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The histological architecture of certain aggressive B-cell lymphomas (prototypically

Burkitt’s lymphoma, BL) is characterized by a “starry-sky” (SS) appearance. This is

caused by tumor-associatedmacrophages (TAMs), which appear in standard histological

preparations as “stars” in a darkly stained “sky” of lymphoma cells. SS-TAMs accumulate

in response to constitutive apoptosis in these tumors and are activated by the apoptotic

tumor cells to a pro-oncogenic phenotype. The extent to which SS-TAMs contribute

to lymphoma growth through responses generated by interactions with apoptotic tumor

cells is unknown. Here, we demonstrate a role for the receptor tyrosine kinase, MERTK, in

the oncogenic activity of SS-TAMs. We show that MERTK expression is largely restricted

to the macrophages of human BL and of murine models of SS B-cell lymphoma and

that it is upregulated in SS-TAMs as compared to the germinal center or paracortical

macrophages of normal lymph nodes. Our results further demonstrate that MERTK is

active in the phagocytosis of apoptotic lymphoma cells by macrophages and, most

significantly, that SS lymphoma growth is markedly inhibited in Mertk−/− mice. These

results point toward the MERTK apoptotic-cell clearance/response pathway playing a

key role in growth of aggressive B-cell lymphoma and identifies MERTK as a novel

potential antilymphoma target.

Keywords: non-Hodgkin lymphoma, apoptosis, TYRO3-AXL-MERTK, receptor tyrosine kinase, macrophage,

phagocytosis

INTRODUCTION

Constitutive tumor-cell apoptosis is high in aggressive cancers, including non-Hodgkin lymphoma
(1). Emerging evidence indicates that responses to apoptosis in the tumor microenvironment
can promote cancer growth, not only in primary tumors, but also in post-therapeutic relapse
(2–7). In SS lymphomas, apoptosis is highly prominent in standard biopsy preparations, and
a key response to apoptotic tumor cells is the accumulation of TAMs, together with their
activation to a pro-oncogenic phenotype (5). It remains unclear however, how apoptotic tumor
cells activate TAMs to help promote net tumor growth. Here, we focus on MERTK, a member of
the TYRO3/AXL/MERTK family of receptor tyrosine kinases, which regulate tissue development
and homeostasis via two mechanistically related immunosuppressive functions: the clearance of
cells undergoing apoptosis and anti-inflammatory signaling (8–10).
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It is becoming increasingly evident that the
TYRO3/AXL/MERTK signaling axis has oncogenic properties
in a wide range of cancers. In hematopoietic malignancies,
although individual components of this axis are expressed
by tumor cells and/or TAMs (11–14), their role(s) in the
pathogenesis of these cancers have not been defined. MERTK is
a well-established phagocyte receptor for clearance of apoptotic
cells (8–10) operating via its ligands, GAS6, and Protein S
(PROS1), which bridge the receptor to phosphatidylserine (PS)
exposed at apoptotic cell surfaces. Inhibition of MERTK leads
to persistence of apoptotic cells, especially in the germinal
centers of lymphoid follicles and to the associated emergence
of autoimmune disease symptoms (10, 15, 16). Preferential
expression of MERTK and GAS6 are associated with reparatory,
M2-like macrophage polarization (5, 17), which is typical of
wound-healing macrophages and of TAMs (18). In the present
brief investigation, we tested the hypothesis that MERTK is
involved in the clearance of apoptotic lymphoma cells by
SS-TAMs and that it is important for the growth of aggressive,
SS lymphoma.

MATERIALS AND METHODS

Cell Lines and Animal Models
The BL cell line, BL2 was derived from a sporadic, Epstein-Barr
virus–negative case of BL (19). The THP-1 line was established
from a patient with monocytic leukemia (20). Both lines were
cultured in vitro as we have previously described (21). BL2 cells
were xenografted subcutaneously to SCID mice according to
our established methods (5) and formed aggressive, starry-sky
tumors. We previously derived the MycEd1 cell line (5) from
an aggressive starry-sky B-cell lymphoma of a male C57BL/6
mouse carrying the λ-MYC transgene (22). MycEd1 cells were
cultured in vitro and also used in transplantation experiments
using our previously established protocols (5) in wild-type (WT)
and Mertk−/− C57BL/6 mice (23) (kindly provided by Dr. Greg
Lemke, The Salk Institute for Biological Studies). MycEd1 tumor
growth was assessed following subcutaneous injection of 5 ×

106 viable Myc-Ed1 cells into 6- to 12-week-old male WT or
Mertk−/− mice. Mice were observed daily, and growth of tumors
was monitored using calipers. In all experiments, mice were
humanely sacrificed either (a) when tumors reached maximal
dimensions according to the UK Animals (Scientific Procedures)
Act 1986 regulations or (b) day 20 post-injection, whichever was
the sooner.

Gene Expression Analysis
“In situ transcriptomics” of SS-TAMs from BL (BL2) xenografts,
lymph node germinal center (GC), and paracortical macrophages
was performed following laser capture microdissection of
macrophages exactly as described (5). λ-MYC [MycEd1 cell line,
see (5, 24)] gene expression was carried out on Affymetrix Mouse
Gene 2.1 GeneChip arrays. Gene expression analysis of BL2 and
primary human dendritic cells [DC, myeloid positive control
cells, prepared as we have described previously (25)] was carried
out on Affymetrix Human Genome U133 Plus 2.0 arrays. Data

were processed in R and normalized with RMA. Real time RT-
PCR was carried out as follows: RNA was isolated using RNeasy
Mini Kit (Qiagen), DNAse-treated and reverse-transcribed into
cDNA using SuperScript III First-Strand Synthesis SuperMix for
qRT-PCR (Life Technologies). Real-time PCR was performed
using Fast SYBR Green Master Mix (Applied Biosystems). qPCR
was performed using an ABI 7900 Real Time PCR Machine with
ABI SDS (Sequence Detection System) software.

Immunocytochemistry and
Immunohistochemistry
Human cells (viable or apoptotic BL2 or THP1) were labeled
with antihuman MERTK-PE (clone 125518) R&D FAB8912P
(isotype mouse IgG2b, κ) or mouse PE-conjugated isotype
control (clone 11711) R&D IC002P and mouse cells (MycEd1 or
bone marrow–derived macrophages, BMDMs) with antimouse
MERTK-PE (clone 108928) R&D FAB5912P (isotype Rat IgG2A)
or Rat IgG2A PE-conjugated isotype control (clone 54447) R&D
IC006P prior to flow cytometric analysis.

Formalin-fixed, paraffin-embedded tissues were sectioned and
stained with standard hematoxylin and eosin or were used in
immunohistochemistry (IHC) as described (5). Sections were
labeled with monoclonal mouse antihuman CD68 clone PG-
M1 (Dako M0876) or polyclonal goat antihuman MERTK
(R&D AF891), and subsequently with either goat antimouse
IgG, biotinylated (Vector #BA-9200) or horse antigoat IgG,
biotinylated (Vector #BA-9500). Following incubation with
Vectastain Elite ABC Reagent and DAB (Vector SK-4100),
samples were counterstained in hematoxylin.

Immunoblotting
WT murine BMDMs treated with or without 200 nM
dexamethasone for 24 h, MycEd1 cells, undifferentiated
THP1, THP1 cells differentiated with PMA (100 ng/ml) for 2
days, and BL2 cells were lysed in reducing cell lysis buffer, 5 µg
lysate were loaded per well on a 4–12% Bis-Tris NuPAGE gel,
run under reducing conditions then transferred to Hybond-P.
Membrane was blocked in 5% BSA then incubated in 1:1,000
goat antimouse MERTK (R&D #AF591) or 1:1,000 goat
antihuman MERTK (R&D #AF891), for mouse and human
lysates, respectively, in 5% BSA overnight at 4◦C. Membranes
were then incubated in 1:5,000 donkey antigoat IgG-peroxidase
(Jackson ImmunoResearch #705-035-003) in 5% milk for 1 h at
room temperature and then developed using ECL.

Apoptosis, Ligand Binding, and Phagocytic
Clearance of Apoptotic Cells
Human monocyte-derived macrophages (HMDMs) and murine
BMDMs were prepared as described (24, 26). In brief, BMDMs
were prepared from the femurs of 8- to 12-week-old mice and
cultured for 7–8 days with 100 ng/ml rhM-CSF (R&D Systems,
Abingdon, UK) on bacteriological-grade Petri dishes. HMDMs
were prepared from peripheral blood monocytes enriched using
the pan monocyte isolation kit, human (MACS Miltenyi #130-
096-537) and cultured in 2% human AB serum for 7 days.
Apoptosis was induced in lymphoma cells by UV-treatment and
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FIGURE 1 | Preferential expression of MERTK by macrophages in SS-NHL. (A) Mertk and Gas6 expression are low/absent in murine SS-NHL cells (MycEd1) relative

to SS-TAMs. Mouse gene expression data for Mertk and Gas6 are shown as log2 fold-change relative to paracortical lymph node macrophages (LN). Expression is

also shown for tingible body macrophages of lymph node germinal centers (GC). (B) Absence of mouse MERTK protein expression from murine MycEd1 lymphoma

cells. Untreated MycEd1 cells were analyzed by flow cytometry (MycEd1 cultures have a high level of constitutive apoptosis). WT BMDMs were used as positive

control cells. (C) Human MERTK and GAS6 gene expression data in BL2 cells shown relative to dendritic cells (DC). (D) Human MERTK protein as analyzed by flow

cytometry is absent from BL2 tumor cells; differentiated THP-1 cells were used as positive controls. BL2 cells were either left untreated or were UV-treated (300

mJ/cm2 ) and incubated for 3 h at 37◦C to become apoptotic (cells were 60% apoptotic by AxV/Sytox blue). Representative flow cytometric analyses are shown;

gating strategies, including those delineating viable (V) and nonviable (NV) cells, are shown in Supplementary Figure 1D. (E) SS-TAMs in BL are CD68 and MERTK

positive. Representative micrographs, scale bar = 100µm.

assessed by flow cytometry following annexin V (AxV)/Sytox
Blue staining (5).

Ligand binding: GAS6 and PROS1 proteins were coupled
using the Cy5 Antibody Labeling Kit (GE Healthcare,
Buckinghamshire, UK). Briefly, protein to be labeled (at
1.0–1.2 mg/ml) was exchanged into 100mM sodium hydrogen
carbonate buffer (pH 8.3) and incubated with Cy5 mono-
reactive dye pack for 30min in the dark at room temperature as
recommended by the manufacturer (www.GELifesciences.com).
The reaction was terminated by addition of glycine to a final
concentration of 50mM, and then protein was buffer-exchanged
into PBS. The degree of protein labeling was estimated from
measurement of absorbance at 280 and 650 nm (Cy5) and was
routinely found to be between 2.5 and 3.5 moles of dye/mole
of protein. Functionality of labeled protein was assessed by
testing the potential to induce MERTK phosphorylation and the
capacity to confer MERTK-dependent phagocytosis of apoptotic
cells (data not shown). Ligand binding to lymphoma cells (±UV
treatment) was carried out along with Annexin-V-488 and
Sytox Blue labeling (Life Technologies) in 20mM HEPES buffer
containing 140mM NaCl, 0.1% BSA and 2mM CaCl2 followed
by flow cytometry. To control for nonspecific binding of the
fluorescent proteins, binding was carried out using buffer in
which the CaCl2 was substituted by 2.5mM EDTA (specific
binding of Annexin V, GAS6, and PROS1 all require Ca2+).

Phagocytosis of apoptotic cells was assayed objectively by flow
cytometry using well-characterized, established methods (27).
In these assays, apoptotic cells were stained with 1µM pHrodo
(Life Technologies #P36600) and macrophages were labeled
with 0.5µg/mL CellTrace Far Red (Life Technologies #C34564).
Phagocytic macrophages exhibit enhanced pHrodo fluorescence
following internalization of labeled apoptotic lymphoma cells
into the acidic environment of phagosomes. GAS6 and gla-less
GAS6 were kindly provided by Dr. Erin Lew, The Salk Institute,
and the gla-less PROS1 was kindly provided by Mary Jo Heeb
(Scripps Research Institute) (28); PROS1 (HPS 4590AL) was
purchased from Enzyme Research Laboratories (South Bend,
IN, USA).

RESULTS

MERTK Is Expressed Preferentially by
Macrophages in SS-Lymphoma
Throughout these investigations, we used well-characterized
models of murine and human SS-lymphoma (MycEd1 and
BL2, respectively). Through in situ transcriptomics of SS-TAMs
of BL xenografts (5), we initially noted increased expression
by TAMs of several members of the TYRO3/AXL/MERTK
axis, including Mertk and Gas6, as compared with tingible
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FIGURE 2 | Requirement for MERTK and its ligands in macrophage clearance of apoptotic human lymphoma cells. (A) MERTK ligands PROS1 and GAS6

preferentially bind apoptotic BL2 cells in a Ca2+ and gla-domain-dependent manner. Flow cytometric analyses of untreated (low levels of constitutive apoptosis) or

UV-treated (high levels of apoptosis) BL2 cells incubated with Cy5-conjugated ligands (PROS1-Cy5, PROS1-Gla-less-Cy5, GAS6-Cy5, and GAS6-Gla-less-Cy5) in

the presence of 2mM CaCl2 or 2.5mM EDTA (“without calcium”) and with AxV-488 for dual staining. The without-calcium samples were included to control for

nonspecific binding of the fluorescent proteins (see section Materials and Methods). (B) MERTK ligand, PROS1 preferentially binds apoptotic BL2 cells as compared

with apoptosis-resistant BL2-bcl2 cells. BL2 cells were UV-treated and incubated for 5 h at 37◦C to become apoptotic. BL2-bcl2 cells undergoing the same

procedure were used as a viable control. Cells were washed and resuspended in buffer with 2mM CaCl2. Cells were labeled with AxV-488, PROS1-Cy5 or both. Note

that nonirradiated control BL2-bcl-2 cells bound neither AxV, nor MERTK ligands (not shown). (C) Phagocytosis of apoptotic BL2 cells by HMDMs is enhanced by

PROS1 and inhibited with MERTK inhibitors (BMS 777607 and UNC569). Apoptotic BL2 cells were stained with pHrodo and HMDMs were labeled with CellTrace Far

Red. Stained HMDMs were pretreated with either 500 nM BMS 77760 or 2.5µM UNC569 for 40min prior to phagocytosis assay. Apoptotic cells were coincubated

with HMDMs at a ratio of 7:1 ± 25 nM PROS1. Inhibitors were diluted during the coculture to 100 nM and 0.5µM for BMS 77760 and UNC569, respectively. BL2 and

HMDMs were cocultured for 40min prior to lifting the HMDMs using trypsin/EDTA and analysis by flow cytometry as described (27). Data shown are mean fold

changes of phagocytic macrophages ± SEM. **p < 0.01, ***p < 0.001 One-way ANOVA with Bonferroni post-test (n = 6–8).

body macrophages from germinal centers or paracortical lymph
node macrophages. By contrast, expression of mouse Mertk
and Gas6 by murine lymphoma cells (MycEd1) was low or
absent (Figure 1A). Absence of MERTK protein expression
by murine lymphoma cells was confirmed by flow cytometry
(Figure 1B), by immunoblotting (Supplementary Figure 1A)
and by real-time RT-PCR (Supplementary Figure 1B). Focusing
on human BL, we found that MERTK and GAS6 gene

expression was low or absent from BL2 cells, relative to DCs
(Figure 1C) and that MERTK protein expression was absent
from BL2 cells in vitro (Figure 1D) and largely restricted to
SS-TAMs in vivo (Figure 1E), confirming the transcriptomics
data. Furthermore, TAMs engulfing apoptotic BL cells in
situ tended to be MERTK+ (Figure 1E). Absence of MERTK
expression by BL2 cells was also confirmed by immunoblotting
(Supplementary Figure 1C).
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FIGURE 3 | Requirement for MERTK in macrophage clearance of apoptotic murine lymphoma cells. (A) Flow cytometric analyses demonstrating that MERTK ligand,

PROS1 binds apoptotic murine lymphoma cells (MycEd1) in a Ca2+-dependent manner. MycEd1 cells ± UV treatment were incubated with PROS1-Cy5 in the

presence of 2mM CaCl2 (+Ca2+) or 2.5mM EDTA (–Ca2+) and with AxV-488 for dual staining. The “viable” scatter gate is a well-established gate used to reliably

detect apoptotic lymphoma cells prior to plasma membrane permeabilization (29). Nonirradiated control MycEd1 cells bound neither AxV nor PROS1 (not shown).

(B) PROS1 enhances phagocytosis of apoptotic MycEd1 cells by wild-type but not Mertk−/− BMDMs. BMDMs from wild-type and Mertk−/− mice were coincubated

with pHrodo-labeled UV-treated MycEd1 cells in the presence or absence of 25nM PROS1 for 45min at 37◦C. Data shown are mean fold changes of phagocytic

macrophages ± SEM. *p < 0.05, **p < 0.01 One-way ANOVA with Bonferroni post-test (n = 3–4).

MERTK and Its Ligands Are Required for
Efficient Clearance of Apoptotic Human
Lymphoma Cells by Macrophages
To determine the potential role of MERTK and its ligands
in phagocytic clearance of apoptotic BL2 cells, we next tested
whether the ligands GAS6 and PROS1 are capable of opsonizing
these cells. As shown in Figures 2A,B, both murine recombinant
Gas6 (which is known to be a good ligand for human MERTK)
and PROS1, purified from human plasma, bound strongly
to apoptotic BL2 cells in a manner dependent on the PS-
binding Gla domains of the ligands. Furthermore, we used
PROS1 to demonstrate increased phagocytosis of apoptotic BL2
cells by HMDMs in vitro (Figure 2C). The PROS1-enhanced
phagocytosis was suppressed by the MERTK kinase inhibitor
UNC569 and by the c-MET inhibitor BMS777607, which, at
the concentration used, also has MERTK inhibitory activity
(Figure 2C). These results confirm that MERTK signaling
supports phagocytic clearance of apoptotic BL2 cells by
macrophages and, together with the in situ expression analyses,
are consistent with the notion that engulfment of these cells by
SS-TAMs is MERTK-dependent.

Murine Macrophage MERTK Is Required
for Clearance of Apoptotic Lymphoma
Cells and for SS-Lymphoma Growth in vivo
Because MERTK activation by apoptotic lymphoma cells
may provide anti-inflammatory and immunosuppressive signals
that promote tumor growth, we next tested the requirement
for MERTK in an aggressive, preclinical transgenic murine
SS lymphoma model, λ-MYC (22), which we have used
previously using our derived MycEd1 line (5). We found

that, just as in human BL, MycEd1 cells became MERTK
ligand binding when they underwent apoptosis (Figure 3A),
and phagocytosis by macrophages was demonstrably MERTK-
dependent (Figure 3B). Similar to BL2 xenografts in mice
(Figure 4A, upper panel), immunohistochemical expression
of murine MERTK in MycEd1 tumors was mainly by
stromal cells, notably SS-TAMs, rather than by the tumor
cells themselves (Figure 4A, lower panel). This reflected
expression profiling and flow cytometric analyses of MycEd1
cells, which indicated little or no expression of Mertk
RNA or MERTK protein, respectively (Figures 1A,B and
Supplementary Figures 1A,B). Strikingly, growth of MycEd1
tumors in vivowas found to be very strongly dependent onMertk
(Figures 4B,C).

DISCUSSION

These results demonstrate a positive, causative link between
MERTK expression and growth capacity of SS NHL, at least in
the exemplar models studied here. In the context of the proven
ability of apoptotic lymphoma cells ultimately to facilitate SS
tumor growth, we propose that inhibition of MERTK may be
helpful in combination with apoptosis-inducing antilymphoma
therapeutics. The present study does not elucidate the detailed
mechanism(s) by which MERTK controls SS lymphoma
growth. Based on the evidence presented, taken together with
published activity of MERTK in immunosuppressive signaling
following engagement of appropriately opsonized apoptotic
cells (via GAS6 and PROS1), we suggest that interactions
between apoptotic lymphoma cells and MERTK-expressing
stromal/immune cells of the tumor lie at the root of the
mechanism. These may stimulate suppression of antitumor
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FIGURE 4 | Growth of aggressive SS lymphoma requires Mertk. (A) SS-TAMs in mouse model lymphomas are Mertk-positive. Immunohistochemistry of mouse

MycEd1 tumors or BL2 xenograft tumors labeled with antimouse Mertk. Scale bar = 100µm. Representative images. Survival is enhanced (B) in parallel with

inhibition of MycEd1 tumor growth (C) in Mertk−/− mice. Male Mertk−/− and aged-matched WT littermate control C57BL/6 mice were injected subcutaneously with 5

× 105 MycEd1 lymphoma cells. Mice were observed daily and growth of tumors was monitored using calipers. P < 0.001 Mantel-Cox log rank test.

immunity or alternative, trophic responses, such as growth factor
production or angiogenesis. In these contexts, it is noteworthy
that Gas6 is upregulated in SS-TAMs, at least in BL2 xenografts
(Figure 1A), suggesting that thesemacrophages of the lymphoma
microenvironment are armed with both receptor and ligand for
such responses.

Intriguingly, amelioration of λ-MYC SS lymphoma growth
in the Mertk−/− mice phenocopies mice deficient in Gals3
[galectin-3, see (24)], suggesting that MERTK and galectin-
3 could provide different components in a common, pro-
oncogenic mechanism. This possibility is supported by evidence
that galectin-3 has been implicated both in apoptotic cell
clearance by macrophages (30, 31) and as a ligand for MERTK
(32). However, we have been unable to demonstrate the
latter capacity in relation to apoptotic lymphoma cells (our
unpublished observations). Given the capability of galectin-
3 to support M2-like activation of macrophages, including
TAMs (30, 33), our results are consistent with MERTK
and galectin-3 each being required for critical, possibly
independent pathways in pro-oncogenic TAM activation. In
order to understand in further detail the possible roles
of MERTK in the stromal/immune microenvironment of
SS-lymphoma, several aspects of the work reported here
merit further investigation. These include extended studies
of the function of MERTK in polarizing TAM activation
(especially including genes like MRC1, MSR1, and LRP1)

that we have previously found to be upregulated in SS-
TAMs engaged in engulfment of apoptotic cells as well as
investigations into the importance of MERTK expression and
activity in other immune/stromal cells. Furthermore, other
TYRO3/AXL/MERTK family members, notably AXL, may be
important in this regard.

In conclusion, the work presented here provides a strong
rationale for the TYRO3/AXL/MERTK axis, notably MERTK,
to be targeted in antilymphoma therapy. Further studies
in additional lymphoma models will be required to prove
the generality of these results and to elucidate in detail
the underlying mechanisms that support MERTK-dependent
NHL growth.
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Supplementary Figure 1 | Untreated MycEd1 cells were analyzed by (A)

Western blotting for MERTK protein or (B) real-time PCR for Mertk message. WT

BMDMs with or without 24 h 200 nM dexamethasone treatment were used as

positive control cells for Western blotting. WT and Mertk−/− BMDMs were used as

positive and negative controls, respectively, for real-time PCR. (C) BL2 cells were

analyzed for MERTK by Western blotting. Differentiated THP1 cells were used as

positive controls. (D,E) Scatter plots showing the gating used in Figures 1B,D,

respectively.
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