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ABSTRACT
Bike sharing systems are a popular form of sustainable and afford-
able transport that has been introduced to cities around the world
in recent years. Nevertheless, designing these systems to meet the
requirements of the operators and also satisfy the demand of the
users, is a complex problem. In this paper we focus on the recently
introduced bike sharing system in the city of Edinburgh and use
data analytics combined with formal modelling approaches to in-
vestigate the current behaviour and possible future behaviour of
the system. Specifically we use a spatio-temporal logic, SSTL (the
signal spatio-temporal logic), to formally characterise properties
of the captured system, and through this identify potential prob-
lems as user demand grows. In order to investigate these problems
further we use the CARMA modelling language and tool suite to
construct a stochastic model of the system to investigate possible
future scenarios, including decentralised redistribution. This model
is parameterised and validated using data from the operational
system.

CCS CONCEPTS
• Computing methodologies → Modeling and simulation;
Agent / discrete models; • Theory of computation→Modal and
temporal logics; • Applied computing→ Transportation.
KEYWORDS
SSTL; model checking; bike-sharing; latent demand; decentralised
redistribution; discrete simulation; agent-based simulation
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1 INTRODUCTION
In the last decade there has been a significant increase in the num-
ber of bike-sharing systems (BSS) deployed around the world [11].
These systems are conceptually very simple: a number of bike sta-
tions are distributed over a geographical region or city. Each station
has the capacity to store bicycles and some form of authorised
release system which allows users to take a bike, make a journey
and return the bike to another station. In most cases users pay for
the service, but a variety of different funding models are deployed,
ranging from a one-off membership fee, to a per minute charge per
journey. From the operator’s point of view, in addition to the initial
investment in the bikes and station infrastructure, there are also op-
erational costs associated with bike redistribution. This is because
in most cities the BSS does not achieve a natural equilibrium, lead-
ing to imbalance in the system. For example, users are much more
reluctant to make journeys uphill than down. If left unaddressed
this imbalance can lead to user dissatisfaction as they are unable to
make a planned journey, either because a bike is not available to
start their journey or because a parking slot is not available in the
destination station to allow them to complete their journey. Bike
redistribution is expensive, and also decreases the sustainability
of the BSS which is often offered as a "green" alternative form of
transport.

Several research problems associated with BSS have been ex-
plored in the literature, including policy design [21, 32], intelli-
gent bike redistribution [8, 16, 26, 36], inventory level optimization
[9, 30, 34], and user journey planning [14, 38]. In this paper we
focus on the redistribution problem and investigate a decentralised
approach to bike redistribution based on user incentives. The strat-
egy we use is similar to the ones found in [1, 33] as we use the same
parameters, alternate station search radius and user cooperation, to
abstract from a specific implementation. We evaluate this strategy
on a significantly smaller system where stochastic effects have a
high influence. Our main contribution is to provide a novel perspec-
tive by using spatio-temporal logical expressions to evaluate the
performance. Together with visualisation on a geographical map,
this allows for identification of low-performing stations within the
system at first sight.

Our approach is a combination of data analytics, spatio-temporal
model checking and stochastic modelling. Using data from the
recently installed Edinburgh BSS we use spatio-temporal model
checking to interrogate the data and investigate problems of user
dissatisfaction arising from thwarted journeys. Desirable properties
of the system, such as "there will always be a bike and slot available
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at the station within a specified time interval" or undesirable ones
such as "the station will always eventually be full (empty) over the
course of a day", can be expressed in the logic SSTL (the signal
spatio-temporal logic) and checked automatically against logging
data. This analysis can reveal when there is potential dissatisfaction
amongst users because it will not be possible to start or complete
desired journeys. In order to investigate this further we construct
a stochastic spatio-temporal model of the system. Unlike the data,
the model allows us to make modifications to the system and test
the impact on the operation of the BSS as well as levels of user sat-
isfaction/dissatisfaction. We use the CARMA (Collective Adaptive
Resource-sharing Markovian Agents) modelling language and as-
sociated tools to construct our model. In this model stations, bikes
and users are modelled as interacting agents. Using trajectories
generated from the model now, rather than the operational system,
we use the same SSTL formulas to interrogate the behaviour of
the modified BSS and draw conclusions about which measures are
most likely to be beneficial to both users and operators.

2 BACKGROUND
In this section we introduce some background information about
the Edinburgh BSS, and fundamental concepts and notation for the
logic SSTL and the modelling language CARMA, which we deploy
in our investigation of the system.

2.1 Edinburgh Cycle Hire
The Edinburgh Cycle Hire (ECH) system was introduced into the
city of Edinburgh in September 2018 with about 15 stations. Since
then it has experienced significant growth to just under 90 stations
in December 2019. During that time, the operator periodically added
stations in and around the city and subsequently removed some
based on the new usage statistics. This results in a high variance
in station number and positions, even within the same month, and
makes a study over multiple months very difficult. We chose one
month, August 2019, since the festival period in Edinburgh during
this month puts an interesting load on the scheme. The population
of the city usually doubles as people visit the city for a multitude
of events, imposing major challenges for transport providers.

Our analysis is based on two historic datasets with data collected
from 1st to 31st August 2019. The first (“Trips Data”) is accessible on
the ECHwebsite1 [10]. It consists of one entry for each trip showing
start time and location, end time and location, and duration. Only
trips with a duration greater than one minute are included. This
set does not include the capacities of the stations, which is crucial
information as it limits the performance. Thus, an additional dataset
(“Availability Data”) was requested from the operator of ECH. This
contains the number of available bikes and free slots for each station
measured every minute. It is important to note that the Trips Data
does not contain the redistributions done by the operator, while
the Availability Data does contain them implicitly as changes of
the number of available bikes/free slots.

1As of January 2020, the last day is missing for each month. For this analysis, the
operator provided the complete sets separately.

2.2 Signal Spatio-Temporal Logic (SSTL)
The spatio-temporal logic, SSTL, was introduced in [27] and inter-
ested readers can find more detail in that reference. Here we aim to
present the main features of the logic and an intuitive understand-
ing of how to read and understand formulas in the logic. SSTL is a
spatial extension of Signal Temporal Logic (STL) [25], a temporal
logic suitable for describing properties of real-valued signals. The
signals are defined by inequalities over attribute values associated
with locations. Here we assume that the signals are based on the
number of bikes or slots available in a BSS. Thus the underlying
model is a spatial population model which is comprised of a num-
ber of locations, organised as a finite weighted undirected graph
𝐺 = (𝐿, 𝐸,𝑤), where 𝐿 is a set of nodes, 𝐸 a set of connections or
edges and 𝑤 ∶ 𝐸 → R≥0 is the cost or weight associated with an
edge. In our case the bike stations are the locations, and the weights
are the distances between them. Each location is assumed to have
a finite set of possible states recording the number of bikes/slots
available, and the state of the system at any given time is the vector
of population values, one for each location. Such a spatial model
with values associated with each location can be constructed di-
rectly from data or from a spatio-temporal model constructed in
a formalism such as CARMA. When we consider the evolution of
the model over time, we can construct a spatio-temporal trajectory,
𝜎 , recording the state of the system at each time step.

SSTL allows us to express properties of such a spatial population
model in a formal way. Its syntax is given by:

𝜑 ∶∶= ` ⋃︀ ¬𝜑 ⋃︀ 𝜑1 ∨ 𝜑2 ⋃︀ 𝜑1 𝒰(︀𝑡1,𝑡2⌋︀ 𝜑2 ⋃︀ �(︀𝑤1,𝑤2⌋︀ 𝜑 ⋃︀ 𝜑1𝒮(︀𝑤1,𝑤2⌋︀𝜑2

The SSTL atomic proposition (or basic property) ` is of the form ` ≡
(𝑓 ≥ 0), 𝑓 ∶ R𝑛 → R, an inequality on expressions over population
counts, given in the spatio-temporal trajectory. Negation ¬ and
disjunction ∨ are the standard boolean operators and 𝜑1 𝒰(︀𝑡1,𝑡2⌋︀𝜑2
is the bounded until operator. This temporal operator is used to
verify that the property 𝜑2 will be satisfied at some time instant in
the interval (︀𝑡1, 𝑡2⌋︀ and that at all preceding time instants 𝜑1 holds.
SSTL introduces two spatial operators: the bounded somewhere
operator �

(︀𝑤1,𝑤2⌋︀ and the bounded surround operator 𝒮
(︀𝑤1,𝑤2⌋︀,

with𝑤1,𝑤2 real values,𝑤1 ≤𝑤2. The bounded somewhere operator
requires that the property 𝜑 holds in a location reachable from
the current one with a cost𝑤,𝑤 ∈ (︀𝑤1,𝑤2⌋︀. The operator bounded
surround describes the property of being surrounded by a𝜑2-region,
while being in a 𝜑1-region: the formula 𝜑1𝒮(︀𝑤1,𝑤2⌋︀𝜑2 is true in a
location 𝑙 , if 𝑙 belongs to a set of locations 𝐴 where 𝜑1 holds, such
that its external boundary 𝐵+(𝐴) contains only locations satisfying
𝜑2. The external boundary of a subset of locations 𝐴 is defined as
𝐵
+(𝐴) ∶= {𝑙 ∈ 𝐿 ⋃︀ 𝑙 ∉ 𝐴 ∧ ∃𝑙 ′ ∈ 𝐴 s.t. (𝑙, 𝑙 ′) ∈ 𝐸}. Moreover, the

locations in the 𝐵
+(𝐴) have to be reached from location 𝑙 with

a cost 𝑤 , 𝑤 ∈ (︀𝑤1,𝑤2⌋︀. We will also find it convenient to use the
following derived syntax:

ℱ(︀𝑡1,𝑡2⌋︀𝜓 ∶= 𝑇 𝒰(︀𝑡1,𝑡2⌋︀𝜓 𝒢(︀𝑡1,𝑡2⌋︀𝜓 ∶= ¬ℱ(︀𝑡1,𝑡2⌋︀¬𝜓

whereℱ denotes the eventually operator and 𝒢 denotes the globally
operator.

Examples of SSTL formulas are provided in Section 3. SSTL is
equipped with both boolean and quantitative semantics; the former
returns the value true/false (B = {𝑇, 𝐹}) depending on whether



the observed trajectory satisfies the defined SSTL formula or not.
The latter semantics return a measure of the robustness of the
satisfaction or dissatisfaction. The formal definition of the boolean
semantics of a SSTL formula 𝜑 is rather technical and we refer the
interested reader to [27] for details. In our current work we use
only the boolean semantics.

Monitoring algorithms have been defined to evaluate the validity
of SSTL properties, given a spatio-temporal trajectory, working
inductively bottom-up on the parse tree of the formula. To make the
verification procedure tractably computable, the time-domain has to
be discretised, giving as output a piece-wise constant approximation
of the result.

In the study of stochastic systems we are generally interested
in evaluating the probability that given properties are satisfied; a
commonly used approach consists of estimating these values using
statistical methods on a set of trajectories [13]. Therefore, given a
SSTL property 𝜑 , we shift the analysis from a single trajectory 𝜎

to a set of trajectories Σ, assigning to each trajectory a truth value,
according to the boolean semantics. Let 𝛽(𝜎, 𝑙, 𝑡, 𝜑) denote the truth
value of 𝜑 with respect to the trajectory 𝜎 at location 𝑙 and time 𝑡 .
We can estimate the satisfaction probability 𝑝

∗ of the formula 𝜑 .
We define 𝒫𝛽 over the set of trajectories Σ, in terms of 𝛽 :

𝑝
∗ = 𝒫𝛽(Σ, 𝑙, 𝑡, 𝜑) =

⋃︀Σ⊺⋃︀
⋃︀Σ⋃︀

where ⋃︀Σ𝑇 ⋃︀ = {𝜎 ∈ Σ ⋃︀ 𝛽(𝜎, 𝑙, 𝑡, 𝜑) = 𝑇}.

2.3 CARMA
CARMA is a novel modelling agent-based language, designed to
study the collective behaviour of multi-agent systems acting and
interacting in an environment [24]. It is a stochastic process al-
gebra, meaning that the primitives of the language are agents (or
"processes") and actions, and actions are assumed to have an asso-
ciated duration which is governed by an exponential distribution.
In CARMA the model is formed as a composition of components
(agents) interacting in an environment, where each component
consists of one or more process and a store of attribute values. Each
process can undertake a set of actions either independently or as
communication with other processes in other components.

The language offers a rich set of communication primitives, and
exploits attributes to enable attribute-based communication [3]. For
example, for components that have a location attribute, attribute-
based communication allows communication to be limited to com-
ponents that are co-located [17], e.g. in our scenario a user can only
take a bike from a station if they are in the same location.

Specifically, CARMA supports both unicast and broadcast com-
munication, and permits locally synchronous, but globally asyn-
chronous communication. Distinct predicates (boolean expressions
over attributes) associated with senders and potential receivers are
used to filter possible interactions. Thus, a component can receive
a message only when its store satisfies the target predicate. Simi-
larly, a receiver also uses a predicate to identify accepted sources.
Thus a user can only return a bike to a station whose attribute indi-
cates that there is a free slot available. Predicts also act as guards
on actions. For example, in our model this can be used to allow
dissatisfied users to leave the system rather than wait indefinitely.

In CARMA, the environment captures the physical environment
and mediates agent interactions. Specifically the environment is
responsible for setting the rates at which actions are performed,
and probabilities of receiving a given message. So in our model, the
environment "knows" the distance between stations and thus can
assign a likely journey time for any particular trip. The environment
is also responsible for generating components and setting initial
attribute values.

A CARMA system has a semantics that gives rise to an underly-
ing Continuous Time Markov Chain (CTMC). This is not generated
explicitly but the semantics provides the basis for Monte Carlo
simulation of the CTMC, based on the Gillespie Algorithm [15].
There is a Java implementation which carries this out automatically
[22]. For our model, this generates to a spatio-temporal trajectory.
This trajectory records for each time step, for each location, the
state of the system in terms of the number of components of each
type at that location. Just as with the logging data from the BSS
system, these trajectories can be queried using SSTL formulas.

3 USING SSTL FOR DATA ANALYSIS
In this section we explain how we use SSTL to investigate the
behaviour of the system using the logging data available for the
ECH system. This data records the number of bikes/slots available
at each station at each time slot, where a slot consists of a minute.
The performance of the system is evaluated for an average weekday
of 𝑇 = 1440 minutes (24 hours). The SSTL formulas that we used
are closely related to those presented in [28]. Furthermore the
same spatio-temporal variables 𝐵 (number of available bikes) and 𝑆
(number of free slots) are used.

First indicators of performance issues are stations without avail-
able bikes (empty stations) and stations with no free slots (full
stations). These characteristics are captured by the formulas 𝜑empty
and 𝜑full. In simple terms these state: “The station will eventually
be empty/full during the day.” The parameter 𝑇 represents the final
time.

𝜑empty = ℱ(︀0,𝑇 ⌋︀(𝐵 = 0) 𝜑full = ℱ(︀0,𝑇 ⌋︀(𝑆 = 0)

Another way to measure the performance of a BSS is to com-
bine 𝜑empty and 𝜑full and look at so-called problematic stations.
These are stations that have neither a bike nor a slot available [12].
𝜑prob captures unproblematic stations: “Within the specified interval
(︀𝑡𝑠 , 𝑡𝑒⌋︀, the station always has a bike and a free slot available”. Since
the observed behaviour of the system varies according to the time
of day, 𝑡𝑠 and 𝑡𝑒 are varied to represent four six-hour periods.

𝜑prob = 𝒢(︀𝑡𝑠 ,𝑡𝑒⌋︀{(𝐵 > 0) ∧ (𝑆 > 0)}

The preceeding measures are primarily of interest to the operator
of the system. From a user’s perspective, it is important to know
whether one can always find a bike and a free slot within certain
limits. The formula below states: “There is always a bike and a slot
available at distance d” :

𝜑dist = 𝒢(︀0,𝑇 ⌋︀{�(︀0,𝑑⌋︀(𝐵 > 0)�(︀0,𝑑⌋︀ (𝑆 > 0)}

At 𝑑 = 0 this formula describes an unproblematic station, that
always has a bike and a free slot available. In our analysis the
parameter 𝑑 is varied in 50m steps up to 500m reflecting different



assumptions about users’ willingness to walk or ride to another
station in order to achieve their objective.

A user may also be interested to know whether waiting at a
specific station will help them retrieve or return a bike. 𝜑time de-
scribes that “after 𝑡 minutes of waiting there is always a bike and a
slot available” :

𝜑time = 𝒢(︀0,𝑇 ⌋︀{ℱ(︀0,𝑡⌋︀(𝐵 > 0) ∧ (𝑆 > 0)}
As an initial investigation and in order to establish a baseline, we

first evaluate the performance of the system with respect to these
formulas as it is captured in the data, including redistributions.
An overview of the process is shown as “Path 1” in Figure 1. For
this, the ECH availability data is used. The dataset is split into
individual (week-)days2, resulting in 21 trajectories, each describing
the availability of bikes and slots for all stations at each minute
of the day. Those can almost directly be used as spatio-temporal
signals by using the values of the availability fields for the variables
𝐵 and 𝑆 . For the spatial graph 𝐺 , the stations form the vertices and
the edges connect all pairs of distinct stations. The edge weight is
set to be the straight line distance between stations and calculated
using the Haversine Formula [6]. Since the data has a granularity
of one minute and starts at 0, the final time𝑇 is set to 1439minutes.
The details of the data-conversion and the code used for evaluation
can be found on GitHub [18].

Loading the graph and evaluating the formulas on the trajectories
is achieved using the jSSTL java library [23, 29]. This Java library
implements classes and algorithms to allow for the specification
and evaluation of SSTL formulas. In our case, we use it to implement
the previously described formulas and calculate the satisfaction
probability 𝑝

∗ over all 21 trajectories (see the end of Section 2.2).
The results can be seen in Figure 2, 3 and 4. Please note, that the
operation of the system changed since our evaluation. The following
key observations can be derived for August 2019:

● Stations in the south of the city show a greater tendency
to be empty, some with a probability higher than 50% and
many with a probability close to 50% (Figure 2 a).

● From the data there does not appear to be any significant
problem with full stations (lack of slots, Figure 2 b).

● Even when the search radius is expanded to 300 meters, it is
not guaranteed to find a bike at any time (Figure 3 a-c).

● Waiting at a station has almost no effect on availability (Fig-
ure 3 d-f).

● Over time most stations become more problematic. Some
regain bikes at the end of the day. This can be explained by
commuting customers and redistributions by the operator
(Figure 4).

To conclude, the captured performance of the system leaves room
for improvement. Moreover, non-zero probabilities for 𝜑empty and
𝜑full mean that the corresponding station may be empty/full at
some point. During that time, no new journeys or returns would
be possible. Thus, some attempted user interactions are missing in
the provided data, masking the actual demand. This is a common
effect when predicting demand (see also [2, 19, 30]), and we will
show how such latent demand can be incorporated into analysis in
Section 5.
2Data corresponding to Saturdays and Sundays is discarded, as this is atypical.

4 BUILDING A BIKE SHARING MODEL IN
CARMA

In Section 3, the performance of the observed system was evaluated
based on the Availability Data. To introduce additional performance
measures and carry out experiments to explore future scenarios, a
stochastic model was developed using the CARMA language. The
complete code with usage instructions is available on GitHub [18].

We base our model on the model introduced in [24] and elaborate
on it. The lower section of Figure 5 shows a diagram of the compo-
nents and their interactions. The model is composed of three types
of components: User, Station, and Spawner. The Spawner generates
users at a specific Station with the spawn-action based on a time-
inhomogeneous arrival process. Users first choose a destination
based on the current time and origin. They then attempt to retrieve
a bike from their origin Station via the get_bike-action, ride it for
some time (move) and return it (return_bike) at their destination.
The Station synchronises with Users on the actions get_bike and
return_bike and updates the number of available bikes in its local
store accordingly, but only if there are enough bikes/slots available.
As initial configuration, one representative Station-component for
each station in the real system and one Spawner-component for
each station is placed in the environment.

For parameterisation we make use of the Trips and Availability
Data described in Section 2.1 to represent the system during an
average weekday. A summary of this phase is depicted in the upper
part of Figure 5. To clean the data, first all weekends are removed,
as those have a different usage pattern. In fact, due to the morning
and evening rush hour, when looking at the number of trips per
hour of day, weekdays exhibit an “M”-shaped curve and weekends
exhibit a bell-shaped curve (see Figure 6), as already discovered in
[4, 20, 31]. Subsequently, all stations with less than 15 departures
or arrivals in the whole month are excluded. This captures those
stations that were removed at the beginning or only introduced at
the end of August. Also all trips with a duration greater than the
99-th quantile are removed to eliminate outliers. The cleaned Trips
Data is split into two different sets3: one used for parameterisation
(“Training Data”) and one for validation (“Validation Data”) by
randomly picking 5 days, so that one of each of the five weekdays
is included in the Validation Data to ensure unbiased validation.
This way, the original Trips Dataset containing 17478 journeys is
reduced to 11211 journeys, of which 2264 are used for validation
and 8947 are used for training.

The arrival process for a single station is then generated as a
piecewise constant function from the Training Data by counting the
number of departures during each hour of the day and taking the
average over all days. This value is then converted to a rate and used
for the spawn-action. To determine the rate for the move-action,
the average duration for a journey between each pair of stations is
used. Destinations are determined based on the distribution of the
destinations for each station at every hour of the day. The stations
are derived from the Availability Data, with their initial number
of available bikes calculated as the median number of available

3To validate the model, independent data (e.g. data from August 2018) would be the
best choice. However the ECH system was not yet introduced during that period. We
thus decided to use an approach commonly used in machine learning and split the
data to test the predictive capabilities of our model.
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Figure 2: Satisfaction of 𝜑empty (a) and 𝜑full (b) for the dif-
ferent stations, which are shown as coloured dots on a map
of Edinburgh. For this figure and all following similar fig-
ures, the values for the x- and y-axis are given in degrees
longitude/latitude and the colour represents the satisfaction
probability of the given formula in percent from 0% (blue) to
100% (red). A lower value at a location means a better perfor-
mance. For instance, the blue dot in the top left of (b) means,
that 𝜑full has a near 0% chance of being true for this location,
which means that the corresponding station is unlikely to
be full at some time at a given day. Map tiles by Stamen Design
(http://stamen.com/), under CC BY 3.0 (http://creativecommons.org/licenses/
by/3.0). Map data by OpenStreetMap (http://openstreetmap.org/), under ODbL
(http://www.openstreetmap.org/copyright).

bikes in the inclusive interval between 12 and 2 am. The rates for
the get_bike and return_bike actions are set to a very high value,
meaning they happen almost instantly, as the time it takes to check
out a bike is already included in the trips duration. Both of them are
multiplied by the number of users that currently want to retrieve
(or return) a bike, simulating parallel retrievals and returns. In the
model, one time unit represents one minute of physical time, e.g. a
rate of 1 means, that the corresponding action happens on average
once every minute.

Several assumptions are made to keep the model simple. First, it
is assumed that each weekday experiences roughly the same load.
This is only true to a certain extent as [4, 20] show, but it is rea-
sonable to assume when focusing on average performance. Factors
such as weather and season also play a large role, but are not taken
into account due to a lack of data. Furthermore, the arrival rate is
assumed to be hourly piecewise constant, as is the distribution of

(d) (e) (f)

(a) (b) (c)

Figure 3: Satisfaction of 𝜑dist for 𝑑 ∈ {50, 300, 500} (a-c) and
𝜑time for 𝑡 ∈ {1, 5, 10} (d-f). A higher value indicates a better
performance.

destinations. Testing with larger constant intervals for the desti-
nation distribution revealed that the preferred destinations differ
significantly for each hour, making larger intervals inaccurate.

Several values in the simulation are measured at each sampling
point (each minute). This includes the cumulative number of overall
bike retrievals and the number of available bikes at each station. To
produce a spatio-temporal signal from themodel outputs, the values
of the two spatio-temporal variables 𝐵 (number of available bikes)
and 𝑆 (number of free slots), introduced in Section 3, are stored for
each station at each time, creating one trajectory per replication.
These can then be used for evaluation through statistical model
checking as described in Section 3.

4.1 Validating the Model
Validation of the model is done by comparing the measures (see
Figure 5) of the simulation, parameterised as in Section 4, with the
validation data and the training data. Since some of the stations
changed capacity during August 2019, it is necessary to disable the
capacity- and availability-limit of stations for validation, because
the real data might include trips that exceed those limits. 10000
replications are performed to achieve an average 99% confidence
interval of ±0.068. First the mean over the time series for each repli-
cation is calculated. Based on these means the confidence interval
is calculated.

http://stamen.com/
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://openstreetmap.org/
http://www.openstreetmap.org/copyright
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Figure 4: Satisfaction of 𝜑prob for different intervals (︀𝑡𝑠 , 𝑡𝑒⌋︀. A higher value indicates a better performance.
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Figure 5: Diagram of the parameterisation process and CARMAmodel, giving a detailed view of “Path 2” in Figure 1.

At a high level, summary statistics such as the number of bike
retrievals during each hour can be considered, as seen in Figure 6.

At a more detailed level, the time series of the number of avail-
able bikes resulting from the simulation can be compared to the
time series generated from the training/validation data. To achieve
this, we calculate the mean squared error (MSE) at each hour. The
maximum of the resulting series is taken and used as an error value
for each station. Table 1 shows the minimum, maximum, mean and
median of those values over all stations. As might be expected, the
error of the model output relative to the Training Data is very small.
The error in relation to the Validation Data is also reasonable, with
the median of the described error measure being approximately
one bike. In spite of this, one can observe a significantly higher
value for the maximum. Keep in mind that, as a result of squaring,
this does not reflect the absolute difference in number of bikes.

As mentioned earlier, the BSS in Edinburgh is still under devel-
opment and is relatively small. The small size means that external
influences, like the weather conditions on a particular day, can
have a large impact on the system, thus resulting in a high variance
for the number of available bikes and also number of trips on any
given day. Additionally, the varying redistributions of the opera-
tor introduce additional variance. In this study we focused on an
average weekday, to establish the methodology and demonstrate
its potential for more in depth studies. With this in mind, it can

be concluded, that the predictive capabilities of the model are also
sufficient for its purpose.

4.2 Extensions to the Model
In Section 3 we saw that the performance of the system is accept-
able, but not optimal, even with the current redistributions. In
order to get a better understanding of how the users perceive the
system, a user policy, that dictates their behaviour in case they
don’t find a bike or slot, is introduced and their dissatisfaction is
measured. With this the dissatisfaction levels resulting from the
currently operating system are established. We then modify the
model to incorporate an alternative to static repositioning — an
incentive-based, decentralised redistribution strategy. This is also
evaluated with respect to user dissatisfaction and the measures
identified previously. Finally, a measure for the redistribution effort
is presented to quantify the effect of the decentralised redistribu-
tion strategy from the operator’s perspective compared with static
redistributions.

4.2.1 User Policy. In the initial model, users wait until a bike (or
slot) is available. Contrastingly, in a real system users would wait
only for a certain amount of time or try to find a bike/slot at a
nearby station. As seen in Section 3, waiting (for a reasonable time)
has almost no effect on availability. Thus we now assume that users



Table 1: Error measures for the model. The maximumMSE of the hourly fill level in the simulation in relation to training and
validation data is calculated for each station. Then, mean, median, max, and min are applied across all stations.

Dataset min. MSE mean MSE median MSE max. MSE

Training 0.001 0.015 0.008 0.123

Validation 0.042 1.686 0.960 24.944

(a) (b) (c)

Figure 6: (a) Shows the number of retrievals in the simulation (light blue) compared to training (dark blue) and validation data
(green). Notice the “M”-shaped form of the curve. (b) and (c) show the number of available bikes throughout the day for the
stations “Bruntsfield Links” and “Dundee Terrace”, the horizontal black bar shows their capacity. The colours are the same
as before, with the thickness of the light blue line showing a 99% confidence interval and the light blue shadow showing the
standard deviation of the runs. The error bars show the variance. The error for validation/training is shown in red/orange.

will seek a bike in nearby stations until they give up and use another
means of transport.

To reflect this in the model users that fail to retrieve a bike will
walk for an exponentially distributed time with a mean of 5 minutes
to a randomly selected nearby station, defined as any station within
350 metres of the original station. Users will never visit a station
twice, and users leave the system after three unsuccessful attempts.
At the start of a journey, this means the user will just use another
means of transport. However when unable to make a return, a user
will leave the system with the bike because there is no place to
put it. In the model each unsuccessful attempt to return/retrieve
a bike results in the internal counter of the respective number of
failures being increased in the User component. For example, a
User with dissatisfaction level 0 for retrieving bikes, experienced
no difficulties getting a bike, while a user with dissatisfaction level
2 for returning had to visit two other stations before being able to
return the bike.

For the measure to be easily comprehensible, the expected value
for the number of such “hops” a user has to take is calculated as
follows:

𝐷(𝑡) ∶= ∑
3
𝑙=0 𝑑get(𝑙, 𝑡) ∗ 𝑙
∑3
𝑙=0 𝑑get(𝑙, 𝑡)

+ ∑
3
𝑙=0 𝑑ret(𝑙, 𝑡) ∗ 𝑙
∑3
𝑙=0 𝑑ret(𝑙, 𝑡)

with 𝑑get(𝑙, 𝑡) and 𝑑ret(𝑙, 𝑡) describing the number of users with
dissatisfaction level 𝑙 at time 𝑡 for retrieving and returning bikes
respectively. Note that the maximum value for 𝐷 is 6 rather than 3
(the maximum value for 𝑑).

4.2.2 Incentive-Based Redistribution. In order to ensure user satis-
faction, the system needs to be as balanced as possible. One way to
achieve this, is by using a fleet of trucks to redistribute the bikes
during the night when the usage is low, commonly referred to as
static or centralised repositioning. Another approach is to use a
dynamic decentralised strategy and divert the users to slightly dif-
ferent stations when it would improve the balance in the system, by
providing an incentive to them. In this way, bikes can be returned
to/retrieved from the stations that need them the most while also
saving the fuel costs and emissions that result from using trucks
for centralised redistribution. Additionally, the probability that cus-
tomers will find a bike/slot can be increased. Such strategies have
already been evaluated in the context of other systems, for example
in London [1] or New York [7, 31]. However, the system in Edin-
burgh differs in that it is magnitudes smaller. It is thus interesting
to see whether the same positive effects can be observed. Similar
to [1], we do not specify the kind of incentive used, but introduce
a user cooperation factor, that simulates the degree of takeup. A
detailed survey can be found in [37].

In every case, such a strategy depends on a real time heuristic
for the future number of available bikes at a specific station. To
determine an estimate of the future number of bikes available 𝑡
hours ahead of the current time, the following formula is used:

𝑎fut(𝑡0, 𝑠) = 𝑎(𝑠) − 𝑑(𝑡0, 𝑠) + 𝑟(𝑡0, 𝑠)
𝑎fut(𝑡0 + 𝑡, 𝑠) ≈ 𝑎fut(𝑡0 + 𝑡 − 1, 𝑠) − 𝑑(𝑡0 + 𝑡, 𝑠) ∗ 0.75𝑡 + 𝑟(𝑡0 + 𝑡, 𝑠)



where 𝑎(𝑠) is the current number of available bikes at station 𝑠 , 𝑡0 is
the current hour, and 𝑑(𝑡, 𝑠) and 𝑟(𝑡, 𝑠) are the expected number of
checkouts (demand) and returns at hour 𝑡 at station 𝑠 . The demand
is determined from the arrival process and the number of returns is
updated every time a user decides on a destination. To account for
the limited accuracy with increasing time, the demand is discounted.
Because the horizon of the returns is naturally limited, a discount
is not necessary. This is a simplification. In the real world the value
will be the sum of an estimate based on the historic (and probably
also weather) data and the current known trips from the incentive
strategy.

Exploring the data for Edinburgh revealed that achieving a cer-
tain optimal fill level for each station almost balances the system
for the whole day. Accordingly the final heuristic 𝑝 will be the
estimated difference from that fill level at the end of the current
day:

𝑝 = 𝑎fut([︂𝑡0⇑24⌉︂ ∗ 24, 𝑠) − desired fill level of station 𝑠

For stations that need bikes, 𝑝 < 0 and for stations that need slots
𝑝 > 0. Other systems may use the same strategy by adjusting the
time window, desired fill levels and discount factor.

By taking the minimum/maximum over neighbouring stations,
this prediction can now be used to determine which station will
need a return/retrieval the most. It is also important to consider
current constraints of the “losing” station to sustain a decent per-
formance. This means that stations should not agree to reroute a
trip when their fill level is below or above a certain threshold.

To realize such a strategy in the real world, a user may use an
app that will tell her in advance, based on the planned trip, which
station for return and retrieval will be optimal for the system and
what the incentive will be. Obviously, not all users will cooper-
ate. In the model, this fact is represented by a cooperation factor
that determines the percentage of cooperative customers. Another
important factor is the radius for the neighbourhood in which al-
ternate stations are considered. This can have a major influence on
the performance as shown in [1]. In Section 5 we determine the
influence of cooperation and neighbourhood radius for the ECH
system.

4.2.3 Redistribution Effort. To quantify the number of redistribu-
tions that have to be done, a measure for the displacement of the
fill-levels is introduced. This “Redistribution Effort” is calculated by
summing up the absolute difference between the actual and optimal
number of available bikes for each station after each day (or 1440
time units). The resulting value indicates how many bikes need
to be moved to rebalance the system. Additional factors, such as
travelling distance for a truck, are not taken into account.

5 PROBING THE PERFORMANCE OF THE
EXTENDED SYSTEM

In the previous Sections 3 and 4 the performance of the system as-is
was evaluated using SSTL and a model was built to make extensions
possible. In this section, the system is evaluated again using the
model, exploring the possible future performance in different sce-
narios, as displayed in Table 2. Throughout this section, the same
abbreviations as in the table are used within the brackets to refer
to the corresponding row. These are: LD for "latent demand", Opt

for "optimal initial fill levels" and Inc 𝑑 𝑐 for the "incentive strategy
with maximum distance 𝑑 and user cooperation factor 𝑐".

The experiments were carried out on a Intel Xeon E5-2690 pro-
cessor, clocked at 3.0 GHz and the replications were distributed
across 8 threads. One might expect some experiments to take longer
than others as the incentive strategy requires additional compu-
tations, but these impacts where found to be minor. On average,
the experiments took 15 minutes to complete all replications. The
main factors, that impact the scaling of this approach, are the end
time of the simulation, the number of simultaneous users and the
number of stations. At the moment, the number of stations and
their parameters that can be simulated using CARMA is limited by
the maximum method size, which is imposed by Java. The evalua-
tion of the SSTL formulas took another 15 minutes for 1000 traces.
The time it takes to evaluate a given formula increases with the
number of used operators. For instance, the formula 𝜑𝑝𝑟𝑜𝑏 takes
about 0.11 seconds while 𝜑𝑒𝑚𝑝𝑡𝑦 takes around 0.006 seconds to
evaluate on a single trace. It should also be noted that the traces
require a significant amount of disk space (4.8 GB for 1000 traces),
as one trace is generated per replication.

First, a baseline for the performance without redistributions
is established. This baseline is then corrected for latent demand.
Eventually, the impact of the incentive strategy proposed in Sec-
tion 4.2.2 is measured for different parameters and compared to an
optimal static redistribution strategy. The simulation is run for 3
days (𝑇 = 4319) to also catch longer term effects and 1000 replica-
tions are performed for each experiment [18].

In order to get a view without redistributions on the system, the
extendedmodel is parametrised as described in Section 4 (Baseline).
One can see, that this baseline is similar to the performance mea-
sured in Section 3. An example of this is shown in Figure 7. To
estimate the latent demand, we use a strategy similar to [2]. Each
period where a station was empty for a full hour is considered. Next,
we calculate the average number of trips for this period, only includ-
ing those where the station was not empty. Finally we randomly
generate some trips that correspond to the average behaviour in
that period for that station. This way, we get an idea of the thwarted
journeys the Trips Data is missing and the total number of trips is
increased by 3794, which is a 22% increase to the 17478 journeys
mentioned in Section 4 (Baseline LD).

It was discovered, that the initial distribution of bikes gained
from the Availability Data is far from optimal and filling the stations
with the correct number of bikes can almost balance the system
for a full day (Baseline LD, Opt). To calculate the optimal number
of available bikes, a simple hill climbing algorithm is used on the
Trips Data with the goal to keep the fill level throughout a day
three bikes above zero and three bikes below capacity.

The three previous experiments did not include any redistri-
bution. Next, the incentive strategy is evaluated with different
parameters for user cooperation and station radius (Inc Radius
CooperationFactor). The fill levels start at their optimal value to
simulate a former repositioning. The results indicate that a purely
incentive based redistribution is not feasible in the long run, even
for a large distance and high cooperation factor. However, there is
a positive impact in the number of redistributions that have to be
made, with most of the configurations cutting the redistributions



in half and some making a redistribution every two days (on av-
erage) feasible. As expected, it also increases the number of trips
made. Considering that, due to high fuel costs, static repositioning
is likely to be more expensive than the incentive-strategy, this strat-
egy could be used as a cost saving measure. Table 2 quantifies the
effects described. Those numbers can also be used to calculate costs
based on how the incentive is realised. Additionally, the impact of
the strategy scales very well with user cooperation, keeping most of
its positive impacts even with low cooperation. Figure 9 also shows
positive impacts to the users of the system, making problematic
stations less likely.

The small improvements observed are in contrast to other stud-
ies, like [1]. This can be explained by the low number of stations
available at short distances (hence the jump at 700 metres). Also, a
tendency of people moving to the north can be observed in Figure 8,
resulting in the northern stations forming empty clusters. In this
case, and also for single remote stations, an incentive-based strat-
egy can only evenly distribute the load, but never completely com-
pensate for the imbalance. “Connecting” those clusters by adding
intermediary stations could improve this situation. Thus, as the
system continues to grow, the impact of this strategy will likely
increase.

Next, an optimal static redistribution is considered for compari-
son (Static LD, Opt). This is implemented in the model by resetting
the number of available bikes to the optimum every day at midnight.
The fill levels start at their optimum, as if the strategy was also used
at the day before the first day in the simulation. The redistribution
effort is calculated as 0 in this case, but will always be the same as
for Baseline LD, Opt on day one. One can see, that although its
performance is a lot better than for Inc, the redistribution effort is
comparatively very high. Also, the incentive strategy could help
to improve problematic stations throughout a day, as indicated by
Figure 9.

To test this, the optimal static redistribution is combined with
an incentive strategy (Static LD, Opt, Inc). We choose 700 meters
for the radius and 25% for the cooperation factor, since those seem
to offer a good tradeoff between user satisfaction and cost. This
strategy achieves almost complete satisfaction and a very high
number of trips, while only requiring half of the redistribution
effort of the static only strategy and only incentivizing 22% of trips.
Admittedly, a static redistribution will never be completely optimal,
but the incentive strategy should also compensate for that.

6 CONCLUSION
In this work, we have evaluated the performance of a compara-
tively small BSS using model checking with SSTL. We introduced
a CARMA model to extend the system, showed how SSTL can be
used to evaluate model outputs and evaluated the performance of
the BSS again, also considering an estimate of the latent demand.
Finally, we compared different strategies for redistribution, consid-
ering the role of users as replacement or support for traditional
strategies. Although ECH is used as an example, this approach can
also be applied to other BSS. Some of the outcomes should even be
applicable to comparable smaller systems.

(a) (b)

Figure 7: Satisfaction of 𝜑prob over 1 Day for the real data (a)
compared to the baseline (b). Note that the overall trend is
the same, but the baseline is saturated more because there
are no redistributions.

(a) (b)

Figure 8: Satisfaction of 𝜑empty (a) and 𝜑full (b) on Day 3
for Baseline. Since there are no redistributions, this is ex-
aggerated, but useful to show large scale behaviour. One can
clearly see that there is a tendency for people tomove north.

6.1 Discussion of the Used Techniques
In our case study, we apply SSTL for statistically checking the spatio-
temporal behaviour. To the best of our knowledge, our study is the
first to use SSTL in combination with a concrete simulation study
conducted in collaboration between stakeholders and researchers.
In this context we have found the combination of logic and simula-
tion to be particularly powerful and identify the following specific
benefits:

● Interrogating time series and simulation results in a
consistent manner. The same formulas can be evaluated
to query outputs of the model, historical logging data, and
even real time data. This can be achieved while using the
same or only slightly modified code. Starting from the same
queries and using the same codebase means that the output
format is also unified. Thus the results are directly compa-
rable. In our study this is reflected in figures like Figure 9,
where the satisfaction of 𝜑𝑝𝑟𝑜𝑏 for the model outputs is di-
rectly comparable to the satisfaction for the real data. Going
forward the same formulas could be used for monitoring the
system in real-time allowing direct comparison of live data
with historical and predicted performance.



Table 2: Comparison of the different redistribution strategies to the baseline. The intervals show the standard error of the
simulation results. The abbreviations used are: "LD" for latent demand, "Opt" for optimal initial fill levels and "Inc 𝑑 𝑐" for
the incentive strategy with maximum distance 𝑑 and user cooperation factor 𝑐. For the incentive strategy used for "Static LD,
Opt, Inc", 𝑑 = 700 and 𝑐 = 0.25. The incentive strategy seems to scale well with user cooperation, but not with distance. This is
a consequence of the low number of stations. However, it can increase the number of trips made while lowering the amount
of static redistribution that has to be done. Keep in mind that the maximum possible value for user dissatisfaction is 6. The
mean and max are taken over all 3 days, which means slight changes can have a large impact.

Strategy Redistribution Effort No. of Incentives No. of Trips User Dissatisfaction 𝐷(𝑡)
Day 1 Day 2 Day 3 Get Ret. Sum Mean Max

Baseline – 40 51 56 – – – 1267±1.5 0.819 2.537
LD 49 62 65 – – – 1355±1.7 1.109 2.853

LD,Opt 40 56 62 – – – 1540±1.6 0.776 2.200

Static LD,Opt,Inc 24 24 24 310±0.6 107±0.4 417 1860±1.4 0.095 0.248
LD,Opt 40 40 40 – – – 1804±1.3 0.176 0.520

Inc 700 1.0 12 20 27 1020±1.4 271±1.1 1291 1736±1.4 0.267 0.833
0.5 19 27 36 521±0.8 174±0.5 695 1725±1.4 0.309 0.886
0.25 24 36 47 267±0.6 99±0.4 366 1670±1.5 0.440 1.041

Inc 600 1.0 23 40 55 632±1.6 185±0.8 817 1596±1.5 0.592 1.677
0.5 25 39 53 364±1.0 119±0.5 483 1599±1.6 0.594 1.636
0.25 27 43 55 206±0.6 73±0.4 279 1591±1.6 0.612 1.666

Inc 500 1.0 27 39 55 533±1.3 144±0.7 677 1576±1.5 0.629 1.774
0.5 27 39 54 307±0.8 90±0.5 397 1577±1.5 0.632 1.842
0.25 30 44 57 175±0.5 55±0.3 230 1574±1.6 0.647 1.798

● Requirements of the simulation study are made ex-
plicit. Requirements are closely related to the research ques-
tions and these are captured explicitly in the SSTL formulas.
This means that it is clear, for example, whether space needs
to be considered, whether a simulation model should be able
to reproduce specific real world data, or a simulation model
should give answers to specific questions that refer to the be-
haviour of the system [5]. Making behavioural requirements
explicit in a formal language facilitates the discussion with
stakeholders as well as reusing requirements throughout the
simulation study [35]. As shown, SSTL offers an expressive
and clear language to state such requirements and to probe
the simulation model referring to various spatio-temporal
dynamics based on a finite weighted undirected graph.

Also the use of CARMA for specifying the simulation model
and producing the simulation trajectories proved beneficial. With
CARMA’s clear separation of concerns, the simulation model is ac-
cessible in a declarative, formal language [18], and could be specified
succinctly which facilitated revising the model, and will facilitate
extending it. In particular the separation of the behaviour aspect
from the physical environment in which the BSS operates means
that it is rapid and straightforward to consider changes in structural
configuration of the system.

6.2 Lessons Learned from the Case Study
The first important result is that, in the current state of the ECH
system, an incentive-based strategy alone is not enough to balance
the system. The best results are seen when a 700 metre radius is
used as the basis for incentives, but this is unreasonable in most
cases. We believe that adding more stations could help reduce that
radius to a more reasonable distance. As the system grows, this
study can be repeated to test this hypothesis.

Whilst not completely solving the rebalancing problem, the in-
centive strategy does have positive impacts on the system. First, it
can cut the effort needed for the (more expensive) static reposition-
ing in half, even making it possible to only redistribute bikes over
longer periods. Secondly, it helps to keep stations unproblematic
throughout the day, increasing the likelihood of new customers
finding a slot or bike where otherwise there would be none, keep-
ing the satisfaction of the users high. When combining the static
with the incentive-based repositioning, a high user satisfaction can
be achieved. Also, the number of trips is increased, resulting in a
more profitable system. To conclude, deploying an incentive-based
strategy in Edinburgh has positive effects for users as well as the
operator.

6.3 Future Work
The relatively short operational age of the system means that it
is not currently possible to look at seasonal differences. Once the
system has evolved, a new model that also accounts for differences



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: from (a) to (i):𝜑prob for day twoofBaseline LD, Base-
line LD Opt, Inc 700 1.0, Inc 700 0.5, Inc 700 0.25, Inc 600 0.5,
Inc 500 0.5, Static LD Opt, Static LD Opt + Inc. The abbrevia-
tions are the same as in Table 2.

in weekdays and seasons may be built. The influence of other fac-
tors, such as weather, could also be considered, as well as including
more explicit information about the demands generated by festival
attendees in August, available through ticketing data.

Furthermore, the operator of the ECH system is planning to
introduce e-bikes in 2020. These will bring new challenges, such
as depleted batteries and facilitating charging, that will need to
be accounted for. Also up- and downhill trips will play a larger
role when recharging by a dynamo is used meaning that a two-
dimensional representation of space may be insufficient. Future
work might thus include expanding the model to test the impact
of e-bikes on the system and propose solutions to support their
operation. Such a model could also include effects of dissatisfied
users abstaining from using the system.
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