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Abstract: At each round of cell division, the DNA must be correctly duplicated and distributed
between the two daughter cells to maintain genome identity. In order to achieve proper chromosome
replication and segregation, sister chromatids must be recognized as such and kept together until their
separation. This process of cohesion is mainly achieved through proteinaceous linkages of cohesin
complexes, which are loaded on the sister chromatids as they are generated during S phase. Cohesion
between sister chromatids must be fully removed at anaphase to allow chromosome segregation.
Other (non-proteinaceous) sources of cohesion between sister chromatids consist of DNA linkages or
sister chromatid intertwines. DNA linkages are a natural consequence of DNA replication, but must
be timely resolved before chromosome segregation to avoid the arising of DNA lesions and genome
instability, a hallmark of cancer development. As complete resolution of sister chromatid intertwines
only occurs during chromosome segregation, it is not clear whether DNA linkages that persist in
mitosis are simply an unwanted leftover or whether they have a functional role. In this review, we
provide an overview of DNA linkages between sister chromatids, from their origin to their resolution,
and we discuss the consequences of a failure in their detection and processing and speculate on their
potential role.

Keywords: SCI; anaphase bridges; topoisomerases; catenane

1. Sister Chromatid Intertwines: Structure, Origin and Resolution

Sister chromatid intertwines (SCIs) represent an additional source of cohesion between the
chromatids. They arise during DNA replication and must be removed before cell division to preserve
genome integrity. SCIs are usually classified based on their molecular structure, which reflects
their origin. Three types of intertwines are recognized, namely short regions of un-replicated DNA,
recombination intermediates and DNA catenanes (Figure 1A). Irrespectively of their nature and
location in the genome, SCIs naturally arise during DNA replication and are mainly resolved in S phase,
although some do persist and must be fully removed during mitosis to allow faithful chromosome
segregation. Intertwines that persist through mitosis manifest themselves as DNA threads stretching
between the two segregating DNA masses, known as anaphase bridges (Figure 1).
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Figure 1. Three types of sister chromatid intertwines (SCIs) are observed during mitosis. (A) 
Molecular structures of late replication intermediates, joint molecules (here exemplified by a double 
Holliday junction) and catenanes are shown. Genomic loci at which each type of SCI were observed 
are indicated in the schematic chromosomes. The consequence of persistent SCIs in mitosis – a.k.a. 
anaphase bridges – is shown in the drawn cell. (B,C) Representative images of (B) a chromatin bridge 
and (C) an ultra-fine bridge are shown in retinal pigment epithelium (RPE-1) cells. DNA-intercalating 
dye Hoechst in cyan, Plk1-interacting checkpoint helicase (PICH) in magenta. Courtesy images by 
Neal Umbreit (B) and Mitchell Leibowitz (C). 

Although the number of anaphase bridges increases in the presence of stress, such as treatment 
with replication inhibitors or impairment of DNA repair pathways, DNA bridges are observed even 
in the absence of stressors and in untransformed cells, especially at the centromeres in mammalian 
cells [1,2]. In addition, anaphase bridges also form when cells attempt to segregate dicentric 
chromosomes that result from telomere-to-telomere fusion [3–5]. In contrast to the other classes of 
SCIs, which are thought to occur during normal DNA metabolism, telomere fusions are triggered by 
telomere disfunction, which can be caused by excessive telomere shortening or by malfunctioning of 
the sheltering complex that protects chromosome ends (reviewed in Reference [6]). 

Anaphase bridges can be classified as either chromatin bridges or ultra-fine bridges (UFBs), 
based on whether or not the DNA is chromatinized (i.e., packaged with histones and other proteins) 
and can be stained with DNA dyes like Hoechst (Figure 1B,C). In unperturbed conditions, chromatin 
bridges are rare and, in yeast, they are mostly attributed to unresolved recombination intermediates 
[7]. On the other hand, UFBs can be observed in the majority of cells in anaphase, and they are 
enriched at the centromere in human cells [1,7]. The same kind of stressor can often induce formation 
of both types of bridges (i.e., chromatinized and non-chromatinized), suggesting that both can arise 
from the same kind of DNA intertwining. Currently, it is not clear what determines the chromatinized 
status of DNA bridges. Chromatin bridges may evolve into UFBs, according to the stage of their 

Figure 1. Three types of sister chromatid intertwines (SCIs) are observed during mitosis. (A) Molecular
structures of late replication intermediates, joint molecules (here exemplified by a double Holliday
junction) and catenanes are shown. Genomic loci at which each type of SCI were observed are indicated
in the schematic chromosomes. The consequence of persistent SCIs in mitosis – a.k.a. anaphase bridges
– is shown in the drawn cell. (B,C) Representative images of (B) a chromatin bridge and (C) an ultra-fine
bridge are shown in retinal pigment epithelium (RPE-1) cells. DNA-intercalating dye Hoechst in cyan,
Plk1-interacting checkpoint helicase (PICH) in magenta. Courtesy images by Neal Umbreit (B) and
Mitchell Leibowitz (C).

Although the number of anaphase bridges increases in the presence of stress, such as treatment with
replication inhibitors or impairment of DNA repair pathways, DNA bridges are observed even in the
absence of stressors and in untransformed cells, especially at the centromeres in mammalian cells [1,2].
In addition, anaphase bridges also form when cells attempt to segregate dicentric chromosomes that
result from telomere-to-telomere fusion [3–5]. In contrast to the other classes of SCIs, which are thought
to occur during normal DNA metabolism, telomere fusions are triggered by telomere disfunction,
which can be caused by excessive telomere shortening or by malfunctioning of the sheltering complex
that protects chromosome ends (reviewed in Reference [6]).

Anaphase bridges can be classified as either chromatin bridges or ultra-fine bridges (UFBs), based
on whether or not the DNA is chromatinized (i.e., packaged with histones and other proteins) and can
be stained with DNA dyes like Hoechst (Figure 1B,C). In unperturbed conditions, chromatin bridges
are rare and, in yeast, they are mostly attributed to unresolved recombination intermediates [7]. On
the other hand, UFBs can be observed in the majority of cells in anaphase, and they are enriched at
the centromere in human cells [1,7]. The same kind of stressor can often induce formation of both
types of bridges (i.e., chromatinized and non-chromatinized), suggesting that both can arise from the
same kind of DNA intertwining. Currently, it is not clear what determines the chromatinized status of
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DNA bridges. Chromatin bridges may evolve into UFBs, according to the stage of their resolution.
Alternatively, the chromatinized status of a bridge may be determined at the time of its formation. In
the latter case, DNA chromatinization may depend on several factors, such as the extent of intertwining
or the timing of recognition during mitosis.

Certain DNA intertwines are more commonly retained at specific loci. However, since different
types of linkages can form anaphase bridges at the same region, their position in the genome is not
sufficient to infer their molecular structure.

1.1. Incomplete Replication and Recombination Intermediates

Un-replicated regions provide a source of DNA linkages called late-replication intermediates
(LRIs). LRIs are bonds between the two—otherwise fully replicated—sister chromatids and consist of
short un-replicated double-stranded DNA (dsDNA) segments, where the two parental strands still
anneal to each other. Since replication is generally completed well before anaphase, LRIs usually do
not evolve into anaphase bridges. Instead, anaphase bridges can form in conditions of replication
stress, preferentially at late replicating or hard-to-replicate regions, like common fragile sites (CFSs) [2].
Indeed, in human cells, replication of fragile sites is often left incomplete, particularly under conditions
of replicative stress, leading to DNA damage in the next cell cycle [8,9]. Another region that poses
a challenge to replication is the telomere, as it contains repeated DNA sequences and tends to form
G-quadruplexes, secondary DNA structures that can stall the replication fork. Consistently, telomeric
anaphase bridges increase if replication of these regions is impaired, for example by depletion of the
Werner helicase, which contributes to the resolution of G-quadruplexes [10].

In yeast, replication of the highly repetitive and hard-to-replicate ribosomal DNA (rDNA) locus can
continue up to metaphase [11]. Recently, it was also observed that replication of other specific regions
(including sub-telomeric regions, fragile sites and other hard-to-replicate regions) is not completed
until late anaphase, as demonstrated by the fact that inhibition of replication after metaphase hampered
the resolution of chromatin bridges [12]. This observation indicates that, at least in yeast, some LRIs
are taken care of through replication in late anaphase. This phenomenon may be a peculiarity of
yeast cells, as in higher organisms LRIs have not yet been reported to turn into anaphase bridges
in unperturbed conditions. A possible explanation for this discrepancy could be that, in yeast, G2
and metaphase are not clearly separated, while in humans, the better separation and the longer
time provided between S phase and the onset of anaphase may be sufficient to allow completion of
replication before chromosome segregation. However, in the presence of replicative stress, replication
of CFSs is completed during early mitosis, also in human cells [13]. In this case, mitotic DNA synthesis
fills the gaps and prevents un-replicated regions from bridging in anaphase [14,15].

Recombination intermediates are products of homologous recombination (HR), a DNA repair
pathway which exploits the genetic information available on one sister chromatid to correct lesions
in the other sister (reviewed in Reference [16]). In the presence of DNA damage, HR can be used
to repair many types of DNA lesions, including double-strand breaks (DSBs). DNA repair through
recombination mainly takes place in G2 and S phases and normally exploits the nearby sister chromatid
to repair the lesion, although recombination between homologous chromosomes occasionally occurs
in diploid cells. In addition to DNA repair, recombination is essential during replication for a process
called template switching. In the presence of DNA lesions or stable DNA-protein complexes that halt
fork progression, template switching allows the fork to restart and replicate across the lesion [17–19].
Recombination leads to the formation of a X-shaped structure called the Holliday junction, which
covalently links the sister chromatids. The junction can be either single or double depending on whether
only one or both ends of the DSB are invading the sister chromatid, respectively. The recombination
process ends with the resolution of the generated joint molecules (JMs) through dedicated mechanisms.
The simultaneous impairment of multiple pathways devoted to the resolution of JMs compromises
chromosome segregation and cell viability in the absence of DNA damage [20–23]. This synthetic
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lethality indicates that HR-derived intertwines occur during every cell cycle, likely deriving from the
use of template switching to rescue stalling of the replication fork.

It is not clear whether there are genomic regions where this type of DNA linkages preferentially
arises. A study found UFBs from unresolved recombination intermediates in proximity to fragile
sites and centromeres in human cells, after inducing anaphase bridges through depletion of the
non-homologous end joining factor 53BP1 (p53 Binding Protein 1) [24]. The enrichment at CFSs and
centromeres might reflect the fact that these regions represent a challenge to replication, maybe raising
the need for HR to repair a possible lesion or to restore fork progression through template switching.
However, another study performed on human cells impaired in the resolution of recombination
intermediates found no colocalization between the resulting UFBs and centromere [20].

Un-replicated patches of DNA and double Holliday junctions share a common feature: they both
contain—or can be converted into—a hemicatenane-like structure (Figure 2). Because of this similarity,
these DNA linkages can be removed by the BTR/STR complex [20,25] (reviewed in Reference [26]). The
BTR complex includes the RecQ helicase Bloom’s syndrome helicase (BLM), the topoisomerase TOP3A,
and the single-stranded DNA (ssDNA) binding protein RMI1 or RMI2. The STR complex is its budding
yeast counterpart and is composed by the Sgs1 helicase (orthologous to BLM), Top3 (orthologous to
TOP3A) and Rmi1 (orthologous to RMI1). The processing of recombination intermediates through
the BTR complex is termed “dissolution” [26] (Figure 2A, top). First, the helicase unwinds the
heteroduplex, exposing ssDNA filaments. Top3 can then catalyze the strand passage reaction on the
exposed ssDNA and remove the entanglement, while RMI1/2 stimulates supercoil relaxation and
topoisomerase activity. As no nuclease is required and replication protein A (RPA) binds ssDNA
and protects it from breaking [25], dissolution by the BTR complex does not create any additional
DNA nick or gap. The hypothesis of BTR-mediated dissolution of the bridges is supported by the fact
that BTR components localize on the bridges and that RPA is loaded on UFBs during anaphase in a
BLM-dependent fashion [20].

Processing of LRIs by the BTR complex leads to the exposure of ssDNA segments as these regions
were never replicated to begin with (Figure 2B, top). Thus, as the parental strands attempt to be
separated, un-replicated regions form bridges that contain single-stranded DNA. If the exposure occurs
at S phase, these gaps can be filled by replication; otherwise, they are thought to be repaired in the
next cell cycle. The finding that DNA synthesis can occur also in mitosis (and, at least in yeast, as
late as anaphase) raises the possibility that BTR-dependent disentangling of LRIs in mitosis might be
followed by replication of the single-stranded regions. Indeed, in human cells, mitotic DNA synthesis
was shown to be triggered by nuclease processing of fragile sites [14,15].

In the case of dissolution of JMs, after heteroduplex disentanglement, each filament returns to its
complementary strand and the sister chromatids become physically separated. Dissolution of double
Holliday junctions always generates non-crossover products (Figure 2A, top), meaning that there is no
exchange of genetic information between the homologous chromosomes and that the DNA molecule is
restored as it was before recombination [26].

Alternatively to the BTR complex, un-replicated segments and recombination intermediates
can also be processed by dedicated structure-specific nucleases (SSEs), including MUS81-EME1/2
(Mus81-Mms4 in yeast), SLX1-SLX4, XPF-ERCC1 and GEN1 (Yen1 in yeast) (Figure 2A, bottom
and Figure 2B, bottom, reviewed in References [27,28]). Simultaneous depletion of multiple SSEs
is often synthetically lethal, indicating that they represent an essential pathway for the removal of
recombination intermediates that are refractory to dissolution by the BTR complex, such as single
or nicked Holliday junctions [29–33]. The removal of recombination intermediates through nuclease
activity is called “resolution” and preferentially takes place in mitosis, while the BTR complex is active
also in S phase (reviewed in Reference [34]). Differently from dissolution, SSE-mediated resolution can
give rise to both crossover and non-crossover products, depending on how DNA filaments are cleaved
(Figure 2A, bottom). If recombination occurs between homologous chromosomes, crossover events can
cause loss of heterozygosity, which in turn can promote tumor development, thereby explaining why
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LRIs and JMs are preferentially processed by the BTR complex. In addition, premature SSE activation
during S phase can target intermediates of DNA replication and repair for nucleolytic processing,
with toxic effects such as chromosome pulverization [35]. Nucleases can also act in the next G1 and
digest DNA bridges that persist after cell division, as shown for the cytoplasmic exonuclease TREX1 in
mammalian cells [3].
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Figure 2. Joint molecules (JMs) and late replication intermediates (LRIs) can be disentangled by the
BLM-TOP3A-RMI1/2 (BTR) complex or cleaved by structure-specific endonucleases (SSEs). (A) JMs
can undergo BTR-mediated dissolution (top) or SSE-mediated resolution (bottom). Arrows indicate the
possible sites of cleavage by nucleases. Dissolution always results in non-crossover products (NCO),
whereas resolution can result in either crossover (CO) or non-crossover products. (B) LRIs can be
processed by the BTR complex (top) or by structure-specific endonucleases (SSEs, bottom), leading to
single-stranded DNA (ssDNA) gaps or ssDNA overhangs, respectively.

While all anaphase bridges can break during cell division, leading to DNA lesions and chromosomal
rearrangements, timely resolution of LRIs and JMs is of primary importance, as ssDNA is more fragile
and sensitive to damaging agents.

1.2. Catenanes and Supercoils: A Race for Survival Devoid of Relaxation

DNA catenanes consist of dsDNA entanglements between the two sister chromatids and, unlike
the types of intertwines previously described, catenanes represent pure topological linkages. The name
“catenane” was introduced in early studies on circular DNA, where this type of intertwining results
in catenation of two circular molecules [36], but is now used to also indicate entanglements between
linear DNA.
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The double-helical structure of DNA implies that any process that requires the opening of the two
strands to access the genetic information (like replication, transcription, and recombination) will lead
to topological issues, namely the accumulation of supercoiling. During replication/transcription, DNA
helicases act ahead of the fork, catalyzing the opening of the double-helix and pushing the turns of the
helix forward. The over-winding of the helix ahead of the fork is referred to as positive supercoiling,
while the resulting underwinding behind the fork is called negative supercoiling (Figure 3). The
topological tension imposed by the positive supercoiling needs to be relaxed, or it will eventually
hinder helicase activity and stall the fork. In principle, on linear chromosomes, the supercoiling could
diffuse along the molecule and be released by rotation around the axis. However, most eukaryotic
chromosomes are extremely long DNA molecules, organized in domains, and contain many obstacles
that can impede their axial rotation, such as DNA anchoring to the nuclear membrane, replication
machineries and other DNA-protein complexes. In vivo, relaxation of supercoiling by axial rotation
and diffusion along the chromosomes was shown to occur for shorter chromosomes [37,38] and to
be favored by disruption of tethering to the nuclear membrane [39]. Axial rotation is, however, not
sufficient to relax all the replication-induced supercoil. Therefore, to solve topological problems, cells
need a set of dedicated enzymes, essential for DNA replication in all organisms, called topoisomerases
(reviewed in Reference [40]). Topoisomerases can be divided into two different categories based on
their molecular mechanism of action. Type I topoisomerases (Top1 and Top3) first catalyze the cleavage
of one DNA strand, and then allow the other strand of the same DNA molecule to pass through the
break and, finally, reseal the cleavage. Type II topoisomerases (Top2), instead, cleave both strands
of a given DNA segment and then allow the passage of another double-stranded filament through
the break, before ligating the cleaved segment. This characteristic of Top2 makes it the only enzyme
capable of resolving catenanes [40].

During replication, the activity of topoisomerases is sufficient to relax the majority of the
accumulated supercoils and to allow fork progression (Figure 3A, left). However, supercoils can also
be relieved through an alternative mechanism which consists in the rotation of the replication fork
around its axis, transferring the positive supercoiling from the un-replicated dsDNA ahead of the fork
to the replicated dsDNA filaments behind the fork and resulting, therefore, in entanglements between
the replicated sister chromatids (Figure 3A, right). Such structures are called precatenanes [41,42]. Fork
rotation results in sister chromatid catenation, as precatenanes will eventually evolve into catenanes
once replication is complete [43].

If fork rotation would relieve all supercoiling stress, one catenane would originate for each turn of
the parental DNA helix. The relative rare occurrence of catenanes, compared with the number of turns
of the helix [44], implies that fork rotation is not the preferred mechanism for supercoil relaxation.
Several factors, indeed, limit the occurrence of fork rotation. First of all, it is reasonable to think that the
bulky replisome itself constitutes a steric obstacle against its rotation. Secondly, fork rotation is actively
counteracted by the replication pausing complex, Timeless/Tipin (Tof1/Csm3 in yeast) [45,46]. Thirdly,
a recent in vitro study on the physical properties of chromatin demonstrated that a braided chromatin
fiber is much stiffer than a single chromatin fiber, meaning that the duplicated DNA molecules behind
the fork are more resistant to rotation than the un-replicated DNA molecule standing ahead of the
fork. As a result, supercoiling is more easily translated ahead of the replication fork rather than
behind it. In addition, Top2 was found to act more efficiently on single-fiber DNA supercoil than on
precatenanes [47]. Altogether, these findings indicate that, during replication elongation, supercoiling
is directed ahead of the fork, where topoisomerases can solve it with higher efficiency.
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Figure 3. Relaxation of replication-induced supercoils occurs through topoisomerase action or fork
rotation. (A) During replication elongation, positive and negative supercoiling accumulate ahead
and behind of the replication fork, respectively. Replication-induced supercoil can be relaxed by both
Top1 and Top2 (left). Alternatively, rotation of the replisome transfers the supercoiling accumulated
ahead of the fork to the region behind the fork, determining the formation of precatenanes between
the duplicated DNA molecules, which are resolved by Top2 (right). (B) At replication termination,
the DNA between the two converging replisomes is inaccessible to topoisomerases. Therefore, fork
rotation becomes the preferred route for the relaxation of replication-induced supercoils. Supercoils
can be relaxed by either Top1 or Top2, whereas catenanes can only be removed by Top2.

Fork rotation seems to be restricted to specific contexts, such as the sites of replication termination
(Figure 3B). Early studies on replication in simian virus SV40 showed that the evolution of helical
turns into catenanes occurs with low frequency during replication, with the exception of replication
termination [44,48]. The formation of catenanes at the termination site is supported by the fact that Top2
is essential at replication termination, in both bacteria and eukaryotes [49–53]. A likely explanation is
that the two converging replisomes prevent Top2 from accessing the DNA located between them, thus
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triggering fork rotation. The formation of catenanes at replication termination was also confirmed by
a study in Xenopus laevis, showing that, at the termination site, the two converging replisomes pass
by each other without stalling and lead to catenation of the replicated molecules [54]. In addition to
termination sites, fork rotation seems to occur more frequently also at hard-to-replicate regions, as
was shown in a study that evaluated the level of catenation retained on plasmids in yeast cells lacking
Top2. Even though, in these cells, every fork rotation event translates into catenation of the plasmids,
the number of catenanes was not greatly affected by the length of the replicated segment, indicating
that fork rotation does not happen stochastically during elongation. Instead, the level of catenation
increased if the plasmid contained regions known to pause replication, including transfer RNA genes
(which are considered CFSs in yeast), inactive origins, and centromeres [45]. These observations
suggest that fork rotation occurs preferentially at hard-to-replicate sites. This preference could be
explained by the presence, at these regions, of physical barriers for the action of topoisomerases, such
as stable DNA-protein complexes.

Although fork rotation may be more frequent at specific regions, an elegant study in yeast by
Uhlmann and colleagues showed that the resulting catenanes are free to diffuse after replication, as
their occurrence was the same throughout the chromosomes. This group developed a system based
on excision and circularization of chromosomal segments, which allowed to obtain the first direct
evidence of catenation in endogenous linear chromosomes [55]. The only region that was found to
be devoid of catenanes is the silent mating-type locus, maybe because its high level of compaction
increases the stiffness of chromatin, thereby preventing the intertwines from diffusing in this region.
While the yeast mating-type locus is quite short, the same behavior is difficult to imagine for large
heterochromatic regions in the mammalian genome, such as the ones that flank the centromeres.

2. SCI Resolution in Mitosis: Molecular Machineries and Their Mitotic Regulation

Albeit the majority of SCIs are resolved prior to chromosome segregation, cells have evolved
specific strategies to remove the leftovers during mitosis. While LRIs and JMs rarely manifest
themselves in normal mitosis, catenanes are found in most early anaphase cells and they account for
the majority of DNA bridges in physiological conditions [1,56]. Complete resolution of catenanes
only occurs concomitantly with chromosome segregation during a normal cell cycle and requires the
activity of Top2 [50,57–61]. Several proteins have been suggested to play a role in the sensing and
processing of DNA linkages in mitosis on the basis of their localization on anaphase bridges and of
the accentuation of bridge formation following their impairment. However, it should be noted that
many of these proteins are also involved in DNA condensation, replication, or repair, thus making it
difficult to determine whether the increase in anaphase bridges that follows their impairment is due to
a mitotic role or whether it is a consequence of defects earlier in the cell cycle.

2.1. The BTR Complex in Decatenation and Resolution

A role for BLM helicase in the resolution of DNA linkages that persist in anaphase was suggested
based on the findings that the components of the BTR complex are recruited to DNA bridges in
anaphase (Figure 4) and that BLM-deficient cells display enhanced bridging [1]. A caveat for the latter
observation is that the increase in anaphase bridges may also be due to the function of BLM earlier in
the cell cycle, namely in DNA replication and repair (reviewed in Reference [26]).
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The BTR complex can efficiently disentangle recombination intermediates and it was also proposed
to act on other ssDNA-containing structures, for example un-replicated segments [10,25]. Furthermore,
since it was shown to decatenate dsDNA in vitro, the BTR complex was also proposed to play a
role in the resolution of catenanes [25,62], which is also supported by the observation that Top3
and Sgs1 can compensate for the lack of Top2 activity in the replication of the ribosomal DNA [63].
However, the BTR/STR complex cannot fully rescue the defects of Top2 mutants at later stages of
mitosis, namely chromosome segregation errors and accumulation of DNA damage during mitosis.
Therefore, while the BTR complex may possess decatenation activity and play a role in specific
contexts, Top2 remains the main player resolving catenanes that persist in anaphase. Interestingly,
BLM/Sgs1 was found to physically interact with Top2 in mitosis both in yeast and in human cells,
and this interaction seems to be important for faithful chromosome segregation [64,65], although its
significance is still unclear. BLM was found to be phosphorylated in a cell-cycle-dependent manner
by cyclin-dependent kinase 1 (CDK1) and, likely, also by polo-like kinase 1 (PLK1), both in yeast and
in human cells [66–68]. CDK-dependent phosphorylation stimulates BLM/Sgs1 activity in S-phase,
while subsequent phosphorylation by Cdc5 (PLK1 homolog) may inactivate Sgs1 at metaphase [66], in
line with the finding that the lack of PLK1 activity in mitosis leads to centromere disintegration and
appearance of DNA threads reminiscent of UFBs in a BLM-dependent manner [69]. It is possible that,
at metaphase, PLK1-dependent phosphorylation of BLM protects centromeres from unwanted helicase
activity, to maintain the properties of centromeric chromatin and its ability to counteract the pulling
force of the spindle.

2.2. Fanconi Anemia Proteins: Markers for Replication Intermediates and DNA Bridges

Fanconi Anemia (FA) proteins were originally identified through the search for mutations causing
the genetic disease FA and include, among others, FANCD2, FANCI, and FANCM (reviewed in
Reference [70]). Most of them are only found in mammals, although some (such as FANCD2 and
FANCM) are conserved in all eukaryotes. FA proteins have been shown to play key roles in DNA
repair and in response to replication stress. During S phase, they collaborate with other players
(like the BTR complex) in the repair of DNA lesions that stall replication. The FANCD2-FANCI
complex also protects stalled forks from degradation [71]. A role in the removal of DNA linkages
in mitosis was suggested by the observations that some FA proteins localize on anaphase bridges
and that FA-deficient cells display increased anaphase bridging [72–74]. FANCD2-FANCI foci mark
UFBs that link fragile sites, which are thought to arise from incomplete replication, and, additionally,
FANCD2-FANCI-associated bridges are enhanced by replication stress [2,73]. Conversely, the complex
was not found on UFBs generated by inhibition of Top2 [2] or of the recombination pathway [20,24].
Altogether, these findings indicate that FANCD2-FANCI is a marker for LRI-derived bridges. As
FANCD2-FANCI foci start appearing at fragile sites in S phase [2], it is not clear whether the complex
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actively participates in LRI resolution in mitosis or if it simply remains trapped at these regions.
In conditions of replication stress, the frequency of BLM-associated UFBs is reduced in cells deficient
in the FANC pathway compared with FANC-proficient cells, despite the overall amount of UFBs being
similar [73]. This observation suggested that the FANC pathway may be involved in targeting BLM to
LRIs in mitosis. Additionally, FANCM also associates to DNA bridges and its recruitment occurs during
telophase in a BLM-dependent fashion [74]. Since FANCM possesses DNA translocase activity [75],
this protein might directly participate in the removal of DNA bridges at late cell cycle stages.

2.3. Structure Specific Endonucleases at the Heart of Genome Integrity

SSEs act by cleaving DNA structures and represent an alternative strategy for the resolution of
persistent late replication and recombination intermediates. The activity of these nucleases is mostly
limited to mitosis and it is organized in two consecutive waves over time [34]. In particular, the
activity of MUS81/Mus81-EME1/Mms4 and GEN1/Yen1 peaks at G2/M and anaphase, respectively.
The distribution of activity in two peaks ensures the presence of one active nuclease throughout mitosis,
and it may also be justified by differences in substrate specificity between the SSEs [27,28]. Notably,
GEN1/Yen1, having broader substrate specificity, may represent the last chance to allow segregation,
although with higher risk of genome rearrangements.

The regulation of SSE activity is coordinated with the cell cycle thanks to the action of mitotic kinases
and phosphatases. In budding yeast, Cdc28 (the only Cdk) collaborates with Cdc5 to phosphorylate
and activate Mus81-Mms4 in G2/M [76–79]. In S phase, DNA damage checkpoint activation leads to
inactivation of Cdc5 and, as a consequence, also inhibits Mus81-Mms4 activity [78]. Concomitantly
with Cdk and Cdc5 inactivation at anaphase onset, the activity of Mus81-Mms4 is gradually lost.
Similarly, in human cells, CDK1 and PLK1 phosphorylate MUS81-EME1 and SLX4 in prometaphase,
leading to the formation of the SMX tri-nuclease complex (composed by SLX1-SLX4, MUS81-EME1 and
XPF-ERCC1), which can process Holliday junctions with much higher efficiency than single enzymes
separately [31,35,80]. On the other hand, in yeast, Yen1 is kept inactive during S and G2/M phases
through Cdc28-dependent phosphorylation [76], while, at anaphase onset, Cdc14 (the budding yeast
Cdk-counteracting phosphatase) activates the nuclease by reversing this phosphorylation [81,82]. Yen1
phosphorylation not only reduces its catalytic activity, but also excludes it from the nucleus [81,83].
Regulation of GEN1/Yen1 through its localization is conserved in human cells where, because of its
cytoplasmic localization, GEN1 only gains access to the DNA after nuclear envelope breakdown at the
onset of mitosis [76,84].

The activity of nucleases was shown to promote mitotic DNA synthesis at hard-to-replicate regions.
In human cells, in the presence of replicative stress, MUS81-EME1 and ERCC1 are recruited to fragile
sites upon chromosome condensation, forming foci which disappear at the metaphase-to-anaphase
transition [14,85,86]. Cleavage of fragile sites by MUS81-EME1 promotes repair of un-replicated regions
through DNA synthesis in early mitosis [14]. Chromosome segregation in the absence of MUS81 or
ERCC1 increments anaphase bridging at fragile sites, triggers DNA damage response in the next cell
cycle, and causes chromosome segregation errors [14,85,86].

2.4. Resolving Catenanes: The Richer, the Better

Cells lacking Top2 activity display extensive DNA bridging in mitosis and lose viability in the
next cell cycle [49,50,57,87,88]. Inhibition of Top2 triggers anaphase bridging at specific genomic loci,
suggesting that DNA catenanes are preferentially retained at these regions. In higher eukaryotes,
catenanes are by far most often retained on centromeric DNA [1,56,58]. One possible explanation
for this feature is that, in higher eukaryotes, cohesin remains bound to these loci—but not to the
chromosome arms—until the onset of anaphase [89] and interferes with decatenation by keeping
sister chromatids close to each other. Consistently, the enrichment of catenanes at centromeres
has not been detected in yeast, where cohesin also remains bound to the chromosome arms. An
alternative explanation could be that centromeric heterochromatin reduces the accessibility of DNA to
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topoisomerases. In agreement with the latter hypothesis is the finding that Top2 is enriched not only
at the centromeres but also at other heterochromatic regions in mammalian cells [90]. However, this
explanation is at odds with the finding that the yeast mating-type locus is devoid of catenanes [55] and
the fact that a certain level of chromosome compaction is required for decatenation. Moreover, the
enrichment of Top2 on heterochromatin may also be due to the role of this enzyme in promoting DNA
compaction [57,88,91,92].

During mitosis, Top2 associates dynamically with chromatin, and at metaphase, it is enriched at
centromeres in mammals [88,90,93], consistently with the higher catenation of mammalian centromeres.
In addition, another function of Top2 at centromeres was described. Top2 promotes the function
of Aurora B [94] in the spindle assembly checkpoint (SAC)—a surveillance mechanism that ensures
proper attachment of the chromosomes to the spindle (reviewed in Reference [95]). In particular, Top2
directly participates in Aurora B recruitment and activation at the centromeres through its interaction
with Claspin and Haspin kinase, both of which are involved in the regulation of Aurora B [96–98].

In addition to centromeres, Top2 inhibition triggers anaphase bridging at telomeres [99] and at
the nucleolus [100,101], indicating that these loci also retain catenanes in mitosis. Interestingly, Top2
is also required for proper segregation of the whole nucleolus, which happens late in anaphase both
in yeast and in human cells [101,102]. In human cells, intertwining at rDNA loci was also observed
between heterologous chromosomes in mitosis and disappeared at anaphase onset [103]. Intertwining
between heterologous chromosomes is possible since, in higher eukaryotes, rDNA repeats are located
on different chromosomes and positioned close to each other in the nucleolus. The accumulation
of catenanes at the rDNA could be linked to the fact that this locus is highly transcribed during
mitosis. Indeed, it is reasonable to think that transcription, by altering DNA topology, may interfere
with topoisomerase activity at the fork, thus favoring replisome rotation and formation of catenanes.
The impact of transcription on the formation of replication-induced SCIs is still largely obscure,
however, and goes beyond the purpose of this review (for more information, we direct the interested
reader to these reviews, References [104,105]).

The activity of Top2 in mitosis is regulated through post-translational modifications, including
ubiquitination, phosphorylation, and conjugation with small ubiquitin-like modifier (SUMO, reviewed
in Reference [88]), with the latter being the most extensively studied. SUMOylation of Top2 occurs at
metaphase [106,107] and in yeast it is indirectly stimulated by Cdc5 [108]. Top2 was also found to be
phosphorylated by PLK1 in human cells [109]. These findings, together, suggest a key role for this
kinase in controlling Top2 in mitosis. SUMOylation directs Top2 recruitment to centromeres [110–112]
and to the nucleolus [113]. In addition, SUMOylation of Top2 in mitosis guides its interaction with
Claspin and Haspin, which in turn direct the recruitment of Aurora B to the centromeres [96–98].
While many studies have investigated the effects of SUMOylation on Top2 activity and association
with chromatin, there is not a unified model for the effects of this modification on Top2 [96,107,112,114].
One possible reason for this discrepancy is the fact that different types of modifications on different
residues may lead to distinct outcomes. In addition to post-translational modifications, an alternative
mechanism for the recruitment of Top2 at metaphase, based on histone modifications, has recently been
described in human cells. Phosphorylation of histone H2A, which is carried out by the SAC kinase
Bub1 in proximity of the kinetochore, was shown to be necessary and sufficient for the recruitment of
Top2 to the centromere, although evidence of direct interaction between the topoisomerase and H2A
was not shown in the study [115].

2.5. TOPBP1/Dpb11: Damage Alert, Resolution, and Bridging

TOPBP1/Dpb11 is a protein involved in DNA damage checkpoint, replication, and repair, where
it functions as a scaffold for protein recruitment [116–121]. During a normal mitosis, TOPBP1-foci
form on chromatin upon mitotic entry and gradually disappear throughout mitosis [15]. In anaphase,
TOPBP1 also associates with DNA bridges, especially UFBs [7,15,122]. TOPBP1 foci that persist
throughout anaphase turn into 53BP1 foci in the next G1, indicating the presence of DNA damage.
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The gradual disappearance of TOPBP1 foci during mitosis probably reflects repair of SCIs, as supported
by the fact that depletion of TOPBP1 after S phase enhances 53BP1 foci in the next cell cycle [15].
These observations suggested a role for TOPBP1 in the resolution of DNA linkages in mitosis. The fact
that depletion of TOPBP1 leads to a reduction of UFBs and an accumulation of chromatin bridges [7],
in addition to TOPBP1 localization on UFBs, may suggest a function in the dechromatinization of the
bridges. Alternatively, these observations may be explained by TOPBP1 acting earlier in the cell cycle
by suppressing HR, which normally gives rise to chromatin bridges [7].

TOPBP1 is also required for the recruitment of Top2 to anaphase bridges, indicating its involvement
in the resolution of catenanes. Recruitment of TOPBP1 to the bridges and its interaction with Top2
both depend on the BRCA1 C Terminus (BRCT) domains of TOPBP1 [122]. As these domains usually
recognize phosphorylated substrates, the recruitment of Top2 may depend on its phosphorylation.
Finally, TOPBP1 also participates in the resolution of the other types of DNA intertwines in mitosis.
In particular, TOPBP1 promotes both mitotic DNA synthesis at un-replicated fragile sites following
replication stress [15] and resolution of recombination intermediates that arise from template switch,
through its interaction with Slx1-Slx4 and Mus81-Mms4 [15,123].

2.6. PICH: The Sensor Sliding down Anaphase Bridges

Plk1-interacting checkpoint helicase (PICH) is a DNA translocase, meaning that it exploits
adenosine triphosphate (ATP) hydrolysis to “walk” along DNA filaments [124], and it is only found
in vertebrates and plants. Depletion of PICH was shown to cause displacement of the SAC protein
Mad2 from kinetochores, thus compromising proper functioning of the checkpoint [56]. The idea that
PICH also participates in the resolution of anaphase bridges originally came from the observation
that it specifically localizes to DNA bridges in anaphase [56] (Figures 1C and 4). In vitro experiments
showed that PICH is able to bind dsDNA with an affinity that increases when the filaments are under
stretching tension and then moves along the thread, sliding—and possibly removing—nucleosomes
along the way [25,124,125]. The translocase activity, in addition to the fact that inhibition of PICH
leads to an increase in chromatin bridges, but not UFBs [68,125,126], suggests that PICH might drive
dechromatinization of the bridges. PICH was found to be associated with all kinds of UFBs at
early anaphase and to be essential for the recruitment of other UFB-associated proteins, including
the BTR complex [1,25]. Altogether, these findings point toward a role for PICH as an upstream
factor and primary sensor of anaphase bridges. PICH collaborates with Top2 in the resolution of
catenanes (before and after anaphase onset) and is able to stimulate the decatenating activity of
the enzyme in vitro [126,127]. Recently, PICH was shown to induce an elevated degree of positive
supercoiling by cooperating with the TOP3A-RMI1-RMI2 complex [128], which also localizes to
UFBs [1]. This discovery provides a possible explanation for the role of PICH in the resolution of
catenanes, as positive supercoiled DNA was shown to facilitate Top2-mediated decatenation [59].

3. Mitotic Events Involved in the Resolution of Catenanes

As previously stated, most late replication and recombination intermediates are resolved before
anaphase, while resolution of catenanes is normally completed concomitantly with chromosome
segregation and it is influenced by other cellular processes (Figure 5).
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Figure 5. Chromatid individualization and separation aid the resolution of sister chromatid intertwines.
During mitosis, (A) cleavage of cohesin complexes, (B) condensin-mediated compaction, and
(C) chromatid separation by the mitotic spindle provide directionality to the reaction catalyzed
by Top2, favoring the resolution of DNA catenanes.

Type II topoisomerases can both introduce and remove catenanes, depending on the direction
of the thermodynamic equilibrium. In the pre-mitotic nucleus, where all duplicated chromatids are
crowded together instead of being organized into mitotic chromosomes, Top2 may insert catenanes
rather than removing them. This hypothesis is supported by the finding that Top2 can introduce de
novo intertwining during a metaphase arrest if cells are treated with the microtubule-depolymerizing
drug nocodazole [129] or if chromosome structure is disrupted [130]. To preserve genome stability,
all SCIs must be properly resolved before exit from mitosis, which means going well below the
thermodynamic equilibrium of the decatenation reaction. Even though, thanks to the energy provided
by the ATP consumed during the reaction and the preference of the enzyme for bent DNA substrates,
Top2 has the ability to decatenate DNA below the thermodynamic equilibrium, the mere action of
the enzyme is not sufficient to explain the removal of every single catenane [131–133]. Here is where
chromatid separation and individualization come to play a critical role. When chromatids undergo
folding, they occupy a definite volume of space, separated from that of their sisters. In this way, all the
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SCIs are forced to remain at the interface between the sister chromatids, where the local concentration
of catenanes increases, thus pushing the equilibrium of the Top2 reaction toward decatenation.

Chromatid individualization is a key step in the removal of all DNA linkages and other sources of
cohesion, including cohesin complexes [134], and is achieved by compacting the chromosomes in a
non-overlapping manner (reviewed in Reference [135]). The process is driven by structural maintenance
of chromosome (SMC) complexes, namely cohesin, condensin, and Smc5/6. All SMC complexes have a
ring-shaped structure, formed by two core SMC subunits and a kleisin subunit, and can link different
DNA segments by embracing them within the ring (reviewed in Reference [136]). By binding DNA
segments from the same chromosome, SMC complexes can drive chromosome condensation, through a
mechanism called loop extrusion [136–139]. In addition, cohesin can embrace two DNA segments from
sister chromatids, thus promoting sister chromatid cohesion. Cohesin, being the only complex that
can induce both intra- and inter-molecular links, is responsible for chromosome cohesion, but is also
implicated in modelling DNA architecture. On the other hand, condensin only promotes the formation
of intramolecular links, thus being the main player in chromosome compaction and individualization.
In budding yeast, cohesin and condensin both contribute to the shaping of mitotic chromosomes,
although they play distinct roles [134,140,141], whereas in higher eukaryotes, the contribution of
cohesin to mitotic chromosome condensation appears to be minimal. The function of the third SMC
complex, the Smc5/6 complex, is much less understood. Smc5/6 can tether two DNA molecules [142],
similar to cohesin, and it has essential functions in HR-mediated DNA repair, stabilization of stalled
replication forks, and resolution of replication-induced topological stress (reviewed in Reference [143]).
Smc5/6 was proposed to act at the replication fork and favor relaxation of supercoil by fork rotation,
possibly by sequestering precatenanes forming behind the fork [38,142]. When Smc5/6 mutant cells
undergo S phase, they accumulate unresolved recombination intermediates and replication-induced
supercoil and fail to complete replication [144], leading to persistent SCIs that, in turn, compromise
chromosome segregation and cause DNA damage. While the importance of Smc5/6 during S phase
is well established, an essential role in the resolution of DNA linkages during mitosis has not been
attributed to the complex yet [145,146].

Besides SMC complexes, chromatid individualization also requires Top2 activity [57,91,92,135],
likely because the catalyzed strand-passage reaction is necessary to sustain the movement and
reorganization of DNA fibers in space. Thereby, if, on the one hand, catenane resolution requires
chromatid compaction, on the other hand, chromatid compaction requires Top2 activity. This
interplay makes Top2 activity and SMC-dependent compaction two aspects of the same process:
chromosome individualization.

In addition to individualization, the physical separation of chromatids aids the exposure and
removal of any DNA linkages. Chromatid separation is driven by cohesin cleavage and by elongation
of the mitotic spindle during anaphase.

3.1. Cohesin in a Heartfelt Embrace

Cohesin is a multi-protein ring-shaped complex, formed by the SMC proteins SMC1/Smc1 and
SMC3/Smc3, and the kleisin subunits RAD21/Scc1 and SA/Scc3. As previously mentioned, the main
role of this complex is to embrace the sister chromatids and to hold them together until their segregation
(reviewed in Reference [147]). Although cohesin loading starts prior to DNA replication, in interphase,
the complex tends to detach from DNA, while in S phase, the association between the complex and the
DNA is stabilized through acetylation of Smc3, thereby establishing sister chromatid cohesion [148–150].
Cohesin cleavage is the key step that initiates chromosome segregation [151–153]. In yeast, the near
totality of cohesin complexes is cleaved at anaphase entry, while in vertebrates, cohesin is removed
from chromosome arms before metaphase and it is maintained up to anaphase onset only at the
centromeres (reviewed in Reference [147]).

It is now well established that cohesin complexes favor Top2-dependent DNA catenation and
prevent decatenation (Figure 5A). Early in vitro experiments showed that cohesin promoted catenation
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of DNA plasmids in the presence of Top2 [154]. The fact that the presence of cohesin bound to DNA
prevents decatenation in vivo was first shown in yeast on DNA plasmids [60,61] and later confirmed
also for endogenous chromosomes [55]. In higher eukaryotes, catenanes are specifically retained at
centromeres, and they are resolved by Top2 only after that centromeric cohesin is cleaved prior to
anaphase initiation [155]. The idea that cohesin is an obstacle for the removal of DNA linkages is also
consistent with the fact that depletion of Wapl, a factor that destabilizes cohesin binding, promotes the
formation of anaphase bridges [156,157]. Moreover, a study in Drosophila showed that heterochromatic
segments ectopically placed on chromosome arms, which display cohesin enrichment starting from S
phase, stretch abnormally during anaphase, despite the fact that cohesin has already been cleaved [158].
This finding suggests that the presence of cohesin before anaphase onset can hinder SCI resolution, to
the point that sister chromatids remain linked even after cohesin cleavage. Rather than exerting an
active role on Top2 or preventing its access to DNA, the negative effects of cohesin on decatenation
seem to be due to the physical constraints imposed on sister chromatids. Cohesin complexes hold the
sister chromatids in close proximity, thereby directing Top2 activity toward the insertion of catenanes
rather than toward their removal. This model is supported by the finding that tethering DNA plasmids
with means other than cohesin also increases the level of catenation [129].

Besides being responsible for sister chromatid cohesion through the formation of inter-molecular
links, cohesin can also create loops within the same DNA molecule. In higher eukaryotes, this activity
is mainly used in interphase to organize chromatin in topologically associating domains (reviewed
in Reference [159]), while in yeast, it plays a major role in the condensation of chromosome arms
in mitosis [140,141,160]. If cohesin is involved in condensation, it could also indirectly promote
decatenation. This hypothesis is, however, difficult to test due to the current lack of experimental
settings to distinguish between the cohesin complexes that hold together sister chromatids (promoting
cohesion) and those that extrude DNA loops (promoting condensation).

3.2. Condensin: A Complex Compact Living

In vertebrates, there are two condensin complexes, condensin I and II, while budding yeast
has only one complex, which is more similar to condensin I. Both complexes contain the two
SMC subunits Smc2 and Smc4, but they differ in the kleisin subunit (CAP-H/Brn1 for condensin I,
CAP-H2 for condensin II) and in the two HEAT repeats proteins (CAP-D2/Ycs4 and CAP-G/Ycg1
for condensin I, CAP-D3 and CAP-G2 for condensin II). The main function of condensin is to
organize chromatin in a three-dimensional structure throughout the whole cell cycle (reviewed in
References [135,161]). Initially, condensin was proposed to mediate DNA compaction by inducing
positive supercoiling which, by wrapping the chromosome around itself, could promote its condensation
and individualization [162,163]. However, it was later found that supercoiling is not the main fashion
in which condensin compacts DNA [164,165]. Currently, the preferred model for mitotic chromosome
condensation is based on condensin acting through loop extrusion [137,166,167].

Much evidence has been obtained for an interplay between condensin and Top2 in the resolution of
sister chromatids. The first indication of the role of condensin in the resolution of DNA intertwines came
from the finding that condensin mutants fail to properly segregate the chromosomes in mitosis and
display anaphase bridges, similarly to Top2-deficient cells [168,169]. The interplay between condensin
and Top2 has been extensively studied at the rDNA locus: Top2 and condensin are both required
for proper segregation of the nucleolus and, indeed, mutations in either Top2 or condensin cause
anaphase bridges at this locus [100,101,103,170]. These bridges can be resolved by ectopic expression
of a viral topoisomerase II, demonstrating that they consist of DNA catenanes [102]. Further evidence
on condensins role in SCI resolution came from studies on the catenation of yeast plasmids [59,61,129].
In particular, it was shown that, in the presence of a bipolar spindle, condensin induces extensive
positive DNA supercoiling upon anaphase onset, thus determining Top2-dependent resolution of
catenanes [59,129].
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As for cohesin, the role of condensin in decatenation is mainly topological: by promoting
chromosome condensation and individualization, condensin biases Top2 activity toward decatenation
(Figure 5B). Final proof for this model is that removal of condensin from previously separated sister
chromatids triggers their decompaction and Top2-dependent re-intertwining [130]. Whether condensin
also has an additional, more direct effect on Top2 is still debated. In bacteria, the MukBEF complex,
homologue to condensin, was found to physically interact with topoisomerase II [171]. If this interaction
was conserved in eukaryotes, it could suggest a condensin-dependent recruitment of Top2 to regions
that need to be decatenated, and it would also explain why, in yeast, Top2 was found to “follow”
condensin when it relocates from centromeres toward chromosome arms after anaphase onset [172].

In yeast, where condensin and cohesin both contribute to mitotic chromosome condensation,
condensin does not seem to affect the level of SCIs in G2/metaphase [55]. Instead, condensin appears to
be required for completing chromatid separation specifically after anaphase onset [61,134], consistently
with the finding that Cdc5-dependent phosphorylation stimulates condensin supercoiling activity
in vitro [173]. As they gradually separate, sister chromatids stretch and recoil. The stretching behavior
depends on the remaining cohesion between the arms of the two sister chromatids, mainly due
to leftover cohesin complexes. The recoiling, instead, depends on condensin and is required to
complete cohesin removal and sister chromatid separation [134]. Through the same mechanism,
condensin-mediated recoiling could also drive the removal of other remaining sources of cohesion,
namely, DNA linkages. Consistently, in mammalian cells, chromosome condensation was found to be
maximized in anaphase [174].

3.3. Bipolar Spindles at Work

As spindle elongation and completion of SCI resolution occur in a concerted manner during
anaphase, it is tempting to speculate that the former drives the latter. Most evidence for a role of the
mitotic spindle in catenanes’ resolution comes from studies in yeast. It was first observed on DNA
plasmids, and later confirmed on endogenous chromosomes, that treatment with nocodazole prevents
decatenation at metaphase [55,59–61,129]. In particular, it was shown that catenanes are removed from
centromeres only after their attachment to the metaphase spindle [55]. These findings demonstrate that
chromosome attachment to a bipolar spindle is required for efficient resolution of SCIs, at least around
the centromere in yeast. Moreover, spindle elongation and microtubule dynamics may aid the removal
of catenanes also during anaphase. Indeed, in yeast, inactivation of the microtubule polymerase
Stu2 impaired chromosome segregation, particularly in cells with abnormally long chromosomes.
Segregation of these longer chromosomes is heavily dependent on Top2 activity in anaphase [39].
As chromosome segregation is partially rescued by removing chromosomal attachment to the nuclear
membrane, these defects are attributed to a failure to resolve SCI during anaphase.

An intuitive explanation for these observations is that chromosome attachment to the spindle
pulls apart the sister centromeres, allowing their physical separation, which in turn drives decatenation
or simply helps intertwines to diffuse down along the chromosome (Figure 5C). By extension, it is
likely that further spindle elongation after anaphase onset would assist the resolution of every single
SCI also along the chromosome arms. In support of this hypothesis, in the presence of a functional
condensin, spindle elongation in anaphase aids the removal of residual cohesin complexes [134].
In addition to chromosome separation, the tension imposed by the spindle could alter SCI topology
and favor the action of the enzymes devoted to their recognition and resolution. This idea is consistent
with the preference of PICH for stretched DNA substrates [25,124]. Also, the pulling force imposed
by the spindle may unwind the hemicatenane-like portions of late replication and recombination
intermediates, thus facilitating their dissolution by the BTR complex. Finally, the spindle could act
indirectly through condensin. Indeed, bipolar spindle formation triggers the previously mentioned
re-localization of condensin that occurs at anaphase, which in turn promotes Top2 recruitment to the
chromosome arms [172].
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Alternatively, the elongating spindle might act as a ruler and directly regulate the completion of
SCI resolution. Interestingly, the idea of the spindle acting as a ruler, coordinating cellular events in
space and time, has already been shown. The mechanism relies on the association of Aurora B with the
spindle midzone in anaphase, which creates a phosphorylation gradient that fades toward the poles of
the cell [175]. This Aurora B gradient controls events like anaphase chromosome compaction, spindle
disassembly, and mitotic exit, coordinating them with spindle elongation [174,176–178]. The aim
of this mechanism seems to be to physically separate the chromosomes and to clear the way for
cytokinesis, to avoid trapping and breaking of DNA. Consistently, yeast cells divide with longer
spindles if condensation is compromised or if the chromosome arm length is increased [102,158].

4. Anaphase Bridges at the Heart of Genome (In)Stability

4.1. A Time to Bridge and a Time to Rupture

Persistent anaphase bridges, independently of the source, can cause gross chromosomal
rearrangements, a hallmark of cancer development. Chromosomal rearrangements are likely a
consequence of DSBs that are formed when the bridge eventually breaks. Indeed, it was recently
shown that even one single unresolved bridge triggers a cascade of events that result in increasing
amounts of genome rearrangements [5]. Highly-proliferating cancer cells are known to be under
increased replicative stress [179] and, since replicative stress enhances anaphase bridges [2,7,73], it is
reasonable to think that these structures may arise in cancer cells with a higher frequency compared to
normal conditions. If this scenario was true, anaphase bridges, being both a consequence of replicative
stress and a cause of genome instability, could be considered a driver of tumor progression.

Several models have been proposed to explain how anaphase bridges drive genomic
instability. The first model is the so-called breakage-fusion-bridge (BFB) cycle, described by Barbara
McClintock [180]. According to this idea, DNA bridges that are cleaved during cytokinesis are
re-sealed in the daughter cells with other chromosome pieces, causing gross genome rearrangements
in the form of reciprocal exchanges of chromosome arms. The BFB model was recently extended
by Pellman and colleagues. In particular, they found that bridge rupture, in addition to causing the
chromosomal aberrations predicted by the BFB model, also leads to more complex rearrangements,
namely chromothripsis [5]. Chromothripsis is the shattering of one or a few chromosomes, followed
by stitching of the fragments in a random order. Chromothripsis is commonly observed starting from
the second generation after bridge occurrence, and it is caused by abnormal replication of the bridging
DNA during mitosis [5]. In addition to BFB, Chan and colleagues proposed an alternative model for
the rupture of UFBs arising from recombination intermediates, called sister-chromatid rupture and
bridging [24]. In this case, in contrast to BFB, the cleavage occurs shortly after anaphase onset and is
independent of cytokinesis. According to this model, the intertwined sister chromatids break along
the chromosome axis at the site where the bridge originates, while the bridge itself remains intact. As a
result, the two sister arms are fused through the bridge and are thereby inherited by one of the two
daughter cells. This mechanism is predicted to lead to specific chromosome rearrangements, including
whole-arm deletions and translocations.

How do anaphase bridges break? It seems reasonable to think that threads of uncompacted—or
even unchromatinized and single-stranded—DNA are fragile and can easily be broken by spindle
elongation or by the actomyosin ring during cytokinesis. Although the pulling force generated by
the spindle is estimated to be far too weak to break mitotic chromosomes [181], it could be sufficient
to break a single DNA thread [182]. Therefore, spindle elongation may be able to break anaphase
bridges, especially if they contain ssDNA segments, such as the ones generated by the processing
of JMs and LRIs. Nevertheless, strong evidence of DNA linkages broken in this fashion in vivo is
currently lacking. Instead, there is evidence for cytokinesis being able to sever anaphase bridges.
For example, cytokinesis was proven to be responsible for the breakage of chromatin bridges in Top2
and condensin yeast mutants [52,183].
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In order to prevent the severe DNA damage caused by rupture of DNA threads during cell
abscission, cells have evolved a mechanism that delays cytokinesis in the presence of chromatin trapped
on the site of cleavage. In yeast cells, this mechanism is termed the NoCut checkpoint, and it requires
the activity of Aurora B/Ipl1 at the spindle midzone [184,185]. The NoCut is sensitive to SCIs coming
from various sources, including replicative stress and lack of condensin or Top2 activity, but it fails
to detect bridging from dicentric chromosomes [186]. Aurora B acts as a sensor for chromatin at the
cleavage plane and, in the presence of DNA bridges, inhibits completion of abscission and stabilizes
the spindle [184–186]. The activation of the NoCut checkpoint could provide additional time for the
removal of the bridges in anaphase, although cells eventually divide if the bridge cannot be resolved.

In yeast, cytokinesis always leads to rupture of the anaphase bridges, likely because the yeast cell
wall represents an impenetrable barrier for DNA filaments. Conversely, in mammalian cells, cytokinesis
in the presence of unresolved bridges can have different outcomes, all of which can jeopardize genomic
stability. First, as already mentioned, bridges can be cleaved during abscission, causing DSBs [3].
The second option is furrow regression [187]. In this case, although ingression of the cleavage furrow
is initiated, cell division is never completed and results in tetraploidy, a condition that can cause
senescence/apoptosis or, in some cases, initiate genomic instability. Thirdly, a mechanism reminiscent
of the yeast NoCut checkpoint, called the abscission checkpoint, can come into play (reviewed in
Reference [188]). Similar to the NoCut, the abscission checkpoint relies on Aurora B at the cleavage site,
acting as a sensor of chromatin and delaying abscission in the presence of DNA bridges. Activation of
this checkpoint triggers abscission failure and bridge stabilization, thus preventing furrow regression
and tetraploidization. In the case of abscission failure, after cytokinesis, the daughter cells remain
linked by the intact DNA thread, but behave like separate identities [187]. Indeed, in human cells,
chromatin bridges rarely break during anaphase spindle elongation and they are often retained until the
next G1 [3,187,189]. However, even in this case, the bridge eventually breaks and, while the nuclease
TREX1 was suggested to participate in this process [3], the main factor determining the rupture of the
bridge seems to be the mechanical stretching imposed by the daughter cells migrating away from each
other [5]. Irrespective of the mechanism, once again, the rupture of the bridge promotes chromosomal
rearrangements and chromothripsis [3,5].

4.2. Footprints Leading Back to the Old Days

Given how dangerous anaphase bridges can be for genomic integrity, one may wonder if a mitotic
checkpoint exists that monitors the level of DNA intertwining. Catenanes do not trigger the DNA
damage checkpoint and they also fail to activate the SAC, meaning that they do not alter the tension
properties of the chromosome attachment to the spindle. The existence of a decatenation checkpoint,
which delays entry into mitosis in response to extensive DNA catenation, was first suggested by the
observation that drugs that inhibit Top2 can delay the G2/M transition in mammalian cells [190,191].
However, it was later argued that Top2 poisons can trigger the DNA damage checkpoint and the
p38-stress-activated checkpoint [192,193]. Therefore, the existence of a checkpoint protecting against
extensive SCI remains a controversial topic. In the future, to solve the controversy, it could be useful to
adopt genetic approaches, to avoid the possible off-target effects of Top2 poisons.

Independently of the existence of a decatenation checkpoint, persistent DNA linkages appear to be
features of a normal cell cycle, raising the question as to whether they simply cannot be resolved before
chromosome segregation or whether they play a beneficial role. Catenation could serve as another
mechanism of cohesion between sister chromatids. Indeed, centromeric intertwines are sufficient to
prevent sister chromatid segregation in the absence of cohesin complexes [155]. Moreover, Drosophila
cells lacking either condensin or Top2, both of which display extensive SCIs, are able to bypass the
SAC arrest triggered by depletion of the cohesin subunit RAD21 and segregate their chromosomes [94].
These findings demonstrate that DNA linkages, like the cohesin complex, can provide cohesion, but do
not imply that this feature is actually exploited by cells. The fact that cohesin is the main source of
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cohesion and that mitotic factors are necessary for catenane resolution argues that persistent SCIs are
simply a leftover that cannot be removed earlier.

Clarke and colleagues suggested that, from an evolutionary perspective, DNA linkages may have
represented the primary source of cohesion before cohesin appeared [194]. We find this hypothesis
intriguing for several reasons. First, while cohesin must be actively loaded on the chromosomes, SCIs
arise concomitantly with DNA replication as a natural consequence. Secondly, in bacteria, similar to
eukaryotes, DNA molecules retain DNA linkages after duplication: they can be catenated or even
interconnected upon recombination (reviewed in Reference [195]). Thirdly, bacteria do not seem to have
any protein complexes devoted to maintaining cohesion between the sister DNA molecules. Indeed,
no cohesin homologue has been found in prokaryotes, although a SMC homologue to eukaryotic
condensin is present in many species. This absence is likely explained by the fact that there is no
need for sister chromatid cohesion in bacteria, since chromosome segregation and DNA duplication
occur simultaneously.

In eukaryotes, the genome is more complex, with multiple linear chromosomes. In addition, DNA
replication and mitosis occur at distinct times, raising the need to ensure that sister chromatid cohesion
is maintained until all chromosomes can be segregated in a concerted manner, to avoid cell division
with unequal distribution of the genome. While cohesin likely evolved to satisfy this requirement,
SCIs could have had a more prominent role before cohesin appeared. In modern organisms, DNA
intertwines may still play an accessory role in particular conditions or at certain genomic regions.
For example, the additional cohesion provided by catenanes may be exploited to control the time of
segregation of different genomic loci. Interestingly, in yeast cells, decatenation and segregation of
the nucleolus, which normally occur late in anaphase, is triggered by Cdc14-dependent condensin
recruitment to this locus at anaphase onset [170].

Whether or not SCIs had a function at some point during evolution, the strategies for their
resolution appear to be conserved. Indeed, both in bacteria and eukaryotes, chromosome compaction
aids chromosome segregation. Moreover, in both domains, the resolution of DNA linkages occurs at
the final steps of segregation and is aided by the forces that pull the sister chromosomes toward the
opposite cell poles. The evolutionary conservation of the strategies for SCI resolution points to the fact
that DNA linkages, being a natural consequence of DNA replication, likely existed (and have been
threatening genome stability) since the early days of life.
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Abbreviations

CFS Common fragile site
DSB Double-strand break
dsDNA Double-stranded DNA
FA Fanconi Anemia
HR Homologous recombination
JM Joint molecule
LRI Late-replication intermediate
rDNA Ribosomal DNA
SAC Spindle assembly checkpoint
SCI Sister chromatid intertwine
ssDNA single-stranded DNA
SSE Structure-selective endonuclease
UFB Ultra-fine DNA bridge
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