Lj,λ(ξ) = 0.
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Case 2: (λ, ξ) 6∈ Mj. In this case we bound

|Ej,λ(ξ)| ≤ |mj,λ(ξ)|+ |Lj,λ(ξ)|

and estimate the two terms on the right–hand side separately.
Fix ǫ < ε2

n+1 and set N = 2j . By Dirichlet’s approximation theorem there exist reduced fractions
a
q ,

b1
r1
, . . . , bnrn with q ≤ N2d−ǫ, max(r1, . . . , rn) ≤ N1−ǫ and

|λ− a
q | ≤

1
qN

−2d+ǫ, |ξk −
bk
rk
| ≤ 1

rk
N−1+ǫ for k = 1, . . . , n.

Setting q∗ = lcm(q, r1, . . . , rn), we must have q∗ ≥ 2⌊ε2j⌋ because (λ, ξ) 6∈ Mj . Thus at least one of

q, r1, . . . , rn must be ≥ 2ǫj (otherwise q∗ ≤ 2ǫ(n+1)j which is a contradiction because ǫ < ε2
n+1). By

Proposition 2.3 we then obtain

|mj,λ(ξ)| . 2−δj .

It remains to estimate |Lj,λ(ξ)|. Suppose that Lj,λ(ξ) 6= 0. Then, by Lemma 5.2 there exists
(α, β) ∈ Rs for some 1 ≤ s ≤ ε1j such that

Lj,λ(ξ) = S(α, β)Φ∗
j,λ−α(ξ − β)χs(ξ − β). (5.8)

Then |λ− α| ≤ 2−2dj+ε2j . Since (λ, ξ) 6∈ Mj ,

|ξ − β| ≥ 2−j+ε2j .

With (2.12) and (5.8), this implies

|Lj,λ(ξ)| ≤ |Φj,λ−α(ξ − β)| . 2−
ε2
2d

j .

Proof of Lemma 5.1. By the fundamental theorem of calculus, we have for absolutely continuous
g : [a, b] → C,

sup
λ∈[a,b]

|g(λ)|2 ≤ |g(a)|2 + 2

ˆ b

a
|g(t)||g′(t)|dt.

Hence,

‖ sup
λ∈Λ

|mλ(D)f |‖2ℓ2(Zn) ≤
N∑

j=1

‖minf Ij(D)f‖2ℓ2(Zn) (5.9)

+ 2
N∑

j=1

∑

x∈Zn

ˆ

Ij

|mt(D)f(x)||∂λmt(D)f(x)|dt.

By the Cauchy–Schwarz inequality and Fubini’s theorem,

∑

x∈Zn

ˆ

Ij

|mt(D)f(x)||∂λmt(D)f(x)|dt

≤
(ˆ

Ij

‖mt(D)f‖2ℓ2(Zn)dt
)1/2(ˆ

Ij

‖∂λmt(D)f‖2ℓ2(Zn)dt
)1/2

.

Combining this with (5.9) and using Plancherel’s theorem with the assumptions (5.1), (5.2) we
obtain the claim.
Remark. Observe that the same argument works for ℓp with p 6= 2 and more general families of
operators. �
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6. Major arcs I: Proof of Proposition 3.3

Note that since Ls,2
s,α(ξ) = Ls,2

s,α+1(ξ), we may restrict the supremum to α ∈ As ∩ [0, 1), without

loss of generality. Next, from (3.11) we have for y ∈ Zn,

F−1[Ls,2
α ](y) =

∑

β∈Bs(α)

S(α, β)

ˆ

[0,1]n
e(ξ · y)χ̃s(ξ − β)dξ

=
∑

β∈Bs(α)∩[0,1)n

S(α, β)e(β · y)φs(y),

where φs = F−1
Rn [χ̃s]. Note that ‖φs‖L1(Rn) ≈ 1.

For an arbitrary function α : Zn → As ∩ [0, 1) we define

Ks,α(x, y) = F−1[Ls,2
α(x)](x− y). (6.1)

Then Proposition 3.3 is a consequence of the following.

Proposition 6.1. There exists γ > 0 depending only on d, n such that

‖TKs,αf‖ℓ2(Zn) . 2−γs‖f‖ℓ2(Zn),

with the implicit constant only depending on d and n, but not on the functions α, f . (The notation
TKs,α is defined in (2.1).)

Remark. The proof shows that the same result holds with ℓ2 replaced by ℓp for every p ∈ (1,∞)
(with decay rate depending on p).

For every x ∈ Zn there exist q(x) ∈ Z ∩ [2s−1, 2s) and a(x) ∈ [q(x)] with (a(x), q(x)) = 1 such
that

α(x) = a(x)
q(x) .

For the proof we will employ a TT ∗–argument. We begin by computing the kernel of TT ∗. Note
that TKs,αT

∗
Ks,α

= T
K
♯
s,α
, where

K♯
s,α(x, y) =

∑

z∈Zn

Ks,α(x, z)Ks,α(y, z).

From (6.1),

K♯
s,α(x, y) =

∑

β∈Bs(α(x))∩[0,1)n ,
β′∈Bs(α(y))∩[0,1)n

S(α(x), β)e(x · β)S(α(y), β′)e(−y · β′)

×

[
∑

z∈Zn

φs(x− z)φs(y − z)e(z · (β′ − β))

]

Next we claim that for every β, β′ ∈ B♯
s ∩ [0, 1)n with β 6= β′ it holds that

∑

z∈Zn

φs(x− z)φs(y − z)e(z · (β′ − β)) = 0. (6.2)

To see this, define a Schwartz function on Rn by

Ξ(t) = φs(x− t)φs(y − t)e(t(β′ − β)), (t ∈ Rn).

Then

Ξ̂(ξ) = [M−xχ̃s ∗M−yχ̃s](ξ + β − β′),
17



where we used the notation Mug(x) = e(u · x)g(x). From the definitions of χ̃s and B♯
s we then

have for ξ ∈ Zn that Ξ̂(ξ) = 0 unless ξ + β − β′ = 0. However, β, β′ ∈ [0, 1)n and β 6= β′ imply
β − β′ 6∈ Zn. Hence, by the Poisson summation formula the left–hand side of (6.2) is equal to

∑

z∈Zn

Ξ(z) =
∑

ξ∈Zn

Ξ̂(ξ) = 0.

As a consequence,

K♯
s,α(x, y) = κs,α(x, y) · [φs ∗ φs](x− y), (6.3)

where we set

κs,α(x, y) =
∑

β∈Bs(α(x))∩Bs(α(y))∩[0,1)n

S(α(y), β)S(α(x), β)e((y − x) · β). (6.4)

For the following computation we fix (x, y) ∈ Zn × Zn and write

a = a(y), q = q(y), a′ = a(x), q′ = q(x)

for short. As a consequence of Lemma 2.4, we may assume (a, q) = (a′, q′) = 1 and read the sum
over β in (6.4) as running over the set

{b

q : b ∈ [q]n} ∩ { b

q′ : b ∈ [q′]n},

which is equal to

{ b

q♭
: b ∈ [q♭]

n},

where we have set q♭ = (q, q′). Thus,

κs,α(x, y) =
∑

b∈[q♭]n

S(aq ,
b

q♭
)S(a

′

q′ ,
b

q♭
)e((y − x) · b

q♭
).

Expanding the exponential sums by (2.10), we can rewrite this as

(qq′)−n
∑

r∈[q]n,r′∈[q′]n

e(aq |r|
2d − a′

q′ |r
′|2d)




∑

b∈[q♭]n

e( b

q♭
· (r − r′ + y − x))


 ,

which, in view of the relation N−1
∑

l∈[N ] e(
lz
N ) = 1z≡0 (mod N), is equal to

( q
′

q♭
)−n

∑

u∈[
q′

q♭
]n

q−n
∑

r∈[q]n

e(aq |r|
2d − a′

q′ |r + y − x+ u · q♭|
2d). (6.5)

Inspection of this exponential sum reveals several scenarios in which no cancellation can be expected.
For instance, a typical case where (6.5) exhibits no cancellation is when a = a′, q = q′ and y − x
is divisible by q (then κs,α(x, y) = 1). Additional degeneracies arise in the case d = 1, requiring a
more careful analysis. For w ∈ Zn we define

Sx,y(w) = q−n
∑

r∈[q]n

e(aq |r|
2d − a′

q′ |r +w|2d). (6.6)

In the case d ≥ 2 it will suffice to exploit cancellation from the exponential sum (6.6), whereas in
the case d = 1 we will sometimes need to make use of cancellation from the sum over u in (6.5).
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The case d ≥ 2. Viewing the phase in (6.6) as a polynomial in r, the coefficient of r2d−1
1 is equal

to −2da′w1
q′ . This leads us to define

Ex = {w ∈ Zn : (2dw1, q(x)) ≥ 2s/2}.

By sorting modulo q(x) we see that for z ∈ Zn, N ≥ 2s,

N−n|Ex ∩ (z + [N ]n)| . 2−s/2. (6.7)

If w 6∈ Ex, then Proposition 2.3 yields (here we are crucially using d ≥ 2)

|Sx,y(w)| . 2−γs

for some sufficiently small γ ∈ (0, 12) depending on d and n. Using the triangle inequality on the
sum over u in (6.5) leads to the estimation

|κs,α(x, y)| . 2−γs +
∑

ν|q(x)

(q(x)ν )−n
∑

u∈[q(x)/ν]n

1Ex(y − x+ u · ν), (6.8)

where we have removed the (x, y)–dependence of q♭ = (q(x), q(y)) by summing over all divisors of
q(x). Hence, recalling (6.3), we see for every x ∈ Zn that

∑

y∈Zn

|K♯
s,α(x, y)| . 2−γs + τ(q(x)) sup

u∈Zn

∑

y∈Zn

1Ex(y − x+ u)|φs ∗ φs|(x− y),

where τ(q) denotes the number of divisors of q. Using the standard divisor bound τ(q) .ε q
ε, (6.7)

and rapid decay of φs ∗ φs, we obtain
∑

y∈Zn

|K♯
s,α(x, y)| . 2−γs

for every x ∈ Zn. Since also K
♯
s,α(x, y) = K

♯
s,α(y, x), we infer from Schur’s test that

‖T
K
♯
s,α

‖ℓ2(Zn)→ℓ2(Zn) . 2−γs.

This concludes the proof of Proposition 6.1.

The case d = 1. First assume that q♭ = (q(x), q(y)) ≤ 2s/3. Then q′

q♭
≥ 22s/3−1. Viewing the phase

in (6.5) as a polynomial in u, the coefficient of u21 is −
a′q2

♭
q′ which equals a reduced rational with

denominator in [2s/3, 2s] ∩ Z. Thus, applying Proposition 2.3 to the exponential sum over u yields

|κs,α(x, y)| . 2−γs

for a small enough γ > 0. Next we handle the case that q♭ ≥ 2s/3. We will exploit cancellation
from the summation over r in (6.5). The exponential sum on the right–hand side of (6.6) factors
into n one–dimensional sums. It will be enough to estimate the first factor, which is given by

I = q−1
∑

r1∈[q]

e(AQr
2
1 −

2a′w1
q′ r1),

where A
Q = a

q − a′

q′ with (A,Q) = 1. We are led to distinguish two cases. Suppose that Q ≥ 2s/3.

Then, since also Q ≤ qq′

q♭
≤ 25s/3, we may apply Proposition 2.3 to obtain

|I| . 2−δs (6.9)
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for some small enough δ > 0. On the other hand, assume Q ≤ 2s/3. Then, by reorganizing the
summation modulo Q,

I = q−1
[ ∑

s∈[Q]

e(AQs
2 − 2a′w1

q′ s)
]
·
[ ∑

u∈[M ]

e(−2a′w1Q
q′ u)

]
+O(2−

2
3
s),

where M = ⌊ q
Q⌋. Summing the geometric sum over u and using the triangle inequality on the sum

over s we get

|I| . 2−
2
3
s|1− e(2a

′w1Q
q′ )|−1 . 2−

2
3
s|2a

′w1Q
q′ |−1

T , (6.10)

where |ξ|T = minz∈Z |ξ + z|. Note that Q depends on both x and y. To remove the dependence on

y we define for a positive integer υ ≤ 2s/3 the set

E(υ)
x = {w1 ∈ Z : |2a

′w1υ
q′ |T ≤ 2−s/2}. (6.11)

Let ι = (2υ, q′) . 2s/3 and q = q′

ι . Let R ⊂ Z be a complete residue system modulo q. Then a′ 2υι R
is also a complete residue system modulo q. Thus

|E(υ)
x ∩R| = |{ℓ ∈ [q] : |ℓ/q|T ≤ 2−s/2}| . q2−s/2.

Since q . 2
2
3
s < 2s, we then have for every N ≥ 2s and z ∈ Z,

N−1|E(υ)
x ∩ (z + [N ])| . 2−s/2.

Define

Ex =
⋃

υ≤2s/3

{w ∈ Zn : w1 ∈ E(υ)
x }. (6.12)

Then if w 6∈ Ex, we gather from (6.6), (6.9), (6.10), (6.11) that

|Sx,y(w)| ≤ |I| . max(2−
1
6
s, 2−δs)

and for every z ∈ Zn and N ≥ 2s,

N−n|Ex ∩ (z + [N ]n)| . 2−
1
6
s.

The fact that we have chosen the exceptional set Ex only depending on x (as opposed to both x
and y) allows us to recycle the crude argument using Schur’s test seen in the case d ≥ 2. Indeed,
summarizing the above we have shown that (6.8) again holds for all (x, y) ∈ Zn×Zn with Ex defined
as in (6.12) (and γ > 0 small enough, possibly different from above). This completes the proof of
Proposition 6.1.

7. Major arcs II: Proof of Proposition 3.4

Define

Ls,1
λ (ξ) =

∑

β∈B♯
s∩[0,1)n

Φs
λ(ξ − β)χs(ξ − β). (7.1)

By the definitions of χs and B♯
s (see (3.9)), the function Ls,1

λ is supported within a cube of sidelength

1 (that is, within a fundamental domain of Tn = (R/Z)n). Moreover, from (3.10) we identify Ls,1
λ (ξ)

as the periodization of Ls,1
λ , i.e.

Ls,1
λ (ξ) =

∑

w∈Zn

Ls,1
λ (ξ + w).

We will prove that

‖ sup
λ∈R

|Ls,1
λ (D)f |‖L2(Rn) .d,n s

2‖f‖L2(Rn). (7.2)
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This implies the required estimate (3.14) by Lemma 2.1. The proof of (7.2) is by Theorem 2.2.

Indeed, letting µλ,s(ξ) = Φs
λ(ξ)χs(ξ) and Θs = B♯

s ∩ [0, 1)n, we may write

Ls,1
λ (ξ) =

∑

θ∈Θs

µλ,s(ξ − θ).

The corresponding Fourier multiplier operator can be written as

Ls,1
λ (D)f(x) =

∑

θ∈Θs

e(x · θ)[µλ,s(D)Fθ](x),

where we have set Fθ = F−1[χ̃s · f̂(·+ θ)]. The claimed inequality (7.2) then follows from Theorem
2.2 and an application of Plancherel’s theorem once we establish the following key variation–norm
estimate: for r ∈ (2, 3),

‖V r{µλ,s(D)f : λ ∈ (0, 1]}‖L2(Rn) .d,n (r − 2)−1‖f‖L2(Rn), (7.3)

with constant independent of s.

Proof of the variation–norm estimate (7.3). Here we find it convenient to adopt notation
matching that of [4]. We will show a result that is slightly stronger than required, but follows with
no additional effort. Let ℓ0 ∈ Z and ℓ∗ : (0,∞) → R a real–valued function. Define

H
(u)
∗ f(x) =

ˆ

Rn

f(x− t)e(u|t|α)
[ ∑

ℓ0≤ℓ≤ℓ∗(u)

Kℓ(t)
]
dt,

for real α > 1. We will assume that ℓ∗ has the following properties:

(1) there exists β ∈ [0, 1] such that ℓ∗(2jα) = −jβ for all j ∈ Z, and
(2) ℓ∗ is non–increasing.

Proposition 7.1. Let ℓ0 ∈ Z and ℓ∗ such that properties (1) and (2) hold. Then for all r ∈ (2, 3)
we have

‖V r{H
(u)
∗ f : u > 0}‖L2(Rn) . (r − 2)−1‖f‖L2(Rn) (7.4)

with the implicit constant depending only on α, n, K, but not on ℓ0, ℓ∗, r.

Remark. The restriction to L2 is only due to the application we have in mind.

We first show how (7.4) implies (7.3). From the definitions (3.12), (3.4), (2.11),

Φs
u(ξ) =

∑

ℓ≥ε−1
1 s

Φℓ,u(ξ)1|u|≤2−2dℓ+ε1ℓ =

ˆ

Rn

e(u|y|2d + ξ · y)
[ ∑

ℓ0≤ℓ≤ℓ∗(u)

Kℓ(y)
]
dy =

̂
H

(u)
∗ f(ξ),

where we have set ℓ0 = ε−1
1 s and

ℓ∗(u) = (2d− ε1)
−1 log2(u

−1).

Observe that ℓ∗ satisfies the properties (1) and (2) above with α = 2d and β = 2d
2d−ε1

. Finally, from
Minkowski’s inequality and Young’s convolution inequality we obtain

‖V r{µu,s(D)f : u ∈ (0, 1]}‖L2(Rn) ≤ ‖F−1[χs]‖L1(Rn)‖V
r{H

(u)
∗ f : u > 0}‖L2(Rn).

Since ‖F−1[χs]‖L1(Rn) ≈ 1, we derive (7.3) as a direct consequence of (7.4).

The proof of Proposition 7.1 is a slight modification of the arguments used to prove Theorem
1.1 of [4]. As we will see, the required modifications do not affect the core of the argument in
[4]. To give a precise explanation of the necessary changes, we need to introduce some more
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notation. For further reading on variation–norm estimates, we refer the reader to Jones–Seeger–
Wright [6]. For λ > 0 and a family of complex numbers a = (au)u∈J where J ⊂ R, define the
λ–jump function Nλ(a) as the supremum of all positive integers N such that there exist indices
s1 < t1 < · · · < sN < tN in J with |atj − asj | > λ for all j = 1, . . . , N . Moreover, for j ∈ Z and
a = (au)u>0 we define the short variations

V r
j (a) = V r{au : u ∈ [2αj , 2α(j+1)]}, Sr(a) =

(∑

j∈Z

|V r
j (a)|

r
)1/r

.

We will also write Hf(x) = [H(u)f(x)]u>0 and similarly H∗f(x) = [H
(u)
∗ f(x)]u>0. For p ∈ [4/3, 4]

we claim that

sup
λ>0

‖λ[Nλ{H
(2jα)
∗ f : j ∈ Z}]1/2‖Lp(Rn) . ‖f‖Lp(Rn) (7.5)

with constant not depending on p ∈ [4/3, 4]. Moreover, for r ∈ (2, 3) the claim is that

‖Sr(H∗f)‖L2(Rn) . cr‖f‖L2(Rn), (7.6)

with the implicit constant independent of p, r and cr = (r − 2)−1 if n = 1 and cr = 1 if n ≥ 2. In
particular, the estimate also holds for r = 2 if n ≥ 2.

Suppose for the moment that we have established (7.5) and (7.6). By (7.5) and [6, Lemma 2.1]
we obtain for r ∈ (2, 3),

‖V r{H2jα
∗ : j ∈ Z}‖L2(Rn) . (r − 2)−1‖f‖L2(Rn). (7.7)

By sorting into long and short jumps as in [6, Lemma 1.3] we further have the pointwise inequality

V r(H∗f) . V r{H2jα

∗ : j ∈ Z}+ Sr(H∗f),

which implies (7.4) via (7.6) and (7.7). It remains to verify (7.5) and (7.6). We write

H
(u)
ℓ f(x) =

ˆ

Rn

f(x− t)e(u|t|α)Kℓ(t)dt.

Then our operator is by definition given as

H
(u)
∗ =

∑

ℓ∈Z

H
(u)
ℓ 1ℓ0≤ℓ≤ℓ∗(u),

while the operator considered in [4] is

H(u) =
∑

ℓ∈Z

H
(u)
ℓ .

We also define H
(u)
∗,ℓ f(x) = H

(u)
ℓ f(x)1ℓ0≤ℓ≤ℓ∗(u).

Long jumps: Proof of (7.5). The arguments required to prove (7.5) are contained in §3 of [4].
We will not reproduce the full details here, but only comment on how the proof changes. Note that

H
(2kα)
∗,ℓ f = [H

(2kα)
ℓ f ]1ℓ0≤ℓ≤−kβ.

Following [4, §3] we decompose

H
(2kα)
∗ = H̃∗,k,0 +

∑

l≥0

H∗,k,l1l≤(1−β)k,

where

H̃∗,k,0f(x) =

ˆ

Rn

f(x− t)
[ ∑

ℓ0≤ℓ≤−k

Kℓ(t)
]
dt,
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H∗,k,0f(x) =

ˆ

Rn

f(x− t)(e(2kα|t|α)− 1)
[ ∑

ℓ0≤ℓ≤−k

Kℓ(t)
]
dt,

H∗,k,lf(x) =

ˆ

Rn

f(x− t)e(2kα|t|α)K−k+l(t)dt, (l > 0).

Note that H̃∗,k,0 is a standard truncated singular integral, so the required jump norm estimate for

H̃∗,k,0 follows from [3, Theorem A] (as in [4, Lemma 3.2]). The jump norm estimates for H∗,k,ℓ,
ℓ ≥ 0 follow by standard arguments reducing to Lépingle’s inequality (more precisely, to Proposition
2.1 in [4] which is proven in [6]). These arguments are detailed in the remainder of §3 of [4] and
are not affected by the truncations. Indeed, the truncation l ≤ (1 − β)k is harmless, because it
cannot increase the value of (the appropriate version of) the square–function on the left–hand side
of display (3.4) in [4]. The truncation from ℓ0 ≤ ℓ only affects the operator H∗,k,0 (the operators
H∗,k,l for l > 0 match the Hk,l from [4, §3] up to the presence of smooth cutoffs in our formulation,
as opposed to the rough cutoffs present in [4]). Moreover, the truncation in H∗,k,0 effects in essence
only a substitution of the kernel K by the fixed truncated kernel

∑
ℓ0≤ℓKℓ, which can only improve

the corresponding estimates in [4, §3].

Short jumps: Proof of (7.6). We begin by reproducing display (4.6) from [4], which reads

∑

ℓ∈Z

∥∥∥
(∑

j∈Z

|V r
j (Hℓ−jf)|

r
)1/r∥∥∥

Lp(Rn)
. Cp,r‖f‖Lp(Rn). (7.8)

This estimate implies (7.6) with H in place of H∗. The proof of this estimate for all p ∈ ( 2n
2n−1 ,∞)

and r ∈ (2,∞) constitutes the main content of [4] and is contained in §4 and §5 there. The key
observation is now that, since ℓ∗ is non–increasing and varies at most by one on each interval
[2αj , 2α(j+1)] (indeed, ℓ∗(2αj)− ℓ∗(2α(j+1)) = β ≤ 1), it holds that

V r
j (H∗,ℓ−jf(x)) ≤ V r

j (Hℓ−jf(x)) + sup
u∈[2αj ,2α(j+1)]

|H
(u)
ℓ−jf(x)|. (7.9)

By Stein and Wainger’s argument (more precisely, by an application of [12, Theorem 1] if α is an
even integer; and a similar argument for other α),

∑

ℓ∈Z

‖ sup
u∈[2αj ,2α(j+1)]

|H
(u)
ℓ−jf |‖Lp(Rn) . Cp‖f‖Lp(Rn)

for all p ∈ (1,∞), where by complex interpolation we deduce that the constant Cp stays bounded
for p contained in any fixed compact subinterval of (1,∞). Together with (7.8) and (7.9) this yields

∑

ℓ∈Z

∥∥∥
(∑

j∈Z

|V r
j (H∗,ℓ−jf)|

r
)1/r∥∥∥

Lp(Rn)
. (Cp + Cp,r)‖f‖Lp(Rn). (7.10)

Suppose that n ≥ 2. Then (7.8) holds for p = 2 and as a consequence of complex interpolation
we see that supr∈[2,3]C2,r <∞. Hence the claimed inequality (7.6) is a direct consequence of (7.10).

On the other hand, if n = 1 then we do not obtain the estimate (7.8) at p = 2 from [4]. Instead,
we follow the same reasoning as in Corollary 9.4 from [4]. Indeed, by (9.9) in [4] we have (7.8) for
p = r ∈ (2, 3) with Cp,p . (p− 2)−1, whence by (7.10),

‖Sp(H∗f)‖Lp(Rn) . (p− 2)−1‖f‖Lp(Rn) (7.11)

for p ∈ (2, 3). Next, Stein and Wainger’s argument (again, reducing to [12, Theorem 1] or a variant
thereof) yields

‖ sup
u>0

|H
(u)
∗ f |‖Lq(Rn) . ‖f‖Lq(Rn) (7.12)
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for every q ∈ (1,∞). Interpolating between (7.11) with p = r
4 +

3
2 and (7.12) with q = 3

2 we obtain
the required inequality (7.6).

8. Appendix: Proof of Theorem 2.2

Recall that we are concerned with the multi–frequency maximal function

MθF (x) = sup
λ∈Λ

∣∣∣
M∑

j=1

e(θj · x)[mλ(D)Fj ](x)
∣∣∣, (x ∈ Rn),

acting on vector–valued functions F : Rn → CM . First we assume without loss of generality that
σ = 1 (using scaling invariance of the inequality). Let B(M) denote the best constant in the
inequality (2.8). An application of the Cauchy–Schwarz inequality and (2.7) yield the a priori

estimate B(M) ≤ 2c0M
1
2 <∞.

The first step is to exploit the uncertainty principle: by the support assumption (2.3), the
function mλ(D)Fj is essentially locally constant at scale 1. We will use this to argue that in order
to prove B(M) ≤ K, it suffices to show

∥∥(
 

B1/2

sup
λ>0

∣∣∣
M∑

j=1

e(θj · x)[mλ(D)Fj ](x+ u)
∣∣∣
2
du

)1/2∥∥
L2(Rn)

≤ 1
2K‖F‖L2(Rn;CM ). (8.1)

To show this let ψ be a smooth function such that 0 ≤ ψ ≤ 1 and ψ is equal to 1 on B1/2 and
supported in B1. Then by the support assumption (2.3),

mλ(D)Fj = mλ(D)ψ(D)Fj .

Thus,

mλ(D)Fj(x+ u)−mλ(D)Fj(x) = mλ(D)[ψ(D)(e(u ·D)− 1)Fj ](x)

Moreover, for every ξ ∈ Rd and u ∈ B1/2,

|ψ(ξ)(e(ξ · u)− 1)| ≤ 1
2 .

As a consequence, for every fixed u ∈ B1/2 we obtain

‖MθF‖L2(Rn) ≤ ‖ sup
λ>0

∣∣∣
M∑

j=1

e(θj · x)[mλ(D)Fj ](x+ u)
∣∣∣‖L2(x∈Rn) +

1
2B(M)‖F‖L2(Rn;CM ).

Averaging over u ∈ B1/2 we see that (8.1) implies B(M) ≤ 1
2K+ 1

2B(M) which implies B(M) ≤ K
since we already know that B(M) <∞. Thus we are now reduced to estimating the left–hand side
of (8.1). By Fubini’s theorem and the change of variables x 7→ x−u we see that the left–hand side
of (8.1) is equal to the L2(Rn) norm of

(  

B1/2

sup
λ>0

∣∣∣
M∑

j=1

e(−θj · u)e(θj · x)[mλ(D)Fj ](x)
∣∣∣
2
du

)1/2
(8.2)

We now continue estimating this quantity for a fixed x ∈ Rn. We rewrite (8.2) as

C
∥∥ sup
a∈Ax

∣∣∣
M∑

j=1

e(θj · u)aj

∣∣∣
∥∥
L2(u∈B1/2)

, (8.3)

where we have set

Ax = {(e(θjx)[mλ(D)Fj ](x))j=1,...,M : λ ∈ Λ} ⊂ CM .
24



For a set A ⊂ CM and t ∈ (0,∞) we define the t–entropy number E(A, t) as the minimum number
of t-balls required to cover A whenever t ≤ diam(A) and E(A, t) = 0 if t > diam(A). The following
is the key estimate.

Lemma 8.1. Let A ⊂ CM . Then for every a∗ ∈ A,

∥∥ sup
a∈A

∣∣
M∑

j=1

e(θj · u)aj
∣∣∥∥

L2(u∈B1/2)
≤ C

(
|a∗|+

ˆ ∞

0
min(M

1
2 , E(A, t)

1
2 )dt

)
, (8.4)

where C ∈ (0,∞) is a constant only depending on n. (Note that while the right–hand side is
well–defined for all A ⊂ CM , it equals infinity unless the diameter of A is finite.)

We postpone the proof of this lemma to the end of this section and first show how it can be used
to finish the proof of (2.8). Using (8.4) we can estimate (8.3) by

≤ C(
( M∑

j=1

|mλ0(D)Fj(x)|
2
)1/2

+

ˆ Rx

0
min(M

1
2 , E(Ax, t)

1
2 )dt),

where we have fixed an arbitrary λ0 ∈ Λ and defined

Rx = 2 sup
a∈Ax

|a| = 2 sup
λ∈Λ

( M∑

j=1

|mλ(D)Fj(x)|
2
)1/2

.

Note that Rx is finite for almost every x ∈ Rn by (2.7) and E(Ax, t) = 0 for t > Rx by definition
since the diameter of Ax is at most Rx. We now estimate

ˆ Rx

0
min(M

1
2 , E(Ax, t)

1
2 )dt ≤

ˆ RxM−1/2

0
M1/2dt+

ˆ Rx

RxM−1/2

min(M
1
2 , E(Ax, t)

1
2 )dt. (8.5)

Now choose r > 2 close enough to 2 so that 1/2 ≤ M
1
2
− 1

r ≤ 1. Then we use a geometric mean to
estimate

min(M
1
2 , E(Ax, t)

1
2 ) ≤M

1
2
− 1

rE(Ax, t)
1
r ≤ E(Ax, t)

1
r .

Consequently, (8.5) may be estimated as

≤ Rx + [sup
t>0

tE(Ax, t)
1
r ]

ˆ Rx

RxM−1/2

dt

t
≤ Rx +

1
2(logM)[sup

t>0
tE(Ax, t)

1
r ].

Note that by (2.7) it holds that

‖Rx‖L2(x∈Rn) ≤ 4c0‖F‖L2(Rn;CM ).

It remains to observe that for every t > 0 and x ∈ Rn,

tE(Ax, t)
1
r ≤

( M∑

j=1

|V r{mλ(D)Fj(x) : λ ∈ Λ}|2
)1/2

.

Thus (2.6) yields

‖ sup
t>0

tE(Ax, t)
1
r ‖L2(x∈Rn) ≤ c0(r − 2)−γ‖F‖L2(Rn;CM ). (8.6)

By choice of r we have (r − 2)−γ ≤ C(logM)γ . Altogether we proved that the left–hand side of
(8.1) is

≤ C · c0(logM)1+γ‖F‖L2(Rn;CM ),

as claimed.

It remains to prove Lemma 8.1. We first prove the following easier estimate.
25



Lemma 8.2. For every A ⊂ CM ,

∥∥ sup
a∈A

∣∣
M∑

j=1

e(θj · u)aj
∣∣∥∥

L2(u∈B1/2)
≤ Cmin(M

1
2 , (#A)

1
2 ) sup

a∈A
|a|, (8.7)

where #A denotes the cardinality of A (which may equal infinity) and C is a constant only depending
on n.

Proof. First, an application of the Cauchy–Schwarz inequality yields

∣∣
M∑

j=1

e(θj · u)aj
∣∣ ≤M

1
2 |a|

for every a ∈ CM . Next, choose a non–negative smooth function χ such that 1B1/2
. χ and χ̂ is

supported in B1/2. Then the left–hand side of (8.7) is

.
(∑

a∈A

‖
M∑

j=1

e(θj · u)χ(u)aj‖
2
L2(u∈Rn)

)1/2
.

By Plancherel’s theorem and the separation condition (2.5),

‖
M∑

j=1

e(θj · u)χ(u)aj‖L2(u∈Rn) = ‖
M∑

j=1

χ̂(u− θj)aj‖L2(u∈Rn) . |a|.

�

Proof of Lemma 8.1. It is no loss of generality to assume that A has finite diameter, since otherwise
there is nothing to prove. Fix an arbitrary a∗ ∈ A. For every ℓ ∈ Z there exists a finite set
B(ℓ) ⊂ A−A with #B(ℓ) ≤ E(A, 2ℓ) such that |b| ≤ 2ℓ+1 for every b ∈ B(ℓ) and every a ∈ A can
be written as

a = a∗ +
∑

ℓ∈Z

b(ℓ)

with b(ℓ) ∈ B(ℓ). (To construct the sets B(ℓ), choose for each small enough ℓ, E(A, 2ℓ) many balls
covering A. Then to each chosen ball of generation ℓ, associate a ball of generation ℓ + 1 that
intersects it and let B(ℓ) consist of the differences between the centers of balls of generation ℓ and
their associated balls of generation ℓ+ 1.) Then

M∑

j=1

e(θj · u)aj =
M∑

j=1

e(θj · u)a
∗
j +

∑

ℓ∈Z

M∑

j=1

e(θj · u)b
(ℓ)
j

From this and (8.7) we obtain

∥∥ sup
a∈A

∣∣
M∑

j=1

e(θj · u)aj
∣∣∥∥

L2(u∈[0,1]n)
≤ C

(
|a∗|+

∑

ℓ∈Z

2ℓ min(M
1
2 , E(A, 2ℓ)

1
2 ).

Using monotonicity of r 7→ E(A, r) this implies (8.4). �
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