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Reconstructing Fine Details of Small Objects by Using Plasmonic
Spectroscopic Data. Part II: The Strong Interaction Regime\ast 

Habib Ammari\dagger , Matias Ruiz\ddagger , Sanghyeon Yu\dagger , and Hai Zhang\S 

Abstract. This paper is concerned with the inverse problem of reconstructing a small object from far-field
measurements by using the field interaction with a plasmonic particle which can be viewed as a
passive sensor. It is a follow-up of the work [H. Ammari et al., SIAM J. Imaging Sci., 11 (2018),
pp. 1--23], where the intermediate interaction regime was considered. In that regime, it was shown
that the presence of the target object induces small shifts to the resonant frequencies of the plasmonic
particle. These shifts, which can be determined from the far-field data, encode the contracted
generalized polarization tensors of the target object, from which one can perform reconstruction
beyond the usual resolution limit. The main argument is based on perturbation theory. However,
the same argument is no longer applicable in the strong interaction regime as considered in this
paper due to the large shift induced by strong field interaction between the particles. We develop
a novel technique based on conformal mapping theory to overcome this difficulty. The key is to
design a conformal mapping which transforms the two-particle system into a shell-core structure,
in which the inner dielectric core corresponds to the target object. We show that a perturbation
argument can be used to analyze the shift in the resonant frequencies due to the presence of the
inner dielectric core. This shift also encodes information of the contracted polarization tensors of the
core, from which one can reconstruct its shape, and hence the target object. Our theoretical findings
are supplemented by a variety of numerical results based on an efficient optimal control algorithm.
The results of this paper make the mathematical foundation for plasmonic sensing complete.

Key words. plasmonic sensing, superresolution, far-field measurement, generalized polarization tensors
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1. Introduction. The inverse problem of reconstructing fine details of small objects by
using far-field measurements is severally ill-posed. There are two fundamental reasons for
this: the diffraction limit and the low signal-to-noise ratio in the measurements.

Motivated by plasmonic sensing in molecular biology (see [14] and the references therein),
we developed a new methodology to overcome the ill-posedness of this inverse problem in
[9]. The key idea is to use a plasmonic particle, which will be defined later, to interact with
the target object and to propagate its near-field information into the far field in terms of
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1932 HABIB AMMARI, MATIAS RUIZ, SANGHYEON YU, AND HAI ZHANG

the shifts in the plasmonic resonant frequencies. This plasmonic particle can be viewed as
a passive sensor in the simplest form. For such a plasmonic-particle sensor, one of the most
important characterizations is the plasmonic resonant frequencies associated with it. These
resonant frequencies depend not only on the electromagnetic properties of the particle and its
size and shape [7, 8, 18, 25], but also on the electromagnetic properties of the environment
[7, 18, 21]. It is the last property which enables the sensing application of plasmonic particles.

In [9], the target object is modeled by a dielectric particle whose size is much smaller than
that of the sensing plasmonic particle. The intermediate regime where the distance of the two
particles is comparable to the size of the plasmonic particle was investigated. It was shown
that the shifts of the plasmonic resonant frequencies of the plasmonic particle are small and
a perturbation argument can be used to derive their asymptotics. Based on these asymptotic
formulas, one can obtain their explicit dependence on the generalized polarization tensors
of the target particle from which one can perform its reconstruction. However, when the
distance between the particles decreases, their interactions increase, and the induced shifts
increase in magnitude as well. The perturbation argument will cease to work at a certain
threshold distance, and the characterization for the shifts of resonant frequencies in terms of
information of the target particle becomes more complicated.

In this paper, we aim to extend the above investigation to the strong interaction regime
where the distance between the two particles is comparable to the size of the small particle. In
this regime, the near-field interactions are strong and the induced large shifts in plasmonic res-
onant frequencies cannot be analyzed by a perturbation argument. In order to overcome this
difficulty, we develop a novel technique based on conforming mapping theory. The key is to de-
sign a conformal mapping which transforms the two-particle system into a shell-core structure,
in which the inner dielectric core corresponds to the target object. We showed that a perturba-
tion argument can be used to analyze the shift in the resonance frequencies due to the presence
of the inner dielectric core. This shift also encodes information on the contracted polarization
tensors of the core, from which one can reconstruct its shape, and hence the target object.
The results of this paper make the mathematical foundation for plasmonic sensing complete.

The conformal mapping technique has been applied to analyze singular plasmonic systems
[22, 23]. The nearly touching or touching plasmonic-particle system exhibits strong field
enhancements and shift of the resonances. The inversion mapping which is conformal was
used to transform two circular disks or spheres into more symmetric systems [16, 24, 27].
After the transformation, the problems become easier to solve. We also refer the reader to
[17] for the fundamental limits of the field enhancements. For the general-shaped plasmonic
particles, the strong shift of the plasmonic resonances was analyzed in [15].

We remark that the above idea of plasmonic sensing is closely related to that of super-
resolution in resonant media, where the basic idea is to propagate the near-field information
into the far field through certain near-field coupling with subwavelength resonators. In a
recent series of papers [10, 11, 12], we have shown mathematically how to realize this idea by
using weakly coupled subwavelength resonators and achieve superresolution and superfocusing.
The key is that the near-field information of sources can be encoded in the subwavelength
resonant modes of the system of resonators through the near-field coupling. These excited
resonant modes can propagate into the far field, thus making the superresolution from far-field
measurements possible.D
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This paper is organized as follows. In section 2, we provide basic results on layer poten-
tials and then explain the concept of plasmonic resonances and the (contracted) generalized
polarization tensors. In section 3, we consider the forward scattering problem of the incident
field interaction with a system composed of a dielectric particle and a plasmonic particle. We
derive the asymptotic of the scattered field in the case of strong regime. In section 4, we
consider the inverse problem of reconstructing the geometry of the dielectric particle. This
is done by constructing the contracted generalized polarization tensors of the target particle
through the resonance shifts induced to the plasmonic particle. We provide numerical exam-
ples to justify our theoretical results and to illustrate the performance of the proposed optimal
control reconstruction scheme.

2. Preliminaries.

2.1. Layer potentials. We denote by G(x, y) the fundamental solution to the Laplacian
in the free space \BbbR 2, i.e.,

G(x, y) =
1

2\pi 
log | x - y| .

Let D be a domain \BbbR 2 with \scrC 1,\eta boundary for some \eta > 0, and let \nu (x) be the outward normal
for x \in \partial D.

We define the single-layer potential \scrS D by

\scrS D[\varphi ](x) =

\int 
\partial D

G(x, y)\varphi (y)d\sigma (y), x \in \BbbR 2,

and the Neumann--Poincar\'e (NP) operator \scrK \ast 
D by

\scrK \ast 
D[\varphi ](x) =

\int 
\partial D

\partial G

\partial \nu (x)
(x, y)\varphi (y)d\sigma (y), x \in \partial D.

The following jump relations hold:

\scrS D[\varphi ]
\bigm| \bigm| 
+
= \scrS D[\varphi ]

\bigm| \bigm| 
 - ,(2.1)

\partial \scrS D[\varphi ]

\partial \nu 

\bigm| \bigm| \bigm| 
\pm 
=

\biggl( 
\pm 1

2
I +\scrK \ast 

D

\biggr) 
[\varphi ].(2.2)

Here, the subscripts + and  - indicate the limits from outside and inside D, respectively.
LetH1/2(\partial D) be the usual Sobolev space, and letH - 1/2(\partial D) be its dual space with respect

to the duality pairing (\cdot , \cdot ) - 1
2
, 1
2
. We denote by H

 - 1/2
0 (\partial D) the collection of all \varphi \in H - 1/2(\partial D)

such that (\varphi , 1) - 1
2
, 1
2
= 0.

The NP operator is bounded from H - 1/2(\partial D) to H - 1/2(\partial D). Moreover, the operator
\lambda I  - \scrK \ast 

D : L2(\partial D) \rightarrow L2(\partial D) is invertible for any | \lambda | > 1/2. Although the NP operator

is not self-adjoint on L2(\partial D), it can be symmetrized on H
 - 1/2
0 (\partial D) with a proper inner

product [13, 7]. In fact, let \scrH \ast (\partial D) be the space H
 - 1/2
0 (\partial D) equipped with the inner product

(\cdot , \cdot )\scrH \ast (\partial D) defined by

(\varphi ,\psi )\scrH \ast (\partial D) =  - (\varphi ,\scrS D[\psi ]) - 1
2
, 1
2
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1934 HABIB AMMARI, MATIAS RUIZ, SANGHYEON YU, AND HAI ZHANG

for \varphi ,\psi \in H - 1/2(\partial D). Then using the Plemelj's symmetrization principle,

\scrS D\scrK \ast 
D = \scrK D\scrS D,

it can be shown that the NP operator \scrK \ast 
D is self-adjoint in \scrH \ast with the inner product

(\cdot , \cdot )\scrH \ast (\partial D). It is also known that \scrK \ast 
D is compact when the boundary \partial D is C1,\eta [13]. So

it admits the following spectral decomposition in \scrH \ast :

(2.3) \scrK \ast 
D =

\infty \sum 
j=1

\lambda j(\cdot , \varphi j)\scrH \ast \varphi j ,

where \lambda j are the eigenvalues of \scrK \ast 
D and \varphi j are their associated eigenfunctions. Note that the

eigenvalues | \lambda j | < 1/2 for all j \geq 1.

2.2. Electromagnetic scattering in the quasi-static approximation. Let us consider a
particleD embedded in the free space \BbbR 2. Equivalently, the particleD in \BbbR 3 has a translational
symmetry in the direction of the x3-axis. Let \varepsilon D (resp., \varepsilon m) be the permittivity of the particle
D (resp., of the background). So the permittivity distribution \varepsilon is given by

\varepsilon = \varepsilon D\chi (D) + \varepsilon m\chi (\BbbR 2\setminus D),

where \chi (D) is the characteristic function of D. We also assume the permeability distribution
\mu is homogeneous over the whole space, i.e., \mu \equiv \mu m in \BbbR 2.

We are interested in the scattering of the electromagnetic fields (E,H) by the particle D
satisfying \Biggl\{ 

\nabla \times E = i\omega \mu H,

\nabla \times H =  - i\omega \varepsilon E,

where \omega is the operating frequency.
We consider the TM polarization, i.e., E = (E1, E2, 0) and H = (0, 0, H3). Then the

magnetic field component H3 satisfies the scalar Helmholtz equation as follows:\biggl( 
\nabla \cdot 1

\varepsilon 
\nabla + \omega 2\mu 

\biggr) 
H3 = 0 in \BbbR 2.

Also, the electric field E is given by

E = (E1, E2, 0) =
1

i\omega \varepsilon 
( - \partial yH3, \partial xH3, 0).

We suppose that the incident field H inc = (0, 0, H i
3) is in the form of a plane wave:

H i
3 = eik

i\cdot x, ki = km(sin \theta i, - cos \theta i),

where km = \omega 
\surd 
\varepsilon m\mu m is the free space wave number and \theta i is the incident angle. Then the

corresponding electric field Ei = (Ei
1, E

i
2, 0) is given by

(Ei
1, E

i
2) =

\sqrt{} 
\mu m
\varepsilon m

eik
i\cdot x(cos \theta i, sin \theta i).D

ow
nl

oa
de

d 
08

/1
8/

20
 to

 2
.1

22
.1

66
.7

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SENSING SMALL OBJECTS USING PLASMONIC RESONANCES. PART II 1935

We assume that the particle D is small compared to the wavelength of the incident wave.
Then we can adopt the quasi-static approximation, and the electromagnetic scattering can be
described by a scalar function u, which is called the electric potential. We suppose that the
domain of the particle D contains the origin for simplicity. In the vicinity of the particle D,
the electric field E = (E1, E2, 0) is approximated as

(E1, E2) \approx  - \nabla u,

and the electric potential u satisfies

(2.4)

\left\{   \nabla \cdot (\varepsilon \nabla u) = 0 in \BbbR 2,

u - ui = O(| x|  - 1) as | x| \rightarrow \infty ,

where ui means the electric potential of the incident field given by

ui =  - 
\sqrt{} 
\mu m
\varepsilon m

(cos \theta i, sin \theta i) \cdot x.

It is worth mentioning that in the quasi-static approximation, H3 satisfies \nabla \cdot (1/\varepsilon )\nabla H3 = 0.
So H3 also plays a similar role to the potential u. In fact, one can check that H3 is a harmonic
conjugate of the potential u up to a multiplicative constant [19]. We choose the potential u
to describe the scattering since its gradient directly gives the electric field E.

The electric potential u can be represented as (see, for example, [13])

(2.5) u = ui + \scrS D[\varphi ] ,

where the density \varphi satisfies the boundary integral equation

(2.6) (\lambda I  - \scrK \ast 
D)[\varphi ] =

\partial ui

\partial \nu 

\bigm| \bigm| \bigm| 
\partial D
.

Here, \lambda is given by

(2.7) \lambda =
\varepsilon D + \varepsilon m

2(\varepsilon D  - \varepsilon m)
.

2.3. Contracted generalized polarization tensors. In this subsection, we review the con-
cept of the generalized polarization tensors (GPTs). It is known that the scattered field u - ui
has the following asymptotic expansion in the far field [3, p. 77]:

(2.8) (u - ui)(x) =
\sum 

| \alpha | ,| \beta | \leq 1

1

\alpha !\beta !
\partial \alpha ui(0)M\alpha \beta (\lambda ,D)\partial \beta G(x), | x| \rightarrow +\infty ,

where M\alpha \beta (\lambda ,D) is given by

M\alpha \beta (\lambda ,D) :=

\int 
\partial D

y\beta (\lambda I  - \scrK \ast 
D)

 - 1

\biggl[ 
\partial x\alpha 

\partial \nu 

\biggr] 
(y) d\sigma (y), \alpha , \beta \in \BbbN 2.
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Here, the coefficient M\alpha \beta (\lambda ,D) is called the generalized polarization tensor [3].
Next we consider the simplified version of the GPTs. For a positive integer m, let Pm(x)

be the complex-valued polynomial

(2.9) Pm(x) = (x1 + ix2)
m = rm cosm\theta + irm sinm\theta ,

where we have used the polar coordinates x = rei\theta .
We define the contracted generalized polarization tensors (CGPTs) to be the following

linear combinations of GPTs using the polynomials in (2.9):

(2.10)

M cc
m,n(\lambda ,D) =

\int 
\partial D

Re\{ Pn\} (\lambda I  - \scrK \ast 
D)

 - 1

\biggl[ 
\partial Re\{ Pm\} 

\partial \nu 

\biggr] 
d\sigma ,

M cs
m,n(\lambda ,D) =

\int 
\partial D

Im\{ Pn\} (\lambda I  - \scrK \ast 
D)

 - 1

\biggl[ 
\partial Re\{ Pm\} 

\partial \nu 

\biggr] 
d\sigma ,

M sc
m,n(\lambda ,D) =

\int 
\partial D

Re\{ Pn\} (\lambda I  - \scrK \ast 
D)

 - 1

\biggl[ 
\partial Im\{ Pm\} 

\partial \nu 

\biggr] 
d\sigma ,

M ss
m,n(\lambda ,D) =

\int 
\partial D

Im\{ Pn\} (\lambda I  - \scrK \ast 
D)

 - 1

\biggl[ 
\partial Im\{ Pm\} 

\partial \nu 

\biggr] 
d\sigma .

We remark that the CGPTs defined above encode useful information about the shape of the
particle D and can be used for its reconstruction. See [3, 2, 4, 5] for more details.

For convenience, we introduce the following notation. We denote

Mm,n(\lambda ,D) =

\biggl( 
M cc

m,n(\lambda ,D) M cs
m,n(\lambda ,D)

M sc
m,n(\lambda ,D) M ss

m,n(\lambda ,D)

\biggr) 
.

It is worth mentioning that the following symmetry holds (see [3]):

Mm,n =M\intercal 
n,m,

where \intercal stands for the transpose.
When m = n = 1, the matrix M(\lambda ,D) :=M1,1(\lambda ,D) is called the first order polarization

tensor. Specifically, we have

M(\lambda ,D)lm =

\int 
\partial D

ym(\lambda I  - \scrK \ast 
D)

 - 1[\nu l](y) d\sigma (y), l,m = 1, 2.

We also have from (2.8) that

(u - ui)(x) =
x\intercal \cdot M(\lambda ,D)\nabla ui

| x| 2
+O(| x|  - 2) as | x| \rightarrow \infty .

So the leading order term in the far-field expansion of the scattered field u - ui is determined
by the first order polarization tensor M(\lambda ,D). The quantity M(\lambda ,D)( - \nabla ui) is called the
dipole moment. In fact, the leading order term is the electric potential generated by a point
dipole source with dipole moment M(\lambda ,D)( - \nabla ui).D
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2.4. Plasmonic resonances. Here we explain the plasmonic resonances. We say that the
particle D is plasmonic when its permittivity \varepsilon D has a negative real part. It is known that the
permittivity of noble metals, such as gold and silver, has such a property. More precisely, the
permittivity \varepsilon D of the plasmonic (or metallic) particle D is often modeled by the following
Drude's model [20]:

(2.11) \varepsilon D = \varepsilon D(\omega ) = 1 - 
\omega 2
p

\omega (\omega + i\gamma )
,

where \omega is the operating frequency. Here, \omega p > 0 denotes the plasma frequency and \gamma > 0
the damping parameter. Usually, the parameter \gamma is a very small number. So \varepsilon D(\omega ) also has
a small imaginary part. Note that when \omega < \omega p, the permittivity \varepsilon D has a negative real part.
Contrary to plasmonic particles, ordinary dielectric particles have positive real parts. Note
that, by (2.7), \lambda becomes frequency dependent.

Now we discuss the resonant behavior of the solution u when \varepsilon D is negative (or the particle
D is plasmonic). Recall that the solution u is represented as

(2.12) u = ui + \scrS D[\varphi ],

where the density \varphi satisfies the boundary integral equation

(2.13) (\lambda (\omega )I  - \scrK \ast 
D)[\varphi ] =

\partial ui

\partial \nu 

\bigm| \bigm| \bigm| 
\partial D
.

By the spectral decomposition (2.3) of \scrK \ast 
D, we have from (2.6) that

(2.14) u = ui +

\infty \sum 
j=1

(\partial u
i

\partial \nu , \varphi j)\scrH \ast (\partial D)

\lambda (\omega ) - \lambda j
\scrS D[\varphi j ].

Recall that \lambda j are eigenvalues of \scrK \ast 
D and they satisfy the condition that | \lambda j | < 1/2. When

\varepsilon D has a negative real part, we have | Re\{ \lambda (\omega )\} | < 1/2. Let \omega j be such that \lambda (\omega j) = \lambda j .

Then if \omega is close to \omega j and (\partial u
i

\partial \nu , \varphi j)\scrH \ast (\partial D) \not = 0, the function \scrS D[\varphi j ] in (2.14) will be greatly
amplified and dominates over other terms. As a result, the magnitude of the scattered field
u  - ui will show a pronounced peak at the frequency \omega j as a function of the frequency \omega .
This phenomenon is called the plasmonic resonance, and \omega j is called the plasmonic resonant
frequency and \scrS D[\varphi j ] the resonant mode.

Let us discuss how we can measure the resonant frequency \omega j or the eigenvalue \lambda j from
the far-field measurements. In fact, the far field for the solution  - \nabla u is not equal to the
true far field of the electromagnetic wave since the quasi-static approximation is valid only
in the vicinity of the particle D. But the polarization tensor M(\lambda ,D), which is introduced
in the quasi-static approximation, is useful when describing the far-field behavior of the true
scattered field.

We first represent M(\lambda ,D) in a spectral form. By (2.3), we have

M(\lambda ,D)lm =

\infty \sum 
j=1

(ym, \varphi j) - 1
2
, 1
2
(\varphi j , \nu l)\scrH \ast (\partial D)

\lambda (\omega ) - \lambda j
.
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As discussed in subsection 2.3, the small particle D can be considered as a point dipole source
located at x0 \in \BbbR 2, and its dipole moment is given by pD =M(\lambda ,D)( - \nabla ui). We can see from
the above spectral representation that the dipole moment pD becomes resonant when \omega \approx \omega j .

Let \scrG k be the dyadic Green's function

\scrG k(x, y) = (k2I +\nabla \cdot \nabla )Gk(x, y),

where Gk(x, y) =  - i
4H

(1)
0 (k| x  - y| ) and k is the wave number. Then the (true) scattered

electric field Es is well approximated over the whole region as [6, 26]

Es \approx \scrG km(x, x0)pD.

So, if \omega \approx \omega j , then the amplitude of the scattered wave Es will be greatly enhanced. Therefore,
as a function of the frequency \omega , it will have local peaks from which we can recover the resonant
frequency \omega j (or the plasmonic eigenvalue \lambda j). More specifically, we measure the so-called
absorption cross-section \sigma a from the scattered field Es at the far-field region. In fact, this
quantity can be approximated as \sigma a \propto Im(pD) for a small plasmonic particle.

3. The forward problem. We consider a system composed of a dielectric particle and a
plasmonic particle embedded in a homogeneous medium. The target dielectric particle and the
plasmonic particle occupy, respectively, a bounded and simply connected domain D1 \subset \BbbR 2 and
D2 \subset \BbbR 2 of class \scrC 1,\alpha for some 0 < \alpha < 1. We denote the permittivity of the dielectric particle
D1 and the plasmonic particle D2 by \varepsilon 1 and \varepsilon 2, respectively. As before, the permittivity of
the background medium is denoted by \varepsilon m. So the permittivity distribution \varepsilon is given by

\varepsilon := \varepsilon 1\chi (D1) + \varepsilon 2\chi (D2) + \varepsilon m\chi (\BbbR 2\setminus (D1 \cup D2)).

As in subsection 2.4, the permittivity \varepsilon 2 of the plasmonic particle D2 depends on the operating
frequency and is modeled as

\varepsilon 2 = \varepsilon 2(\omega ) = 1 - 
\omega 2
p

\omega (\omega + i\gamma )
.

The total electric potential u satisfies the following equation:

(3.1)

\left\{                   

\nabla \cdot (\varepsilon \nabla u) = 0 in \BbbR 2\setminus (\partial D1 \cup \partial D2),

u| + = u|  - on \partial D1 \cup \partial D2,

\varepsilon m
\partial u

\partial \nu 

\bigm| \bigm| \bigm| 
+
= \varepsilon 1

\partial u

\partial \nu 

\bigm| \bigm| \bigm| 
 - 

on \partial D1,

(u - ui)(x) = O(| x|  - 1) as | x| \rightarrow \infty ,

where ui(x) is the electric potential for a given incident field as before.D
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3.1. Boundary integral formulation. We derive a layer potential representation of the
total field u to (3.1) in this section. We first denote by uD1 the total field resulting from the
incident field ui and the ordinary particle D1 (in the absence of the plasmonic particle D2).
Let us denote

\lambda Dj =
\varepsilon j + \varepsilon m

2(\varepsilon j  - \varepsilon m)
, j = 1, 2.

Then uD1 has the following representation [3]:

uD1(x) = ui(x) + \scrS D1

\bigl( 
\lambda D1Id - \scrK \ast 

D1

\bigr)  - 1
\biggl[ 
\partial ui

\partial \nu 1

\biggr] 
(x) for x \in \BbbR 2\setminus D1.

We next introduce the Green's function GD1(\cdot , y) for the medium with permittivity dis-
tribution \varepsilon D1\chi (D1) + \varepsilon m\chi (\BbbR 2\setminus D1). More precisely, GD1(\cdot , y) satisfies the equation

\nabla x \cdot 
\bigl( 
(\varepsilon D1\chi (D1) + \varepsilon m\chi (\BbbR 2\setminus D1))\nabla xGD1(x, y)

\bigr) 
= \delta (x - y).

Using GD1 , we define the layer potential \scrS D2,D1 by

\scrS D2,D1 [\varphi ](x) =

\int 
\partial D2

GD1(x, y)\varphi (y)d\sigma (y).

We also define

\scrA = \scrK \ast 
D2

 - \partial 

\partial \nu 2
\scrS D1

\bigl( 
\lambda D1Id - \scrK \ast 

D1

\bigr)  - 1 \partial \scrS D2 [\cdot ]
\partial \nu 1

.

It was proved in [9] that the solution u can be represented using \scrS D2,D1 and \scrA as shown
in the following lemma.

Lemma 3.1 (see [9]). The total electric potential u can be represented as follows:

(3.2) u = uD1 + \scrS D2,D1 [\psi ], x \in \BbbR 2\setminus D2,

where the density \psi satisfies

(3.3) (\lambda D2Id - \scrA ) [\psi ] =
\partial uD1

\partial \nu 2
.

3.2. Strong interaction regime and conformal transformation. We assume the following
condition on the sizes of the particles D1 and D2.

Condition 1. The plasmonic particle D2 has size of order one; the dielectric particle D1

has size of order \delta \ll 1.

Definition 3.1 (strong interaction regime). We say that the small dielectric particle D1 is in
the strong regime with respect to the plasmonic particle D2 if there exist positive constants C1

and C2 such that C1 < C2 and

C1\delta \leq dist(D1, D2) \leq C2\delta .D
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Definition 3.1 says that the dielectric particleD1 is closely located to the plasmonic particle
D2 with a separation distance of order \delta .

In our recent paper [9], the intermediate interaction regime is considered. The key obser-
vation is that, if we assume the distance between D1 and D2 is of order one, then the effect
of the small unknown particle D1 can be considered as a small perturbation. To see this, we
rewrite (3.3) in the form

(3.4) (\scrA D2,0 +\scrA D2,1) [\psi ] =
\partial uD1

\partial \nu 2
,

where

\scrA D2,0 = \lambda D2Id - \scrK \ast 
D2
,

\scrA D2,1 =
\partial 

\partial \nu 2
\scrS D1

\bigl( 
\lambda D1Id - \scrK \ast 

D1

\bigr)  - 1 \partial \scrS D2 [\cdot ]
\partial \nu 1

.(3.5)

It can be shown that the operator \scrA D2,1 is a small perturbation to the operator \scrA D2,0 [9],
and so the authors were able to apply the perturbation method for analyzing the plasmonic
resonance. However, in the strong interaction regime, the operator \scrA D2,1 is no longer small
compared to the latter. As a consequence, the perturbation theory is not applicable, and it
becomes challenging to analyze the interaction between the particles.

We now introduce a method to tackle this issue by using a conformal mapping technique.
Let B1 be a circular disk containing the dielectric particle D1 with radius r1 of order \delta . We
assume the plasmonic particle D2 is a circular disk with radius r2. For convenience, we denote
D2 by B2. We emphasize that the shape of D1 is unknown. We let d be the distance between
the two disks B1 and B2, i.e.,

d = dist(B1, B2).

By the assumption, d is of order \delta .
Let Rj be the reflection with respect to \partial Bj , and let p1 and p2 be the unique fixed

points of the combined reflections R1 \circ R2 and R2 \circ R1, respectively. Let n be the unit vector
in the direction of p2  - p1. We set (x, y) \in \BbbR 2 to be the Cartesian coordinates such that
p = (p1 + p2)/2 is the origin and the x-axis is parallel to n. Then one can see that p1 and
p2 can be written as

(3.6) p1 = ( - a, 0) and p2 = (a, 0),

where the constant a is given by

(3.7) a =

\surd 
d
\sqrt{} 
(2r1 + d)(2r2 + d)(2r1 + 2r2 + d)

2(r1 + r2 + d)
.

Then the center ci of Bi (i = 1, 2) is given by

(3.8) ci =
\Bigl( 
( - 1)i

\sqrt{} 
r2i + a2, 0

\Bigr) 
.D
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Define the conformal transformation \Phi by

\zeta = \Phi (z) =
z + a

z  - a
, z = x+ iy.

In other words,

z = \Phi  - 1(\zeta ) = a
\zeta + 1

\zeta  - 1
.

We also define
sj = ( - 1)j sinh - 1(a/rj), j = 1, 2,

and the two disks \widetilde B1 and \widetilde B2 by\widetilde B1 = \{ | \zeta | < \~rj\} , \~rj = exp(sj), j = 1, 2.

It can be shown that, in the \zeta -plane, the disks B1 and B2 are transformed to

\Phi (B1) = \widetilde B1 = \{ | \zeta | < \~r1\} 

and
\Phi (B2) = \BbbR 2 \setminus \widetilde B2 = \{ | \zeta | > \~r2\} .

One can check that \~r1 < 1 and \~r2 > 1. The exterior region \BbbR 2 \setminus B1 \cup B2 becomes a shell
region between \partial \widetilde B1 and \partial \widetilde B2 in the \zeta -plane:

\Phi (\BbbR 2 \setminus B1 \cup B2) = \widetilde B2 \setminus \widetilde B1 = \{ \~r1 < | \zeta | < \~r2\} .

To illustrate the geometry, in Figure 1 we show an example of the configuration of a system
of a small dielectric particle D1 and a plasmonic particle B2. We also show its transformed
geometry by the conformal map \Phi . We set \delta = 0.2, r1 = \delta , r2 = 1, and d = \delta .

It is worth mentioning that the shape of the transformed domain \widetilde D1 strongly depends on
the ratio between d and \delta but is independent of \delta itself. Suppose that d = c\delta for some c > 0.
If c is of order one, then the shape of \widetilde D1 is almost the same as that of D1. On the contrary,
if c is too small, then the shape of \widetilde D1 is highly distorted. See Figure 2.

3.3. Boundary integral formulation in the transformed domain. Let us define \~u(\zeta ) =
u(\Phi  - 1(\zeta )) and \~ui(\zeta ) = ui(\Phi  - 1(\zeta )). Then, since the mapping \Phi is conformal, \~u and \~ui are
harmonic in the \zeta -plane. Moreover, the transmission conditions for \~u are preserved. In fact,
the transformed potential \~u satisfies the following equations:

(3.9)

\left\{                           

\nabla \cdot (\~\varepsilon \nabla \~u) = 0 in \BbbR 2\setminus (\partial \widetilde D1 \cup \partial \widetilde D2),

\~u| + = \~u|  - on \partial \widetilde D1 \cup \partial \widetilde D2,

\varepsilon m
\partial \~u

\partial \nu 

\bigm| \bigm| \bigm| 
+
= \varepsilon 1

\partial \~u

\partial \nu 

\bigm| \bigm| \bigm| 
 - 

on \partial \widetilde D1,

\varepsilon 2
\partial \~u

\partial \nu 

\bigm| \bigm| \bigm| 
+
= \varepsilon m

\partial \~u

\partial \nu 

\bigm| \bigm| \bigm| 
 - 

on \partial \widetilde D2,

(\~u - \~ui)(\zeta ) = O(| \zeta  - (1, 0)| ) as \zeta \rightarrow (1, 0),D
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Original frame
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Figure 1. Original configuration (left) and one transformed by the conformal map \Phi (right).

-0.025 -0.015 -0.005

-0.01

0

0.01

Original frame

-0.09 0 0.09

-0.09

0

0.09

Transformed frame with d=5 

-0.4 0 0.4

-0.4

0

0.4

Transformed frame with d=0.5 

Figure 2. Original configuration (left), the one transformed with d = 5\delta (center), and the same but with
d = 0.5\delta (right). We set r1 = \delta , r2 = 1, and \delta = 0.01.

where the transformed permittivity distribution \~\varepsilon is given by

\~\varepsilon = \varepsilon 1\chi ( \widetilde D1) + \varepsilon 2\chi (\BbbR 2 \setminus \widetilde D2) + \varepsilon m\chi ( \widetilde D2 \setminus \widetilde D1).

Note that the transformed problem looks similar to the original one, even though the geometry
of the particles is of a completely different nature. As \delta goes to zero, the radii \~r1 and \~r2 have
the following asymptotic properties:

\~r1 = \~r01 +O(\delta ), \~r2 = 1 +O(\delta )

for some 0 < r01 < 1 independent of \delta . Hence, in contrast to the original problem, the

transformed boundaries \partial \widetilde B1 and \partial \widetilde B2 (= \partial \widetilde D2) are not close to touching. Moreover, theyD
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share the same center (see Figure 1). This will enable us to analyze more deeply the spectral
nature of the problem.

Now we represent the solution to the transformed problem using the layer potentials. By
applying a procedure similar to the one used for (3.5), we can obtain the following represen-
tation:

(3.10) \~u = (const.) + u \widetilde D1
+ \scrS \widetilde D2, \widetilde D1

[ \widetilde \psi ], x \in \BbbR 2.

Here, the constant term is needed to satisfy the last condition in (3.9). The density function\widetilde \psi satisfies the following boundary integral equation:

(3.11)
\bigl( 
\lambda D2I  - \widetilde \scrA \bigr) \bigl[ \widetilde \psi \bigr] = \partial \~u \widetilde D1

\partial \nu 2
,

where

\widetilde \scrA = \scrK \ast \widetilde D2
 - \partial 

\partial \nu 2
\scrS \widetilde D1

\Bigl( 
\lambda D1I  - \scrK \ast \widetilde D1

\Bigr)  - 1 \partial \scrS \widetilde D2
[\cdot ]

\partial \nu 1
,(3.12)

\~u \widetilde D1
= \~ui + \scrS \widetilde D1

\Bigl( 
\lambda D1I  - \scrK \ast \widetilde D1

\Bigr)  - 1 \Bigl[ \partial \~ui
\partial \nu 1

\Bigr] 
.(3.13)

Lemma 3.2. The following relation between \scrA and \widetilde \scrA holds:

(3.14) (\phi ,\scrA [\psi ])\scrH \ast (\partial D2) = (\widetilde \phi , \widetilde \scrA [ \widetilde \psi ])\scrH \ast (\partial \widetilde D2)
,

where \phi , \psi \in \scrH \ast (\partial D2) and \widetilde \phi = \phi \circ \Phi  - 1, \widetilde \psi = \psi \circ \Phi  - 1.

Proof. By the conformality of the map \Phi , the single-layer potentials \scrS D2 [\phi ] and \scrS \widetilde D2
[\widetilde \phi ]\circ \Phi 

are identical up to an additive constant, whence (3.14) follows.

3.4. Computation of the operator \widetilde \bfscrA and its spectral properties. Here we compute the
operator \widetilde \scrA . Note that \widetilde \scrA is an operator which maps \scrH \ast (\partial \widetilde D2) onto \scrH \ast (\partial \widetilde D2). Since \partial \widetilde D2 is a
circle, we use the Fourier basis for \scrH \ast (\partial \widetilde D2). Let (r, \theta ) be the polar coordinates in the \zeta -plane,
i.e., \zeta = rei\theta . We define

\varphi c
n(\theta ) = cosn\theta , \varphi s

n(\theta ) = sinn\theta .

The following proposition holds.

Proposition 3.1. We have

\widetilde \scrA [\varphi c
n](\zeta ) =

\infty \sum 
m=1

 - \~r
 - (n+m)
2

4\pi n
(M cc

nm(\lambda D1 ,
\widetilde D1) cosm\theta +M cs

nm(\lambda D1 ,
\widetilde D1) sinm\theta )(3.15)

and

\widetilde \scrA [\varphi s
n](\zeta ) =

\infty \sum 
m=1

 - \~r
 - (n+m)
2

4\pi n
(M sc

nm(\lambda D1 ,
\widetilde D1) cosm\theta +M ss

nm(\lambda D1 ,
\widetilde D1) sinm\theta )(3.16)

for n \not = 0.D
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Proof. When D is a circular disk of radius r0, it is known that (see, for example, [3])

\scrK \ast 
D[\phi ] =

1

4\pi r0

\int 
\partial D

\phi d\sigma .

Since \partial \widetilde D2 is a circle and any function belonging to \scrH \ast (\partial \widetilde D2) has a zero mean, \scrK \ast \widetilde D2
= 0 on

\scrH \ast (\partial \widetilde D2). Therefore, we only need to consider the second term in \widetilde \scrA . It is easy to see that

\scrS \widetilde D2

\bigl[ 
\varphi c
n

\bigr] 
(r, \theta ) =  - \~r - n+1

2

2n
rncosn\theta ,(3.17)

\scrS \widetilde D2

\bigl[ 
\varphi s
n

\bigr] 
(r, \theta ) =  - \~r - n+1

2

2n
rnsinn\theta (3.18)

for 0 \leq r \leq \~r2. Thus, we have

\widetilde \scrA [\varphi c
n](\zeta ) =  - \~r - n+1

2

2n

\partial 

\partial \nu 2

\int 
\partial \widetilde D1

G(\zeta , \zeta \prime )
\Bigl( 
\lambda D1I  - \scrK \ast \widetilde D1

\Bigr)  - 1
\biggl[ 
\partial 

\partial \nu 1
Re\{ Pn\} 

\biggr] 
(\zeta \prime ) d\sigma (\zeta \prime ).(3.19)

It is known that [1]

G(x, y) =
\infty \sum 

m=1

( - 1)

2\pi m

cos(m\theta x)

rmx
rmy cos(m\theta y) +

( - 1)

2\pi m

sin(m\theta x)

rmx
rmy sin(m\theta y), | x| < | y| ,

where (rx, \theta x) and (ry, \theta y) are the polar coordinates of x and y, respectively. Then, by letting

x = \zeta and y = \zeta \prime \in \partial \widetilde D2, we get

\widetilde \scrA [\varphi c
n](\zeta ) =

\infty \sum 
m=1

 - \~r
 - (n+m)
2

4\pi n
cosm\theta 

\int 
\partial \widetilde D1

Re\{ Pm\} 
\Bigl( 
\lambda D1I  - \scrK \ast \widetilde D1

\Bigr)  - 1
\biggl[ 
\partial 

\partial \nu 1
Re\{ Pn\} 

\biggr] 
(\zeta \prime ) d\sigma (\zeta \prime )

 - \~r
 - (n+m)
2

4\pi n
sinm\theta 

\int 
\partial \widetilde D1

Im\{ Pm\} 
\Bigl( 
\lambda D1I  - \scrK \ast \widetilde D1

\Bigr)  - 1
\biggl[ 
\partial 

\partial \nu 1
Re\{ Pn\} 

\biggr] 
(\zeta \prime ) d\sigma (\zeta \prime ).

Finally, from the definition of the CGPTs (see (2.10)), (3.15) follows. Similarly, one can derive
(3.16).

Let us define

Mnm =Mnm(\lambda D1 ,
\widetilde D1) =

\Biggl( 
M cc

nm(\lambda D1 ,
\widetilde D1) M cs

nm(\lambda D1 ,
\widetilde D1)

M sc
nm(\lambda D1 ,

\widetilde D1) M ss
nm(\lambda D1 ,

\widetilde D1)

\Biggr) 
and

(3.20) \widetilde Mnm =  - \~r
 - (n+m)
2

4\pi n
Mnm(\lambda D1 ,

\widetilde D1).

In view of Proposition 3.1, we see that the operator \widetilde \scrA can be represented in a block matrix
form as follows:

(3.21) \widetilde \scrA =

\left[     
\widetilde M11

\widetilde M12
\widetilde M13 \cdot \cdot \cdot \widetilde M21

\widetilde M22 \cdot \cdot \cdot \cdot \cdot \cdot \widetilde M31 \cdot \cdot \cdot \cdot \cdot \cdot 
\cdot \cdot \cdot 

\right]     .
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Recall that \widetilde D1 is contained in the disk \widetilde B1 with radius \~r1. One can derive that

| Mnm(\lambda D1 ,
\widetilde D1)| \leq C\~rn+m

1

for some positive constant C [3]. Therefore,

(3.22) | \widetilde Mnm(\lambda D1 ,
\widetilde D1)| \leq C

\biggl( 
\~r1
\~r2

\biggr) n+m

.

This decay property of \widetilde Mnm is crucial for our conformal mapping technique. An important
consequence is that the operator \widetilde \scrA can be efficiently approximated by finite-dimensional matri-
ces obtained through a standard truncation procedure. Here we remark that \widetilde \scrA = O((\~r1/\~r2)

2).
If the particle D1 is in the strong regime, then we may write d = c\delta for some c > 0. If c

is of order one, the ratio \~r1
\~r2

is relatively small (but regardless of how small \delta is). In section 4
we apply the eigenvalue perturbation method to analyze the spectral nature more explicitly
when we consider the related inverse problem.

3.5. Spectral decomposition of \bfscrA and the scattered field. It is clear that \widetilde \scrA (or \scrA ) is
compact. Moreover it can be shown that \widetilde \scrA is self-adjoint in \scrH \ast (\partial \widetilde D2).

Lemma 3.3. The operator \widetilde \scrA is self-adjoint in \scrH \ast (\partial \widetilde D2), i.e.,

(\widetilde \phi , \widetilde \scrA [ \widetilde \psi ])\scrH \ast (\partial \widetilde D2)
= ( \widetilde \psi , \widetilde \scrA [\widetilde \phi ])\scrH \ast (\partial \widetilde D2)

for \widetilde \phi , \widetilde \psi \in \scrH \ast (\partial \widetilde D2).

Proof. For simplicity, we consider the case when \widetilde \phi = \varphi c
m and \widetilde \psi = \varphi c

n only. The other
cases can be done similarly. From (3.17), we have \scrS \widetilde D2

[\varphi c
n]| \partial \widetilde D2

=  - \~r2
2n\varphi 

c
n. Then, using (3.20)

and (3.21), we have

(\varphi c
n, \widetilde \scrA [\varphi c

m])\scrH \ast (\partial \widetilde D2)
=  - (\varphi c

n,\scrS \partial \widetilde D2

\widetilde \scrA [\varphi c
m]) - 1

2
, 1
2

=  - \~r
 - (n+m - 1)
2

8nm
Mnm(\lambda D1 ,

\widetilde D1).

So we get the conclusion.

Thus \widetilde \scrA admits the following spectral decomposition:

\widetilde \scrA =
\infty \sum 
n=1

\lambda j \widetilde \psi n \otimes \widetilde \psi n,

where \{ (\lambda n, \widetilde \psi n) : n \geq 1\} is the set of its eigenvalue-eigenfunction pairs. We order the eigen-
values in such a way that | \lambda j | is decreasing and tends to 0 as j \rightarrow \infty . We remark that all the
eigenvalues \{ \lambda j : j \geq 1\} lie in the interval ( - 1/2, 1/2). Moreover, they can be numerically

approximated by the eigenvalues of a finite truncation of the infinite matrix \widetilde \scrA .
Thanks to (3.14), if we let \psi n = \widetilde \psi n \circ \Phi , then we obtain

(3.23) \scrA =

\infty \sum 
n=1

\lambda j\psi n \otimes \psi n.
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It is also worth mentioning that the orthogonality of basis \{ \psi n\} is also preserved.
Using the spectral representation formula (3.23), we can derive the following result.

Theorem 3.1. Assume that Condition 1 holds and that D2 is in the strong interaction
regime. Then the scattered field usD2

= u - uD1 by the plasmonic particle D2 has the following
representation:

usD2
= \scrS D2,D1 [\psi ],

where \psi satisfies

\psi =

\infty \sum 
j=1

\bigl( 
\nabla ui(z) \cdot \nu , \psi j

\bigr) 
\scrH \ast (\partial D2)

\psi j +O(\delta 2)

\lambda D2  - \lambda j
.

As a corollary, we obtain the following asymptotic expansion of the scattered field u - ui.

Theorem 3.2. The following far-field expansion holds:

(u - ui)(x) = \nabla ui(z) \cdot M(\lambda D1 , \lambda D2 , D1, D2)\nabla G(x, z) +O

\biggl( 
\delta 3

dist(\lambda D2 , \sigma (\scrA ))

1

| x| 2

\biggr) 
,

as | x| \rightarrow \infty . Here, z is the center of mass of D2 and M(\lambda D1 , \lambda D2 , D1, D2) is the polarization
tensor satisfying

(3.24) M(\lambda D1 , \lambda D2 , D1, D2)l,m =
\infty \sum 
j=1

(\nu l, \psi j)\scrH \ast (\partial D2)(\psi j , xm) - 1
2
, 1
2
+O(\delta 2)

\lambda D2  - \lambda j

for l,m = 1, 2.

We can introduce the resonant frequency \omega j for the system of two particles D1 \cup D2 as
in subsection 2.4. From the above far-field expansion of the scattered field, it is clear that
when we vary the frequency \omega , at certain frequency \omega such that \lambda D2(\omega ) \approx \lambda j for some j which
satisfies the condition that

(\nu l, \psi j)\scrH \ast (\partial D2)(\psi j , xm) - 1
2
, 1
2
\not = 0,

the scattered field will show a sharp peak, which corresponds to the excitation of a plasmonic
resonance. Such a frequency is called the (plasmonic) resonant frequency for the system of
two particles, which is different from that for the single plasmonic particle D2. The difference
is called the shift of resonant frequency. This shift is due to the interaction of the target
particle with the plasmonic particle. As discussed in subsection 2.4, the resonant frequencies
\omega j of the two-particle system can also be measured from the far field. They also determine \lambda j ,
which are eigenvalues of the operator \scrA . In the next section, we discuss how to reconstruct
the shape of D1 from these recovered eigenvalues.

4. The inverse problem. In this section, we discuss the inverse problem to reconstruct
the shape of the small unknown particle D1 by using the resonances of the plasmonic particle
D2 which interacts with D1. We assume the location of D1 and the permittivity \varepsilon 1 are known
for simplicity. As explained in the previous section, we can measure the eigenvalues \lambda j for
j = 1, 2, . . . , J from the far-field measurements. Since the single set of the measurementD
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data is not enough for the reconstruction, we shall make measurements for many different
configurations of the two-particle system. In subsection 4.1, we show how the CGPTs of the
unknown particle \widetilde D1 can be reconstructed from the measurements of \lambda j . In subsection 4.2,

we explain the optimal control algorithm to recover the shape of \widetilde D1 from the CGPTs. In
this way, we reconstruct the transformed shape \widetilde D1 first. Once we find \widetilde D1, the original shape
of D1 can be easily recovered by using the mapping \Phi . In subsection 4.3, we provide several
numerical examples.

4.1. Reconstruction of CGPTs. In this subsection, we propose an algorithm to recon-
struct the CGPTs from measurements of the eigenvalues \lambda j . For ease of presentation, we
only consider the first two largest eigenvalues, \lambda 1 and \lambda 2. We denote their measurements
by \scrP 1 and \scrP 2, respectively. Note that a single measurement of (\scrP 1,\scrP 2) typically yields very
poor reconstruction of the CGPTs due to the lack of information. To overcome this issue,
we need to measure the eigenvalues for different configurations of the two particles. Recall
that the target particle contains the origin. We can rotate it around the origin multiple times
and measure (\scrP 1,\scrP 2) for each configuration. The CGPTs for the target particle after each
rotation are related in the following way.

Define

N (1)
m,n(\lambda ,D) = (M cc

m,n  - M ss
m,n) + i(M cs

m,n +M sc
m,n),

N (2)
m,n(\lambda ,D) = (M cc

m,n +M ss
m,n) + i(M cs

m,n  - M sc
m,n)

and let R\theta D = \{ ei\theta x : x \in D\} , \theta \in [0, 2\pi ). Then for all integers m,n and all angle parameters
\theta , we have [1]

N (1)
m,n(R\theta D) = ei(n+m)\theta N (1)

m,n(D), N (2)
m,n(R\theta D) = ei(n - m)\theta N (2)

m,n(D).

Let us write d = c\delta for some c > 0. As discussed in subsection 3.2, if c is of order one, then
the deformation of the shape \widetilde D1 from D1 is not so strong. So, if the domain D1 is rotated
by an angle \theta , then the transformed domain will also be rotated by the same amount. So we

may (approximately) identify \widetilde R\theta D1 with R\theta 
\widetilde D1.

Measuring \scrP j for multiple rotation angles \theta i for R\theta 
\widetilde D1 will yield a nonlinear system of

equations that will allow the recovery of the CGPTs associated with \widetilde D1. From the recovered
CGPTs, we will reconstruct the shape of \widetilde D1. Here, we only consider the shape reconstruction
problem. Nevertheless, by using the CGPTs associated with \widetilde D1, it is possible to reconstruct
the permittivity \varepsilon 1 of \widetilde D1 in the case it is not a priori given [1].

In view of (3.21) and (3.22), using a standard perturbation method, the asymptotic ex-
pansion of the eigenvalue \lambda j , j = 1, 2, is given by

\lambda j = \lambda 0j + \lambda 1j + \lambda 2j + \cdot \cdot \cdot , where \lambda kj = O
\bigl( 
(\~r1/\~r2)

k+2 \bigr) .(4.1)

Each term on the right-hand side of the above expansion can be computed explicitly. Although
we omit the explicit expressions, we mention that they are nonlinear and depend on CGPTsD
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in the following way:

\lambda 0j = \lambda 0j (M11),

\lambda 1j = \lambda 1j (M11,M12),

\lambda 2j = \lambda 2j (M11,M12,M22,M13),

... =
...

\lambda kj = \lambda kj (\cup m+n\leq k+2\{ Mmn\} ).

Suppose we have measurements \scrP 1(\theta ) and \scrP 2(\theta ) for 11 different rotation angles \theta 1, \theta 2, . . . ,
\theta 11 of the unknown particle \widetilde D1. We can reconstructMnm approximately form+n \leq 5. Recall

that Mmn =M\intercal 
nm. We look for a set of matrices \{ M (1)

nm\} m+n\leq 5 satisfying [M
(1)
nm]\intercal =M

(1)
mn and

the following nonlinear system: for j = 1, 2,

\scrP j(\theta 1) =

3\sum 
l=0

\lambda lj

\Bigl( 
\cup m+n\leq l+2 \{ M (1)

nm(R\theta 1
\widetilde D1)\} 

\Bigr) 
,

\scrP j(\theta 2) =
3\sum 

l=0

\lambda lj

\Bigl( 
\cup m+n\leq l+2 \{ M (1)

nm(R\theta 2
\widetilde D1)\} 

\Bigr) 
,

... =
...

\scrP j(\theta 11) =

3\sum 
l=0

\lambda lj

\Bigl( 
\cup m+n\leq l+2 \{ M (1)

nm(R\theta 11
\widetilde D1)\} 

\Bigr) 
.

We note that the above equations have 22 independent parameters. They can be solved by
using standard optimization methods. We expect that

Mnm =M (1)
nm +O

\bigl( 
(\~r1/\~r2)

6 \bigr) for m+ n \leq 5.

The above scheme can be easily generalized to reconstruct the higher order CGPTs Mnm.
This requires more measurement data (\scrP 1,\scrP 2) from more rotations. Let k \geq 2. One can see

that (using the symmetry [M
(k)
nm]\intercal = M

(k)
mn) the set of GPTs Mmn satisfying m+ n \leq 4k + 1

contains ek independent parameters, where ek is given by

ek = 16k2 + 6k.

Therefore, we need ek/2 pairs of (\scrP 1,\scrP 2) to reconstruct these GPTs. Let \{ M (k)
nm\} m+n\leq 4k+1

be the set of matrices satisfying [M
(k)
nm]\intercal =M

(k)
mn and the following system of equations:

\scrP j(\theta i) =
k - 1\sum 
l=0

\lambda lj

\Bigl( 
\cup m+n\leq l+2 \{ M (k)

nm(R\theta i
\widetilde D1)\} 

\Bigr) 
, i = 1, . . . , ek, j = 1, 2.

Then we have
Mnm =M (k)

nm +O
\bigl( 
(\~r1/\~r2)

4k+2 \bigr) for m+ n \leq 4k + 1.D
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4.2. Optimal control approach. Now, in order to recover the shape of \widetilde D1 from the CG-
PTs Mmn, we can minimize the energy functional

(4.2) \scrJ (l)
c [B] :=

1

2

\sum 
H,F\in \{ c,s\} 

\sum 
n+m\leq k

\bigm| \bigm| \bigm| MHF
mn (\lambda D1 , B) - MHF

mn (\lambda D1 ,
\widetilde D1)
\bigm| \bigm| \bigm| 2 .

We apply the gradient descent method for the minimization. We need the shape derivative

of the functional \scrJ (l)
c [B]. For a small \eta > 0, let B\eta be an \eta -deformation of B; i.e., there is a

scalar function h \in \scrC 1(\partial B), such that

\partial B\eta := \{ x+ \eta h(x)\nu (x) : x \in \partial B\} .

According to [1, 2, 5], the perturbation of the CGPTs due to the shape deformation is given
by

MHF
nm (\lambda D1 , B\eta ) - MHF

nm (\lambda D1 , B)

= \eta (k\lambda D1
 - 1)

\int 
\partial B
h(x)

\Biggl[ 
\partial u

\partial \nu 

\bigm| \bigm| \bigm| 
 - 

\partial v

\partial \nu 

\bigm| \bigm| \bigm| 
 - 
+

1

k\lambda D1

\partial u

\partial T

\bigm| \bigm| \bigm| 
 - 

\partial v

\partial T

\bigm| \bigm| \bigm| 
 - 

\Biggr] 
(x) d\sigma (x) +O(\eta 2),(4.3)

where

(4.4) k\lambda D1
= (2\lambda D1 + 1)/(2\lambda D1  - 1),

and u and v are, respectively, the solutions to the following transmission problems:

(4.5)

\left\{               

\Delta u = 0 in B \cup (\BbbR 2\setminus B) ,

u| +  - u|  - = 0 on \partial B ,

\partial u

\partial \nu 

\bigm| \bigm| \bigm| 
+
 - k\lambda D1

\partial u

\partial \nu 

\bigm| \bigm| \bigm| 
 - 
= 0 on \partial B ,

(u - H)(x) = O(| x|  - 1) as | x| \rightarrow \infty 

and

(4.6)

\left\{               

\Delta v = 0 in B \cup (\BbbR 2\setminus B) ,

k\lambda D1
v| +  - v|  - = 0 on \partial B ,

\partial v

\partial \nu 

\bigm| \bigm| \bigm| 
+
 - \partial v

\partial \nu 

\bigm| \bigm| \bigm| 
 - 
= 0 on \partial B ,

(v  - F )(x) = O(| x|  - 1) as | x| \rightarrow \infty .

Here, \partial /\partial T is the tangential derivative. In the case of M cs
nm, for example, we put H =

Re\{ Pn\} = rn cosn\theta and F = Im\{ Pm\} = rn sinn\theta . The other cases can be handled similarly.
Let

wHF
m,n(x) = (k\lambda D1

 - 1)

\Biggl[ 
\partial u

\partial \nu 

\bigm| \bigm| \bigm| 
 - 

\partial v

\partial \nu 

\bigm| \bigm| \bigm| 
 - 
+

1

k\lambda D1

\partial u

\partial T

\bigm| \bigm| \bigm| 
 - 

\partial v

\partial T

\bigm| \bigm| \bigm| 
 - 

\Biggr] 
(x), x \in \partial B .
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The shape derivative of \scrJ (l)
c at B in the direction of h is given by

\langle dS\scrJ (l)
c [B], h\rangle =

\sum 
H,F\in \{ c,s\} 

\sum 
m+n\leq k

\delta HF
N \langle wHF

m,n, h\rangle L2(\partial B) ,

where
\delta HF
N =MHF

nm (\lambda D1 , B) - MHF
nm (\lambda D1 ,

\widetilde D1) .

By using the shape derivatives of the CGPTs, we can get an approximation for the matrix\bigl( \widetilde Mnm(\lambda D1 , B\eta )
\bigr) N
n,m=1

for the slightly deformed shape. Next, the shape derivative of \lambda Nj (B)
can be computed by using the standard eigenvalue perturbation theory. Finally, by applying

a gradient descent algorithm, we can minimize, at least locally, the energy functional \scrJ (l)
c .

Then we get the shape of the original particle D1 using D1 = \Phi  - 1( \widetilde D1).

4.3. Numerical examples. In this subsection, we support our theoretical results by nu-
merical examples. In what follows, we set \delta = 0.001. We also assume that B1 and B2 are disks
of radii r1 = \delta and r2 = 1, respectively, and they are separated by a distance d = 5\delta . Then
the ratio \~r1/\~r2 between the transformed radii is approximately 0.127. Note that the ratio
is rather small but much larger than the small parameter \delta . We suppose that the material
parameter \varepsilon 1 of D1 is known and to be given by \varepsilon 1 = 3, and so it holds that \lambda D1 = 1.

We rotate the unknown particle D1 by the angle \theta i, i = 1, 2, . . . , 11, and get the measure-
ment pair (\scrP 1(\theta i),\scrP 2(\theta i)) for each rotation \theta i, where \theta i is given by

\theta i =
2\pi 

11
(i - 1), i = 1, 2, . . . , 11.

We mention that, as discussed in [9], we can measure (\scrP 1,\scrP 2) from the local peaks of the
plasmonic resonant far field.

Figure 3 shows the shift in the plasmonic resonance. In the absence of the dielectric
particle D1, the local peak occurs only at \lambda D2 = 0. If the particle D1 is presented in a strong
regime, then many local peaks appear. By measuring the first two largest values of \lambda D2 at
which a local peak appears, we get (\scrP 1,\scrP 2) approximately.

From measurements of (\scrP 1,\scrP 2), we recover the contracted GPTs using the algorithm de-
scribed in subsection 4.1. We then minimize functional (4.2) to reconstruct an approximation
of \widetilde D1. Finally, we use D1 = \Phi  - 1( \widetilde D1) to get the shape of D1. We consider the case of D1

being a flower-shaped particle and show comparison between the target shapes and the re-
constructed ones, as shown in Figure 4. We recover the first contracted GPTs up to order 5,
i.e., Mmn for m+ n \leq 5. We take as an initial guess the equivalent ellipse to \widetilde D1, determined
from the recovered first order polarization tensor. The required number of iterations is 30. It
is clear that they are in good agreement.

5. Conclusion. In this paper, we have made the mathematical foundation of near-field
sensing complete. We have considered the sensing of a small target particle using a plasmonic
particle in the strong interaction regime, where the distance between the two particles is com-
parable to the small size of the target particle. We have introduced a conformal mapping
which transforms the two-particle system into a shell-core structure, in which the inner dielec-
tric core corresponds to the target object. Then we have analyzed the shift in the resonanceD
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Figure 3. The magnitude of the polarization tensor. The dotted line (resp., solid line) represents the case
when the dielectric particle D1 is absent (resp., present). We set Im\{ \lambda 2\} = 0.003.

0
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Figure 4. Comparison between the original shape (gray) of the particle D1 and the reconstructed one
(black). The iteration number is 30.

frequencies due to the presence of the inner dielectric core. We have shown that this shift
encodes information on the contracted polarization tensors of the core, from which one can
reconstruct its shape, and hence the target object. It is worth mentioning that although we
considered only the two-dimensional case in this paper, our conformal mapping approach can
be extended to the three-dimensional case. Although the Laplacian is not preserved in 3D,
there is a nice way to overcome this difficulty [27]. The extension to the 3D case will be the
subject of a forthcoming paper.D
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