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Mathematical analysis of plasmonic resonances for nanoparticles:

the full Maxwell equations∗

Habib Ammari† Matias Ruiz‡ Sanghyeon Yu† Hai Zhang§

Abstract

In this paper we use the full Maxwell equations for light propagation in order to analyze
plasmonic resonances for nanoparticles. We mathematically define the notion of plasmonic
resonance and analyze its shift and broadening with respect to changes in size, shape, and
arrangement of the nanoparticles, using the layer potential techniques associated with the full
Maxwell equations. We present an effective medium theory for resonant plasmonic systems
and derive a condition on the volume fraction under which the Maxwell-Garnett theory is
valid at plasmonic resonances.

Mathematics Subject Classification (MSC2000): 35R30, 35C20.

Keywords: plasmonic resonance, Neumann-Poincaré operator, nanoparticle, scattering and absorption enhance-

ments, Maxwell equations, Maxwell-Garnett theory.

1 Introduction

The aim of this paper is to analyze plasmon resonant nanoparticles. Plasmon resonant nanopar-
ticles have unique capabilities of enhancing the brightness and directivity of light, confining
strong electromagnetic fields, and outcoupling of light into advantageous directions [44]. Recent
advances in nanofabrication techniques have made it possible to construct complex nanostruc-
tures such as arrays using plasmonic nanoparticles as components. A thriving interest for optical
studies of plasmon resonant nanoparticles is due to their recently proposed use as labels in molec-
ular biology [28]. New types of cancer diagnostic nanoparticles are constantly being developed.
Nanoparticles are also being used in thermotherapy as nanometric heat-generators that can be
activated remotely by external electromagnetic fields [19]. Plasmon resonances in nanoparticles
can be treated at the quasi-static limit as an eigenvalue problem for the Neumann-Poincaré
integral operator [6, 26, 38, 39]. At this limit, they are size-independent. However, as the par-
ticle size increases, they are determined from scattering and absorption blow up and become
size-dependent. This was experimentally observed, for instance, in [45].
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†Department of Mathematics, ETH Zürich, Rämistrasse 101, CH-8092 Zürich, Switzerland
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The objective of this paper is twofold: (i) To analytically investigate the plasmonic reso-
nances of a single nanoparticle and analyze the shift and broadening of the plasmon resonance
with changes in size and shape of the nanoparticles using the full Maxwell equations; (ii) To
derive a Maxwell-Garnett type theory for approximating the plasmonic resonances of a periodic
arrangement of nanoparticles. The paper generalizes to the full Maxwell equations the results
obtained in [12, 17] where the Helmholtz equation was used to model light propagation. It
provides the first mathematical study of the shift in plasmon resonance using the full Maxwell
equations. On the other hand, it rigorously shows the validity of the Maxwell-Garnett theory
for arbitrary-shaped nanoparticles at plasmonic resonances. The paper is organized as follows.
In section 2 we first review commonly used function spaces. Then we introduce layer potentials
associated with the Laplace operator and recall their mapping properties. In section 3 we first
derive a layer potential formulation for the scattering problem and then we obtain a first-order
correction to plasmonic resonances in terms of the size of the nanoparticle. This will enable us
to analyze the shift and broadening of the plasmon resonance with changes in size and shape of
the nanoparticles. The resonance condition is determined from absorption and scattering blow
up and depends on the shape, size and electromagnetic parameters of both the nanoparticle
and the surrounding material. Surprisingly, it turns out that in this case not only the spectrum
of the Neumann-Poincaré operator plays a role in the resonance of the nanoparticles, but also
its negative. We explain how in the quasi-static limit, only the spectrum of the Neumann-
Poincaré operator can be excited. However, when the particle size increases and deviates from
the dipole approximation, the resonances become size-dependent. Moreover, a part of the spec-
trum of negative of the Neumann-Poincaré operator can be excited as in higher-order terms in
the expansion of the electric field versus the size of the particle. In section 4 we establish the
quasi-static limit for the electromagnetic fields and derive a formula for the enhancement of the
extinction cross-section. It is not clear for what kind of geometries in R

3 the spectrum of the
Neumann-Poincaré operator has symmetries, that is, if λ ∈ σ(K∗

D) so does −λ. In section 5
we provide calculations for the case of spherical nanoparticles wherein these symmetries are not
present and we explicitly compute the shift in the spectrum of the Neumann-Poincaré opera-
tor and the extinction cross-section. In section 6 we consider the case of a spherical shell and
apply degenerate perturbation theory since the eigenvalues associated with the corresponding
Neumann-Poincaré operator are not simple. It is also worth mentioning that the spectrum of the
associated Neumann-Poincaré operator is symmetric around zero. In section 7 we analyze the
anisotropic quasi-static problem in terms of layer potentials and define the plasmonic resonances
for anisotropic nanoparticles. Formulas for a small anisotropic perturbation of resonances of the
isotropic formulas are derived. Finally, section 8 is devoted to establish a Maxwell-Garnett
type theory for approximating the plasmonic resonances of a periodic arrangement of arbitrary-
shaped nanoparticles. The Maxwell-Garnett theory provides a simple model for calculating the
macroscopic optical properties of materials with a dilute inclusion of spherical nanoparticles
[9]. It is widely used to assign effective properties to systems of nanoparticles. We rigorously
obtain effective properties of a periodic arrangement of arbitrary-shaped nanoparticles and de-
rive a condition on the volume fraction of the nanoparticles that insures the validity of the
Maxwell-Garnett theory for predicting the effective optical properties of systems of embedded
in a dielectric host material at the plasmonic resonances.
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2 Preliminaries

Let us first fix some notation, definitions and recall some useful results for the rest of this paper.

• For a simply connected domain D ⋐ R
3, ν denotes the outward normal to ∂D and ∂

∂ν the
outward normal derivative;

• ϕ
∣∣
±
(x) = limt→0+ ϕ(x± tν);

• Id denotes the identity operator;

• ∇× denotes the curl operator for a vector field in R
3;

• For any functional space E(∂D) defined on ∂D, E0(∂D) denotes its zero mean subspace.

Here and throughout this paper, we assume that D is simply connected and of class C1,α for
0 < α < 1.

Let Hs(∂D) denote the usual Sobolev space of order s on ∂D and

Hs
T (∂D) =

{
ϕ ∈

(
Hs(∂D)

)3
, ν · ϕ = 0

}
.

Let ∇∂D, ∇∂D· and ∆∂D denote the surface gradient, surface divergence and Laplace-Beltrami
operator respectively and define the vectorial and scalar surface curl by ~curl∂Dϕ = −ν ×∇∂Dϕ

for ϕ ∈ H
1
2 (∂D) and curl∂Dϕ = −ν · (∇∂D × ϕ) for ϕ ∈ H

− 1
2

T (∂D), respectively.
Remind that

∇∂D · ∇∂D = ∆∂D,

curl∂D ~curl∂D = −∆∂D,

∇∂D · ~curl∂D = 0,

curl∂D∇∂D = 0.

We introduce the following functional space:

H
− 1

2
T (div, ∂D) =

{
ϕ ∈ H− 1

2
T (∂D),∇∂D · ϕ ∈ H− 1

2 (∂D)

}
.

Let G be the Green function for the Helmholtz operator ∆ + k2 satisfying the Sommerfeld
radiation condition in dimension three

∣∣∣∣
∂G

∂|x| − ikG

∣∣∣∣ ≤ C|x|−2

for some constant C as |x| → +∞, uniformly in x/|x|.
The Green function G is given by

G(x, y, k) = − eik|x−y|

4π|x− y| . (2.1)
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Define the following boundary integral operators

~Sk
D[ϕ] : H

− 1
2

T (∂D) −→ H
1
2
T (∂D) (2.2)

ϕ 7−→ ~Sk
D[ϕ](x) =

∫

∂D
G(x, y, k)ϕ(y)dσ(y), x ∈ R

3;

Sk
D[ϕ] : H

− 1
2 (∂D) −→ H

1
2 (∂D) (2.3)

ϕ 7−→ Sk
D[ϕ](x) =

∫

∂D
G(x, y, k)ϕ(y)dσ(y), x ∈ R

3;

K∗
D[ϕ] : H

− 1
2 (∂D) −→ H− 1

2 (∂D) (2.4)

ϕ 7−→ K∗
D[ϕ](x) =

∫

∂D

∂G(x, y, 0)

∂ν(x)
ϕ(y)dσ(y), x ∈ ∂D;

Mk
D[ϕ] : H

− 1
2

T (div, ∂D) −→ H
− 1

2
T (div, ∂D) (2.5)

ϕ 7−→ Mk
D[ϕ](x) =

∫

∂D
ν(x)×∇x ×G(x, y, k)ϕ(y)dσ(y), x ∈ ∂D;

Lk
D[ϕ] : H

− 1
2

T (div, ∂D) −→ H
− 1

2
T (div, ∂D) (2.6)

ϕ 7−→ Lk
D[ϕ](x) = ν(x)×

(
k2 ~Sk

D[ϕ](x) +∇Sk
D[∇∂D · ϕ](x)

)
, x ∈ ∂D.

Throughout this paper, we denote ~S0
D,S0

D,M0
D by ~SD,SD,MD, respectively. We also denote

KD by the (·, ·)− 1
2
, 1
2
-adjoint of K∗

D, where (·, ·)− 1
2
, 1
2
is the duality pairing between H− 1

2 (∂D).

We recall now some useful results on the operator K∗
D [7, 16, 32, 34].

Lemma 2.1. (i) The following Calderón identity holds: KDSD = SDK∗
D;

(ii) The operator K∗
D is compact self-adjoint in the Hilbert space H− 1

2 (∂D) equipped with the
following inner product

(u, v)H∗ = −(u,SD[v])− 1
2
, 1
2
, (2.7)

which is equivalent to (·, ·)− 1
2
, 1
2
;

(iii) Let (λj, ϕj), j = 0, 1, 2, . . . be the eigenvalue and normalized eigenfunction pair of K∗
D in

H∗(∂D). Then, λj ∈ (−1
2 ,

1
2 ], λj 6= 1/2 for j ≥ 1, λj → 0 as j → ∞ and ϕj ∈ H∗

0(∂D) for
j ≥ 1, where H∗

0(∂D) is the zero mean subspace of H∗(∂D);

(iv) The following representation formula holds: for any ψ ∈ H−1/2(∂D),

K∗
D[ψ] =

∞∑

j=0

λj(ψ,ϕj)H∗ ⊗ ϕj ;

4



(v) The following trace formula holds: for any ψ ∈ H∗(∂D),

(±1

2
Id+K∗

D)[ϕ] =
∂SD[ϕ]

∂ν

∣∣∣
±
.

(vi) Let H(∂D) be the space H
1
2 (∂D) equipped with the following equivalent inner product

(u, v)H = −(S−1
D [u], v)− 1

2
, 1
2
. (2.8)

Then, SD is an isometry between H∗(∂D) and H(∂D).

The following result holds.

Lemma 2.2. The following Helmholtz decomposition holds [25]:

H
− 1

2
T (div, ∂D) = ∇∂DH

3
2 (∂D)⊕ ~curl∂DH

1
2 (∂D).

Remark 2.1. The Laplace-Beltrami operator ∆∂D : H
3
2
0 (∂D) → H

− 1
2

0 (∂D) is invertible. Here

H
3
2
0 (∂D) and H

− 1
2

0 (∂D) are the zero mean subspaces of H
3
2 (∂D) and H− 1

2 (∂D) respectively.

The following results on the operator MD are of great importance.

Lemma 2.3. MD : H
− 1

2
T (div, ∂D) −→ H

− 1
2

T (div, ∂D) is a compact operator.

Lemma 2.4. The following identities hold [6, 27]:

MD[ ~curl∂Dϕ] = ~curl∂DKD[ϕ], ∀ϕ ∈ H 1
2 (∂D),

MD[∇∂Dϕ] = −∇∂D∆
−1
∂DK∗

D[∆∂Dϕ] + ~curl∂DRD[ϕ], ∀ϕ ∈ H
3
2 (∂D),

where RD = −∆−1
∂Dcurl∂DMD∇∂D.

3 Layer potential formulation for the scattering problem

We consider the scattering problem of a time-harmonic electromagnetic wave incident on a
plasmonic nanoparticle. The homogeneous medium is characterized by electric permittivity εm
and magnetic permeability µm, while the particle occupying a bounded and simply connected
domain D ⋐ R

3 of class C1,α for 0 < α < 1 is characterized by electric permittivity εc and
magnetic permeability µc, both of which depend on the frequency. Define

km = ω
√
εmµm, kc = ω

√
εcµc,

and
εD = εmχ(R

3\D̄) + εcχ(D), µD = εmχ(R
3\D̄) + εcχ(D),

where χ denotes the characteristic function.
For a given incident plane wave (Ei,H i), solution to the Maxwell equations in free space

∇× Ei = iωµmH
i in R

3,

∇×H i = −iωεmEi in R
3,
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the scattering problem can be modeled by the following system of equations

∇× E = iωµDH in R
3\∂D,

∇×H = −iωεDE in R
3\∂D, (3.1)

ν × E
∣∣
+
− ν × E

∣∣
−

= ν ×H
∣∣
+
− ν ×H

∣∣
−
= 0 on ∂D,

subject to the Silver-Müller radiation condition:

lim
|x|→∞

|x|
(√
µm(H −H i)(x)× x

|x| −
√
εm(E − Ei)(x)

)
= 0

uniformly in x/|x|. Here and throughout the paper, the subscripts ± indicate, as said before,
the limits from outside and inside D, respectively.

Using the boundary integral operators (2.2) and (2.5), the solution to (3.1) can be represented
as [46]

E(x) =

{
Ei(x) + µm∇× ~Skm

D [ψ](x) +∇×∇× ~Skm
D [φ](x) x ∈ R

3\D̄,
µc∇× ~Skc

D [ψ](x) +∇×∇× ~Skc
D [φ](x) x ∈ D,

(3.2)

and

H(x) = − i

ωµD
(∇× E)(x) x ∈ R

3\∂D, (3.3)

where the pair (ψ, φ) ∈
(
H

− 1
2

T (div, ∂D)
)2

is the unique solution to




µc + µm
2

Id+ µcMkc
D − µmMkm

D Lkc
D − Lkm

D

Lkc
D − Lkm

D

(
k2c
2µc

+
k2m
2µm

)
Id+

k2c
µc

Mkc
D − k2m

µm
Mkm

D



(
ψ
φ

)
=

(
ν × Ei

iων ×H i

) ∣∣∣∣∣
∂D

.

(3.4)
Let D = z + δB where B contains the origin and |B| = O(1). For any x ∈ ∂D, let

x̃ = x−z
δ ∈ ∂B and define for each function f defined on ∂D, a corresponding function defined

on B as follows
η(f)(x̃) = f(z + δx̃). (3.5)

Throughout this paper, for two Banach spaces X and Y , by L(X,Y ) we denote the set of
bounded linear operators from X into Y . We will also denote by L(X) the set L(X,X).

Lemma 3.1. For ϕ ∈ H
− 1

2
T (div, ∂D), the following asymptotic expansion holds

Mk
D[ϕ](x) = MB [η(ϕ)](x̃) +

∞∑

j=2

δjMk
B,j[η(ϕ)](x̃),

where

Mk
B,j[η(ϕ)](x̃) =

∫

∂B

−(ik)j

4πj!
ν(x̃)×∇x̃ × |x̃− ỹ|j−1η(ϕ)(ỹ)dσ(ỹ).

Moreover, ‖Mk
B,j‖

L
(
H

− 1
2

T (div,∂B)
) is uniformly bounded with respect to j. In particular, the

6



convergence holds in L
(
H

− 1
2

T (div, ∂B)
)
and Mk

D is analytical in δ.

Proof. We can see, after a change of variables, that

Mk
D[ϕ](x) =

∫

∂B
ν(x̃)×∇x̃ ×G(x̃, ỹ, δk)η(ϕ)(ỹ)dσ(ỹ).

A Taylor expansion of G(x̃, ỹ, δk) yields

G(x̃, ỹ, δk) = −
∞∑

j=0

(iδk|x̃ − ỹ|)j
j!4π|x̃ − ỹ| = − 1

4π|x̃− ỹ| +
∞∑

j=1

δj
(ik)j

4πj!
|x̃− ỹ|j−1,

hence

Mk
D[ϕ](x) = MB [η(ϕ)](x̃) +

∞∑

j=2

δj
∫

∂B

−(ik)j

4πj!
ν(x̃)×∇x̃ × |x̃− ỹ|j−1η(ϕ)(ỹ)dσ(ỹ).

where it is clear from the regularity of |x̃−ỹ|j−1, j ≥ 2, that ‖Mk
B,j [η(ϕ)]‖

H
− 1

2
T (div,∂B)

is uniformly

bounded with respect to j, therefore, ‖Mk
B,j‖

L
(
H

− 1
2

T (div,∂B)
) is uniformly bounded with respect

to j as well.

Lemma 3.2. For ϕ ∈ H
− 1

2
T (div, ∂D), the following asymptotic expansion holds

(Lkc
D − Lkm

D )[ϕ](x) =
∞∑

j=1

δjωLB,j[η(ϕ)](x̃),

where

LB,j[η(ϕ)](x̃) = Cjν(x̃)×
( ∫

∂B
|x̃− ỹ|j−2η(ϕ)(ỹ)dσ(ỹ)−

∫

∂B

|x̃− ỹ|j−2(x̃− ỹ)

j + 1
∇∂B · η(ϕ)(ỹ)dσ(ỹ)

)
,

and

Cj =
ij(kj+1

c − kj+1
m )

ω4π(j − 1)!
.

Moreover, ‖LB,j‖
L
(
H

− 1
2

T (div,∂B)
) is uniformly bounded with respect to j. In particular, the con-

vergence holds in L
(
H

− 1
2

T (div, ∂B)
)
and Lk

D is analytical in δ.

Proof. The proof is similar to that of Lemma 3.1.

Using Lemma 3.1 and Lemma 3.2, we can write the system of equations (3.4) as follows:

WB(δ)

(
η(ψ)
ωη(φ)

)
=




η(ν × Ei)

µm − µc
η(iν ×H i)

εm − εc




∣∣∣∣∣
∂B

, (3.6)

7



where

WB(δ) =




λµId−MB + δ2
µmMkm

B,2 − µcMkc
B,2

µm − µc
+O(δ3)

1

µm − µc
(δLB,1 + δ2LB,2) +O(δ3)

1

εm − εc
(δLB,1 + δ2LB,2) +O(δ3) λεId−MB + δ2

εmMkm
B,2 − εcMkc

B,2

εm − εc
+O(δ3)


 ,

(3.7)
and

λµ =
µc + µm

2(µm − µc)
, λε =

εc + εm
2(εm − εc)

. (3.8)

It is clear that

WB(0) = WB,0 =

(
λµId−MB 0

0 λεId−MB

)
.

Moreover,

WB(δ) = WB,0 + δWB,1 + δ2WB,2 +O(δ3),

in the sense that

‖WB(δ) −WB,0 − δWB,1 − δ2WB,2‖ ≤ Cδ3,

for a constant C independent of δ. Here ‖A‖ = supi,j ‖Ai,j‖
H

− 1
2

T (div,∂B)
for any operator-valued

matrix A with entries Ai,j .
We are now interested in findingW−1

B (δ). For this purpose, we first consider solving the problem

(λId−MB) [ψ] = ϕ (3.9)

for (ψ,ϕ) ∈
(
H

− 1
2

T (div, ∂B)
)2

and λ 6∈ σ(MB), where σ(MB) is the spectrum of MB .

Using the Helmholtz decomposition of H
− 1

2
T (div, ∂B) in Lemma 2.2, we can reduce (3.9) to an

equivalent system of equations involving some well known operators.

Definition 1. For u ∈ H− 1
2

T (div, ∂B), we denote by u(1) and u(2) any two functions in H
3
2
0 (∂B)

and H
1
2 (∂B), respectively, such that

u = ∇∂Bu
(1) + ~curl∂Bu

(2).

Note that u(1) is uniquely defined and u(2) is defined up to the sum of a constant function.

Lemma 3.3. Assume λ 6= 1
2 , then problem (3.9) is equivalent to

(λId− M̃B)

(
ψ(1)

ψ(2)

)
=

(
ϕ(1)

ϕ(2)

)
, (3.10)

8



where (ϕ(1), ϕ(2)) ∈ H
3
2
0 (∂B)×H

1
2 (∂B) and

M̃B =

(
−∆−1

∂BK∗
B∆∂B 0

RB KB

)
.

Proof. Let (ψ(1), ψ(2)) ∈ H
3
2
0 (∂B) × H

1
2 (∂B) be a solution (if there is any) to (3.10) where

(ϕ(1), ϕ(2)) ∈ H
3
2
0 (∂B)×H

1
2 (∂B) satisfies

ϕ = ∇∂Bϕ
(1) + ~curl∂Bϕ

(2).

We have

(
λId+∆−1

∂BK∗
B∆∂B

)
[ψ(1)] = ϕ(1) (3.11)

λψ(2) −RB[ψ
(1)]−KB [ψ

(2)] = ϕ(2). (3.12)

Taking ∇∂B in (3.11), ~curl∂B in (3.12), adding up and using the identities of Lemma 2.4 yields

(λId−MB) [∇∂Bψ
(1) + ~curl∂Bψ

(2)] = ∇∂Bϕ
(1) + ~curl∂Bϕ

(2).

Therefore

ψ = ∇∂Bψ
(1) + ~curl∂Bψ

(2),

is a solution of (3.9).

Conversely, let ψ be the solution to (3.9). There exist (ψ(1), ψ(2)) ∈ H
3
2
0 (∂B) × H

1
2 (∂B) and

(ϕ(1), ϕ(2)) ∈ H
3
2
0 (∂B)×H

1
2 (∂B) such that

ψ = ∇∂Bψ
(1) + ~curl∂Bψ

(2),

ϕ = ∇∂Bϕ
(1) + ~curl∂Bϕ

(2).

and we have
(λId−MB) [∇∂Bψ

(1) + ~curl∂Bψ
(2)] = ∇∂Bϕ

(1) + ~curl∂Bϕ
(2). (3.13)

Taking ∇∂B · in the above equation and using the identities of Lemma 2.4 yields

∆∂B

(
λId+∆−1

∂BK∗
B∆∂B

)
[ψ(1)] = ∆∂Bϕ

(1).

Since (ψ(1), ϕ(1)) ∈ (H
3
2
0 (∂B))2 we get

(
λId+∆−1

∂BK∗
B∆∂B

)
[ψ(1)] = ϕ(1).

Taking curl∂B in (3.13) and using the identities of Lemma 2.4 yields

∆∂B(λψ
(2) −RB [ψ

(1)]−KB[ψ
(2)]) = ∆∂Bϕ

(2).

9



Therefore there exists a constant c such that

λψ(2) −RB [ψ
(1)]−KB [ψ

(2)] = ϕ(2) + cχ(∂B).

Since KB(χ(∂B)) =
1

2
χ(∂B) we have

λ
(
ψ(2) − c

λ− 1/2

)
−RB [ψ

(1)]−KB

[
ψ(2) − c

λ− 1/2

]
= ϕ(2).

Hence,
(
ψ(1), ψ(2) − c

λ− 1/2

)
∈ H

3
2
0 (∂B)×H

1
2 (∂B) is a solution to (3.10)

Let us now analyze the spectral properties of M̃B in

H(∂B) := H
3
2
0 (∂B)×H

1
2 (∂B) (3.14)

equipped with the inner product

(u, v)H(∂B) = (∆∂Bu
(1),∆∂Bv

(1))H∗ + (u(2), v(2))H,

which is equivalent to H
3
2
0 (∂B)×H

1
2 (∂B).

By abuse of notation we call u(1) and u(2) the first and second components of any u ∈ H(∂B).
We will assume for simplicity the following condition.

Condition 1. The eigenvalues of K∗
B are simple.

Recall that K∗
B and KB are compact and self-adjoint in H∗(∂B) and H(∂B), respectively.

Since KB is the (·, ·)− 1
2
, 1
2
adjoint of K∗

B , we have σ(KB) = σ(K∗
B), where σ(KB) (resp. σ(K∗

B))

is the (discrete) spectrum of KB (resp. K∗
B).

Define

σ1 = σ(−K∗
B)\
(
σ(KB) ∪ {−1

2
}
)
,

σ2 = σ(KB)\σ(−K∗
B), (3.15)

σ3 = σ(−K∗
B) ∩ σ(KB).

Let λj,1 ∈ σ1, j = 1, 2 . . . and let ϕj,1 be an associated normalized eigenfunction of K∗
B as defined

in Lemma 2.1. Note that ϕj,1 ∈ H
− 1

2
0 (∂B) for j ≥ 1. Then,

ψj,1 =

(
∆−1

∂Bϕj,1

(λj,1Id−KB)
−1RB [∆

−1
∂Bϕj,1]

)

satisfies

M̃B [ψj,1] = λj,1ψj,1.

10



Let λj,2 ∈ σ2 and let ϕj,2 be an associated normalized eigenfunction of KB . Then,

ψj,2 =

(
0
ϕj,2

)

satisfies

M̃B [ψj,2] = λj,2ψj,2.

Now, assume that Condition 1 holds. Let λj,3 ∈ σ3, let ϕ
(1)
j,3 be the associated normalized

eigenfunction of K∗
B and let ϕ

(2)
j,3 be the associated normalized eigenfunction of KB . Then,

ψj,3 =

(
0

ϕ
(2)
j,3

)

satisfies

M̃B [ψj,3] = λj,3ψj,3,

and λj,3 has a first-order generalized eigenfunction given by

ψj,3,g =


 c∆−1

∂Bϕ
(1)
j,3

(λj,3Id−KB)
−1P

span{ϕ
(2)
j,3}

⊥RB[c∆
−1
∂Bϕ

(1)
j,3 ]


 (3.16)

for a constant c such that P
span{ϕ

(2)
j,3}

RB [c∆
−1
∂Bϕ

(1)
j,3 ] = −ϕ(2)

j,3 . Here, span{ϕ(2)
j,3} is the vector

space spanned by ϕ
(2)
j,3 , span{ϕ

(2)
j,3}⊥ is the orthogonal space to span{ϕ(2)

j,3} in H(∂B) (Lemma

2.1 ), and P
span{ϕ

(2)
j,3}

(resp. P
span{ϕ

(2)
j,3}

⊥ is the orthogonal (in H(∂B)) projection on span{ϕ(2)
j,3}

(resp. span{ϕ(2)
j,3}⊥).

We remark that the function ψj,3,g is determined by the following equation

M̃B [ψj,3,g] = λj,3ψj,3,g + ψj,3.

Consequently, the following result holds.

Propsition 3.1. The spectrum σ(M̃B) = σ1 ∪ σ2 ∪ σ3 = σ(−K∗
B) ∪ σ(K∗

B)\{−
1

2
} in H(∂B).

Moreover, under Condition 1, M̃B has eigenfunctions ψj,i associated to the eigenvalues λj,i ∈ σi
for j = 1, 2, . . . and i = 1, 2, 3, and generalized eigenfunctions of order one ψj,3,g associated to
λj,3 ∈ σ3, all of which form a non-orthogonal basis of H(∂B) (defined by (3.14)).

Proof. It is clear that λ− M̃B is bijective if and only if λ /∈ σ(−K∗
B) ∪ σ(K∗

B) \ {−1
2}.

It is only left to show that ψj,1, ψj,2, ψj,3, ψj,3,g, j = 1, 2, . . . form a non-orthogonal basis of
H(∂B).

11



Indeed, let

ψ =

(
ψ(1)

ψ(2)

)
∈ H(∂B).

Since ψ
(1)
j,1 ∪ ψ

(1)
j,3,g, j = 1, 2, . . . form an orthogonal basis of H∗

0(∂B), which is equivalent to

H
− 1

2
0 (∂B), there exist ακ, κ ∈ I1 := {(j, 1) ∪ (j, 3, g) : j = 1, 2, . . . } such that

ψ(1) =
∑

κ∈I1

ακ∆
−1
∂Bψ

(1)
κ ,

and

∑

κ∈I1

|ακ|2 ≤ ∞.

It is clear that ‖ψ(2)
κ ‖

L(H
1
2 (∂B))

is uniformly bounded with respect to κ ∈ I1. Then

h :=
∑

κ∈I1

ακψ
(2)
κ ∈ H

1
2 (∂B).

Since ψ
(2)
j,2 ∪ψ

(2)
j,3 , j = 1, 2, . . . form an orthogonal basis of H(∂B), which is equivalent to H

1
2 (∂B),

there exist ακ, κ ∈ I2 := {(j, 2) ∪ (j, 3) : j = 1, 2, . . . } such that

ψ(2) − h =
∑

κ∈I2

ακψ
(2)
κ ,

and

∑

κ∈I2

|ακ|2 ≤ ∞.

Hence, there exist ακ, κ ∈ I1 ∪ I2 such that

ψ =
∑

κ∈I1∪I2

ακψκ,

and

∑

κ∈I1∪I2

|ακ|2 ≤ ∞.

To have the compactness of M̃B we need the following condition

Condition 2. σ3 is finite.

Indeed, if σ3 is not finite we have M̃B({ψj,3,g;  ≥ 1}) = {λj,3ψj,g,3 + ψj,3; j ≥ 1} whose
adherence is not compact. However, if σ3 is finite, using Proposition 3.1 we can approximate
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M̃B by a sequence of finite-rank operators.
Throughout this paper, we assume that Condition 2 holds, even though an analysis can still be
done for the case where σ3 is infinite; see section 6.

Definition 2. Let B be the basis of H(∂B) formed by the eigenfunctions and generalized eigen-

functions of M̃B as stated in Lemma 3.1. For ψ ∈ H(∂B), we denote by α(ψ,ψκ) the projection
of ψ into ψκ ∈ B such that

ψ =
∑

κ

α(ψ,ψκ)ψκ.

The following lemma follows from the Fredholm alternative.

Lemma 3.4. Let

ψ =

(
ψ(1)

ψ(2)

)
∈ H(∂B).

Then,

α(ψ,ψκ) =





(ψ, ψ̃κ)H(∂B)

(ψκ, ψ̃κ)H(∂B)

κ = (j, i), i = 1, 2,

(ψ, ψ̃κ′)H(∂B)

(ψκ, ψ̃κ′)H(∂B)

κ = (j, 3, g), κ′ = (j, 3),

(ψ, ψ̃κg )H(∂B) − α(ψ,ψκg )(ψκg , ψ̃κg)H(∂B)

(ψκ, ψ̃κg )H(∂B)

κ = (j, 3), κg = (j, 3, g),

where ψ̃κ ∈ Ker(λ̄κ −M∗
B) for κ = (j, i), i = 1, 2, 3; ψ̃κ ∈ Ker(λ̄κ −M∗

B)
2 for κ = (j, 3, g) and

M∗
B is the H(∂B)-adjoint of MB.

The following remark is in order.

Remark 3.1. Note that, since ϕj,1 and ϕ
(1)
j,3 form an orthogonal basis of H∗

0(∂B), equivalent to

H
− 1

2
0 (∂B), we also have

α(ψ,ψκ) =

{
(∆∂Bψ

(1), ϕj,1)H∗ κ = (j, 1),
1
c (∆∂Bψ

(1), ϕ
(1)
j,3 )H∗ κ = (j, 3, g),

where c is defined in (3.16).

Remark 3.2. For i = 1, 2, 3, and j = 1, 2, . . . ,

(λId− M̃B)
−1[ψj,i] =

ψj,i

λ− λj,i
,

(λId− M̃B)
−1[ψj,3,g] =

ψj,3,g

λ− λj,3
+

ψj,3

(λ− λj,3)2
.

Now we turn to the original equation (3.4). The following result holds.
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Lemma 3.5. The system of equations (3.4) is equivalent to

WB(δ)




η(ψ)(1)

η(ψ)(2)

ωη(φ)(1)

ωη(φ)(2)


 =




η(ν × Ei)(1)

µm − µc
η(ν × Ei)(2)

µm − µc
η(iν ×H i)(1)

εm − εc
η(iν ×H i)(2)

εm − εc




∣∣∣∣∣
∂B

, (3.17)

where

WB(δ) = WB,0 + δWB,1 + δ2WB,2 +O(δ3)

with

WB,0 =

(
λµId− M̃B O

O λεId− M̃B

)
,

WB,1 =




O
1

µm − µc
L̃B,1

1

εm − εc
L̃B,1 O


 ,

WB,2 =




1

µm − µc
M̃µ

B,2

1

µm − µc
L̃B,2

1

εm − εc
L̃B,2

1

εm − εc
M̃ε

B,2




and

M̃B =

(
−∆−1

∂BK∗
B∆∂B 0

RB KB

)
,

M̃µ
B,2 =

(
∆−1

∂B∇∂B · (µmMkm
B,2 − µcMkc

B,2)∇∂B ∆−1
∂B∇∂B · (µmMkm

B,2 − µcMkc
B,2)

~curl∂B

−∆−1
∂Bcurl∂B(µmMkm

B,2 − µcMkc
B,2)∇∂B −∆−1

∂Bcurl∂B(µmMkm
B,2 − µcMkc

B,2)
~curl∂B

)
,

M̃ε
B,2 =

(
∆−1

∂B∇∂B · (εmMkm
B,2 − εcMkc

B,2)∇∂B ∆−1
∂B∇∂B · (εmMkm

B,2 − εcMkc
B,2)

~curl∂B

−∆−1
∂Bcurl∂B(εmMkm

B,2 − εcMkc
B,2)∇∂B −∆−1

∂Bcurl∂B(εmMkm
B,2 − εcMkc

B,2)
~curl∂B

)
,

L̃B,s =

(
∆−1

∂B∇∂B · LB,s∇∂B ∆−1
∂B∇∂B · LB,s

~curl∂B
−∆−1

∂Bcurl∂BLB,s∇∂B −∆−1
∂Bcurl∂BLB,s

~curl∂B

)
,

for s = 1, 2.
Moreover, the eigenfunctions of WB,0 in H(∂B)2 are given by

Ψ1,j,i =

(
ψj,i

O

)
j = 0, 1, 2, . . . ; i = 1, 2, 3,

Ψ2,j,i =

(
O
ψj,i

)
j = 0, 1, 2, . . . ; i = 1, 2, 3,
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associated to the eigenvalues λµ − λj,i and λε − λj,i, respectively, and generalized eigenfunctions
of order one

Ψ1,j,3,g =

(
ψj,3,g

O

)
,

Ψ2,j,3,g =

(
O

ψj,3,g

)
,

associated to eigenvalues λµ−λj,3 and λε−λj,3, respectively, all of which form a non-orthogonal
basis of H(∂B)2.

Proof. The proof follows directly from Lemmas 3.3 and 3.1.

We regard the operator WB(δ) as a perturbation of the operator WB,0 for small δ. Using
perturbation theory, we can derive the perturbed eigenvalues and their associated eigenfunctions
in H(∂B)2.
We denote by Γ =

{
(k, j, i) : k = 1, 2; j = 1, 2, . . . ; i = 1, 2, 3

}
the set of indices for the

eigenfunctions of WB,0 and by Γg =
{
(k, j, 3, g) : k = 1, 2; j = 1, 2, . . .

}
the set of indices for the

generalized eigenfunctions. We denote by γg the generalized eigenfunction index corresponding
to eigenfunction index γ and vice-versa. We also denote by

τγ =

{
λµ − λj,i k = 1,
λε − λj,i k = 2.

(3.18)

Condition 3. λµ 6= λε.

In the following we will only consider γ ∈ Γ with which there is no generalized eigenfunction
index associated. In other words, we only consider γ = (k, i, j) ∈ Γ such that λj,i ∈ σ1 ∪ σ2 (see
(3.15) for the definitons). We call this subset Γsim.
Note that Conditions 1 and 3 imply that the eigenvalues ofWB,0 indexed by γ ∈ Γsim are simple.
As δ goes to zero, the perturbed eigenvalues and eigenfunctions indexed by γ ∈ Γsim have the
following asymptotic expansions:

τγ(δ) = τγ + δτγ,1 + δ2τγ,2 +O(δ3), (3.19)

Ψγ(δ) = Ψγ + δΨγ,1 +O(δ2),

where

τγ,1 =
(WB,1Ψγ , Ψ̃γ)H(∂B)2

(Ψγ , Ψ̃γ)H(∂B)2
= 0,

τγ,2 =
(WB,2Ψγ , Ψ̃γ)H(∂B)2 − (WB,1Ψγ,1, Ψ̃γ)H(∂B)2

(Ψγ , Ψ̃γ)H(∂B)2
, (3.20)

(τγ −WB,0)Ψγ,1 = −WB,1Ψγ .

Here, Ψ̃γ′ ∈ Ker(τ̄γ′ −W ∗
B,0) and W

∗
B,0 is the H(∂B)2 adjoint of WB,0.
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Using Lemma 3.4 and Remark 3.2 we can solve Ψγ,1. Indeed,

Ψγ,1 =
∑

γ′∈Γ
γ′ 6=γ

α(−WB,1Ψγ ,Ψγ′)Ψγ′

τγ − τγ′

+
∑

γ′g∈Γg

γ′ 6=γ

α(−WB,1Ψγ ,Ψγ′
g
)

(
Ψγ′

g

τγ − τγ′

+
Ψγ′

(τγ − τγ′)2

)

+ α(−WB,1Ψγ ,Ψγ)Ψγ .

By abuse of notation,

α(x,Ψγ) =

{
α(x1, ψκ) γ = (1, j, i), κ = (j, i),
α(x2, ψκ) γ = (2, j, i), κ = (j, i),

(3.21)

for

x =

(
x1
x2

)
∈ H(∂B)2,

and α introduced in Definition 2.

Consider now the degenerate case γ ∈ Γ\Γsim =: Γdeg = {γ = (k, i, j) ∈ Γ s.t λj,i ∈ σ3}. It is
clear that, for γ ∈ Γdeg, the algebraic multiplicity of the eigenvalue τγ is 2 while the geometric
multiplicity is 1.
In this case every eigenvalue τγ and associeted eigenfunction Ψγ will slipt into two branches, as
δ goes to zero, represented by a convergent Puiseux series as [13]:

τγ,h(δ) = τγ + (−1)hδ1/2τγ,1 + (−1)2hδ2/2τγ,2 +O(δ3/2), h = 0, 1, (3.22)

Ψγ,h(δ) = Ψγ + (−1)hδ1/2Ψγ,1 + (−1)2hδ2/2Ψγ,2 +O(δ3/2), h = 0, 1,

where τγ,j and Ψγ,j can be recovered by recurrence formulas. For simplicity we refer to [33] for
more details.

3.1 First-order correction to plasmonic resonances and field behavior at the

plasmonic resonances

Recall that the electric and magnetic parameters, εc and µc, depend on the frequency of the
incident field, ω, following the Drude model [6]. Therefore, the eigenvalues of the operator WB,0

and perturbation in the eigenvalues depend on the frequency as well, that is

τγ(δ, ω) = τγ(ω) + δ2τγ,2(ω) +O(δ3) γ ∈ Γsim,

τγ,h(δ, ω) = τγ + δ1/2(−1)hτγ,1(ω) + δ2/2(−1)2hτγ,2(ω) +O(δ3/2), γ ∈ Γdeg, h = 0, 1.

In the sequel, we will omit frequency dependence to simplify the notation. However, we will
keep in mind that all these quantities are frequency dependent.
We first recall different notions of plasmonic resonance [12].

Definition 3. (i) We say that ω is a plasmonic resonance if |τγ(δ)| ≪ 1 and is locally min-
imized for some γ ∈ Γsim or |τγ,h(δ)| ≪ 1 and is locally minimized for some γ ∈ Γdeg,
h = 0, 1.
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(ii) We say that ω is a quasi-static plasmonic resonance if |τγ | ≪ 1 and is locally minimized
for some γ ∈ Γ. Here, τγ is defined by (3.18).

(iii) We say that ω is a first-order corrected quasi-static plasmonic resonance if |τγ+δ2τγ,2| ≪ 1
and is locally minimized for some γ ∈ Γsim or |τγ + δ1/2(−1)hτγ,1| ≪ 1 and is locally
minimized for some γ ∈ Γdeg, h = 0, 1. Here, the correction terms τγ,2 and τγ,1 are defined
by (3.20) and (3.22).

Note that quasi-static resonance is size independent and is therefore a zero-order approxi-
mation of the plasmonic resonance in terms of the particle size while the first-order corrected
quasi-static plasmonic resonance depends on the size of the nanoparticle.

We are interested in solving equation (3.17)

WB(δ)Ψ = f,

where

Ψ =




η(ψ)(1)

η(ψ)(2)

ωη(φ)(1)

ωη(φ)(2)


 , f =




η(ν × Ei)(1)

µm − µc
η(ν × Ei)(2)

µm − µc
η(iν ×H i)(1)

εm − εc
η(iν ×H i)(2)

εm − εc




∣∣∣∣∣
∂B

for ω close to the resonance frequencies, i.e., when τγ(δ) is very small for some γ’s ∈ Γsim or
τγ,h(δ) is very small for some γ’s ∈ Γdeg, h = 0, 1. In this case, the major part of the solution
would be the contributions of the excited resonance modes Ψγ(δ) and Ψγ,h(δ).
It is important to remark that problem (3.4) could be ill-posed if either ℜ(εc) ≤ 0 or ℜ(µc) ≤ 0
(the imaginary part being very small), and this are precisely the cases for which we will find the
resonances described above. In fact, what we do is to solve the problem for the cases ℜ(εc) > 0
or ℜ(µc) > 0 and then, analytically continue the solution to the general case. The resonances
are the values of ω for which this analytical continuation ”almost” cease to be valid.
We introduce the following definition.

Definition 4. We call J ⊂ Γ index set of resonances if τγ’s are close to zero when γ ∈ Γ and
are bounded from below when γ ∈ Γc. More precisely, we choose a threshold number η0 > 0
independent of ω such that

|τγ | ≥ η0 > 0 for γ ∈ Jc.

From now on, we shall use J as our index set of resonances. For simplicity, we assume
throughout this paper that the following condition holds.

Condition 4. We assume that λµ 6= 0, λε 6= 0 or equivalently, µc 6= −µm, εc 6= −εm.

It follows that the set J is finite.
Consider the space EJ = span{Ψγ(δ),Ψγ,h(δ); γ ∈ J, h = 0, 1}. Note that, under Condition 4, EJ
is finite dimensional. Similarly, we define EJc as the spanned by Ψγ(δ),Ψγ,h(δ); γ ∈ Jc, h = 0, 1
and eventually other vectors to complete the base. We have H(∂B)2 = EJ ⊕ EJc .

17



We define PJ(δ) and PJc(δ) as the projection into the finite-dimensional space EJ and infinite-
dimensional space EJc , respectively. It is clear that, for any f ∈ H(∂B)2

f = PJ(δ)[f ] + PJc(δ)[f ].

Moreover, we have an explicit representation for PJ(δ)

PJ(δ)[f ] =
∑

γ∈J∩Γsim

αδ(f,Ψγ(δ))Ψγ(δ) +
∑

γ∈J∩Γdeg
h=0,1

αδ(f,Ψγ,h(δ))Ψγ,h(δ). (3.23)

Here, as in Lemma 3.4,

αδ(f,Ψγ(δ)) =
(f, Ψ̃γ(δ))H(∂B)2

(Ψγ(δ), Ψ̃γ(δ))H(∂B)2
, γ ∈ J ∩ Γsim,

αδ(f,Ψγ,h(δ)) =
(f, Ψ̃γ,h(δ))H(∂B)2

(Ψγ,h(δ), Ψ̃γ,h(δ))H(∂B)2
, γ ∈ J ∩ Γdeg, h = 0, 1.

where Ψ̃γ ∈ Ker(τ̄γ,h(δ)−W ∗
B(δ)), Ψ̃γ,h ∈ Ker(τ̄γ,h(δ)−W ∗

B(δ)) andW
∗
B(δ) is theH(∂B)2-adjoint

of WB(δ).
We are now ready to solve the equation WB(δ)Ψ = f . In view of Remark 3.2,

Ψ =W−1
B (δ)[f ] =

∑

γ∈J∩Γsim

αδ(f,Ψγ(δ))Ψγ(δ)

τγ(δ)
+

∑

γ∈J∩Γdeg
h=0,1

αδ(f,Ψγ,h(δ))Ψγ,h(δ)

τγ,h(δ)
+W−1

B (δ)PJc(δ)[f ].

(3.24)
The following lemma holds.

Lemma 3.6. The norm ‖W−1
B (δ)PJc(δ)‖L(H(∂B)2 ,H(∂B)2) is uniformly bounded in ω and δ.

Proof. Consider the operator

WB(δ)|Jc : PJc(δ)H(∂B)2 → PJc(δ)H(∂B)2.

We can show that for every ω and δ, dist(σ(WB(δ)|Jc), 0) ≥ η0
2 , where σ(WB(δ)|Jc) is the

discrete spectrum of WB(δ)|Jc . Here and throughout the paper, dist denotes the distance.
Then, it follows that

‖W−1
B (δ)PJc(δ)[f ]‖ = ‖W−1

B (δ)|JcPJc(δ)[f ]‖ .
1

η0
exp(

C1

η20
)‖PJc(δ)[f ]‖ .

1

η0
exp(

C1

η20
)‖f‖,

where the notation A . B means that A ≤ CB for some constant C independent of A and
B.

Finally, we are ready to state our main result in this section.

Theorem 3.1. Let η be defined by (3.5). Under Conditions 1, 2, 3 and 4, the scattered field
Es = E − Ei due to a single plasmonic particle has the following representation:

Es = µm∇× ~Skm
D [ψ](x) +∇×∇× ~Skm

D [φ](x) x ∈ R
3\D̄,
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where

ψ = η−1
(
∇∂Bψ̃

(1) + ~curl∂Bψ̃
(2)
)
,

φ =
1

ω
η−1
(
∇∂Bφ̃

(1) + ~curl∂Bφ̃
(2)
)
,

Ψ =




ψ̃(1)

ψ̃(2)

φ̃(1)

φ̃(2)


 =

∑

γ∈J∩Γsim

α(f,Ψγ)Ψγ +O(δ)

τγ(δ)
+

∑

γ∈J∩Γdeg

ζ1(f)Ψγ + ζ2(f)Ψγ,1 +O(δ1/2)

τγ,0(δ)τγ,1(δ)
+O(1),

and

ζ1(f) =
(f, Ψ̃γ,1)H(∂B)2τγ − (f, Ψ̃γ)H(∂B)2(τγ,1 + τγ

a2
a1
)

a1
,

ζ2(f) =
(f, Ψ̃γ)H(∂B)2

a1
,

a1 = (Ψγ , Ψ̃γ,1)H(∂B)2 + (Ψγ,1, Ψ̃γ)H(∂B)2 ,

a2 = (Ψγ , Ψ̃γ,2)H(∂B)2 + (Ψγ,2, Ψ̃γ)H(∂B)2 + (Ψγ,1, Ψ̃γ,1)H(∂B)2 .

Proof. Recall that

Ψ =
∑

γ∈J∩Γsim

αδ(f,Ψγ(δ))Ψγ (δ)

τγ(δ)
+

∑

γ∈J∩Γdeg
h=0,1

αδ(f,Ψγ,h(δ))Ψγ,h(δ)

τγ,h(δ)
+W−1

B (δ)PJc(δ)[f ].

By Lemma 3.6, we have W−1
B (δ)PJc(δ)[f ] = O(1).

If γ ∈ J ∩ Γsim, an asymptotic expansion on δ yields

αδ(f,Ψγ(δ))Ψγ (δ) = α(f,Ψγ)Ψγ +O(δ).

If γ ∈ J ∩ Γdeg then (Ψγ , Ψ̃γ)H(∂B)2 = 0. Therefore, an asymptotic expansion on δ yields

αδ(f,Ψγ,h(δ))Ψγ,h(δ) =
(−1)h(f, Ψ̃γ)H(∂B)2Ψγ

δ−1/2a1
+

1

a1

((
(f, Ψ̃γ,1)H(∂B)2 − (f, Ψ̃γ)H(∂B)2

a2
a1

)
Ψγ + (f, Ψ̃γ)H(∂B)2Ψγ,1

)

+O(δ1/2)

with

a1 = (Ψγ , Ψ̃γ,1)H(∂B)2 + (Ψγ,1, Ψ̃γ)H(∂B)2 ,

a2 = (Ψγ , Ψ̃γ,2)H(∂B)2 + (Ψγ,2, Ψ̃γ)H(∂B)2 + (Ψγ,1, Ψ̃γ,1)H(∂B)2 .
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Since τγ,h(δ) = τγ + δ1/2(−1)hτγ,1 +O(δ), the result follows by adding the terms

αδ(f,Ψγ,0(δ))Ψγ,0(δ)

τγ,0(δ)
and

αδ(f,Ψγ,1(δ))Ψγ,1(δ)

τγ,1(δ)
.

The proof is then complete.

Corollary 3.1. Assume the same conditions as in Theorem 3.1. Under the additional condition
that

min
γ∈J∩Γsim

|τγ(δ)| ≫ δ3, min
γ∈J∩Γdeg

|τγ(δ)| ≫ δ, (3.25)

we have

Ψ =
∑

γ∈J∩Γsim

α(f,Ψγ)Ψγ +O(δ)

τγ + δ2τγ,2
+

∑

γ∈J∩Γdeg

ζ1(f)Ψγ + ζ2(f)Ψγ,1 +O(δ1/2)

τ2γ − δτ2γ,1
+O(1).

Corollary 3.2. Assume the same conditions as in Theorem 3.1. Under the additional condition
that

min
γ∈J∩Γsim

|τγ(δ)| ≫ δ2, min
γ∈J∩Γdeg

|τγ(δ)| ≫ δ1/2, (3.26)

we have

Ψ =
∑

γ∈J∩Γsim

α(f,Ψγ)Ψγ +O(δ)

τγ
+

∑

γ∈J∩Γdeg

α(f,Ψγ)Ψγ

τγ
+ α(f,Ψγ,g)

(
Ψγ,g

τγ
+

Ψγ

τ2γ

)
+O(1).

Proof. We have

lim
δ→0

W−1
B (δ)Pspan{Ψγ,0(δ),Ψγ,1(δ)}[f ] = lim

δ→0

αδ(f,Ψγ,0(δ))Ψγ,0(δ)

τγ,0(δ)
+
αδ(f,Ψγ,1(δ))Ψγ,1(δ)

τγ,1(δ)

= W−1
B,0(δ)Pspan{Ψγ ,Ψγg}

[f ]

=
α(f,Ψγ)Ψγ

τγ
+ α(f,Ψγ,g)

(
Ψγ,g

τγ
+

Ψγ

τ2γ

)
,

where γ ∈ J ∩ Γdeg, f ∈ H(∂B)2 and )PspanE is the projection into the linear space generated
by the elements in the set E.

Remark 3.3. Note that for γ ∈ J ,

τγ ≈ min
{
dist

(
λµ, σ(K∗

B) ∪ −σ(K∗
B)
)
,dist

(
λε, σ(K∗

B) ∪−σ(K∗
B)
)}
.

It is clear, from Remark 3.3, that resonances can occur when exciting the spectrum of K∗
B

or/and that of −K∗
B. We substantiate in the following that only the spectrum of K∗

B can be
excited to create the plasmonic resonances in the quasi-static regime.
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Recall that

f =




η(ν × Ei)(1)

µm − µc
η(ν × Ei)(2)

µm − µc
η(iν ×H i)(1)

εm − εc
η(iν ×H i)(2)

εm − εc




∣∣∣∣∣
∂B

,

and therefore,

f1 :=
η(ν × Ei)(1)

µm − µc
=

∆−1
∂B∇∂B · η(ν × Ei)

µm − µc
.

Now, suppose γ = (1, j, 1) ∈ J (recall that J is the index set of resonances). Then τγ = λµ−λ1,j,
where λ1,j ∈ σ1 = σ(−K∗

B)\σ(K∗
B). From Remark 3.1,

α(f,Ψγ) = (∆∂Bf1, ϕj,1)H∗ = α(f,Ψγ) =
1

µm − µc
(∇∂B · η(ν × Ei), ϕj,1)H∗ ,

where ϕj,1 ∈ H∗
0(∂B) is a normalized eigenfunction of K∗

B(∂B).
A Taylor expansion of Ei gives, for x ∈ ∂D,

Ei(x) =

∞∑

β∈N3

(x− z)β∂βEi(z)

|β|! .

Thus

η(ν × Ei)(x̃) = η(ν)(x̃)× Ei(z) +O(δ),

and

∇∂B · η(ν × Ei)(x̃) = −η(ν)(x̃) · ∇ × Ei(z) +O(δ)

= O(δ).

Therefore, the zeroth-order term of the expansion of ∇∂B · η(ν × Ei) in δ is zero. Hence,

α(f,Ψγ) = 0.

In the same way, we have

α(f,Ψγ) = 0,

α(f,Ψγg ) = 0

for γ = (2, j, 1) ∈ J and γg such that γ ∈ J .
As a result we see that the spectrum of −K∗

B is not excited in the zeroth-order term. However,
we note that σ(−K∗

B) can be excited in higher-order terms.
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4 The quasi-static limit and the extinction cross-section

4.1 The quasi-static limit

In this subsection we recall the quasi-static limit of the electromagnetic field at plasmonic reso-
nances. The formula was first obtained in [6], but it can be derived by pursing further compu-
tations in Corollary 3.2.

We first recall the definition of the polarization tensor

M(λ,D) =

∫

∂D
(λId−K∗

D)
−1[ν](x)x dσ(x), (4.1)

where λ ∈ C\(−1/2, 1/2). The polarization tensor is a key ingredient of the quasi-static limit,
or zeroth-order approximation, of the far-field.

Theorem 4.1. Let dσ = min
{
dist

(
λµ, σ(K∗

D) ∪−σ(K∗
D)
)
,dist

(
λε, σ(K∗

D) ∪−σ(K∗
D)
)}

. Then,
for D = z+ δB ⋐ R

3 of class C1,α for 0 < α < 1, the following uniform far-field expansion holds

Es = − iωµm
εm

∇×Gd(x, z, km)M(λµ,D)H i(z)− ω2µmGd(x, z, km)M(λε,D)Ei(z) +O(
δ4

dσ
),

where

Gd(x, z, km) = εm
(
G(x, z, km)Id+

1

k2m
D2

xG(x, z, km)
)

is the Dyadic Green (matrix valued) function for the full Maxwell equations.

4.2 The far-field expansion

The following lemma deals with the far-field behavior of the electromagnetic fields. We first
recall the representation for the scattering amplitude.

Lemma 4.1. The solution (E,H) to the system (3.1) has the following far-field expansion:

Es(x) = −e
ikm|x|

4π|x| A∞(x̂) +O

(
1

|x|2
)

as |x| → +∞, where x̂ = x
|x| ,

A∞(x̂) = −iµmkmx̂×
∫

∂D
e−ikmx̂·yψ(y)dσ(y) − k2mx̂× x̂×

∫

∂D
e−ikmx̂·yφ(y)dσ(y),

and

Hs(x) = −e
ikm|x|

4π|x| x̂×A∞(x̂) +O

(
1

|x|2
)
.

The following result is known as the optical cross-section theorem for the scattering of elec-
tromagnetic waves [24].
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Theorem 4.2. Assume that the incident fields are plane waves given by

Ei(x) = peikmd·x,

H i(x) = d× peikmd·x,

where p ∈ R
3 and d ∈ R

3 with |d| = 1 are such that p · d = 0. Then, the extinction cross-section
is given by

Qext =
4π

km
ℑ
[
p · A∞(d)

|p|2
]
,

where A∞ is the scattering amplitude.

Doing Taylor expansions on the formula of Theorem 4.1 gives the following proposition,
which allow us to compute the extinction cross-section in terms of the polarization tensor.

Propsition 4.1. Let x̂ = x/|x|. The following far-field asymptotic expansion holds:

Es = −e
ikm|x|

4π|x|
(
ωµmkme

ikm(d−x̂)·z
(
x̂× Id

)
M(λµ,D)(d × p)− k2me

ikm(d−x̂)·z
(
Id− x̂x̂t

)
M(λε,D)p

)

+O(
1

|x|2 ) +O(
δ4

dσ
).

Then we have, up to an error term of the order O( δ
4

dσ
),

A∞(x̂) = ωµmkme
ikm(d−x̂)·z

(
x̂× Id

)
M(λµ,D)(d× p)− k2me

ikm(d−x̂)·z
(
Id− x̂x̂t

)
M(λε,D)p.

In particular,

A∞(d) = ωµmkm
(
d× Id

)
M(λµ,D)(d× p)− k2m

(
Id− ddt

)
M(λε,D)p,

where M(λµ,D) and M(λε,D) are the polarization tensors associated with D and λ = λµ and
λ = λε, respectively.

5 Explicit computations for a spherical nanoparticle

5.1 Vector spherical harmonics

Let x̂ = x
|x| . For m = −n, ..., n and n = 1, 2, ..., set Y m

n to be the spherical harmonics defined

on the unit sphere S = {x ∈ R
3, |x| = 1}. For a wave number k > 0, the function

vn,m(k;x) = h(1)n (k|x|)Y m
n (x̂)

satisfies the Helmholtz equation ∆v+k2v = 0 in R
3\{0} together with the Sommerfeld radiation

condition

lim
|x|→∞

(∂vn,m
∂|x| (k;x) − ikvn,m(k;x)

)
= 0.

23



Similarly, let ṽn,m(x) be defined by

ṽn,m(x) = jn(k|x|)Y m
n (x̂),

where jn is the spherical Bessel function of the first kind. Then the function ṽn,m satisfies the
Helmholtz equation in R

3.
Next, define the vector spherical harmonics by

Un,m =
1√

n(n+ 1)
∇SY

m
n (x̂) and Vn,m = x̂× Un,m

for m = −n, ..., n and n = 1, 2, .... Here, x̂ ∈ S and ∇S denote the surface gradient on the unit
sphere S. The vector spherical harmonics form a complete orthogonal basis for L2

T (S).
Using the vectorial spherical harmonics, we can separate the solutions of Maxwell’s equations

into multipole solutions; see [41, Section 5.3]. Define the exterior transverse electric multipoles,
i.e., E · x = 0, as





ETE
n,m(x) = −

√
n(n+ 1)h(1)n (k|x|)Vn,m(x̂),

HTE
n,m(x) = − i

ωµ
∇×

(
−
√
n(n+ 1)h(1)n (k|x|)Vn,m(x̂)

)
,

(5.1)

and the exterior transverse magnetic multipoles, i.e., H · x = 0, as





ETM
n,m(x) =

i

ωǫ
∇×

(
−
√
n(n+ 1)h(1)n (k|x|)Vn,m(x̂)

)
,

HTM
n,m (x) = −

√
n(n+ 1)h(1)n (k|x|)Vn,m(x̂).

(5.2)

The exterior electric and magnetic multipoles satisfy the Sommerfeld radiation condition. In

the same manner, one defines the interior multipoles (ẼTE
n,m, H̃

TE
n,m) and (ẼTM

n,m , H̃
TM
n,m ) with h

(1)
n

replaced by jn, i.e., 



ẼTE
n,m(x) = −

√
n(n+ 1)jn(k|x|)Vn,m(x̂),

H̃TE
n,m(x) = − i

ωµ
∇× ẼTE

n,m(x),
(5.3)

and 



H̃TM
n,m (x) = −

√
n(n+ 1)jn(k|x|)Vn,m(x̂),

ẼTM
n,m(x) =

i

ωǫ
∇× H̃TM

n,m (x).
(5.4)

Note that one has

∇× ETE
n,m(k;x) =

√
n(n+ 1)

|x| Hn(k|x|)Un,m(x̂) +
n(n+ 1)

|x| h(1)n (k|x|)Y m
n (x̂)x̂ (5.5)

and

∇× ẼTE
n,m(k;x) =

√
n(n+ 1)

|x| Jn(k|x|)Un,m(x̂) +
n(n+ 1)

|x| jn(k|x|)Y m
n (x̂)x̂, (5.6)

where
Jn(t) = jn(t) + tj′n(t), Hn(t) = h(1)n (t) + t(h(1)n )′(t).
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For |x| > |y|, the following addition formula holds:

G(x, y, k)I =−
∞∑

n=1

ik

n(n+ 1)

ǫ

µ

n∑

m=−n

ETM
n,m(x)ẼTM

n,m (y)
T

−
∞∑

n=1

ik

n(n+ 1)

n∑

m=−n

ETE
n,m(x)ẼTE

n,m(y)
T

− i

k

∞∑

n=1

n∑

m=−n

∇vn,m(x)∇ṽn,m(y)
T
. (5.7)

Alternatively, for |x| < |y|, we have

G(x, y, k)I =−
∞∑

n=1

ik

n(n+ 1)

ǫ

µ

n∑

m=−n

ẼTM
n,m(x)ETM

n,m(y)T

−
∞∑

n=1

ik

n(n+ 1)

n∑

m=−n

ẼTE
n,m(x)ETE

n,m(y)T

− i

k

∞∑

n=1

n∑

m=−n

∇ṽn,m(x)∇vn,m(y)T . (5.8)

5.2 Explicit representations of boundary integral operators

Let D be a sphere of radius r > 0. We have the following results.

Lemma 5.1. Let ∂D = {|x| = r}. Then, for r′ > r, we have

ν ×∇× ~Sk
D[Un,m]

∣∣+
|x|=r′

= (−ikr)h(1)n (kr′)Jn(kr)Un,m, (5.9)

ν ×∇× ~Sk
D[Vn,m]

∣∣+
|x|=r′

= ik
r2

r′
jn(kr)Hn(kr

′)Vn,m, (5.10)

ν ×∇×∇× ~Sk
D[Un,m]

∣∣+
|x|=r′

= −ik r
r′
Jn(kr)Hn(kr

′)Vn,m, (5.11)

ν ×∇×∇× ~Sk
D[Vn,m]

∣∣+
|x|=r′

= ik(kr)2jn(kr)h
(1)
n (kr′)Un,m. (5.12)

For r′ < r,

ν ×∇× ~Sk
D[Un,m]

∣∣+
|x|=r′

= (−ikr)jn(kr′)Hn(kr)Un,m, (5.13)

ν ×∇× ~Sk
D[Vn,m]

∣∣+
|x|=r′

= ik
r2

r′
Jn(kr

′)h(1)n (kr)Vn,m, (5.14)

ν ×∇×∇× ~Sk
D[Un,m]

∣∣+
|x|=r′

= −ik r
r′
Jn(kr

′)Hn(kr)Vn,m, (5.15)

ν ×∇×∇× ~Sk
D[Vn,m]

∣∣+
|x|=r′

= ik(kr)2jn(kr
′)h(1)n (kr)Un,m. (5.16)

Proof. We only consider (5.9). The other formulas can be proved in a similar way.
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From (5.5), (5.6), and the definitions of ETE
n,m, E

TM
n,m , Ẽ

TE
n,m and ẼTM

n,m , we have

∇x ×G(x, y, k)Un,m(ŷ)

=−
∞∑

n=1

ik

n(n+ 1)

ǫ

µ

n∑

m=−n

∇× ETM
n,m(x)ẼTM

n,m (y) · Up,q(ŷ)

+

∞∑

n=1

ik

n(n+ 1)

n∑

m=−n

∇× ETE
n,m(x)ẼTE

n,m(y) · Up,q(ŷ)

=−
∞∑

n=1

ik√
n(n+ 1)

ǫ

µ

n∑

m=−n

∇× ETM
n,m(x)

−i
ωε

1

r
Jn(kr)Un,m(ŷ) · Up,q(ŷ)

+
∞∑

n=1

ik√
n(n+ 1)

n∑

m=−n

∇× ETE
n,m(x)(−1)jn(kr)Vn,m(ŷ) · Up,q(ŷ)

for |y| = r and |x| > |y|. Therefore, we get on |x| = r

∇× ~Sk
D[Un,m]

∣∣
+
= ∇x ×

∫

|y|=r
G(x, y, k)Un,m(ŷ)

=
kr√

n(n+ 1)

1

ωµ
Jn(kr)(∇× ETM

n,m (x))||x|=r. (5.17)

Since

∇× ETM
p,q =

i

ωε
∇×∇× ETE

p,q =
i

ωε
k2ETE

p,q ,

we obtain

x̂×∇× ~Sk
D[Un,m]

∣∣
+
=

ikr√
n(n+ 1)

Jn(kr)(x̂× ETE
n,m(x))||x|=r

= (−ikr)h(1)n (kr)Jn(kr)Un,m on |x| = r,

which completes the proof.
Note that

ν ×∇× ~Sk
D[φ]

∣∣
±
= (∓1

2
I +Mk

D)[φ] on ∂D,

and recall the following identity, which was proved in [46],

ν ×∇×∇× ~Sk
D[φ] = Lk

D[φ] on ∂D.

For m = −n, . . . , n and n = 1, 2, 3, . . ., let Hn,m(∂D) be the subspace of H(∂D) defined by

Hn,m(∂D) = span{Un,m, Vn,m}.

Let us represent the operators Mk
D and Lk

D explicitly on the subspace Hm,n(∂D). Using
Un,m, Vn,m as basis vectors, we obtain the following matrix representations for Mk

D and Lk
D
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on the subspace Hn,m(∂D):

Mk
D =



1

2
− ikrh(1)n (kr)Jn(kr) 0

0
1

2
+ ikrjn(kr)Hn(kr)


 , (5.18)

and

Lk
D =

(
0 ik(kr)2jn(kr)h

(1)
n (kr)

−ikJn(kr)Hn(kr) 0

)
. (5.19)

5.3 Asymptotic behavior of the spectrum of WB(r)

Now we consider the asymptotic expansions of the operatorWB(r) and its spectrum when r ≪ 1.
It is well-known that, as t→ 0,

jn(t) =
tn

(2n + 1)!!

(
1− 1

2(2n + 3)
t2 +O(t4)

)
,

h(1)n (t) = −i((2n − 1)!!)t−n−1
(
1 +

1

2(2n − 1)
t2 +O(t4)

)
. (5.20)

By making use of these asymptotics of the spherical Bessel functions, we obtain that

iJn(t)h
(1)
n (t̃) =

n+ 1

2n+ 1

( t
t̃

)n 1
t̃
+

n+ 1

2(2n − 1)(2n + 1)

(t
t̃

)n
t̃− n+ 3

2(2n + 1)(2n + 3)

( t
t̃

)n+1
t+O(t3),

ijn(t)Hn(t̃) =
−n

2n+ 1

( t
t̃

)n 1
t̃
+

−n+ 2

2(2n − 1)(2n + 1)

(t
t̃

)n
t̃+

n

2(2n + 1)(2n + 3)

( t
t̃

)n+1
t+O(t3),

ijn(t)h
(1)
n (t̃) =

1

2n+ 1

( t
t̃

)n 1
t̃
+

1

2(2n − 1)(2n + 1)

(t
t̃

)n
t̃− 1

2(2n + 1)(2n + 3)

( t
t̃

)n+1
t+O(t3),

iJn(t)Hn(t̃) =
(−n)(n+ 1)

2n + 1

(t
t̃

)n 1
t̃
+

(n+ 1)(−n + 2)

2(2n − 1)(2n + 1)

( t
t̃

)n
t̃+

n(n+ 3)

2(2n + 1)(2n + 3)

(t
t̃

)n+1
t+O(t3),

(5.21)

for small t, t̃≪ 1 with t ≈ t̃.
So, we have

Mk
D =




(−1)

2(2n + 1)
+ (kr)2rn 0

0
1

2(2n + 1)
+ (kr)2sn


+O(r4), (5.22)

and

Lk
D =




0 k2rpn
n(n+ 1)

2n+ 1

1

r
+ k2rqn 0


+O(r3), (5.23)
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where

pn =
1

2n+ 1
,

qn =
(n+ 1)(n − 2)

2(2n − 1)(2n + 1)
− n(n+ 3)

2(2n + 1)(2n + 3)
,

rn = − n+ 1

2(2n − 1)(2n + 1)
+

(n+ 3)

2(2n + 1)(2n + 3)
,

sn = − n− 2

2(2n − 1)(2n + 1)
+

n

2(2n + 1)(2n + 3)
. (5.24)

Therefore, we can obtain

WB(r) = WB,0 + rWB,1 + r2WB,2 +O(r3),

where

WB,0 =




λµ − (−1)

2(2n + 1)
0 0 0

0 λµ − 1

2(2n + 1)
0 0

0 0 λε −
(−1)

2(2n + 1)
0

0 0 0 λε −
1

2(2n + 1)




, (5.25)

WB,1 =




0 0 0 ωCµpn
0 0 ωCµqn 0
0 ωCεpn 0 0

ωCεqn 0 0 0


 , (5.26)

WB,2 =




ω2Dµrn 0 0 0
0 ω2Dµsn 0 0
0 0 ω2Dεrn 0
0 0 0 ω2Dεsn


 , (5.27)

and

Cµ =
µcεc − µmεm
µm − µc

, Cε =
µcεc − µmεm
εm − εc

, (5.28)

Dµ =
εcµ

2
c − εmµ

2
m

µm − µc
, Dε =

ε2cµc − ε2mµm
εm − εc

. (5.29)

By applying the standard perturbation theory, the asymptotics of eigenvalues of WB(r) are
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obtained as follows: up to an error term of the order O(r3),

λµ − (−1)

2(2n + 1)
+ (rω)2

[
CεCµ

pnqn
λµ − λε + pn

+Dµrn

]
+O(r3),

λµ − 1

2(2n + 1)
+ (rω)2

[
CεCµ

pnqn
λµ − λε − pn

+Dµsn

]
+O(r3),

λε −
(−1)

2(2n + 1)
+ (rω)2

[
CεCµ

pnqn
λε − λµ + pn

+Dεrn

]
+O(r3),

λε −
1

2(2n + 1)
+ (rω)2

[
CεCµ

pnqn
λε − λµ − pn

+Dεsn

]
+O(r3),

and the asymptotics of the associated eigenfunction are given by

[1, 0, 0, 0]T + rω
Cεqn

λµ − λε + pn
[0, 0, 0, 1]T +O(r2),

[0, 1, 0, 0]T + rω
Cε

2n+ 1

1

λµ − λε − pn
[0, 0, 1, 0]T +O(r2),

[0, 0, 1, 0]T + rω
Cµqn

λε − λµ + pn
[0, 1, 0, 0]T +O(r2),

[0, 0, 0, 1]T + rω
Cµ

2n+ 1

1

λε − λµ − pn
[1, 0, 0, 0]T +O(r2).

5.4 Extinction cross-section

In this subsection, we compute the extinction cross-section Qext. We need the following lemma.

Lemma 5.2. Let D be a sphere with radius r > 0 and suppose that Ei is given by

Ei(x) =

∞∑

n=1

n∑

l=−n

αTE
nl Ẽ

TE
n,l (x; km) + αTM

nl ẼTM
n,l (x; km),

for some coefficients αTE
nl , α

TM
nl . Then the scattered wave can be represented as follows: for

|x| > r,

Es(x) =

∞∑

n=1

n∑

l=−n

αTE
nl S

TE
n ETE

n,l (x; km) + αTM
nl STM

n ETM
n,l (x; km),

where STE
n and STM

n are given by

STE
n =

µcjn(kcr)Jn(kmr)− µmjn(kmr)Jn(kcr)

µmJn(kcr)h
(1)
n (kmr)− µcjn(kcr)H(kmr)

,

STM
n =

εcjn(kcr)Jn(kmr)− εmjn(kmr)Jn(kcr)

εmJn(kcr)h
(1)
n (kmr)− εcjn(kcr)H(kmr)

.
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Proof. Let Ei = ẼTE
n,l (x; km). We look for a solution of the following form:

E =

{
a ẼTE

n,l (x; kc), |x| < r

ẼTE
n,l (x; km) + bETE

n,l (x; km), |x| > r.

Then, from the boundary condition on ∂D, we easily see that

(
jn(kmr)
1
µm

Jn(kmr)

)
=

(
jn(kcr) −h(1)n (kmr)
1
µc
Jn(kcr) − 1

µm
Hn(kmr)

)(
a
b

)
. (5.30)

Therefore, the coefficient a and b can be obtained as follows:

(
1/a
b/a

)
=

(
jn(kmr) h

(1)
n (kmr)

1
µm

Jn(kmr)
1
µm

Hn(kmr)

)−1(
jn(kcr) h

(1)
n (kcr)

1
µc
Jn(kcr)

1
µc
Hn(kcr)

)(
1
0

)
,

=
µmkmr

i

(
1
µm

Hn(kmr) −h(1)n (kmr)

− 1
µm

Jn(kmr) jn(kmr)

)(
jn(kcr)
1
µc
Jn(kcr)

)
,

= −ikmr



Hn(kmr)jn(kcr)−

µm
µc
h(1)n (kmr)Jn(kcr)

−Jn(kmr)jn(kcr) +
µm
µc
jn(kmr)Jn(kcr)


 , (5.31)

where we have used the following Wronskian identity for the spherical Bessel function:

jn(t)Hn(t)− h(1)n (t)Jn(t) = t
(
jn(t)(h

(1)
n )′(t)− j′n(t)h

(1)
n (t)

)
=
i

t
.

Therefore, we immediately see that

b =
µcjn(kcr)Jn(kmr)− µmjn(kmr)Jn(kcr)

µmJn(kcr)h
(1)
n (kmr)− µcjn(kcr)H(kmr)

.

Now suppose that Ei = ẼTM
n,l (x; km). We look for a solution in the following form:

E =

{
c ẼTM

n,l (x; kc), |x| < r,

ẼTM
n,l (x; km) + dETM

n,l (x; km), |x| > r.

Then, from the boundary conditions on |x| = r, we obtain

(
1
εc
Jn(kcr)

1
εc
Hn(kcr)

jn(kcr) h
(1)
n (kcr)

)(
c
0

)
=

(
1
εm

Jn(kmr)
1
εm

Hn(kmr)

jn(kmr) h
(1)
n (kmr)

)(
1
d

)
. (5.32)

By solving (5.32), we get

d =
εcjn(kcr)Jn(kmr)− εmjn(kmr)Jn(kcr)

εmJn(kcr)h
(1)
n (kmr)− εcjn(kcr)H(kmr)

.
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By the principle of superposition, the conclusion immediately follows.

We also need the following lemma concerning the scattering amplitude A∞.

Lemma 5.3. Suppose that the scattered electric field Es is given by

Es(x) =
∞∑

n=1

n∑

l=−n

βTE
nl E

TE
n,l (x; km) + βTM

nl ETM
n,l (x; km)

for R
3 \D. Then the scattering amplitude A∞ can be represented as follows:

A∞(x̂) =
∞∑

n=1

n∑

l=−n

4π(−i)n
ikm

√
n(n+ 1)

(
βTE
nl Vn,l(x̂) +

√
µm
εm

βTM
nl Un,l

)
.

Proof. It is well-known that

h(1)n (t) ∼ 1

t
eite−in+1

2
π as t→ ∞,

and

(h(1)n )′(t) ∼ 1

t
eite−in

2
π as t→ ∞.

Then one can easily see that as |x| → ∞,

ETE
n,m(x; km) ∼ −e

ikm|x|

km|x| e
−in+1

2
π
√
n(n+ 1)Vn,l(x̂)

and

ETM
n,m(x; km) ∼ −e

ikm|x|

km|x|

√
µm
εm

e−in+1
2

π
√
n(n+ 1)Un,l(x̂).

By applying these asymptotics to the series expansion of Es, the conclusion follows.

A plane wave can be represented as a series expansion. The following lemma is proved in
[36].

Lemma 5.4. Let Ei be a plane wave, that is, Ei(x) = p eikmd·x with d ∈ S and p · d = 0. Then
we have the following series representation for a plane wave as follows:

Ei(x) =

∞∑

n=1

n∑

l=−n

αpw,TE
nl ẼTE

n,l (x; km) + αpw,TM
nl ẼTM

n,l (x; km),

where 



αpw,TE
nl =

(−1)4πin√
n(n+ 1)

i
(
Vn,l(d) · p

)
,

αpw,TM
nl =

(−1)4πin√
n(n+ 1)

√
εm
µm

(
Un,l(d) · p

)
.

Now we are ready to compute the extinction cross-section Qext.
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Theorem 5.1. Assume that Ei(x) = p eikmd·x with d ∈ S and p · d = 0. Let D be a sphere with
radius r. Then the extinction cross-section is given by

Qext =

∞∑

n=1

n∑

l=−n

(4π)3

k2m|p|2ℑ
(
(−1)STE

n (Vn,l(d) · p)2 + iSTM
n (Un,l(d) · p)2

)
.

Moreover, for small r > 0, we have

Qext =

1∑

l=−1

(−1)(4πkmr)
3

k2m|p|2 ℑ
(
i
2

3

µc − µm
2µm + µc

(V1,l(d) · p)2 +
2

3

εc − εm
2εm + εc

(U1,l(d) · p)2
)

+O((kmr)
4).

Proof. Let us first compute the scattering amplitude A∞ when Ei is a plane wave. From

A∞(x̂) =
∞∑

n=1

n∑

l=−n

4π(−i)n
ikm

√
n(n+ 1)

×
(
αpw,TE
nl STE

n Vn,l(x̂) +

√
µm
εm

αpw,TM
nl STM

n Un,l

)

=
∞∑

n=1

n∑

l=−n

(4π)2

km

(
(−1)STE

n (Vn,l(d) · p)Vn,l + iSTM
n (Un,l(d) · p)Un,l

)
.

Therefore, we have

Qext =
4π

km
ℑ
[
p ·A∞(d)

|p|2
]

=
∞∑

n=1

n∑

l=−n

(4π)3

k2m|p|2ℑ
(
(−1)STE

n (Vn,l(d) · p)2 + iSTM
n (Un,l(d) · p)2

)
.

Now we assume that r ≪ 1. By applying (5.20), one can easily see that

STE
1 = i

2

3

(µc − µm)(kmr)
3

2µm + µc
+O(r4),

STM
1 = i

2

3

(εc − εm)(kmr)
3

2εm + εc
+O(r4),

STE
n , STM

n = O(r4), for n ≥ 2.

Therefore, we obtain, up to an error term of the order O(r4),

Qext =
1∑

l=−1

(−1)(4π)3

k2m|p|2 ℑ
(
i
2

3

(µc − µm)(kmr)
3

2µm + µc
(V1,l(d) · p)2 +

2

3

(εc − εm)(kmr)
3

2εm + εc
(U1,l(d) · p)2

)
.

The proof is complete.
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6 Explicit computations for a spherical shell

6.1 Explicit representation of boundary integral operators

Let Ds and Dc be a spherical shell with radius rs and rc with rs > rc > 0. Let

(ε, µ) =





(εm, µm) in Dc,

(εs, µs) in Ds \ D̄c,

(εm, µm) in R
3 \ D̄s.

Let
ρ =

rc
rs
.

The solution to the transmission problem can be represented as follows

E(x) =





µc∇× ~Skc
Ds

[ψs](x) +∇×∇× ~Skc
Ds

[φs](x)

+µc∇× ~Skc
Dc

[ψc](x) +∇×∇× ~Skc
Dc

[φc](x) x ∈ Dc,

µs∇× ~Sks
Ds

[ψs](x) +∇×∇× ~Sks
Ds

[φs](x)

+µs∇× ~Sks
Dc

[ψc](x) +∇×∇× ~Sks
Dc

[φc](x) x ∈ Ds \ D̄c,

Ei + µm∇× ~Skm
Ds

[ψs](x) +∇×∇× ~Skm
Ds

[φs](x)

+µm∇× ~Skm
Dc

[ψc](x) +∇×∇× ~Skm
Dc

[φc](x) x ∈ R
3\D̄s,

(6.1)

and

H(x) = − i

ωµD
(∇× E)(x) x ∈ R

3\∂D, (6.2)

where the pair (ψs, φs, ψc, φc) ∈
(
H

− 1
2

T (div, ∂Ds)
)2×

(
H

− 1
2

T (div, ∂Dc)
)2

is the unique solution to

W sh




ψs

φs
ψc

φc


 :=

(
W sh

11 W sh
12

W sh
21 W sh

22

)



ψs

φs
ψc

φc


 =




ν × Ei

iων ×H i

0
0




with

W sh
11 =




µs + µm
2

Id+ µsMks
Ds

− µmMkm
Ds

Lks
Ds

−Lkm
Ds

Lks
Ds

− Lkm
Ds

(
k2s
2µs

+
k2m
2µm

)
Id+

k2s
µs

Mks
Ds

− k2m
µm

Mkm
Ds


 ,

(6.3)

W sh
12 =




µsν ×∇× ~Sks
Dc

− µmν ×∇× ~Skm
Dc

ν ×∇×∇× ~Sks
Dc

− ν ×∇×∇× ~Skm
Dc

ν ×∇×∇× ~Sks
Dc

− ν ×∇×∇× ~Skm
Dc

k2s
µs
ν ×∇× ~Sks

Dc
− k2m
µm

ν ×∇× ~Skm
Dc



∣∣∣∣
∂Ds

,

(6.4)

W sh
21 =




−µcν ×∇× ~Skc
Ds

+ µsν ×∇× ~Sks
Ds

−ν ×∇×∇× ~Skc
Ds

+ ν ×∇×∇× ~Sks
Ds

−ν ×∇×∇× ~Skc
Ds

+ ν ×∇×∇× ~Sks
Ds

−k
2
c

µc
ν ×∇× ~Skc

Ds
+
k2s
µs
ν ×∇× ~Sks

Ds



∣∣∣∣
∂Dc

,

(6.5)
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W sh
22 =




−µc + µs
2

Id− µcMkc
Dc

+ µsMks
Dc

−Lkc
Dc

+ Lks
Dc

−Lkc
Dc

+ Lks
Dc

−
(
k2c
2µc

+
k2s
2µs

)
Id− k2c

µc
Mkc

Dc
+
k2s
µs

Mks
Dc


 .

(6.6)
Note thatW sh

11 andW sh
22 are similar to the operator in left-hand side of (3.4). In the previous

section for the sphere case, we have already obtained the matrix representation of this operator
and its asymptotic expansion.

By Lemma 5.1, we can represent ν × ∇ × ~Sk
D||x|=r′ and ν × ∇ × ∇ × ~Sk

D||x|=r′ in a matrix
form as follows(using Un,m, Vn,m as basis):
(i) For r′ > r,

ν ×∇× ~Sk
D||x|=r′ =

(
(−ikr)Jn(kr)h

(1)
n (kr′) 0

0 ik r2

r′ jn(kr)Hn(kr
′)

)
, (6.7)

ν ×∇×∇× ~Sk
D||x|=r′ =

(
0 ik(kr)2jn(kr)h

(1)
n (kr′)

−ik r
r′Jn(kr)Hn(kr

′) 0

)
; (6.8)

(ii) For r′ < r,

ν ×∇× ~Sk
D||x|=r′ =

(
(−ikr)jn(kr′)Hn(kr) 0

0 ik r2

r′ Jn(kr
′)〈(1)n (kr)

)
, (6.9)

ν ×∇×∇× ~Sk
D||x|=r′ =

(
0 ik(kr)2jn(kr

′)h
(1)
n (kr)

−ik r
r′Jn(kr

′)Hn(kr) 0

)
. (6.10)

Using the above formulas, the matrix representation of the operatorsW sh
12 andW sh

21 can be easily
obtained.

We now consider scaling of W sh. First we need some definitions. Let Ds = z + rsBs where
Bs contains the origin and |Bs| = O(1). Let Bc be defined in a similar way. For any x ∈ ∂Ds (or
∂Dc), let x̃ = x−z

rs
∈ ∂Bs (or ∂Bc with rs replaced by rc) and define for each function f defined

on ∂Ds (or ∂Dc), a corresponding function defined on B as follows

ηs(f)(x̃) = f(z + rsx̃), ηc(f)(x̃) = f(z + rcx̃). (6.11)

Then, in a similar way to the sphere case, let us write

W sh
B (rs)




ηs(ψs)
ωηs(φs)
ηc(ψc)
ωηc(φc)


 =




η(ν×Ei)
µm−µs

η(iν×Hi)
εm−εs
0
0


 .

Using (Un,m, Vn,m, Un,m, Vn,m)× (Un,m, Vn,m, Un,m, Vn,m) as basis, we can represent W sh
B (rs)

in a 8 × 8 matrix form in a subspace Hn,m(∂Bs) × Hn,m(∂Bc). Then, by using (5.21), their
asymptotic expansion can also be obtained.
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Here, the resulting asymptotics of the matrix W sh
B are given as follows. Write

Wsh
B (rs) = Wsh

B,0 + rsWsh
B,1 + r2sWsh

B,2 +O(r3s), (6.12)

where

Wsh
B,0 =

(
Λµ,ε

Λµ,ε

)
+

(
P0,n Q0,n

R0,n −P0,n

)
, (6.13)

Wsh
B,1 =

(
P1,n Q1,n

R1,n −P1,n

)
, Wsh

B,2 =

(
P2,n Q2,n

R2,n −P2,n

)
.

Here, the matrix Pj,n, Qj,n and Rj,n are given by

Λµ,ε =




λµ
λµ

λε
λε


 , P0,n =




pn
−pn

pn
−pn


 ,

Q0,n = ρ2




gn
fn

gn
fn


 , R0,n =




fn
gn

fn
gn


 ,

P1,n = ω




Cµpn
Cµqn

Cεpn
Cεqn


 , P2,n = ω2




Dµrn
Dµsn

Dεrn
Dεsn


 ,

Q1,n = ωρ




Cµp̃n
Cµq̃n

Cεp̃n
Cεq̃n


 , Q2,n = ω2ρ




Dµr̃n
Dµs̃n

Dεr̃n
Dεs̃n


 ,

R1,n = (−1)ωρ−1




Cµp̃n
Cµq̃n

Cεp̃n
Cεq̃n


 , R2,n = ω2ρ−1




Dµs̃n
−Dµr̃n

Dεs̃n
−Dεr̃n


 .
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Here, pn, qn, rn, sn are defined as (5.24) and p̃n, q̃n, r̃n, s̃n,Dµ and Dε are defined as follows:

fn = ρn
n

2n+ 1
, gn = ρn−1 n+ 1

2n+ 1
, (6.14)

p̃n =
1

2n+ 1
ρn+1, (6.15)

q̃n =
(n+ 1)(n − 2)

2(2n − 1)(2n + 1)
ρn − n(n+ 3)

2(2n + 1)(2n + 3)
ρn+2, (6.16)

r̃n = − n+ 1

2(2n − 1)(2n + 1)
ρn +

(n+ 3)

2(2n + 1)(2n + 3)
ρn+2, (6.17)

s̃n = − n− 2

2(2n − 1)(2n + 1)
ρn+1 +

n

2(2n + 1)(2n + 3)
ρn+3, (6.18)

and

Dµ =
εsµ

2
s − εmµ

2
m

µm − µs
, Dε =

ε2sµs − ε2mµm
εm − εs

. (6.19)

6.2 Asymptotic behavior of the spectrum of Wsh
B (rs)

Let us define

λshn =
1

2(2n + 1)

√
1 + 4n(n + 1)ρ2n+1.

Note that ±λshn are eigenvalues of the Neumann-Poincaré operator on the shell.
It turns out that the eigenvalues of W sh

B,0 are as follows

λµ + λshn , λµ − λshn , λε + λshn , λε − λshn ,

for n = 0, 1, 2, ..., and their multiplicities is 2. Their associated eigenfunctions are as follows:

λµ + λshn −→ E0
1 := (λshn + pn)e1 + fne5, E0

2 := (λshn − pn)e2 + gne6,

λµ − λshn −→ E0
3 := (−λshn + pn)e1 + fne5, E0

4 := (−λshn − pn)e2 + gne6,

λε + λshn −→ E0
5 := (λshn + pn)e3 + fne7, E0

6 := (λshn − pn)e4 + gne8,

λε − λshn −→ E0
7 := (−λshn + pn)e3 + fne7, E0

8 := (−λshn − pn)e4 + gne8,

where {ei}8i=1 is standard unit basis in R
8.

To derive asymptotic expansions of the eigenvalues, we apply degenerate eigenvalue pertur-
bation theory (since the multiplicity of each of these eigenvalues is 2). To state the result, we
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need some definitions. Let

T16,n = Cε
(L− pn)a1,n − b1,n

|E0
1 ||E0

6 |
, T18,n = Cε

(−L− pn)a1,n − b1,n
|E0

1 ||E0
8 |

,

T25,n = Cε
(L+ pn)a2,n − b2,n

|E0
2 ||E0

5 |
, T27,n = Cε

(−L+ pn)a2,n − b2,n
|E0

2 ||E0
7 |

,

T36,n = Cε
(L− pn)a3,n − b3,n

|E0
3 ||E0

6 |
, T38,n = Cε

(−L− pn)a3,n − b3,n
|E0

3 ||E0
8 |

,

T45,n = Cε
(L+ pn)a4,n − b4,n

|E0
4 ||E0

5 |
, T47,n = Cε

(−L+ pn)a4,n − b4,n
|E0

4 ||E0
7 |

,

T52,n =
Cµ

Cε
T16,n, T54,n =

Cµ

Cε
T18,n, T61,n =

Cµ

Cε
T25,n, T63,n =

Cµ

Cε
T27,n,

T72,n =
Cµ

Cε
T36,n, T74,n =

Cµ

Cε
T38,n, T81,n =

Cµ

Cε
T45,n, T83,n =

Cµ

Cε
T47,n,

where

a1,n = (λshn + pn)qn + ρfnq̃n,

a2,n = (λshn − pn)pn + ρgnp̃n,

a3,n = (−λshn + pn)qn + ρfnq̃n,

a4,n = (−λshn − pn)pn + ρgnp̃n,

and

b1,n = fngnqn + ρ−1(λshn + pn)gnq̃n,

b2,n = fngnpn + ρ−1(λshn − pn)fnp̃n,

b3,n = fngnqn + ρ−1(−λshn + pn)gnq̃n,

b4,n = fngnpn + ρ−1(−λshn − pn)fnp̃n.

We also define

K1,n = Dµ
(λshn + pn)((λ

sh
n + pn)rn + ρfnr̃n) + fn((λ

sh
n + pn)ρ

−1s̃n − fnrn)

|E0
1 |2

,

K2,n = Dµ
gn((−λshn + pn)ρ

−1r̃n − gnsn) + (λshn − pn)((λ
sh
n − pn)sn + ρgns̃n)

|E0
2 |2

,

K3,n = Dµ
(−λshn + pn)((−λshn + pn)rn + ρfnr̃n) + fn((−λshn + pn)ρ

−1s̃n − fnrn)

|E0
3 |2

,

K4,n = Dµ
gn((λ

sh
n + pn)ρ

−1r̃n − gnsn) + (−λshn − pn)((−λshn − pn)sn + ρgns̃n)

|E0
4 |2

,

K5,n =
Dε

Dµ
K1,n, K6,n =

Dε

Dµ
K2,n, K7,n =

Dε

Dµ
K3,n, K8,n =

Dε

Dµ
K4,n.
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Now we are ready to state the result. The followings are asymptotics of eigenvalues of W sh
B (rs)

λµ + λε + (rsω)
2

(
T16,nT61,n
λµ − λε

+
T18,nT81,n

λµ − λε + 2λshn
+K1,n

)
+O(r3s),

λµ + λε + (rsω)
2

(
T16,nT61,n
λµ − λε

+
T18,nT81,n

λµ − λε + 2λshn
+K2,n

)
+O(r3s),

λµ − λε + (rsω)
2

(
T36,nT63,n

λµ − λε − 2λshn
+
T38,nT83,n
λµ − λε

+K3,n

)
+O(r3s),

λµ − λε + (rsω)
2

(
T36,nT63,n

λµ − λε − 2λshn
+
T38,nT83,n
λµ − λε

+K4,n

)
+O(r3s),

λε + λµ + (rsω)
2

(
T52,nT25,n
λε − λµ

+
T54,nT45,n

λε − λµ + 2λshn
+K5,n

)
+O(r3s),

λε + λµ + (rsω)
2

(
T52,nT25,n
λε − λµ

+
T54,nT45,n

λε − λµ + 2λshn
+K6,n

)
+O(r3s),

λε − λµ + (rsω)
2

(
T72,nT27,n

λε − λµ − 2λshn
+
T74,nT47,n
λε − λµ

+K7,n

)
+O(r3s),

λε − λµ + (rsω)
2

(
T72,nT27,n

λε − λµ − 2λshn
+
T74,nT47,n
λε − λµ

+K8,n

)
+O(r3s).

We also have the following asymptotic expansions of the eigenfunctions:

E0
1 + rsω

(
T16,n
λµ − λε

E0
6 +

T18,n
λµ − λε + 2λshn

E0
8

)
+O(r2s),

E0
2 + rsω

(
T25,n
λµ − λε

E0
5 +

T27,n
λµ − λε + 2λshn

E0
7

)
+O(r2s),

E0
3 + rsω

(
T36,n

λµ − λε − 2λshn
E0

6 +
T38,n
λµ − λε

E0
8

)
+O(r2s),

E0
4 + rsω

(
T45,n

λµ − λε − 2λshn
E0

5 +
T47,n
λµ − λε

E0
7

)
+O(r2s),

E0
5 + rsω

(
T52,n
λµ − λε

E0
2 +

T54,n
λµ − λε + 2λshn

E0
4

)
+O(r2s),

E0
6 + rsω

(
T61,n
λµ − λε

E0
1 +

T63,n
λµ − λε + 2λshn

E0
3

)
+O(r2s),

E0
7 + rsω

(
T72,n

λµ − λε − 2λshn
E0

2 +
T74,n
λµ − λε

E0
4

)
+O(r2s),

E0
8 + rsω

(
T81,n

λµ − λε − 2λshn
E0

1 +
T83,n
λµ − λε

E0
3

)
+O(r2s).

Interestingly, the first-order term (of order δ) is still zero in the asypmtotic expansions of
the eigenvalues. This is due to the fact that degenerate eigenfunctions does not interact with
each other.
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7 Plasmonic resonances for the anisotropic problem

In this section, we consider the scattering problem of a time-harmonic wave ui, incident on
a plasmonic anisotropic nanoparticle. The homogeneous medium is characterized by electric
permittivity εm, while the particle occupying a bounded and simply connected domain Ω ⋐ R

3

of class C1,α for 0 < α < 1 is characterized by electric anisotropic permittivity A. We consider
A to be a positive-definite symmetric matrix.

In the quasi-static regime the problem can be modeled as follows

∇ ·
(
εmIdχ(R

3\Ω̄) +Aχ(Ω)
)
∇u = 0,

|u− ui| = O(|x|−2), |x| → +∞,
(7.1)

where χ denotes the characteristic function and ui is a harmonic function in R
3.

We are interested in finding the plasmonic resonances for problem (7.1).
First, introduce the fundamental solution to the operator ∇ · A∇ in dimension three

GA(x) = − 1

4π
√

det(A)|A∗x|

with A∗ =
√
A−1. From now on we will note GA(x, y) := GA(x− y).

The single-layer potential associated with A is

SA
Ω [ϕ] : H

− 1
2 (∂Ω) −→ H

1
2 (∂Ω)

ϕ 7−→ SA
Ω [ϕ](x) =

∫

∂Ω
GA(x, y)ϕ(y)dσ(y), x ∈ R

3.

We can represent the unique solution [9] to (7.1) in the following form:

u(x) =

{
ui + SΩ[ψ], x ∈ R

3\Ω̄,
SA
Ω [φ], x ∈ Ω,

where (ψ, φ) ∈
(
H− 1

2 (∂Ω)
)2

is the unique solution to the following system of integral equations
on ∂Ω: 




SΩ[ψ]− SA
Ω [φ] = −ui,

εm
∂SΩ[ψ]

∂ν

∣∣∣
+
− ν · A∇SA

Ω [φ]
∣∣∣
−

= −εm
∂ui

∂ν
.

(7.2)

Lemma 7.1. The operator SA
Ω : H− 1

2 (∂Ω) → H
1
2 (∂Ω) is invertible. Moreover, we have the

jump formula

ν · A∇SA
Ω

∣∣∣
±
= ±1

2
Id+ (KA

Ω)
∗,

with

(KA
Ω)

∗[ϕ](x) =

∫

∂Ω
−

(
x− y, ν(x)

)

4π
√

det(A)|A∗(x− y)|3
ϕ(y)dσ(y).
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Proof. Let TA∗ ∈ L(Hs(∂Ω̃),Hs(∂Ω)) be such that TA∗ [ϕ](x) = ϕ(A∗x) for ϕ ∈ Hs(∂Ω̃) and
Ω̃ = A∗Ω. Let rν ∈ L(Hs(∂Ω),Hs(∂Ω)) be such that rν [ϕ](x) = |A−1

∗ ν(x)|ϕ(x). It follows by
the change of variables ỹ = A∗y that dσ(ỹ) = det

√
A∗|A−1

∗ ν(y)|dσ(y). Thus,

SA
Ω = TA∗SΩ̃

T −1
A∗
r−1
ν ,

and in particular SA
Ω is invertible and its inverse (SA

Ω )
−1 = rνTA∗S−1

Ω̃
T −1
A∗

.
Note that, for x ∈ ∂Ω,

ν̃(x̃) =
A−1

∗ ν(x)

|A−1
∗ ν(x)|

,

where ν̃(x̃) is the outward normal to ∂Ω̃ at x̃ = A∗x. We have

ν · A∇SA
Ω

∣∣∣
±

= ν ·A∇x

(
TA∗SΩ̃

T −1
A∗
r−1
ν

)∣∣∣
±

= ν ·AA∗

(
TA∗∇x̃SΩ̃

T −1
A∗
r−1
ν

)∣∣∣
±

= |A−1
∗ ν|ν̃ ·

(
TA∗∇x̃SΩ̃

T −1
A∗
r−1
ν

)∣∣∣
±

= ±1

2
Id+ (rνTA∗)K∗

Ω̃
(rνTA∗)

−1. (7.3)

The result follows from a change of variables in the expression of the operator (KA
Ω)

∗ :=
(rνTA∗)K∗

Ω̃
(rνTA∗)

−1.

Lemma 7.2. SA
Ω is negative definite for the duality pairing (·, ·)− 1

2
, 1
2
and we can define a new

inner product

(u, v)H∗
A
= −(u,SA

Ω [v])− 1
2
, 1
2
,

which is equivalent to (·, ·)− 1
2
, 1
2
.

Proof. Let ϕ ∈ H− 1
2 (∂Ω). Using Lemma 7.1, we have

ϕ = ν · A∇SA
Ω [ϕ]

∣∣∣
+
− ν ·A∇SA

Ω [ϕ]
∣∣∣
−
.

Thus
∫

∂Ω
ϕ(x)SA

Ω [ϕ](x)dσ(x) =

∫

∂Ω
ν · A∇SA

Ω [ϕ]
∣∣∣
+
(x)SA

Ω [ϕ](x)dσ(x) −
∫

∂Ω
ν · A∇SA

Ω [ϕ]
∣∣∣
−
(x)SA

Ω [ϕ](x)dσ(x)

= −
∫

R3\Ω̄
∇SA

Ω [ϕ](x) · A∇SA
Ω [ϕ](x)dσ(x) −

∫

R3\Ω̄
SA
Ω [ϕ](x)∇ ·A∇SA

Ω [ϕ](x)dσ(x)

−
∫

Ω
∇SA

Ω [ϕ](x) · A∇SA
Ω [ϕ](x)dσ(x) +

∫

Ω
SA
Ω [ϕ](x)∇ ·A∇SA

Ω [ϕ](x)dσ(x)

= −
∫

R3

∇SA
Ω [ϕ](x) · A∇SA

Ω [ϕ](x)dσ(x) ≤ 0,
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where the equality is achieved if and only if ϕ = 0. Here we have used an integration by parts,
the fact that SA

Ω [ϕ](x) = O(|x|−1) as |x| → ∞, ∇ · A∇SA
Ω [ϕ](x) = 0 for x ∈ R

3\∂Ω and that A
is positive-definite.
In the same manner, it is known that

‖ϕ‖2H∗ =

∫

∂Ω
ϕ(x)SA

Ω [ϕ](x)dσ(x) = −
∫

R3

∇SΩ|[ϕ](x)|2dσ(x).

Since A is positive-definite we have

c‖ϕ‖2H∗ ≤
∫

∂Ω
ϕ(x)SA

Ω [ϕ](x)dσ(x) ≤ C‖ϕ‖2H∗ ,

for some constants c and C.
Using the fact that (·, ·)H∗ is equivalent to (·, ·)− 1

2
, 1
2
, we get the desired result.

From (7.2) we have φ = (SA
Ω )

−1(SΩ[ψ] +ui), whereas, by Lemma 7.1, the following equation
holds for ψ:

QA[ψ] = F (7.4)

with

QA =
1

2

(
εmId+ (SA

Ω )
−1SΩ

)
+
(
εmK∗

Ω − (KA
Ω)

∗(SA
Ω )

−1SΩ

)
, (7.5)

and

F = −εm
∂ui

∂ν
+ ν ·A∇SA

Ω [(SA
Ω )

−1ui]
∣∣∣
−
.

Theorem 7.1. QA has a countable number of eigenvalues.

Proof. It is clear that (KA
Ω)

∗ : H− 1
2 (∂Ω) → H− 1

2 (∂Ω) is a compact operator. Hence, εmK∗
Ω −

(KA
Ω)

∗(SA
Ω )

−1SΩ is compact as well. Therefore, only the invertibility of 1
2

(
εmId + (SA

Ω )
−1SΩ

)

needs to be proven.
Since SA

Ω is invertible, the invertibility of 1
2

(
εmId+(SA

Ω )
−1SΩ

)
is equivalent to that of εmSA

Ω+SΩ.

Consider now, the bilinear form, for (ϕ,ψ) ∈ (H− 1
2 (∂Ω))2

B(ϕ,ψ) = −εm
∫

∂Ω
ϕ(x)SA

Ω [ψ](x)dσ(x) −
∫

∂Ω
ϕ(x)SΩ[ψ](x)dσ(x).

From Lemma 7.2, we have

B(ψ,ψ) ≥ C‖ψ‖
H− 1

2 (∂Ω)
,

for some constant C > 0.
It follows then, from the Lax-Milgram theorem that εmSA

Ω+SΩ is invertible in H− 1
2 (∂Ω), whence

the result.

Recall that the electromagnetic parameter of the problem, A, depends on the frequency, ω
of the incident field. Therefore the operator QA is frequency dependent and we should write
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QA(ω).
Following definition 3, we say that ω is a plasmonic resonance if

|eigj(QA(ω))| ≪ 1 and is locally minimal for some j ∈ N,

where eigj(QA(ω)) stands for the j-th eigenvalue of QA(ω).
Equivalently, we can say that ω is a plamonic resonance if

ω = argmax
ω

‖Q−1
A (ω)‖L(H∗(∂Ω)). (7.6)

From now on, we suppose that A is an anisotropic perturbation of an isotropic parameter,
i.e., A = εc(Id+ P ), with P being a symmetric matrix and ‖P‖ ≪ 1.

Lemma 7.3. Let A = εc(Id+δR), with R being a symmetric matrix, ‖R‖ = O(1) and δ ≪ 1. Let
Tr denote the trace of a matrix. Then, as δ → 0, we have the following asymptotic expansions:

SA
Ω =

1

εc

(
SΩ + δSΩ,1 + o(δ)

)
,

(SA
Ω )

−1 = εc
(
S−1
Ω + δBΩ,1 + o(δ)

)
,

(KA
Ω)

∗ = K∗
Ω + δK∗

Ω,1 + o(δ)

with

SΩ,1[ϕ](x) = −1

2
Tr(R)SΩ[ϕ](x) −

1

2

∫

∂Ω

(
R(x− y), x− y

)

4π|x− y|3 ϕ(y)dσ(y),

BΩ,1 = −S−1
Ω SΩ,1S−1

Ω ,

K∗
Ω,1 = −1

2
Tr(R)K∗

Ω[ϕ](x) −
3

2

∫

∂Ω

(
R(x− y), x− y

)(
x− y, ν(x)

)

4π|x− y|5 ϕ(y)dσ(y).

Proof. Recall that for δ small enough

√
(I + δR)−1 = Id− δ

2
R+O(δ2),

det(I + δR) = = 1 + δTr(R) + o(δ),

(1 + δx+ o(δ))s = 1 + δsx+ o(δ), s ∈ R.

The results follow then from asymptotic expansions of − 1

4π
√

det(A)|A∗x|β
, β = 1, 3 and the

identity

(SA
Ω )

−1 = εc(Id+ δS−1
Ω SΩ,1 + o(δ))−1S−1

Ω .

Plugging the expressions above into the expression of QA we get the following result.

Lemma 7.4. As δ → 0, the operator QA has the following asymptotic expansion

QA = QA,0 + δQA,1 + o(δ),
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where

QA,0 =
εm + εc

2
Id+ (εm − εc)K∗

Ω,

QA,1 = εc
(
(
1

2
Id−K∗

Ω)BΩ,1SΩ −K∗
Ω,1

)
.

We regard the operator QA as a perturbation of QA,0. As in section 3, we use the standard
perturbation theory to derive the perturbed eigenvalues and eigenvectors in H∗(∂Ω).

Let (λj , ϕj) be the eigenvalue and normalized eigenfunction pairs of K∗
Ω in H∗(∂Ω) and τj

the eigenvalues of QA,0. We have τj =
εm+εc

2 + (εm − εc)λj .
For simplicity, we consider the case when λj is a simple eigenvalue of the operator K∗

Ω. Define

Pj,l = (QA,1[ϕj ], ϕl)H∗ .

As δ → 0, the perturbed eigenvalue and eigenfunction have the following form:

τj(δ) = τj + δτj,1 + o(δ),

ϕj(δ) = ϕj + δϕj,1 + o(δ),

where

τj,1 = Pjj,

ϕj,1 =
∑

l 6=j

Pjl(
εm − εc

)
(λj − λl)

ϕl.

8 A Maxwell-Garnett theory for plasmonic nanoparticles

In this subsection we derive effective properties of a system of plasmonic nanoparticles. To begin
with, we consider a bounded and simply connected domain Ω ⋐ R

3 of class C1,α for 0 < α < 1,
filled with a composite material that consists of a matrix of constant electric permittivity εm
and a set of periodically distributed plasmonic nanoparticles with (small) period η and electric
permittivity εc.
Let Y =]−1/2, 1/2[3 be the unit cell and denote δ = ηβ for β > 0. We set the (rescaled) periodic
function

γ = εmχ(Y \D̄) + εcχ(D),

where D = δB with B ⋐ R
3 being of class C1,α and the volume of B, |B|, is assumed to be equal

to 1. Thus, the electric permittivity of the composite is given by the periodic function

γη(x) = γ(x/η),

which has period η. Now, consider the problem

∇ · γη∇uη = 0 in Ω (8.1)
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with an appropriate boundary condition on ∂Ω. Then, there exists a homogeneous, generally
anisotropic, permittivity γ∗, such that the replacement, as η → 0, of the original equation (8.1)
by

∇ · γ∗∇u0 = 0 in Ω

is a valid approximation in a certain sense. The coefficient γ∗ is called an effective permittivity. It
represents the overall macroscopic material property of the periodic composite made of plasmonic
nanoparticles embedded in an isotropic matrix.

The (effective) matrix γ∗ = (γ∗pq)p,q=1,2,3 is defined by [9]

γ∗pq =

∫

Y
γ(x)∇up(x) · ∇uq(x)dx,

where up, for p = 1, 2, 3, is the unique solution to the cell problem





∇ · γ∇up = 0 in Y,

up − xp periodic (in each direction) with period 1,
∫
Y up(x)dx = 0.

(8.2)

Using Green’s formula, we can rewrite γ∗ in the following form:

γ∗pq = εm

∫

∂Y
uq(x)

∂up
∂ν

(x)dσ(x). (8.3)

The matrix γ∗ depends on η as a parameter and cannot be written explicitly.
The following lemmas are from [9].

Lemma 8.1. For p = 1, 2, 3, problem (8.2) has a unique solution up of the form

up(x) = xp + Cp + SD♯(λεId−K∗
D♯)

−1[νp](x) in Y,

where Cp is a constant, νp is the p-component of the outward unit normal to ∂D, λε is defined
by (3.8), and

SD♯[ϕ](x) =

∫

∂D
G♯(x, y)ϕ(y)dσ(y),

K∗
D♯[ϕ](x) =

∫

∂D

∂G♯(x, y)

∂ν(x)
ϕ(y)dσ(y)

with G♯(x, y) being the periodic Green function defined by

G♯(x, y) = −
∑

n∈Z3\{0}

ei2πn·(x−y)

4π2|n|2 .

Lemma 8.2. Let SD♯ and K∗
D♯ be the operators defined as in Lemma 8.1. Then the following
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trace formula holds on ∂D

(±1

2
Id+K∗

D♯)[ϕ] =
∂SD♯[ϕ]

∂ν

∣∣∣
±
.

For the sake of simplicity, for p = 1, 2, 3, we set

φp(y) = (λεId−K∗
D♯)

−1[νp](y) for y in ∂D (8.4)

Thus, from Lemma 8.1, we get

γ∗pq = εm

∫

∂Y

(
yq + Cq + SD♯[φq](y)

)∂
(
yp + SD♯[φp](y)

)

∂ν
dσ(y).

Because of the periodicity of SD♯[φp], we get

γ∗pq = εm

(
δpq +

∫

∂Y
yq
∂SD♯[φp]

∂ν
(y)dσ(y)

)
. (8.5)

In view of the periodicity of SD♯[φp], the divergence theorem applied on Y \D̄ and Lemma 8.2
yields (see [9])

∫

∂Y
yq
∂SD♯[φp]

∂ν
(y) =

∫

∂D
yqφp(y)dσ(y).

Let

ψp(y) = φp(δy) for y ∈ ∂B.

Then, by (8.5), we obtain
γ∗ = εm(Id+ fP ), (8.6)

where f = |D| = δ3(= η3β) is the volume fraction of D and P = (Ppq)p,q=1,2,3 is given by

Ppq =

∫

∂B
yqψp(y)dσ(y). (8.7)

To proceed with the computation of P we will need the following Lemma [9].

Lemma 8.3. There exists a smooth function R(x) in the unit cell Y such that

G♯(x, y) = − 1

4π|x− y| +R(x− y).

Moreover, the Taylor expansion of R(x) at 0 is given by

R(x) = R(0)− 1

6
(x21 + x22 + x23) +O(|x|4).

Now we can prove the main result of this section, which shows the validity of the Maxwell-
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Garnett theory uniformly with respect to the frequency under the assumptions that

f ≪ dist(λε(ω), σ(K∗
B))

3/5 and (Id− δ3R−1
λε(ω)

T0)
−1 = O(1), (8.8)

where R−1
λε(ω)

and T0 are to be defined and dist(λε(ω), σ(K∗
D)) is the distance between λε(ω) and

the spectrum of K∗
B .

Theorem 8.1. Assume that (8.8) holds. Then we have

γ∗ = εm
(
Id+ fM(Id− f

3
M)−1

)
+O

( f8/3

dist(λε(ω), σ(K∗
B))

2

)
(8.9)

uniformly in ω. Here, M =M(λε(ω), B) is the polarization tensor (4.1) associated with B and
λε(ω).

Proof. In view of Lemma 8.3 and (8.4), we can write, for x ∈ ∂D,

(λε(ω)Id−K∗
D)[φp](x) −

∫

∂D

∂R(x− y)

∂ν(x)
φp(y)dσ(y) = νp(x),

which yields, for x ∈ ∂B,

(λε(ω)Id −K∗
B)[ψp](x)− δ2

∫

∂B

∂R(δ(x − y))

∂ν(x)
ψp(y)dσ(y) = νp(x).

By virtue of Lemma 8.3, we get

∇R(δ(x− y)) = −δ
3
(x− y) +O(δ3)

uniformly in x, y ∈ ∂B. Since
∫
∂B ψp(y)dσ(y) = 0, we now have

(Rλε(ω) − δ3T0 + δ5T1)[ψp](x) = νp(x),

and so
(Id− δ3R−1

λε(ω)
T0 + δ5R−1

λε(ω)
T1)[ψp](x) = R−1

λε(ω)
[νp](x), (8.10)

where

Rλε(ω)[ψp](x) = (λε(ω)Id−K∗
B)[ψp](x),

T0[ψp](x) =
ν(x)

3
·
∫

∂B
yψp(y)dσ(y),

‖T1‖L(H∗(∂B)) = O(1).

Since K∗
B is a compact self-adjoint operator in H∗(∂B) it follows that [30]

‖(λε(ω)Id−K∗
B)

−1‖L(H∗(∂B)) ≤
c

dist(λε(ω), σ(K∗
B))

(8.11)

for a constant c.
It is clear that T0 is a compact operator. From the fact that the imaginary part of Rλε(ω) is
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nonzero, it follows that Id− δ3R−1
λε(ω)

T0 is invertible.
Under the assumption

(Id− δ3R−1
λε(ω)

T0)
−1 = O(1),

δ5 ≪ dist(λε(ω), σ(K∗
B)).

and (8.10), (8.11) we get

ψp(x) = (Id− δ3R−1
λε(ω)

T0 + δ5R−1
λε(ω)

T1)
−1R−1

λε(ω)
[νp](x)

= (Id− δ3R−1
λε(ω)

)−1R−1
λε(ω)

[νp](x) +O
( δ5

dist(λε(ω), σ(K∗
B))

)
.

Therefore, we obtain and estimate for ψp

ψp = O
( 1

dist(λε(ω), σ(K∗
B))

)
.

Now we multiply (8.10) by yq and integrate over ∂B. We can derive from the estimate of ψp

that

P (Id− f

3
M) =M +O

( δ5

dist(λε(ω), σ(K∗
B))

2

)
,

and therefore,

P =M(Id+
f

3
M)−1 +O

( δ5

dist(λε(ω), σ(K∗
B))

2

)
,

with P being defined by (8.7). Since f = δ3 and

M = O
( δ3

dist(λε(ω), σ(K∗
B))

)
,

it follows from (8.6) that the Maxwell-Garnett formula (8.9) holds (uniformly in the frequency
ω) under the assumption (8.8) on the volume fraction f .

Remark 8.1. As a corollary of Theorem 8.1, we see that in the case when fM = O(1), which

is equivalent to the scale f = O
(
dist(λε(ω), σ(K∗

B))
)
, the matrix fM(Id − f

3M)−1 may have

a negative-definite symmetric real part. This implies that the effective medium is plasmonic as
well as anisotropic.

Remark 8.2. It is worth emphasizing that Theorem 8.1 does not only prove the validity of the
Maxwell-Garnett theory but it can also be used together with the results in section 7 in order to
derive the plasmonic resonances of the effective medium made of a dilute system of arbitrary-
shaped plasmonic nanoparticles, following (7.6)

ω = argmax
ω

‖Q−1
γ∗ (ω)‖L(H∗(∂Ω)).
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[41] J.-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Har-

monic Problems, Springer-Verlag, New York, 2001.

[42] S. Palomba, L. Novotny, and R.E. Palmer, Blue-shifted plasmon resonance of individual
size-selected gold nanoparticles, Optics Commun., 281 (2008), 480–483.

[43] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV Analysis of Opera-

tors, Academic Press, New York, 1970.

[44] D. Sarid and W. A. Challener, Modern Introduction to Surface Plasmons: Theory, Mathe-

matical Modeling, and Applications, Cambridge University Press, New York, 2010.

[45] L.B. Scaffardi and J.O. Tocho, Size dependence of refractive index of gold nanoparticles,
Nanotech., 17 (2006), 1309–1315.

[46] R. H. Torres, Maxwell’s equations and dielectric obstacles with lipschitz boundaries, J.
London Math. Soc. (2) 57 (1998), 157-169.

50


	1 Introduction
	2 Preliminaries
	3 Layer potential formulation for the scattering problem
	3.1 First-order correction to plasmonic resonances and field behavior at the plasmonic resonances

	4 The quasi-static limit and the extinction cross-section
	4.1 The quasi-static limit
	4.2 The far-field expansion

	5 Explicit computations for a spherical nanoparticle
	5.1 Vector spherical harmonics
	5.2 Explicit representations of boundary integral operators
	5.3 Asymptotic behavior of the spectrum of WB(r)
	5.4 Extinction cross-section

	6 Explicit computations for a spherical shell
	6.1 Explicit representation of boundary integral operators
	6.2 Asymptotic behavior of the spectrum of WBsh(rs)

	7 Plasmonic resonances for the anisotropic problem
	8 A Maxwell-Garnett theory for plasmonic nanoparticles

