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Abstract

Background

To-date, Rift Valley fever (RVF) outbreaks have occurred in 38 of the 69 administrative dis-

tricts in Kenya. Using surveillance records collected between 1951 and 2007, we deter-

mined the risk of exposure and outcome of an RVF outbreak, examined the ecological and

climatic factors associated with the outbreaks, and used these data to develop an RVF risk

map for Kenya.

Methods

Exposure to RVF was evaluated as the proportion of the total outbreak years that each dis-

trict was involved in prior epizootics, whereas risk of outcome was assessed as severity of

observed disease in humans and animals for each district. A probability-impact weighted

score (1 to 9) of the combined exposure and outcome risks was used to classify a district as

high (score� 5) or medium (score�2 - <5) risk, a classification that was subsequently sub-

jected to expert group analysis for final risk level determination at the division levels (total =

391 divisions). Divisions that never reported RVF disease (score < 2) were classified as low

risk. Using data from the 2006/07 RVF outbreak, the predictive risk factors for an RVF out-

break were identified. The predictive probabilities from the model were further used to

develop an RVF risk map for Kenya.

Results

The final output was a RVF risk map that classified 101 of 391 divisions (26%) located in 21

districts as high risk, and 100 of 391 divisions (26%) located in 35 districts as medium risk

and 190 divisions (48%) as low risk, including all 97 divisions in Nyanza and Western
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provinces. The risk of RVF was positively associated with Normalized Difference Vegetation

Index (NDVI), low altitude below 1000m and high precipitation in areas with solonertz, luvi-

sols and vertisols soil types (p <0.05).

Conclusion

RVF risk map serves as an important tool for developing and deploying prevention and con-

trol measures against the disease.

Introduction
The Rift Valley fever (RVF) epidemics occur every 3 to 10 years in specific regions of the
Greater Horn of Africa, southern and western Africa, and in the Arabian Peninsula, resulting
in high morbidity and mortality among livestock and humans [1–5]. A prediction model for
RVF epidemics that is based on global climatic patterns is used to forecast outbreaks with some
success, although the sensitivity and specificity of the model can be improved by inclusion of
additional indicators such livestock herd immunity levels, vector profile, and geologic and geo-
graphic factors associated with high risk regions [6–8]. Experts agree that the severity of RVF
epidemics can be reduced by recognition of early warnings followed by rapid implementation
of prevention and control measures [9,10]. In 2008, international experts and decision-makers
from eastern Africa developed a risk-based decision support tool designed to guide responses
during various stages of the RVF disease cycle [9]. The tool was based on 12 stages of an RVF
cycle that start with the inter-epidemic period and continue to the post-epidemic recovery [9].

Of the countries affected by RVF, Kenya has reported the largest number of epidemics
involving both humans and livestock [11]. Retrospective analysis of the livestock surveillance
data in the country identified a pattern of the disease spread across the country following the
first detection in the 1930s, and culminating in the current situation where up to 55% of the
administrative districts in the country were involved in the 2006/2007 RVF epidemic (13).
Here, we used semi-quantitative and statistical risk assessment methodologies to develop a
RVF risk map that determines risk of RVF epizootics for each of the 391 administrative divi-
sions in the country (based on the 1999 administrative map). Exposure risk was evaluated by
determining the number of times a division had been involved in epizootics, whereas the out-
come risk was assessed using the prevalence data collected during the last outbreak (2006–
2007) in both humans and animals. In addition to risk classification, we determined the clima-
tologic, geologic, and geographical factors associated with risk of RVF outbreaks and used the
predicted probabilities to develop a RVF risk map for Kenya.

Materials and Methods

RVF Surveillance Data
Surveillance records on RVF outbreaks covering the period 1951 to 2007 were obtained from
the Kenya Department of Veterinary Services, Ministry of Agriculture, Livestock and Fisheries,
Kenya Medical Research Institute, and United States’ Centers for Disease Control and Preven-
tion, Kenya. These records identified the year and the number of months each outbreak
occurred as well as administrative units (province, district, and division) affected. An RVF out-
break was defined as above normal occurrence of abortions, perinatal mortality and hemor-
rhagic syndrome in livestock with or without human involvement. Outbreaks events involving
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1 or 2 districts were considered as localized outbreaks. A national RVF outbreak was declared
when more than 2 administrative districts were reporting RVF disease in livestock. Most pri-
mary cases in livestock were screened by a combination of post mortem and serological testing;
however in recent years reverse transcription polymerase chain reaction testing was also used
for confirmation before official declarations of disease. The data were cleaned for statistical
analysis and collapsed by administrative division and in some cases districts, which were
regarded as reliable spatial units of analysis. The analysis was based on the administrative map
used during the 1999 human population and housing census, comprising of 69 districts and
391 divisions of Kenya (as existing in 1999). To develop the risk maps, both a semi-quantitative
and statistical risk modeling of RVF outbreaks were carried out.

Semi-Quantitative Risk Modeling
To characterize the likelihood of RVF occurrence in each of 69 districts and 391 divisions, the
risk of exposure and outcome were assessed in order to classify the district and division as hav-
ing a higher or lower likelihood of RVF disease occurrence in relation to the other districts and
divisions in the country. Ultimately, the risk profile for each district and division was based on
assessment of risk of exposure and severity of outcome, and additional input from human and
animal health experts (expert group discussion).

Risk of exposure. The risk of exposure among susceptible human and animal populations
in a district was assessed using retrospective surveillance data of the disease in the area as previ-
ously reported [11]. Briefly, the risk of RVF exposure in a district was determined as the pro-
portion (in percent) of the national RVF epizootic years that the district was involved in an
outbreak since the first report of the virus in the district. Using these surveillance data, the pro-
portional measures of exposure were ranked and the 50th percentile determined to be 40%
probability of exposure. All districts with a proportion of� 40% were assigned a score of 3,
those with a proportion of>1% - 39% assigned a score of 2, and districts that have never
reported RVF disease assigned a score of 1.

Risk of outcome. Data on animal and human disease from the 2006/07 RVF outbreak in
Kenya were used to assess the outcome of disease in both animals and humans. During the
2006/07 outbreak, extensive surveillance in animals was carried out in 54 of 69 districts and
results of RVF sero-surveys (IgM and IgG assays) used as a measure of the outcome of RVF dis-
ease in each district [12]. Anti-RVF virus IgM and IgG sero-prevalence and RT-PCR results
from 27 districts that provided samples were included [12]. The sero-prevalence was ranked
and the 50th percentile identified. Districts that reported a prevalence� 3.3% and� 7.2% for
IgM and IgG respectively were assigned a score of 3,>0–3.2 and>0–7.1 were assigned a score
of 2, and districts that have reported 0% or no samples were tested for RVF were assigned a
score of 1. The sero-prevalence for IgM and IgG were considered separately and later averaged
to yield one estimate of the severity of the disease in animals for each district.

The number of laboratory confirmed human cases from the 2006/07 outbreak for each dis-
tricts was obtained [10] and used as a measure of the outcome of the disease in humans in each
district. The laboratory confirmed human cases were reported from 13 districts and since dis-
ease in humans is typically preceded by disease in animals, districts that reported human cases
were given a score of 3 while those that did not report any human cases were assigned a score
of 1.

Finally, the scores for severity of disease in animals and humans were averaged to yield an
outcome estimate for each district. To obtain a total weighted estimate for each district, the
exposure and outcome risk scores were multiplied, resulting in a (maximum score of 9). The
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resulting scores were then used to categorize a district as having high (score�5), medium
(score =�2 to<5), or low (< 2) likelihood of RVF outbreak.

Expert Group Discussions. The outputs from the exposure and outcome risk assessments
were subjected to scrutiny in a 3-day workshop attended by 47 livestock and medical officers
drawn from all the 8 provinces of Kenya. The workshop systematically discussed the occur-
rence of RVF disease in every division seeking to identify: (i) districts and divisions where RVF
occurrence had been reported over the years, (ii) districts and divisions that had RVF outbreaks
but the data was missing owing to ineffective or non-presence of livestock disease surveillance,
and (iii) divisions within the high and medium risk districts where RVF was not likely to occur
due to factors such as absence of livestock (for example national parks and game reserves,
mountains), (iv) outcome risk using severity of the disease during the last two epidemics (the
1997/98 and 2006/07) that may not have been captured in the data used for assessing outcome
risk. The outcome of the focus group discussions were added to the risk classification of dis-
tricts and divisions to achieved the final risk classification. Finally, a spatial map of the risk pro-
file at division level was created.

Statistical Risk Modeling
We use statistical modeling to identify geologic, geographic, and demographic predictor vari-
ables important for RVF.

Data Sources. Using data from the 2006/07 RVF outbreak in Kenya, predictor variables
for the risk of RVF outbreaks were determined through statistical modeling. The list of puta-
tive variables tested for their associations with the RVF outbreak are presented in Table 1.
Data on livelihood zones were obtained from the Famine Early Warning Systems Network
(FEWS NET, http://www.fews.net/Pages/default.aspx). FEWS NET has classified geographi-
cal areas into homogeneous units where people share similar livelihoods including options
for obtaining food, income and market opportunities to inform food security analyses. For
the purpose of these analyses, levels of livelihood zones were collapsed into five categories
based on their association with the outcome. Livelihood categories that had significant asso-
ciation with RVF were identified and kept as distinct categories while those that had insignif-
icant association with RVF were collapsed into a single category and used as the reference
category.

Table 1. List of putative risk factors tested for their relationship with Rift Valley Fever outbreaks.

Variable Description

Livelihood zones Livelihood practices (2006), FEWS NET (http://www.fews.net/Pages/default.aspx)

Land cover Global land cover data (GLC 2000), FAO–collapsed into 6 land use types (cultivated,
herbaceous cover, tree cover, mosaic, and water)

NDVI Monthly average, minimum, maximum values from: 1999–2010, SPOT VEGETATION

Human
population

Human and household census for 1960, 1970, 1980, 1990, 1999, 2009; Kenya National
Bureau of Statistics

Elevation Consortium for Spatial Information, Shuttle Radar Topography Mission (CSI SRTM)
data at 1 km resolution using the soil type and texture layer

Soil types FAO’s Harmonized World Soil Database (HWSD), 2008, FAO

Livestock data Gridded Livestock of the World 2.0 and Livestock Geowiki data sets

Precipitation Tropical Rainfall Measuring Mission (TRMM), 0.5°: Monthly average for the period
1997–2013

Climate Prediction Centre Merged Analysis of Precipitation (CMAP), 2.5° Monthly
average for the period 1979–2011

doi:10.1371/journal.pone.0144570.t001
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The global land cover data (GLC2000) developed by the European Commission was used
[13]. These data are gridded at 1 km2 spatial resolution. Overall, the country has 11 types of
land cover. For the purpose of this analysis, the land cover types were collapsed including into
6 inlcuding artificial, cultivated, herbaceous cover, tree cover, mosaic and water. The most
dominant land cover type at the administrative division level assumed to represent the entire
division. Livestock data were obtained from FAO’s Gridded Livestock of the World database
[14]. It comprised of standardised global and sub-national distribution maps (at a 5 kilometer
resolution) for the main livestock species including cattle, buffalo, sheep, goats, pigs, chickens
and other poultry [14]. For this analysis the species of livestock considered included cattle,
sheep, goats and camels. Data on human population collected in 1960, 1970, 1980, 1990, 1999
and 2009 were obtained from the Kenya National Bureau of Statistics. Two precipitation prod-
ucts were used: one from Tropical Rainfall Measuring Mission (TRMM) and the other from
Climate Prediction Centre Merged Analysis of Precipitation (CMAP) (Table 1). Normalized
Difference Vegetation Index (NDVI) data for the period 1999 to 2010 were obtained from
SPOT VEGETATION (http://free.vgt.vito.be/). NDVI, a measure of amount and vigor of green
vegetation on land surface, is derived from red and near infrared reflectance measurements. Its
values range between -1 and 1.0; negative values indicate the presence of clouds and water, pos-
itive values near zero indicate bare soil and higher values indicate dense vegetation. To reduce
cloud effects in the NDVI imagery, daily SPOT VEGETATION images are aggregated into
10-day composites where for each pixel the value with the maximum NDVI value is selected.
To diminish remaining atmospheric effects, we applied an iterative Savitzky-Golay filter to the
temporal series of each pixel [15]. We spatially aggregated the data per division and subse-
quently extracted minimum, average and maximum values for each division.

NDVI extracts are available on 10 day-intervals at a spatial resolution of 1 km. For this
study, minimum, maximum and average values for each division were extracted.

The elevation data used in this analysis were obtained from the Consortium for Spatial
Information of the Consultative Group of the International Agricultural Research
(CGIAR-CSI; website http://www.cgiar-csi.org) at a resolution of 90 m. The data were derived
from the Shuttle Radar Topography Mission (SRTM) whereby missing data were interpolated.
Data on soil types were extracted from the Harmonized World Soil Database (HWSD) [16].
The data has a resolution of 1 km and over 15000 different soil mapping units are recognized
in the database. Attributes used for this study are soil texture and type.

Risk Factors Analysis. Descriptive analyses were conducted to determine the distribution
of outbreaks by division. Crude associations between outbreaks and categorical predictor vari-
ables were determined using Chi square tests. For continuous variables, mean values and their
95% confidence intervals were generated. These models were used to assess linearity assump-
tion for the continuous variables by fitting quadratic functions and determining their signifi-
cance in the model. Variables that could not satisfy this assumption (e.g. elevation and
livestock density) were converted to categorical variables. The goodness of fit of the various
forms of the precipitation variables was evaluated based on the likelihood ratio tests. These
included monthly values, 1–3 month lagged values, 2–3 month running cumulative and mean
values. For NDVI, minimum, mean and maximum values were also evaluated. Forms of pre-
cipitation and NDVI variables that gave the largest log likelihood estimates were used in the
subsequent analyses.

Multivariable models were fitted to the data using both backward and forward variable
selection procedures. One model used Climate Prediction Centre Merged Analysis of Precipita-
tion (CMAP) precipitation while the other used Tropical Rainfall Measuring Mission (TRMM)
precipitation products. The goodness of fit of the models was determined using Hosmer-Leme-
show test (with 10 groups). First order interaction terms between variables were also tested.

RVF Risk Map for Kenya

PLOS ONE | DOI:10.1371/journal.pone.0144570 January 25, 2016 5 / 13

http://free.vgt.vito.be/
http://www.cgiar-csi.org/


The level of confidence for all these analyses was 95%. Residual analysis was also conducted
and scatter plots of standard residuals against fitted values were done to identify any outliers or
scenarios that the model could not predict well. A map of predicted probabilities by division
was created using Arc GIS version 9.2.

Results

Semi-Quantitative Risk Assessment
The probability-impact weighted scoring identified 15 districts as high, 22 medium, and 32 as
low risk. However, further analysis of these data by the animal and human health experts
resulted in moving of 6 districts from medium to high risk, and 4 districts from low to medium
risk, giving a final total of 21 (30.4%) high, 20 (29%) medium, and 28 (40.6%) low risk districts
(Table 2). The 28 low risk districts included all 20 districts in former Western and Nyanza
provinces, 7 districts in former Rift Valley province, and one district (Nyandarua) in the former
Central province.

The experts reviewed the risk level of each administrative division within districts classified
as medium and high risk in order to provide a more granular risk map of the disease in the
country. The final outcome was a RVF risk map shown in Fig 1. Of a total of 391 divisions in
the country, 101 (25.8%) divisions located in the 21 high-risk districts were classified as high
risk whereas 100 (25.6%) divisions located in 35 districts were classified as medium risk
(Table 2). A total of 190 (48.6%) divisions located in 47 administrative districts were catego-
rized as low risk, including all divisions in Nyanza and Western provinces (Table 2). Divisions
within medium or high risk districts that were classified as being at low risk of RVF disease in
livestock included game parks and national reserves where livestock are not present. With the
exception of Wajir and Garissa districts where all the areas were classified as being at high risk
due to the nomadic nature of the livestock keepers who move across the districts, all other high
and medium risk districts had certain administrative divisions singled out as having variable
likelihood of disease occurrence Fig 1.

Most of the eastern regions of Kenya, including 4 of 7 districts (Kilifi, Kwale, Tana River, and
Mombasa) in Coast and 2 of 3 districts (Garissa andWajir) in Northeastern province, were at
high risk for RVF disease occurrence Fig 1. In addition, the districts located in the southern
regions of the expansive Rift Valley province, being areas where RVF was originally and most fre-
quently reported have remained at high risk. In contrast, most districts in theWestern region of
the country, including all districts in Nyanza (N = 12) andWestern (N = 8) provinces, and Tur-
kana and Samburu districts in the northern region of Rift Valley province were at low risk of
RVF disease Fig 1. The north central and south-central regions of Kenya, including most of the
districts in 11 of the 13 divisions in Eastern provinces were at medium risk.

Predictive Factors of High Risk Divisions
The results of the multivariable analyses of the risk factors for RVF outbreaks are presented in
Table 3. The final model used precipitation data from the CMAP, which had better fit com-
pared to data from the TRMM. The odds of RVF outbreak increased with increased precipita-
tion, high NDVI values, low altitude and low temperatures. The NDVI did not meet the
linearity assumption and it was hence fitted as a quadratic term. The model suggested that
there was a significant interaction between soil type and precipitation. This interaction, as out-
lined in Fig 2, indicates that as the level of precipitation increases, the risk of an RVF outbreak
in areas with solonertz and vertisols increases at much faster rate than in areas with other soil
types. In addition, the ultimate levels of risk attained in areas with other soil types did not get
to those expected in the high-risk areas (with solonertz and vertisols soil types).

RVF Risk Map for Kenya
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Using the predicted probabilities of the factors that remained in the final model as signifi-
cantly associated with the RVF outbreaks, we generated the RVF risk map for Kenya shown in
Fig 3.

Table 2. List of RVF high andmedium risk high districts as assessed by probability-impact scores and the final risk level after input from the ani-
mal and experts.

Province District Weighted risk estimate score PI Risk categories Final risk level

Central Kiambu 3.8 Medium High

Central Maragua 6.8 High High

Central Nyeri 4.5 High High

Central Thika 6.0 High High

Coast Kilifi 6.8 High High

Coast Kwale 5.3 High High

Coast Malindi 5.0 High High

Coast Mombasa 5.3 High High

Coast Tana River 4.0 Medium High

Coast Taita Taveta 5 High High

Eastern Machakos 5.3 High High

Eastern MeruCentral 3.5 Medium High

Nairobi Nairobi 6.0 High High

North Eastern Garissa 6.0 High High

North Eastern Wajir 5.5 High High

Rift Valley Baringo 6.0 High High

Rift Valley Kajiado 5.0 High High

Rift Valley Laikipia 3.8 Medium High

Rift Valley Nakuru 5.3 High High

Rift Valley Trans Nzoia 3.0 Medium High

Rift Valley Uasin Gishu 3.0 Medium High

Central Kirinyaga 4.0 Medium Medium

Central Murang'a 4.0 Medium Medium

Coast Lamu 1.0 Low Medium

Eastern Embu 3.5 Medium Medium

Eastern Isiolo 4.0 Medium Medium

Eastern Kitui 4.0 Medium Medium

Eastern Makueni 2.0 Medium Medium

Eastern Marsabit 2.0 Medium Medium

Eastern Mbeere 3.0 Medium Medium

Eastern Meru North 1.0 Low Medium

Eastern Meru South 3.0 Medium Medium

Eastern Moyale 1.0 Low Medium

Eastern Mwingi 4.0 Medium Medium

Eastern Tharaka 3.0 Medium Medium

North Eastern Mandera 3.0 Medium Medium

Rift Valley Koibatek 1.0 Low Medium

Rift Valley Marakwet 2.0 Medium Medium

Rift Valley Narok 2.0 Medium Medium

Rift Valley Samburu 3.5 Medium Medium

Rift Valley West Pokot 2.0 Medium Medium

doi:10.1371/journal.pone.0144570.t002
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Fig 1. Rift Valley Fever risk map for Kenya, 2012 based on the semi-quantitative risk assessment for likelihood of RVF epizootic and expert
opinion.

doi:10.1371/journal.pone.0144570.g001
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Overall, of the 391 divisions, 20 divisions (6.1%) had very high or high predicted probability
of RVF occurrence, 100 (25.6) had medium predicted probability, 257 (65.3%) had low pre-
dicted probability and 14(3.6%) had very low predicted probability of RVF occurrence. The
risk map showed the eastern part of the country to be at medium to high risk of RVF

Table 3. Multivariable logistic regression models fitted to the 2006/2007 RVF outbreak data in Kenya.

Variable Level Odds Ratio P>|Z|

Estimate 95% CI

Soil Luvisols 1.27 0.77–1.85 0.42

Solonertz 1.82 1.28–2.59 0.01

Vertisols 1.22 0.70–2.12 0.48

Others 1.00 - -

Precipitation (TRMM) 1.09 1.07–1.11 0.00

Luvisols x precipitation 1.11 1.03–1.19 0.00

Solonertz x precipitation 1.16 1.09–1.23 0.00

Vertisols x precipitation 1.11 1.03–1.20 0.01

Elevation �1000 1.00

>1000 - �1500 0.46 0.28–0.75 0.00

>1500 0.19 0.11–0.33 0.00

NDVI 0.34 0.08–1.39 0.13

NDVI square 11.41 2.21–58.85 0.00

Temperature 0.82 0.79–0.86 0.00

doi:10.1371/journal.pone.0144570.t003

Fig 2. Graphical interpretation of the effects of rainfall and soil type on the risk of RVF outbreak.

doi:10.1371/journal.pone.0144570.g002
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occurrence. Divisions to the western part of the Great Rift Valley were predicted to be at low or
very low probability of occurrence of RVF. In addition, divisions in the central highlands and
central northern parts of Kenya were predicted to be at low risk of RVF occurrence.

Fig 3. RVF risk map for Kenya generated from predicted probabilities by administrative divisions based on Centre Merged Analysis of
Precipitation (CMAP).

doi:10.1371/journal.pone.0144570.g003
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Discussion
This study applied semi-quantitative risk assessment and statistical modeling techniques to
develop RVF risk maps for Kenya, a country that has had the highest number of major RVF
epidemics between 1951–2007 [11]. The 2006/07 epidemic was the most extensive affecting 26
of the 69 districts across six of the eight provinces in Kenya, with the highest livestock morbid-
ity and mortality being reported in districts that also reported high morbidity and mortality of
human diseases [12]. Despite the United States’ National Aeronautics and Space Administra-
tion (NASA) having issued an early warning for possible RVF epidemic in the horn of Africa in
August 2006 approximately 3 months prior to the epidemic, no substantive interventions were
carried out either by the regional governments or the international partners until confirmation
of the epidemic in December 2006 [10,17]. As the outbreak unfolded with several geographi-
cally distinct sub-epidemics occurring over time, the response by the government of Kenya and
international partners was hampered by the lack of information identifying areas that were sus-
ceptible to the RVF outbreak. The RVF risk maps developed here should enable the govern-
ment of Kenya to have an evidence-base from which it can respond to a RVF epidemic
warning as well as develop a long-term RVF prevention and control programs that target at-
risk districts for optimal utilization of limited resources. Both the semi-quantitative and statis-
tical modeling methodologies generated comparable RVF risk maps (Figs 1 and 3) that identi-
fied similar high-risk and low-risk regions of the country.

Recent RVF epidemiology indicates that certain permissive ecologies are more vulnerable to
the recurrent disease epidemics than others, with the virus being endemic in these areas and
being activated, amplified in livestock population and spread to infect humans during the El
Nino years [18,19]. The amplified virus is spread through movement of livestock, mosquitos or
humans during an epidemic, although banning livestock movement may not prevent RVF out-
breaks in permissive ecosystems containing resident virus [18]. The control measures available
for RVF during the threat of an epidemic include enhanced surveillance, public education, live-
stock vaccination, and vector control. Once an epidemic has been confirmed in a region, the
same control measures except livestock vaccination are applied. Outbreak control measures
including public health education need to be implemented in all areas including low-risk areas.
If applied before the epidemic, targeted surveillance and livestock vaccination can be effective
in either preventing an outbreak or mitigating the effects of one if it happens. It is likely that
vaccinating all livestock in high risk areas that represents 30% of the national livestock popula-
tion may be effective in preventing an RVF epidemic. However, it is important to emphasize
that vaccinating only selected high risk areas, may not prevent outbreaks in other vulnerable
districts.

Our study suggested that specific geologic and geographic factors were associated with high
risk divisions, including presence of certain soil types, less than 100mm average annual rainfall
during non-El Niño years, altitude below 1000 m, and densely bushed areas, high NDVI values
and presence of agri-sparse vegetation. There was an ordinal reduction in risk of RVF with
increasing altitude. Linkages between altitude and RVF risk have not been described. However,
changes in altitude are closely associated with varying ecological conditions (demonstrated by
changes in host and vector diversity, climate and physical features such as moisture content)
that might be responsible for the variation in the risk levels observed. Ecosystems in low alti-
tudes, for instance, experience irregular climate patterns that increase turnover rates of live-
stock and wildlife populations, compromising the maintenance of appreciable levels of herd
immunity. The positive association between soil types: vertisols, solonertz and luvisols with
high risk of RVF epidemics may be associated with the poor draining properties of these soils,
allowing them to hold water for a longer time period compared to the other soil types.
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Anecdotal observations also suggest that these poor draining properties allow these soils to
retain high moisture levels during the dry season to enable the survival of infected eggs of
floodwater Aedes species that act as the primary reservoirs of RVFV. To verify these sugges-
tions, data on mosquito profiles in various districts in Kenya would be required. These data are
currently being collected in one of our research projects. Other factors that were significant in
the model include NDVI and temperature. High, persistent rainfall allowed growth of abun-
dant vegetation indicated by the high NDVI values during the high risk periods [6]. The exact
causal relationship between these predictive factors and RVF disease require further
investigation.

This study was subject to certain limitations. First, systematic disease surveillance that
would provide accurate prevalence of RVF in each district and division during previous out-
breaks or inter-epidemic periods, as well as spatial extent of the outbreaks was unavailable. The
data to estimate the outcome (extent of disease in humans and animals) is therefore based on
the 2006–06 epidemic only. However, RVF clinical disease in animals, particularly in an out-
break situation, is well recognized in Kenya among animal health professionals and animal
herders and it is unlikely that a large number of cases were missed [20]. Whereas the retrospec-
tive surveillance data used to assess the exposure risk were collected through passive surveil-
lance, the addition of information from expert group discussion drawn from 47 long-serving
animal and public health expert from all regions of the country ensure that divisions that may
have lacked official disease reports were assessed. On assessment of predictive factors of high
risk districts and divisions, critical data on mosquito profiles for each district/division is not yet
available.

The availability of a RVF risk map for Kenya provides an important tool for use in develop-
ing prevention and control measures against this devastating disease and for mitigation of fore-
casted epidemics. The map provides a roadmap for; (i) deciding where to establish sentinel
surveillance among humans and livestock for early warning in compliance with the WHO
international health regulations, (ii) setting up long-term disease prevention and control pro-
grams in livestock such as vaccination and public education; (iii) initiate mitigating actions in
response to a forecasted epidemic; and (iv) raising the suspicion index and setting up appropri-
ate diagnostics in human health facilities to look for cases during epidemic and inter-epidemic
periods. The identification of geologic and geographic predictors of regions at high risk is only
the beginning of this important research area. The risk map will also be factored into the RVF
forecasting model by NASA and other existing regional RVF prediction tools to add granular-
ity to the RVF risk predictions in Kenya. Finally, the risk map and identification of predictive
factors for high risk will likely inspire other countries within the RVF ecological zones to
develop risk maps for their respective countries.
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