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Abstract: We provide a new topological interpretation of the symplectic properties of glu-

ing equations for triangulations of hyperbolic 3-manifolds, first discovered by Neumann and

Zagier. We also extend the symplectic properties to more general gluings of PGL(2,C) flat

connections on the boundaries of 3-manifolds with topological ideal triangulations, prov-

ing that gluing is a K2 symplectic reduction of PGL(2,C) moduli spaces. Recently, such

symplectic properties have been central in constructing quantum PGL(2,C) invariants of 3-

manifolds. Our methods adapt the spectral network construction of Gaiotto-Moore-Neitzke to

relate framed flat PGL(2,C) connections on the boundary C of a 3-manifold to flat GL(1,C)

connections on a double branched cover Σ → C of the boundary. Then moduli spaces of

both PGL(2,C) connections on C and GL(1,C) connections on Σ gain coordinates labelled

by the first homology of Σ, and inherit symplectic properties from the intersection form on

homology.
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B Reconstructing framed flat connections 60

1 Introduction and motivation

Systems with non-abelian gauge symmetry can sometimes be analyzed very effectively using

related systems with abelian gauge symmetry. A famous example involves the use of (abelian)

Seiberg-Witten theory in four dimensions to compute (non-abelian) Donaldson invariants [1].

Donaldson and Seiberg-Witten theory are smoothly connected in physics: they are two limits

of the same four-dimensional quantum field theory.

In the present paper we use the same basic philosophy to study moduli spaces of flat (non-

abelian) PGL(2,C) connections in two and three dimensions, by means of closely related —

but conceptually much simpler — moduli spaces of (abelian)GL(1,C) flat connections. Again,

these two types of moduli spaces occur naturally in the same physical systems. Moduli spaces

of flat connections on a two-dimensional surface describe vacua of four-dimensional N = 2

supersymmetric theories of “class S” [2, 3] (further developed in, e.g. [4–6]); while moduli

spaces of flat connections on a 3-manifold describe vacua of three-dimensional N = 2 theories

of “class R” [7–10]. Just as 3-manifolds can have 2-dimensional boundaries, the 3d theories

of class R (labelled by 3-manifolds) describe boundary conditions for the 4d theories of class

S (labelled by surfaces).

The main question that we address, and hope to shed light on, is the symplectic nature

of Thurston’s gluing equations [11] for ideal triangulations of hyperbolic manifolds, and their

generalizations. The gluing equations for cusped hyperbolic manifolds were first shown to have

symplectic properties by Neumann and Zagier [12]. The symplectic properties immediately

implied a formula for the variation of the volume of a hyperbolic 3-manifold as cusps are

deformed. They have since been used to show that A-polynomials of hyperbolic 3-manifolds

M areK2-Lagrangian submanifolds in naturalK2-symplectic spaces associated to ∂M [13, 14],

and that the hyperbolic structures on 3-manifolds can be systematically quantized [15–20].1

They also played a crucial role in the construction of 3d N = 2 quantum field theories

associated to 3-manifolds [10, 27], which (in principle) provide a categorification of hyperbolic

invariants along the lines of [28].

The gluing equations and their symplectic properties have been generalized in many ways

since the work of Neumann and Zagier. Neumann [29] showed that they held for topological

ideal triangulations (not necessarily of hyperbolic manifolds). It later became clear that in the

topological setting the gluing equations naturally describe a gluing of framed flat PGL(2,C)

connections (e.g., [30, 31]), which include hyperbolic metrics. Symplectic properties of gluing

equations were conjectured in [32] for 3-manifolds partially glued from ideal tetrahedra, with a

1Ideas about quantization of A-polynomials go back to [21, 22]. Alternative methods of quantization

include skein calculus (e.g. [23]) and topological recursion (e.g. [24–26]), which are expected to be equivalent

to triangulation constructions.

– 2 –



proposed proof in [33].2 Symplectic properties were also conjectured for generalized PGL(K)

gluing equations in [31, 35], with recent proposed proofs in [33, 36].

Unfortunately, so far, all proofs of symplectic properties of gluing equations have involved

subtle combinatorics, and have been relatively unintuitive. (The impressive works of [29, 36]

are testament.) We seek to remedy this situation with an elementary topological construction.

First, we observe that symplectic properties of gluing equations have to do with framed

flat connections on boundaries rather than interiors of 3-manifolds — for example, boundaries

of ideal tetrahedra and the torus boundary of a fully-glued cusped 3-manifold. Thus, for the

most part, we are dealing with an intrinsically two-dimensional problem. Then we borrow

(and extend) a construction of Gaiotto, Moore, and Neitzke [6, 37] who showed, in the context

of 4d N = 2 theories of class S, that the moduli space of framed flat GL(K,C) connections

with certain singularities on a surface C is (roughly) symplectomorphic to a space of flat

GL(1,C) connections on a K-fold branched cover Σ
π→ C . 3 This correspondence was called a

non-abelianization map. In [6], the cover Σ
π→ C is a spectral cover, and the non-abelianization

map was defined using the data of a related “spectral network” on C — hence the title of our

paper. For our purposes, we will treat spectral networks (and the non-abelianization maps

they induce) as purely topological objects.

The space of GL(1,C) connections on Σ is extremely simple. It has coordinates xγ ∈ C∗

labelled by cycles γ ∈ H1(Σ,Z), and a Poisson bracket given by the intersection form in

homology, {xγ , xγ′} = 〈γ, γ′〉xγxγ′ . Physically, H1(Σ) is just the electric-magnetic charge

lattice of the 4d N = 2 gauge theory labelled by a “UV curve” C and a Seiberg-Witten

curve Σ. Via non-abelianization, the space of framed flat GL(K,C) connections on C inherits

the coordinates xγ and their simple Poisson bracket, which coincides with the inverse of the

Atiyah-Bott symplectic form [39]. The non-abelianization map can further be modified to

provide a symplectomorphism between PGL(K,C) connections on C and a projectivized space

of GL(1,C) connections on Σ, whose coordinates are labelled by elements of odd homology

γ ∈ H−1 (Σ,Z) := ker
[
π∗ : H1(Σ)→ H1(C)

]
.

In special cases, the xγ coincide with Fock-Goncharov cluster coordinates on spaces of

framed flat connections, which complexify Thurston’s shear coordinates (or, dually, Penner’s

length coordinates) in Teichmüller theory. As pointed out in [37, 40] and as we discover here,

they can also be much more general. Even in the PGL(2,C) case, the coordinates xγ include

complexified Fenchel-Nielsen coordinates on boundaries of 3-manifolds, of the type discussed

in [9, 32, 35, 41, 42].

We claim that symplectic (and in fact K2) properties of gluing equation are an obvious

consequence of the topological fact that if a 3-manifold M is glued out of ideal tetrahedra

{∆i}Ni=1 (or, in fact, other 3-manifolds) then the odd homologies of appropriate double-covers

2This situation is closely related to Bonahon’s formula for the deformation of the volume of hyperbolic

3-manifolds with geodesic boundary [34].
3Such a spectral-cover construction of local systems also features (independently) in yet-unpublished work

of Goncharov and Kontsevich [38], where coordinates on the relevant GL(1,C) and GL(K,C) moduli spaces

are promoted to fully non-commutative variables.
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of boundaries Σ
π→ C = ∂M and Σ∆i

π→ C∆ = ∂∆ are related by a lattice symplectic

reduction,

H−1 (Σ,Z) ' ⊕Ni=1H
−
1 (Σ∆i ,Z)//G (modulo K-torsion) , (1.1)

where G is a certain isotropic subgroup of gluing cycles. Setting up all the right structure

and definitions needed to understand (1.1) and the non-abelianization map that relates (1.1)

to a statement about gluing equations is a little tricky. In this paper, we will provide the

necessary definitions in the case K = 2, i.e. for spaces of framed flat PGL(2,C) connections.

Once the definitions are in place, all proofs are elementary.

We now describe our constructions and main results in a little more detail.

1.1 Symplectic structures from homology

Figure 1. Truncated tetrahe-

dron

To generalize the notion of an ideal triangulation, we work

with a class of “framed” 3-manifolds (Section 2.3). They

are oriented manifolds M that can be constructed by gluing

together pairs of big, hexagonal faces of truncated tetrahedra

(Figure 1). We call this a triangulation t of M . A framed

3-manifold has its boundary C = ∂M split into several parts

C = Cbig ∪ Csmall ∪ Cdef . The “big” boundary Cbig is tiled by

unglued hexagonal tetrahedron faces (we call this tiling a 2d

ideal triangulation t2d), while the “small” boundary Csmall is

tiled by the small triangular faces of truncated tetrahedra.

If only interiors of some tetrahedron faces are glued there

may be also be a “defect” boundary Cdef , consisting of annuli

around unglued edges.

One example of a framed 3-manifold is the tetrahedron ∆ itself. Its big boundary is a 4-

holed sphere and it small boundary contains four discs that fill in the holes. Another example

is a cusped hyperbolic manifold, such as a knot complement M = S3\K. Its small boundary

consists of a torus T 2 at each cusp, and its big boundary is empty. (An ideal hyperbolic

triangulation of M induces a triangulation t as a framed 3-manifold, with ∂M tiled by

truncated vertices of tetrahedra.) A closed hyperbolic 3-manifold with a spun triangulation

[11] (cf. [43]) is a framed 3-manifold whose boundary only contains small spheres, at the

vertices of the spun triangulation. Taking either the cusped or closed hyperbolic examples

and deleting all (big) edges of the triangulation t produces framed 3-manifolds with with

defects, Cdef 6= �. See also Figures 5–6 on page 14.

Given a framed 3-manifold M , there exists a canonical two-fold branched cover of its

boundary Σ
π→ C. The cover can be constructed by placing a branch point in every face of

a triangulation t2d of Cbig, and branch cuts along a trivalent graph dual to the triangulation

t2d (Figure 8, page 15), as well as along the noncontractible cycles of Cdef . It turns out that

the topological type of the cover is independent of the choice of triangulation used to define

it (Lemma 1).
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We can define odd homology of the cover as H−1 (Σ) := ker
[
π∗ : H1(Σ)→ H1(C)

]
, working

implicitly with Z coefficients. The odd homology is a nondegenerate symplectic lattice, with

skew-symmetric product 〈∗, ∗〉 given by the usual intersection form. If M is such that Csmall

contains only discs and annuli (say) and Cdef is empty, then a short calculation shows that

rankH−1 (Σ) = 6 genus(C)− 6 + 2 (# small discs in Csmall) . (1.2)

(See (2.10) for a more general formula.) We also introduce the twisted homology group

H̃−1 (Σ), a Z2 extension of H−1 (Σ), which is defined as the (odd) homology of the unit tangent

bundle T1Σ with a Z2 reduction of the fiber class u (Section 2.2). For the boundary of a framed

3-manifold without defects, there is a natural splitting H̃−1 (Σ) ' H−1 (Σ)⊕Z2 (Lemma 3). It

is induced by a surjective map

h̃ : P→→ H̃−1 (Σ) (1.3)

from a certain group P of paths on Csmall (Section 3), whose image is a copy of H−1 (Σ).

One may recognize (1.2) as dimension of Teichmüller space of a punctured surface C∗,
formed by puncturing C once on each small disc. More relevantly for us, it is the complex

dimension of the space X [C] of framed flat PGL(2,C) connections on C∗, with unipotent

holonomy around the punctures. This space is defined fully in Section 4, following [31, 32, 44];

the “framing” of a flat connection consists of an extra choice of invariant flag (i.e. an eigenline

of the PGL(2,C) holonomy) on every component of Csmall. We in fact show (Propositions

2–3):

Suppose π1(Csmall) is abelian. Given any triangulation t2d of Cbig, there is an algebraically

open subset P[C; t2d] ⊂ X [C] and a map

x : P[C; t2d]×H−1 (Σ)→ C∗ , (1.4)

that’s a homomorphism on the second factor ( i.e. xγ+γ′ = xγxγ′ for γ, γ′ ∈ H−1 (Σ)) and

nondegenerate in the sense that any basis {γi}di=1 of H−1 (Σ) provides global coordinates (xγi) ∈
(C∗)d on P[C; t2d]. The map (1.4) may be extended to twisted homology H̃−1 (Σ), with the

convention that the fiber class u maps to xu ≡ −1. Moreover, there is a non-degenerate

holomorphic symplectic structure on P[C], which agrees with the Atiyah-Bott structure on the

space of ordinary (un-framed) flat connections, whose Poisson brackets are

{xγ , x′γ} = 〈γ, γ′〉xγxγ′ . (1.5)

One proof of these statements follows by labeling both cycles γ ∈ H−1 (Σ) and coordinates

on P[C] by paths p ∈ P, using (1.3), and simply computing Poisson brackets. We will

follow this approach in Section 4. More fundamentally, the statements follow from a non-

abelianization map

Φ[t2d] : X̃−ab[Σ]
∣∣
R
→ P[C; t2d] , (1.6)

defined using spectral networks in Section 5. Here X̃−ab[Σ] is a moduli space of (twisted

and projectivized) flat GL(1,C) connections on Σ, i.e. flat GL(1,C) connections on the unit
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tangent bundle T1Σ with fiber holonomy −1, modulo a certain projective identification. The

space X̃−ab[Σ] is parametrized by the holonomies of flat connections along cycles γ ∈ H̃−1 (Σ),

giving an obvious nondegenerate homomorphism

x : X̃−ab[Σ]× H̃−1 (Σ)→ C∗ , (1.7)

and the Atiyah-Bott Poisson bracket among functions xγ is given trivially by (1.5). We

show (Proposition 4) that, subject to some mild restrictions ‘R’ on the domain, the non-

abelianization map Φ[t2d] is 1-1 and a symplectomorphism. Therefore, P[C, t2d] inherits the

coordinates xγ and their simple Poisson bracket.

The holomorphic symplectic form ω on X̃−ab[Σ] has an avatar ω̂ in the K-theory group

K2(F ∗)⊗Q, where F is the field of functions on X̃−ab[Σ]. It can be written ω̂ = 1
2

∑
ij(ε
−1)ijxi∧

xj where {xi} are coordinates associated to a basis {γi} of H−1 (Σ) and 〈γi, γj〉 =: εij . It follows

from the fact that Φ[t2d] preserves xγ functions that the non-abelianization map is in fact a K2

symplectomorphism, inducing a K2 avatar of the holomorphic symplectic form on P[C; t2d].

Such avatars (and their motivic versions) were first introduced in [44].

1.2 Gluing

Now, suppose that a framed 3-manifold M ′ is glued together by identifying pairs of hexagonal

faces in the big-boundary triangulation t2d of a framed 3-manifold M . For example, M ′ could

be a knot complement, and M could be a disjoint collection of truncated tetrahedra. We

assume (largely for simplicity) that neither M nor M ′ have defects.

We separate the gluing procedure into two steps. First, by gluing only the interiors of

pairs of faces of M we form a framed 3-manifold M0 that does have defects along some edges

of its triangulation. Then we fill in the defects to recover M ′,

M
glue interiors of faces M0

fill in edges M ′ . (1.8)

Each step of the gluing is compatible with the canonical covers Σ, Σ0, Σ′ of the respective

boundaries C, C0, C′. It is then an easy exercise to show that, up to 2-torsion, the homology

H̃−1 (Σ′) is a lattice symplectic reduction of H̃−1 (Σ). More precisely (Proposition 1), there is

an injection of finite (2-torsion) cokernel

g̃ : H̃−1 (Σ0) ↪→ H̃−1 (Σ) , (1.9a)

which preserves the intersection form, and there is a distinguished subgroup G̃ ⊂ H̃−1 (Σ0) of

“gluing cycles” (cycles killed by filling in the defects) such that 〈G̃, G̃〉 = 0 (i.e. G̃ is isotropic)

fitting into the exact sequence (Lemma 3)

0→ G̃
ĩ→ K̃

q̃→ H̃−1 (Σ′)→ 0 , (1.9b)

where K̃ is a finite-index subgroup of the complement K̃ ⊂ K̃ ′ := ker 〈G̃, ∗〉
∣∣
H̃−1 (Σ0), with

K̃ ′/K̃ = 2-torsion. Thus H̃−1 (Σ′) = K̃/G̃ ' H̃−1 (Σ0)//G̃ (modulo 2-torsion), and more
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generally there’s a finite-index sublattice H̃ ⊂ H̃−1 (Σ) such that

H̃−1 (Σ′) = K̃/G̃ ' g̃(K̃)/g̃(G̃) = H̃//g(G̃) . (1.10)

(These maps and equivalences hold for un-twisted homology as well.)

The gluing M  M0  M ′ also induces a gluing of PGL(2,C) and GL(1,C) moduli

spaces (Sections 4.4 and 5.2)

gPGL(2) : P[C; t2d]
∣∣
xg(G̃)=1, R

→→ P[C′; t′2d] ,

gGL(1) : X̃−ab[Σ]
∣∣
xg(G̃)=1

→→ X̃−ab[Σ′] ,
(1.11)

where ‘R’ denotes some mild (open) extra restrictions. In both cases, the gluing maps turn

out to be controlled by the gluing equations

xg̃(γ) = xq̃(γ) ∀ γ ∈ K̃ ⊂ H̃−1 (Σ0) . (1.12)

Here the RHS contains all coordinates on P[C′] (say), since q̃ is surjective; and they are

identified with functions on P[C] on the LHS. If µ ∈ G̃ ⊂ K̃, then q̃(µ) = 0, so the gluing

equations simply say xg̃(µ) = 1, matching the restriction on the domain in (1.11). Our main

results then follow quite quickly:

Theorem 1 (p. 41) The PGL(2) gluing map is the symplectic reduction of a finite quotient

gPGL(2) : (P[C]
∣∣
R
/Z)

//
(C∗)rank(G̃) = (P[C]

∣∣
R
/Z)

∣∣
g̃(G̃)=1

/
(C∗)rank(G̃) ∼→ P[C′] , (1.13)

where ‘R’ is a mild (open) restriction, Z ' H̃−1 (Σ)/H̃ is a finite group (at most 4-torsion),

and the group action (C∗)rank(G̃) for symplectic reduction is generated by using xg̃(µ) (µ ∈ G̃)

as moment maps with respect to the holomorphic symplectic structure. More so, gPGL(2) is

a K2 symplectic reduction with respect to K2 avatars ω̂, ω̂′ of the symplectic forms on P[C],
P[C′].
An analogue of Theorem 1 holds (rather trivially) for the GL(1) gluing map, and and in fact

induces the PGL(2) result via non-abelianization:

Theorem 2 (p. 52) Gluing and non-abelianization maps fit into a commutative diagram

X̃−ab[Σ]
∣∣
xg̃(G̃)=1

gGL(1)→→ X̃−ab[Σ′] = (X̃−ab[Σ]/Z)
//

(C∗)rank G̃

Φ[t2d] ↓ Φ[t′2d] ↓

P[C; t2d]
∣∣
xg̃(G̃)=1

gPGL(2)→→ P[C′; t′2d] = (P[C; t2d]/Z)
//

(C∗)rank G̃ ,

(1.14)

with appropriate open restrictions on the domains (as in (1.6), (1.11)); the vertical maps are

1-1 K2 symplectomorphisms and the horizontal maps are K2 symplectic reduction.
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1.3 Example: knot complement

To finish the introduction, we illustrate in some detail how the abstract formalism described

above applies to a simple example, the ideal triangulation of a knot complement. Let M ′ =

S3\K be the knot complement, viewed as a framed 3-manifold with small torus boundary

C′ = C′small ' T 2, and let M = tNi=1∆i be the disjoint union of truncated tetrahedra from

which M ′ is glued. Topologically its boundary is a union of spheres, C = tNi=1C∆i, C∆i ' S2.

γ�γ��

γ� γ��
γ

γ

Figure 2. Six edge cycles gener-

ating H̃−1 (Σ∆).

The canonical cover of the boundary of a tetrahedron

Σ∆
π→ C∆ is branched over four points, one on each face,

as illustrated in Figure 2. Thus it has the topology of a

torus, Σ∆ ' T 2. The first homology (twisted or untwisted)

is entirely odd. A convenient basis of generators is given

by cycles γ, γ′, γ′ encircling pairs of branch points, and thus

naturally associated to edges of the tetrahedron. We draw γ

in Figure 2, with the convention that solid paths lie on the

top sheet of the cover Σ∆ and dashed lines lie on the bottom

sheet. Such smooth curves also have canonical lifts to the

unit tangent bundle T1Σ∆ (given by their tangent vectors),

and thus represent cycles in twisted homology as well. The cycles γ, γ′, γ′′ are equal on

opposite edges and sum to zero. Therefore,

H−1 (Σ∆) = 〈γ, γ′, γ′′ | γ + γ′ + γ′′ = −1〉 ' Z2 ,

H̃−1 (Σ∆) = 〈γ, γ′, γ′′, u | γ + γ′ + γ′′ = −1, 2u = 0〉 ' H−1 (Σ∆)⊕ Z2 ,
(1.15)

where u generates the extra fiber class in twisted homology. The intersection product is

〈γ, γ′〉 = 〈γ′, γ′′〉 = 〈γ′′, γ〉 = 1 , 〈u, ∗〉 = 0 . (1.16)

Correspondingly, the space of framed flat PGL(2) connections on the boundary of a

tetrahedron (cf. [17, 31]) is

P[C∆] = {xγ , xγ′ , xγ′′ |xγxγ′xγ′′ = 1} ' (C∗)2 , (1.17)

with holomorphic symplectic form, K2 form, and Poisson brackets

ω =
dxγ
xγ
∧dxγ′
xγ′

, ω̂ = xγ∧xγ′ ; {log xγ , log xγ′} = {log xγ′ , log xγ′′} = {log xγ′′ , log xγ} = 1 .

(1.18)

The coordinates on P[C∆] (which coincide in this case with Fock-Goncharov coordinates [44],

or a complexification of Thurston’s shear coordinates) are labelled, as promised, by cycles γ;

and their Poisson brackets are induced by the intersection form on H̃−1 (Σ).

To connect with hyperbolic geometry, we note that standard shape parameters are related

to x coordinates as

z = −xγ = xγ+u , z′ = xγ′+u , z′′ = xγ′′+u , (1.19)
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so that zz′z′′ = xu = −1. Of course, there is a second standard relation among the shapes

in hyperbolic geometry, namely z + z′−1 − 1 = 0. This second relation describes framed flat

connections that extend from the boundary to the interior of a tetrahedron, and cuts out a

K2 Lagrangian submanifold L∆ ⊂ P[C∆]. We will not need this second relation.

For the full collection M of tetrahedra, we have H−1 (Σ) = ⊕Ni=1H
−
1 (Σ∆i) ' Z2N and

H̃−1 (Σ) ' H−1 (Σ) ⊕ Z2 (in twisted homology, fiber classes on disconnected components are

all identified, hence a single Z2 extension). Correspondingly, P[C] =
∏N
i=1 P[C∆i] ' (C∗)2N .

We denote the generators of H̃−1 (Σ) as γi, γ
′
i, γ
′′
i and the associated functions on P[C] as

zi = −xγi, z′i = −xγi′ , etc., with index i for the i-th tetrahedron.

For the glued-up knot complement M ′, the canonical cover of the boundary Σ′
π→ C′ ' T 2

is unbranched and disconnected, i.e. Σ′ ' T 2 t T 2. Therefore,

H−1 (Σ′) = Z〈α, β〉 ' Z2 ,

H̃−1 (Σ′) = Z〈α, β, u | 2u = 0〉 = H−1 (Σ′)⊕ Z2 ,
(1.20)

where α and β are “odd double lifts” of (say) the meridian and longitude cycles on the torus

boundary of M ′, as on the left of Figure 3. The intersection product is

〈α, β〉 = 2 , (1.21)

with 〈u, ∗〉 ≡ 0 (always). Correspondingly, there is a complex symplectic space [12, 21]

P[C′] = {xα, xβ} ' (C∗)2 , xα = `2 , xβ = m2 , (1.22)

of framed flat PGL(2) connections on the torus boundary of the knot complement, parametrized

by the squares of meridian and longitude eigenvalues xα = `2 and xβ = m2. Now

ω′ =
1

2

dxα
xα
∧ dxβ
xβ

, ω̂′ =
1

2
xα ∧ xβ ; {log xα, log xβ} = 2 . (1.23)

C�
small (C0)small

α
α̂

β
β̂

µ1

µ2

�q

Figure 3. The small boundaries of M ′ and M0, with their (unbranched) canonical covers Σ′, Σ0, and

curves representing generators of H̃−1 (Σ′) and H̃−1 (Σ0).

In order to relate the boundaries of the tetrahedra M and the knot complement M ′, we

form an intermediate framed 3-manifold M0 with defects: M0 is obtained by gluing tetrahedra
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(only) along the interiors of their big faces, or equivalently by removing the edges from the

triangulation t of M ′. If there are N tetrahedra there are also N edges in the triangulation.

Therefore, the boundary C0 = ∂M0 is topologically a surface of genus N + 1. Its small

part (C0)small is a torus with 2N holes (formed from the torus C′small with endpoints of edges

removed), and its defect part (C0)def consists of N annuli. (In this case (C0)big = �.) The

canonical cover Σ0
π→ C0 has no branch points, but is characterized by a branch cut along the

non-contractible cycle of each annulus in (C0)def . It has genus 2N + 1, whence

rankH−1 (Σ0) = rankH1(Σ0)− rankH1(C0) = 2(2N + 1)− 2(N + 1) = 2N ; (1.24)

thus H−1 (Σ0) ' Z2N and H̃−1 (Σ0) is a Z2 extension thereof. The finite-cokernel injection g̃ in

(1.9) maps H̃1(Σ0) into H̃1(Σ) ' Z2N ⊕ Z2, preserving the fiber class u.

Inside H̃−1 (Σ0) lies the subgroup G̃ of gluing cycles, generated by “odd double lifts” µj
of curves surrounding endpoints of defects Ij on (C0)small, as on the right of Figure 3. (The

two cycles at the two endpoints of a defect Ij are equivalent, so they may unambiguously be

called µj .) It is easy to see that the only relation among the µj is
∑N

j=1 µj = 0, whence

G̃ ' ZN−1 . (1.25)

Moreover, since 〈µj , µj′〉 = 0, G̃ is an isotropic subgroup of H̃−1 (Σ0). The “complement”

K̃ := ker 〈G̃, ∗〉|H̃−1 (Σ0) includes G̃ itself and is a subgroup of rank N + 1,

G̃ ⊂ K̃ ' ZN+1 ⊕ Z2 . (1.26)

The two additional generators of K̃ (besides the fiber class u) are represented by “odd double

lifts” α̂, β̂ of any curves on (C0)small that map to α, β once the holes in (C0)small are filled in.

The map that fills in the holes is q̃ from (1.9b); it sends (α̂, β̂, µj) to (α, β, 0). Thus

H̃−1 (Σ′) ' K̃/G̃ ' H̃−1 (Σ0)//G̃ . (1.27)

Now, Thurston’s gluing equations state that the product of shapes zi, z
′
i, z
′′
i around any

edge Ij in the triangulation of M ′ is trivial, and that the product around longitude and

meridian paths (with exponents ±1) equals the squares `2, m2 of longitude and meridian

eigenvalues (cf. [12]). In terms of homology, it turns out that the injection g̃ from (1.9a) also

sends each µj to a sum of tetrahedron cycles γi, γ
′
i, γ
′′
i around edge Ij , and sends α̂, β̂ to sums

and differences of parameters around longitude and meridian paths. We will show in Section

4.6 that, together with some signs coming from the fiber class u, Thurston’s gluing equations

are precisely and succinctly written as

xq̃(γ) = xg̃(γ) , ∀ γ ∈ K̃ . (1.28)

When γ = µj for some j, this is an edge equation; and when γ = α̂ or β̂ these are cusp equa-

tions. It follows (Theorem 1) that P[C′] = (P[C]/Z)//(C∗)N−1 = (P[C]/Z)|g̃(µj)=1/(C∗)N−1

is the symplectic reduction of a finite quotient. Explicitly, the quotient action is xγ ∼
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(tµ)〈γ,g̃(µ)〉xγ for all γ ∈ H̃−1 (Σ) and µ ∈ G̃, where (say) if µ =
∑N−1

j=1 ajµj in any basis

for G̃ then tµ ∈ C∗ is defined as ta1
1 · · · t

aN−1

N−1 (tj ∈ C∗).
There is also a slightly weaker algebraic version of the symplectic properties. Choosing

{γi, γ′i}Ni=1 as a basis for H−1 (Σ) and zi = −xγi, z′i = −xγi′ as the corresponding coordinates

on P[C], the gluing equations take the form

`2 = xα = ±zAz′A′

m2 = xβ = ±zBz′B′

1 = xq̃(µj) = ±zCjz′C′j (∀ 1 ≤ j ≤ N)

(1.29)

for N -dimensional integer vectors A,A′, B,B′ and N ×N matrices C,C ′. The (N + 1)× 2N

matrix

g =



A A′

B B′

C C ′


 (1.30)

is nothing but the matrix of the injection g̃ restricted to K̃ (ignoring the fiber class u). The

fact that g̃ preserves the intersection form implies

g J2N gT = (2J2)⊕ 0N×N , J2n :=

(
0 In
−In 0

)
; (1.31)

while because rank(K̃) = N + 1 we must have rank(g) = N + 1. This was precisely the form

of the symplectic properties initially discovered by Neumann and Zagier [12].

2 Preliminaries

We begin by defining the odd homology of a cover and its twisted version. Then we formally

introduce the “framed” 3-manifolds that support framed flat connections and construct canon-

ical covers of their boundaries. Section 2.5 contains the basic but central result that gluing

of framed 3-manifolds induces a lattice symplectic reduction on the odd homology of their

boundaries.

2.1 Odd homology

Let C be a closed, oriented surface or disjoint union thereof, and let π : Σ→ C be an oriented

double cover, branched over a finite (possibly empty) collection of isolated points p ∈ b. We

can think of b, the branching locus, as a subset of either C or Σ. We always assume that the

branching is simple, with ramification index 2 at any p ∈ b.

We define the “odd” homology of the cover (with Z coefficients always assumed) as

H−• (Σ) := ker
[
π∗ : H•(Σ)→ H•(C)

]
. (2.1)

Note that, since Σ is oriented, H•(Σ) is torsion-free, whence H−• (Σ) is torsion-free as well. It

is also convenient to introduce the deck transformation σ : Σ→ Σ, an orientation-preserving
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involution. Letting σ∗ : H•(Σ)
∼→ H•(Σ) denote the induced automorphism on homology and

P± := 11± σ∗ the associated (quasi-)projections, we may equivalently define

H−• (Σ) := kerP+ = kerπ∗ , H+
• (Σ) := kerP− . (2.2)

The equivalence of (2.1) and (2.2) follows from the existence of an injection `+ : H•(C) ↪→
H•(Σ) that sends a cycle to the sum of its pre-images4, obeying

π∗ ◦ `+ = 211H•(C) , `+ ◦ π∗ = P+ . (2.3)

We call `+ an “even double lift.” A more careful description of `+ appears in Appendix A,

together with some other simple results about odd homology.

The first homology group H1(Σ) has a non-degenerate skew-symmetric intersection form

〈 , 〉 :
∧2H1(Σ,Z) → Z, which is preserved by σ∗ (since σ is orientation-preserving). It

follows (Lemma 7, Appendix A) that the intersection form is non-degenerate on H−1 (Σ) as

well.

It follows from injectivity of `+ that

rankH−1 (Σ) = rankH1(Σ)− rankH1(C) . (2.4)

Combined with the Riemann-Hurwitz formula χ(Σ) = 2χ(C) − #(b) (see (A.7)), we also

obtain

rankH−1 (Σ) = −χ(C) + #(b) . (2.5)

2.2 Twisted homology

We will often need a Z2 extension of odd homology. Let S be any closed, oriented, connected

surface and let T1S denote its unit tangent bundle. The homology H1(T1S) is an extension5

of H1(S) by Z/(χ(S)Z), where Z/(χ(S)Z) is generated by the class u of the unit-tangent

fiber above any point of S, which satisfies χ(S)u = 0. We define the twisted homology

H̃1(S) := H1(T1S)/Z〈2u〉 to be the quotient of H1(T1S) by the subgroup generated by 2u;

this makes sense since χ(S) = 2− 2g(S) is always even. Thus H̃1(S) is a Z2 extension,

0 → Z2 ↪→ H̃1(S)
p→ H1(S)→ 0 ,

= Z〈u〉/Z〈2u〉 (2.6)

where p just sets u 7→ 0. More generally, if S = tni=1Si has multiple connected components

Si, we define H̃1(S) :=
[
⊕ni=1 H̃1(Si)

]
/Z〈ui − uj〉 by identifying all the fiber classes ui ∼ uj

(1 ≤ i, j ≤ n). Then H̃1(S) is still a single Z2 extension of H1(S), as in (2.6).

We can represent all classes [γ] ∈ H̃−1 (S) by drawing smooth curves γ on S, and using

their unit tangent vectors to lift them canonically to curves on T1S. In particular, the fiber

class u is represented by any small contractible loop, as in Figure 4.

4This is sometimes called a “transfer homomorphism,” cf. [45, Chapter G.3]
5Showing this is a classic application of the Gysin sequence.
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�
γ γ� γ + u

vs.

Figure 4. Two smooth curves on a surface S representing [γ] and [γ′] = [γ] + u in H̃1(S).

Now suppose Σ
π→ C is an oriented branched double cover as above. The deck transforma-

tion σ has nonvanishing derivative dσ, and thus extends to an involution on T1Σ, which in turn

induces an involution σ∗ on twisted homology H̃1(Σ). Indeed, since the deck transformation

is orientation-preserving, we have σ∗u = u. Letting P± = 11± σ∗, we define

H̃±1 (Σ) := kerP∓
∣∣
H̃1(Σ)

. (2.7)

Note that P+u = P−u = 0, so u ∈ H̃±1 (Σ). Indeed, H̃−1 (Σ) (say) is just the preimage of

H−1 (Σ) ⊂ H1(Σ) under the map p in (2.6), so H̃−1 (Σ) is a Z2 extension of H−1 (Σ),

0→ Z2 ↪→ H̃−1 (Σ)
p→ H−1 (Σ)→ 0 . (2.8)

The intersection product on H̃−1 (Σ) is simply pulled back from H−1 (Σ), i.e. 〈γ, γ′〉H̃−1 :=

〈p(γ), p(γ′)〉H−1 . Since the product on H−1 (Σ) is nondegenerate, it follows that 〈γ, γ′〉 = 0

∀ γ′ ∈ H̃−1 (Σ) if and only if γ = 0 or γ = u.

2.3 Boundaries of framed 3-manifolds

Framed 3-manifolds, as introduced in [31, 32], are a class of 3-manifolds with extra structure

on which it is natural to define moduli spaces of framed flat connections. They include

both knot complements and single tetrahedra. In the present section, we look at framed

3-manifolds topologically, construct canonical branched covers of their boundaries, and study

how the homology of these covers behaves under gluing. We use the most liberal possible

definition:

Definition 1 A framed 3-manifold M is an oriented 3-manifold with boundary (or disjoint

union of such), together with a splitting of its boundary ∂M = ∂Mbig ∪ ∂Msmall into “big”

and “small” parts, such that

a) ∂Mbig consists of surfaces of any genus with at least one hole and negative Euler

character;

b) ∂Msmall consists of surfaces of any genus with any number of holes;

c) the two parts of the boundary attach along circles, ∂Mbig ∩ ∂Msmall = tiS1
i .

Often (as in [31, 32]) it is useful to impose additional restrictions on the small boundary. For

example, requiring ∂Msmall to have abelian fundamental group ensures that framing data does

not restrict the choice of a flat connection on ∂M ; and requiring ∂Msmall to admit a Euclidean
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structure ensures the existence of additional data needed for quantization (e.g. combinatorial

flattenings of [29], cf. [17, 19]). For the moment, we don’t need these restrictions.

The basic example of a framed 3-manifold is a truncated tetrahedron (Figure 1), whose

big boundary is a 4-holed sphere (formed from four big hexagonal faces) and whose small

boundary is four small triangles (at the truncated vertices). We define a triangulation (or

tiling) t of a framed 3-manifold to be a decomposition into truncated tetrahedra that are

glued only along big hexagonal faces.6 Thus, t induces

- a tiling of ∂Mbig by big hexagons, equivalent to an ideal 2d triangulation t2d; and

- a tiling of ∂Msmall by small triangles.

For example, any knot complement M with a standard ideal triangulation can be viewed

as a framed 3-manifold with a single small torus boundary and a tiling t where all big

hexagonal faces have been glued pairwise. The tiling is simply obtained by truncating the

ideal triangulation. This is illustrated in Figure 5.

Figure 5. Left: a typical framed 3-manifold, with two big boundaries (a 3-holed sphere and a 4-holed

sphere) and several small tori, annuli, and discs. A 2d triangulation of the big boundaries is shown.

Right: the triangulation of a small torus boundary induced from a 3d triangulation t.

We also introduce

Definition 2 A framed 3-manifold with defects M is an oriented 3-manifold with boundary,

together with a splitting ∂M = ∂Mbig∪∂Msmall∪∂Mdef into three parts, such that ∂Mbig and

∂Msmall are as in Def. 1, while ∂Mdef is a collection of annuli that attach only to holes on

the small boundary: ∂Mbig ∩ ∂Msmall = tiS1
i , ∂Msmall ∩ ∂Mdef = tiS1

j , ∂Mdef ∩ ∂Mbig = �.

We can think about forming a framed 3-manifold with defects in two different ways. We

can start with a framed 3-manifold M without defects and a collection of open curves {Ii}
in the interior of M , whose endpoints lie on the small boundary. Excising neighborhoods of

the Ii produces a framed 3-manifold with defects M ′ = M\ ∪i Ii, as in Figure 6. We say

6Such a triangulation always exists, though we don’t need this fact here. For example, to construct a trian-

gulation for an arbitrary framed 3-manifold M , one can first take two copies M,M with opposite orientation

and glue them along the big boundary to form N = M ∪big M . The new N has only closed small boundary

components. It admits a topological ideal triangulation (equivalent to a tiling by truncated tetrahedra) by

classic theorems of Matveev [46] (cf. [47, Prop 1.2]). Then one can refine the triangulation of N so that

∂Mbig ⊂ N is realized by faces of tetrahedra, and cut along ∂Mbig to recover a triangulation of M .
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Figure 6. Including defects (extra annular boundary components) that begin and end on ∂Msmall.

On the right, the defects are compatible with a 3d triangulation: they begin and end at vertices of

the tiling of ∂Msmall.

that a triangulation t of M is compatible with the defects if the Ii lie along edges of the

triangulation. Then M ′ inherits a tiling t′ by tetrahedra with truncated vertices and some

truncated edges (those along the Ii), as in Figure 7.

Figure 7. Doubly truncated tetra-

hedron

Alternatively, we may start with a framed 3-manifold

M and a triangulation t, and identify the interiors (but not

the edges) of some pairs of faces of the truncated tetrahedra

in M . In general this again leads to a framed 3-manifold

M ′ with defects along the new internal edges created by

the gluing. It inherits a triangulation t′.

In the extreme case, we may build a framed 3-manifold

M ′ with defects entirely from doubly truncated tetrahedra,

by gluing their big hexagonal faces together in pairs. Then

a defect lies along every edge in the triangulation of M ′.

2.4 The canonical cover

The boundary C = ∂M of any framed 3-manifold, with or without defects, admits a canonical

double cover Σ
π→ C.

Γbr

Figure 8. The branching graph Γbr, dual to a big-boundary triangulation (left) and containing closed

curves around each defect (right).

To construct it, we first choose a triangulation t of M . Let t2d be the induced tiling of
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the big boundary ∂Mbig by hexagons, thought of as a 2d ideal triangulation. Let Γbr be the

union of a trivalent graph dual to the triangulation t2d and a closed curve around the girth

of every defect of M , as in Figure 8. We construct the cover Σ
π→ C = ∂M by using Γbr as a

branching graph — putting branch cuts on the edges of Γbr and branch points at the vertices

of Γbr. In other words, we take two identical copies Σ+,Σ− of C\Γbr, glue Σ+ to Σ− (and

vice versa) along the edges of Γbr, and add in one copy of the vertices b of Γbr to complete

the space to a closed surface Σ:

Σ = Σ+ ∪ Σ− ∪ b = (C\Γbr) ∪edges(Γbr) (C\Γbr) ∪ b (with b =vertices(Γbr)) . (2.9)

Lemma 1 This definition of the canonical cover Σ
π→ C does not depend on a choice of

triangulation t.

� �

Figure 9. Invariance of the canonical cover Σ
π→ C under a flip of the big-boundary triangulation.

Proof. The only possible dependence on t comes from the induced ideal triangulation t2d

on the big boundary. Any two triangulations of the big boundary are related by a sequence

of flips, a.k.a. 2-2 Pachner moves. Each flip, moreover, changes the cover Σ
π→ C locally in

a way that does not modify its topological type (i.e., corresponds to a homeomorphism of

Σ and a homotopy of π). To see this, we simply reconnect branch cuts as in Figure 9. (In

general, the topological type of a cover Σ
π→ C defined from a branching graph only depends

on the relative homology class in H1(C, b;Z2) induced by the graph.) �

Another simple but fundamental result is

Lemma 2 Let M be a framed 3-manifold without defects, with boundary C = ∂M such that

π1(Csmall) is abelian. Let Ci denote the connected components of C, with gi the genus of Ci
and ni the number of disc components of (Ci)small. Let Σi

π→ Ci be the canonical cover over

Ci. Then

rankH−1 (Σi) =





0 Ci is a small sphere

2 Ci is a small torus

6gi − 6 + 2ni otherwise .

(2.10)

Proof. This is trivial for small spheres or tori (which themselves are closed, disjoint com-

ponents of C). Otherwise, Ci contains big boundary with holes connected to small discs

and small annuli. We calculate χ(Ci) = (# faces of t2d) + ni − (# big edges of t2d) =
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−1
2(# faces of t2d) + ni = −1

2#(b) + ni. On the other hand, χ(Ci) = 2 − 2gi, so #(b) =

4gi − 4 + 2ni ; then the result follows from (2.5). �

2.5 Gluing of canonical covers

As a final basic result, we now describe how the odd homology of canonical covers of bound-

aries changes as framed 3-manifolds are glued.

Consider the following setup, used throughout the remainder of the paper. Let M be a

framed 3-manifold with triangulation t. (M may have defects and/or multiple components.)

Choose several pairs of faces (fi, f
′
i) of the induced triangulation on the big boundary ∂Mbig

to glue together, and identify their interiors to form a manifold M0 :

M0 = M |f◦i ∼−f ′i◦ . (2.11)

In general, M0 will be a framed 3-manifold with defects, and an induced triangulation t0. Let

{Ij} denote the new defects in M0, corresponding to new internal edges of t0 that were not

present in t. We may then fill in the defects Ij to form a new 3-manifold M ′,

M ′ = M0 ∪ (tjIj) . (2.12)

We illustrate this gluing process in Figure 10.

f f � f f �
�

ν̄

µ+

µ−

� �

∂Mbig

(∂M0)small

(∂M0)def

∂M0

∂M �
small

Figure 10. Gluing M  M0  M ′ in two steps: first, identifying interiors of faces on the big

boundary of M , then filling in defects of M0.

A standard example of such gluing involves a disjoint union of truncated tetrahedra

M = tNi=1∆i, glued together to form (say) a knot complement M ′. In this case M0 is

obtained by gluing doubly truncated tetrahedra; the boundary ∂M0 has genus N + 1 and can

be thought of as the small torus boundary of M ′ with N additional defects drilled out. We

will come back to this example in Sections 3.4, 4.6.
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Now, let us denote the boundaries of the three 3-manifolds as C := ∂M , C0 := ∂M0 and

C′ := ∂M ′. They have canonical double covers

Σ
π→ C , Σ0

π→ C0 , Σ′
π→ C′ . (2.13)

To relate the homologies of these covers, we introduce oriented closed curves µj ⊂ C0 winding

around the girth of each defect Ij (parallel to the branch lines, as in Figure 10). Denote by

µ+
j , µ

−
j the lifts of µi to the two sheets of Σ0, and define subgroups

G0 ⊂ H1(Σ0) subgroup generated by all the µ±j
G′ := kerP+|G0 ⊂ H−1 (Σ0)

G := imP−|G0 ⊂ H−1 (Σ0) subgroup generated by µj := µ+
j − µ−j

(2.14)

In general, G′/G may be a nontrivial 2-torsion group.

Proposition 1 Let K ′ := ker 〈G′, ∗〉|H−1 (Σ0). Then:

a) There is an injection g : H−1 (Σ0) ↪→ H−1 (Σ) with finite (2-torsion) cokernel that

preserves the intersection form.

b) There is an exact sequence

0→ G′
i→ K ′

q→ H−1 (Σ′)→ 0 (2.15)

providing an isomorphism H−1 (Σ′) ' H−1 (Σ0)//G′ = K ′/G′, preserving the intersection form.

c) Suppose K ⊂ H−1 (Σ0) is a subgroup such G ⊂ K ⊂ K ′ and K ′/G′ ' K/G. Then there

is a finite-index subgroup H ⊂ H−1 (Σ) containing g(G) such that

H−1 (Σ′) ' H//g(G) = g(K)/g(G) . (2.16)

The quotient H−1 (Σ)/H contains (at most) 2-torsion and 4-torsion.

Proof. For part (a), we observe that relating Σ  Σ0 involves the inverse of the basic

cut-and-glue operation of Appendix A.4. Namely, from the perspective of the boundary

C, gluing the interiors of two faces (fi, f
′
i) is equivalent to excising discs in the interiors of

these faces (containing branch points) and subsequently identifying the circular boundaries

of holes that are created. The gluing can be reversed by cutting the boundary C0 along

curves νi (Figure 10), and filling in the resulting holes with discs. This gluing/ungluing lifts

to Σ and Σ0. Applying Lemma 14 (p. 59) to the pair (Σ0,Σ), and noting that the group

Gν ⊂ H1(Σ0) generated by lifts νi of the νi is even — so that G−ν := kerP+|Gν = 0 and

ker 〈G−ν , ∗〉|H−1 (Σ0) = 0 — we obtain the injection H−1 (Σ0)//G−ν = H−1 (Σ0) ↪→ H−1 (Σ). The

cokernel is at most 2-torsion and may be nontrivial because the lifts νi are connected (and

branch points are destroyed/created in the gluing/ungluing).

For part (b), we observe that relating boundaries C0  C and Σ0  Σ is again an

application of a basic cut-and-glue. This time, filling in defects means from the perspective
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of the boundary to cut C0 along the µi and cap off holes with discs. The operation lifts to

Σ0. Applying Lemma 14 and noting that the µi have two distinct lifts (so no branch points

are created/destroyed) yields the sequence (2.15), with identically vanishing homology.

For part (c), we construct H as follows. Observe that H−1 (Σ0)/K ′ is torsion-free (because

〈G′, nα〉 = 0⇔ 〈G′, α〉 = 0), so we can decompose H−1 (Σ0) = K ′⊕K ′⊥ for some (non-unique!)

sublattice K ′⊥ ' H−1 (Σ0)/K ′. Let H̃ := K⊕K ′⊥, and note that H−1 (Σ0)/H̃ ' K ′/K ' G′/G
is 2-torsion. Then we set H := g(H̃) ⊂ H−1 (Σ). Since the cokernel of the injection g

is 2-torsion, H−1 (Σ)/H contains at most 2- and 4-torsion. The isomorphisms (2.16) follow

from H−1 (Σ) ' K ′/G′ ' K/G together with the fact that g is injective (and preserves the

intersection form). �

Remark. We emphasize, following Appendix A.4, that g can explicitly be defined by rep-

resenting a cycle [γ] ∈ H−1 (Σ0) by a curve (or curves) γ away from the gluing regions, then

including γ as curves in Σ and passing to homology. Similarly, q is defined by representing

[γ] ∈ K ′ ⊂ H−1 (Σ0) by curve(s) γ disjoint from defects, then filling in the defects and passing

to homology.

Gluing can also be extended in a straightforward manner to unit tangent bundles and

twisted homology. Namely, the gluing of surfaces Σ Σ0 and Σ0  Σ′ extends uniquely to

unit tangent bundles (T1Σ  T1Σ0, T1Σ0  T1Σ′ ) by performing all cut/glue operations

smoothly, i.e. cutting and gluing discs (etc.) along circles without introducing any kinks.

Then, for example, the (even) classes [νi]−u ∈ H̃1(Σ0) represented by non-intersecting smooth

curves νi ⊂ Σ0 become trivial when included in H̃1(Σ); and the classes [µ±j ] − u ∈ H̃1(Σ)

represented by the µ±j become trivial in H̃1(Σ′) once defects are filled in. Let us therefore

define

G̃0 ⊂ H̃1(Σ0) subgroup generated by µ±j − u
G̃′ := kerP+|G̃0

⊂ H̃−1 (Σ0)

G̃ := imP−|G̃0
⊂ H̃−1 (Σ0) subgroup generated by µj := µ+

j − µ−j ,
(2.17)

where we now use ‘µj ’ and ‘µ±j ’ to denote the classes of the canonical lifts of the gluing curves

to T1Σ0. Let K̃ ′ = ker 〈G̃′, ∗〉|H̃−1 (Σ0).

We may define a lift g̃ : H̃−1 (Σ0) → H̃−1 (Σ) of the map g by representing cycles [γ] ∈
H̃−1 (Σ0) by curves γ ⊂ T1Σ0 away from the gluing regions, including them as curves in T1Σ

and passing to homology. We define a lift q̃ : K ′ → H̃−1 (Σ′) of the map q the same way,

by representing cycles [γ] ∈ K ′ by curves γ ⊂ T1Σ0 disjoint from the defects, filling in the

defects, and passing to homology. Observe that g̃(u) = u and q̃(u) = u (i.e. these maps

preserve the fiber class). Then

Proposition 1’

a) The map g̃ is an injection of finite cokernel, and q̃ is a surjection with kernel G̃′. They

– 19 –



fit into commutative diagrams

0 0

↓ ↓
0 Z2 = Z2

↓ ↓ ↓
0 → G̃′

ĩ
↪→ K̃ ′

q̃→ H̃−1 (Σ′,Z) → 0

p ↓ p ↓ p ↓
0 → G′

i
↪→ K ′

q→ H−1 (Σ′,Z) → 0 ,

↓ ↓ ↓
0 0 0

0 0

↓ ↓
Z2 = Z2

↓ ↓
H̃−1 (Σ0)

g̃
↪→ H̃−1 (Σ)

p ↓ p ↓
H−1 (Σ0)

g
↪→ H−1 (Σ) .

↓ ↓
0 0

(2.18)

with all columns and all rows on the left exact.

b) Given any K̃ ⊂ H̃−1 (Σ0) such that G̃ ⊂ K̃ ⊂ K̃ ′ and K̃/G̃ = K̃ ′/G̃′, the quotient

K̃ ′/K̃ is at most 2-torsion, and there exists H̃ ⊂ H̃−1 (Σ) such that H̃−1 (Σ)/H̃ is finite (at

most 2- and 4-torsion), and H̃−1 (Σ′) = H̃−1 (Σ)//g(G̃) = g(K̃)/g(G̃). If K̃ extends a group K

as in Prop 1c, then H̃ can be chosen to extend H appearing there.

Proof. Part (a) is a straightforward diagram chase. On the RHS, the columns are exact by

definition of twisted homology. The top square commutes because g̃(u) = u, and the bottom

square commutes by comparing definitions of g̃ and g. Injectivity of g and g̃(u) = u imply

injectivity of g̃.

On the LHS, the right column is exact by definition, and the middle column is exact

because K̃ ′ = 〈G̃′, ∗〉|H̃−1 (Σ0) contains u, hence is a Z2 extension of K ′ = 〈G′, ∗〉|H−1 (Σ0). The

top square commutes because q̃(u) = u, and q̃ is surjective because q and the p’s are surjective.

The (bottom-)right square commutes by comparing definitions of q̃ and q. Obviously the

inclusion ĩ is injective, and the left square commutes by comparing definitions of G̃′, K̃ ′ and

G′,K ′. Exactness of the bottom row at K ′ implies that ker q̃ is at most a Z2 extensions of

im ĩ; but since q̃(u) = u we must have ker q̃ = im ĩ. Hence the middle row is exact, and in

particular G̃′ does not contain the fiber class u, whence p : G̃′ → G′ is an isomorphism.

Part (b) follows by repeating the proof of Prop. 1c. �

3 Paths on the small boundary

In this section we introduce an algebra P of paths on the boundary of a framed, triangulated

3-manifold. It is inspired by a construction of Neumann in [29] (and earlier [12]). This algebra

is an extremely useful tool for describing cycles in twisted homology H̃−1 (Σ), keeping track of

these cycles under gluing operations, and ultimately relating the cycles to functions on the

non-abelian moduli space X [C].

3.1 Paths and generators for H−1 (Σ)

Let Σ
π→ C be the (oriented) canonical cover of the boundary of a framed 3-manifold M (with

or without defects), with a fixed 2d triangulation t2d of Cbig. Let Σ+ and Σ− denote the
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two sheets of Σ, constructed from a branching graph induced by t2d as in Section 2.4 (so

Σ+ ' Σ− ' C\Γbr).

Let E◦ denote the disjoint union of the interiors all small edges of hexagons in t2d. Note

that all the small edges lie on the interface ∂Csmall ∩ ∂Cbig between big and small parts of C.
We define P (depending on t2d) as the relative homology group

P := H1(Csmall, E
◦) . (3.1)

Thus, P is generated by oriented paths p on Csmall : either closed paths, or paths whose

endpoints lie in the interior of one of the small edges of t2d (and therefore on the boundary

of a distinguished hexagonal face of t2d).

e

e

e
τ

γe

λ

h

h

�

∼

∼

pλ

pτ

�h(pe)

�h(p�e)

pe

p�epλ

pτ

Figure 11. Examples of the map h : P[t2d]→ H−1 (Σ). Left: a closed path p(λ) surrounding a small

annulus and an open path p(τ) traversing it. Right: two paths mapping equivalently to the edge cycle

γe. For convenience in visualizing and counting intersection numbers, we slightly deform the curves

representing h(p) for open p away from branch points.

There is a homomorphism

h̃ : P→ H̃−1 (Σ) (3.2)

defined as follows. If [p] ∈ P can be represented by a smooth, closed curve p, we use the

fact that there is no branching along the small boundary define lifts p± to Σ± ⊂ Σ, and then

(canonically) to T1Σ. We set h̃([p]) := `−(p) = [p+]− [p−] to be the class of the “odd double

lift” of p. Note that this does not depend on which smooth representative of the curve p is

used, since changing the representative (as in Figure 4) can only modify h̃([p]) by an even

multiple of u.
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If [p] ∈ P can be represented by a smooth open path p, then we can extend p slightly to

a path p that starts and ends at the branch points on the faces at the ends of p (as on the

left of Figure 11). We take lifts p± to Σ±, and connect them at the branch points to form a

smooth closed curve p+ ◦ p−; we then define h̃([p]) := `−(p) = [p+ ◦ p−]. For convenience, we

can deform the curve p+◦p− so that it passes around the branch points, as on the bottom-left

of Figure 11. An easy exercise verifies that it does not matter whether we pass clockwise or

counter-clockwise (top of Figure 12).

�h(p ◦ p�)

+u

−u

�h(p) �h(p�)

�h(p) �h(p)

����

����

Figure 12. Top: verification that it does not matter how h̃(p) is chosen to wind around branch points.

Bottom: proof that h̃(p) + h̃(p′) = h̃(p ◦ p′) = h̃(p+ p′) in H̃−1 (Σ), assuring that h̃ is well defined. We

represent elements of H̃1(Σ) by smooth curves on Σ, keeping track of the fiber class u by means of

small loops. In each case, corrections involving the fiber class cancel out at the end.

We extend h̃ to all of P by linearity. For the map h̃ to be a well-defined homomorphism,

we must check that h̃(−p) = −h̃(p), which follows easily from our definitions, and that

h̃(p ◦ p′) = h̃(p) + h̃(p′) , (3.3)

where p ◦ p′ is a smooth path homotopic to the concatenation of p and p′ (possibly a cyclic

concatenation, in which case p ◦ p′ is closed). The proof of (3.3) is entirely local (depending

on behavior at the endpoints of p and p′), and illustrated on the bottom of Figure 12.

The map h̃ has a nontrivial kernel. If pe and p′e are two paths circling counter-clockwise

around the two ends of a big edge e of t2d, as on right of Figure 11, then

h̃(pe) = h̃(p′e) . (3.4)

Let PE = 〈pe − p′e〉big edges e be the subgroup of P generated by the differences of paths

associated to all edges of t2d. Clearly PE ⊂ ker h̃. In fact,
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Lemma 3 If M has no defects, ker h̃ = PE, and im h̃ ' H−1 (Σ) ⊂ H̃−1 (Σ). In other words,

0→ PE ↪→ P
h̃→ H−1 (Σ)→ 0 (3.5)

is exact. Thus h̃ provides a splitting H̃−1 (Σ) ' H−1 (Σ) ⊕ Z2; and we may trivially extend h̃

to a surjection h̃ : (P⊕ Z2)→→ H̃−1 (Σ), defining h̃(u) = u for the generator u of Z2 :

0→ PE ↪→ P⊕ Z2
h̃→ H̃−1 (Σ)→ 0 . (3.6)

Proof. Consider the map h := p ◦ h̃ : P→ H−1 (Σ). Momentarily we will demonstrate that h

is surjective with kerh = PE , by producing explicit presentations of P and H−1 (Σ). (These

explicit presentations will be used throughout the rest of the paper.) Therefore ker h̃ ⊂ PE ,

whence ker h̃ = PE , and the rest of the Lemma follows. �

3.2 Generators of H−1 (Σ) and intersection form

Suppose that the triangulated framed 3-manifold M has no defects, and that π1(Csmall is

abelian. In other words, the connected components of Csmall are discs, annuli, tori, or spheres.

We describe a set of generators for H−1 (Σ) labelled by paths p ∈ P. Let h := p ◦ h̃ : P →
H−1 (Σ).

Small spheres are connected components of C, over which both the path algebra and odd

homology are trivial, so we may ignore them. Small tori are also connected components of C.
For each small torus t, choose a basis of A and B cycles, let p

(t)
α , p

(t)
β be paths representing

these cycles — generating the path algebra on t — and set

α(t) = h(p(t)
α ) , β(t) = h(p

(t)
β ) . (3.7)

Clearly α(t), β(t) generate the part of H−1 (Σ) associated to the small torus.

The remaining connected components of C (which are all we consider now) contain big

boundary Cbig with holes connected to small discs or annuli. For each small annulus a let p
(a)
λ

be a closed path generating H1(a), and choose an open path p
(a)
τ traversing the annulus from

one end to the other (Figure 11, left). Set

λ(a) = h(p
(a)
λ ) , τ (a) = h(p(a)

τ ) . (3.8a)

For each edge e of the big-boundary triangulation t2d, let pe and p′e be the open paths on

Csmall winding counter-clockwise around the two ends of e (Figure 11, right), and set

γe = h(pe) = h(p′e) . (3.8b)

There are some relations among these elements. It is easy to see the path algebra P for

small discs and annuli is generated by pe, p
′
e, p

(a)
λ , p

(a)
τ subject to the relations that the sum of
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e1

e2

e3p(τ)

p(τ �)

pstart

pend

p(λ)

e1

e2
e3

e4

e5

τ � − τ = γe1
+ γe2

− γe3

λ =

5�

i=1

γei

Figure 13. Examples of relations among elements h(p). On the left, we move the endpoints of pτ by

concatenating with (sums of) edge-paths, p′τ = pend ◦ pτ ◦ pstart.

paths around the boundary of each small disc d vanishes, and the sums of paths around the

two boundaries of each annulus a are both equal to p
(a)
λ ,

P =
〈
{p(a)
λ , p(a)

τ }a, {pe, p′e}e
∣∣∣

∑

around ∂ d

(pe or p′e) = 0,
∑

around ∂1a

(pe or p′e) = −
∑

around ∂2a

(pe or p′e) = p
(a)
λ

〉
.

(3.9)

Also note that any two choices of traversing paths p
(a)
τ , p

(a)
τ
′ are related by adding or sub-

tracting appropriate edge paths pe, p
′
e (Figure 13, left).

Similarly, since the branching graph Γbr (dual to big edges of t2d) together with the

extended paths p(a)
τ forms the 1-skeleton of a cell decomposition of C, lifting to the 1-skeleton

of a cell decomposition of Σ, we find that (ignoring small spheres and tori)

H−1 (Σ) =
〈
{λ(a), τ (a)}a, {γe}e

∣∣∣
∑

e on ∂d

γe = 0,
∑

e on ∂1a

γe = −
∑

e on ∂2a

γe = λ(a)
〉
, (3.10)

with each relation coming from a 2-cell. (Such cell decompositions with 0-cells at branch

points are discussed in greater detail in Appendix A.3. See Lemma 11 there.) Applying h

to the presentation (3.9) of P clearly produces the presentation (3.10) of H−1 (Σ), with kernel

precisely PE = 〈pe − p′e〉.
By direct inspection, we also see that

Lemma 4 The intersection form among generators of H−1 (Σ) (including small tori and

spheres) is

〈α(t), β(t′)〉 = 2〈p(t)
α , p

(t′)
β 〉 = 2 δtt′

〈τ (a), λ(a′)〉 = 2〈p(a)
τ , p

(a′)
λ 〉 = ±2 δaa′

〈τ (a), γe〉 = ±1 for the six e on faces adjacent to ∂p
(a)
τ

〈γe, γe′〉 = # faces shared by e, e′ ,

(3.11)

where the signs in 〈τ, λ〉 depends on orientation, the signs in 〈τ, γe〉 are shown in Figure

14, and the faces in 〈γe, γ′e〉 are also counted with orientation, +1 (−1) if e′ occurs counter-

clockwise (clockwise) after e.
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e1

e2

e3

p(τ)
e�1

e�2
e�3

�τ, γe1
� = �τ, γe2

� = −�τ, γe3
� = 1

�τ, γe�
1
� = �τ, γe�

2
� = −�τ, γe�

3
� = −1

�γe1
, γe2

� = �γe2
, γe3

� = �γe3
, γe1

� = 1

Figure 14. Intersection product among τ ’s and γe’s.

We have shown that h : P → H−1 (Σ) is surjective with kernel PE when π1(Csmall) is

abelian. The same basic argument can easily be extended to reach the same conclusion for

general Csmall (as long as M has no defects). For closed components of Csmall of any genus g,

we choose 2g A and B cycles to generate P; then applying h to these cycles (i.e. taking odd

double lifts) directly produces generators of H−1 (Σ). For components of C containing both

big and small parts, we choose multiple non-intersecting paths akin to the pτ ’s, traversing

Csmall from boundary to boundary, so that the augmentation of Γbr by these paths continues

to produce a 1-skeleton of a cell decomposition of C. Then these generalized traversing paths

together with pe, p
′
e generate P (with the only relations being that the sum of pe, p

′
e paths

around the boundary of any component of Csmall must vanish); while applying h produces

generators of H−1 (Σ) (with the only new relations of the form h(pe) = h(p′e)). This completes

the proof of Lemma 3 above.

3.2.1 Example: the tetrahedron

γ�γ��

γ� γ��
γ

γ

Figure 15. Six edge cycles gen-

erating H−1 (Σ∆).

Let us illustrate Lemma 3 when M = ∆ is a truncated

tetrahedron, with its canonical triangulation t2d. The cover

Σ∆
π→ C∆ = ∂M∆ is branched over four points (one in the

center of each big hexagonal face of the tetrahedron), so

C∆ ' ∂∆ ' S2 , Σ∆ ' T 2 , (3.12)

Since π∗ : H1(Σ∆) → H1(C∆) is trivial, all of H−1 (Σ∆) =

H1(Σ∆) = Z2 is odd. Lemma 3 shows that H−1 (Σ∆) is gen-

erated by six edge cycles γe subject to the four relations that

the sum around every vertex vanishes. This implies that cy-

cles associated to opposite edges are equal. Denoting pairs of edge cycles γ, γ′, γ′′ as in Figure

15, we see that
H−1 (Σ∆) = Z〈γ, γ′, γ′′ | γ + γ′ + γ′′ = 0〉 ,

〈γ, γ′〉 = 〈γ′, γ〉 = 〈γ′′, γ〉 = 1 ,
(3.13)

with intersection product as described by Lemma 4.
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3.3 G̃, K̃, and the gluing map

Let’s now revisit the setup of Section 2.5, where we start with a framed, triangulated 3-

manifold M , glue interiors of pairs of faces to form M0 (with defects), and fill in the defects

to form M ′. Let us assume that neither M nor M ′ have defects. We can use paths to

explicitly describe subgroups G̃ ⊂ K̃ ⊂ H̃−1 (Σ0) appearing in Propositions 1, 1’, and their

embeddings into H̃−1 (Σ) via the injection g̃. Let t2d denote the induced triangulation of Cbig

and t′2d denote the induced triangulation of C′big = (C0)big. Let P, P0, P′ denote the algebras

of paths on the respective small boundaries Csmall, (C0)small, C′small.

p(µ) p�(µ)

µ

�

h

Figure 16. Generators of G

We begin with the subgroups of H̃−1 (Σ0). The small bound-

ary (C0)small of M0 has pairs of holes at the ends of each defect Ij ,

i.e. at (C0)small∩(C0)def . Let pµj and p′µj be paths on (C0)small cir-

cling counter-clockwise (from the perspective of the small bound-

ary) around the holes at the ends of Ij , as in Figure 16. Then the

homology classes

µj = h̃(pµj ) = h̃(p′µj ) (3.14)

are precisely the cycles µ+
j − µ−j discussed in (2.17), and gen-

erate G̃. Letting PG ⊂ P0 denote the subgroup generated by

pµj , p
′
muj , we have

G̃ = im (h̃ : PG → H̃−1 (Σ0)) . (3.15)

We then define a subgroup K̃ ⊃ G̃ as

K̃ = im (h̃ : (P0 ⊕ Z2)→ H̃−1 (Σ0)) , (3.16)

extending h̃ as usual by Z2 = Z〈u〉/Z〈2u〉, with h̃(u) = u. Set G = p(G̃) = h(PG), K =

p(K̃) = h(P0).

It is clear7 that G̃ ⊂ K̃ ⊂ K̃ ′, in the notation of Proposition 1’. To see that K̃/G̃ '
H̃−1 (Σ′) so that K̃ satisfies the hypotheses of part (b) of Proposition 1’, we use:

Lemma 5a The maps h̃ : (P0 ⊕ Z2) → H̃−1 (Σ0) and h̃ : (P′ ⊕ Z2) → H̃−1 (Σ′) fit into a

commutative diagram

0 → PG
i
↪→ P0 ⊕ Z2

qP→ P′ ⊕ Z2 → 0

h̃

→→

h̃

→→

h̃

→→

0 → G̃
ĩ
↪→ K̃

q̃→ H̃−1 (Σ′) → 0 .

(3.17)

with top and bottom rows exact. Thus K̃ satisfies the hypotheses of Prop. 1’(b).

Proof. The inclusions PG
i
↪→ P0, G̃

ĩ
↪→ K̃ are obviously injective, and the first square

commutes due to the definitions of G̃, K̃. On the top row, the map qP includes a path p on

7To see K̃ ⊂ K̃′ observe that K̃ ⊂ ker〈G̃, ∗〉|
H̃−1 (Σ0)

= ker〈G̃′, ∗〉|
H̃−1 (Σ0)

= K̃′.
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(C0)small as a path on C′small, where the holes from defects have been filled in; while qP(u) := u

for u ∈ Z2. We can invert qP by lifting any path p on C′small to a path p̂ on (C0)small, choosing

some way for p̂ to pass around the defects; thus P′ ' P0/PG and P′ ⊕ Z2 ' (P0 ⊕ Z2)/PG.

(Alternatively, exactness of the top row follows from the long exact sequence for the pair

((C0)small/E
◦′, C′small/E

◦′) where E◦′ is the union of interiors of small edges of t′2d.) By

definition of K̃ and by Lemma 3 we know that all the downward maps are surjective. On the

bottom row, we first observe that any cycle in K̃ has zero intersection number with all defect

cycles µ±j ∈ G̃′ (as in (2.17)), so we may define q̃ to act by including these cycles in H̃−1 (Σ).

In other words, q̃ is the restriction of the map in (2.18) to K̃ ⊂ K̃ ′. With this definition, the

second square also commutes (see Figure 17), and surjectivity of q̃ on the bottom row follows

from surjectivity of qP on the top. Thus K̃/G̃ ' H̃−1 (Σ′). �

Remark. By applying p to (3.17) and killing all the Z2’s and fiber classes, we see that

G = p(G̃) = h(PG) and K = p(K̃) = h(P0) satisfy the hypotheses of Proposition 1(c).

h

pp̂

γγ̂

q

q

(C0)small C�
small

∼

∼

∼
h
∼

Figure 17. Commutativity of the second square in (3.17).

Explicitly, the sequences (3.17) imply that to generate K (or K̃ = K ⊕Z2) we may start

with generators γe, τ, ... of H−1 (Σ′) labelled by paths pe, pτ , ..., use q−1
P to lift the paths to any

p̂e, p̂τ , ... ∈ P0 (unique up to addition of pµj and p′µj ), adjoin the pµj ’s, and then apply h to

obtain generators γ̂e, τ̂ , ... and µj of K. The lifts γ̂e, τ̂ , ... satisfy q(γ̂e) = γe, q(τ̂) = τ , etc.,

and are unique up to addition of µj ’s.

p
p1

p2

p3

p4

p5

p6

gP

Csmall(C0)small

Figure 18. The cutting map acting on paths.

We may similarly use paths to find an algorithm for the action of the injection g̃ :

H̃−1 (Σ0)→ H̃−1 (Σ) on K̃.
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Recall that P is a relative homology group H1(Csmall, E
◦) where E◦ denotes the disjoint

union of interiors of small edges of t2d. Similarly, P0 = H1((C0)small, E
◦′), where E◦′ is the

union of interiors of small edges of t′2d. The small edges E◦ have an image Ê◦ ⊃ E◦′ in

(C0)small — along which (C0)small is cut to obtain Csmall. Since E◦′ ⊂ Ê◦, there exists a

natural “cutting map” gP : H1((C0)small, E
◦′)→ H1((C0)small, Ê

◦) ' H1(Csmall, E
◦), or

gP :
P0 → P

p 7→ ∑
i pi .

(3.18)

Explicitly, gP takes a path on (C0)small to the sum of paths tipi = p∩Csmall in its intersection

with patches of Csmall, as in Figure 18. We also define the homomorphism

cut :
P0 → Z2 = {0, 1}
p 7→ #(p ∩ (E◦\E◦′)) (3.19)

to be the unoriented intersection number between a path (or sum of paths) p and the small

edges of E◦′, included as a subset of (C0)small. In other words, cut(p) is the number of times

a path p is cut when the map gP is applied. It is well defined modulo 2. (As an example, in

Figure 18, cut(p) = 5 ≡ 1.) Then we construct

g̃P :
P0 ⊕ Z2 → P⊕ Z2

p + nu 7→ gP(p) + (cut(p) + n)u .
(3.20)

Note that g̃P acts trivially on u ∈ Z2, but sends a path p ∈ P0 to gP(p) + cut(p)u ∈ P⊕Z2.

Lemma 5b The maps h̃ : P0 → H−1 (Σ0) and h̃ : P→ H−1 (Σ) and the injection g̃ fit into a

commuting square

P0 ⊕ Z2
g̃P→ P⊕ Z2

h̃ ↓ h̃ ↓
H̃−1 (Σ0)

g
↪→ H̃−1 (Σ) ,

(3.21)

so that g̃h̃ = h̃g̃P.

Proof. The twisted map g̃P was constructed precisely to ensure commutativity. The proof

follows from a local argument, illustrated in Figure 19. �

Remark. Lemma 5b lets us algorithmically calculate g̃(γ) ∈ H̃−1 (Σ) for any γ ∈ K̃ = im
[
h̃ :

(P0 ⊕ Z2)→ H̃−1 (Σ0)
]
. By applying p, killing all Z2’s and fiber classes, we may also use the

bare version of the cutting map gP to calculate g(γ) ∈ H−1 (Σ) for any γ ∈ K = im
[
h : P0 →

H−1 (Σ0)
]
. In un-twisted homology, gh = hgP.

3.4 Detour: Neumann’s chain complex

We may use the formalism developed so far to provide a new topological interpretation for

the chain complex that Neumann introduced in [29] to understand the symplectic properties

of the hyperbolic gluing equations. (The actual connection with gluing equations will come

in the next section.)
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Figure 19. Commutative diagram demonstrating g̃ ◦ h̃(p) = h̃ ◦ g̃P(p). On the bottom row, the

curve γ = h̃(p) in T1Σ0, which crosses the gluing region, is homologous to a sum of two smooth

curves on either side of the gluing region along with a curve wrapping the fiber u, represented as

a small loop. This extra “twisted” correction to g̃(γ) is accounted for by the contribution u to

g̃P(p) = gP(p) + cut(p)u in the top row (here cut(p) = 1).

Suppose that M ′ is a framed 3-manifold with no defects and no big boundary (the

topology of C′ = C′small is unconstrained), which is glued from a collection M = tNi=1∆i

of truncated tetrahedra. As usual we separate the gluing into two steps M  M0  M ′

where M0 has defects Ij along the edges of M ′. In this section we work with untwisted

homology, and untwisted maps, always projecting out the fiber class u. We build a chain

complex in several steps.

First, let the µ±j ⊂ Σ0 be the actual curves (as in Figure 10 of Section 2.5) used to

represent the generators µj = µ+
j − µ−j of G ⊂ H−1 (Σ0), and let Nµ ⊂ Σ0 be a disjoint union

of neighborhoods of these curves. (Alternatively Nµ is the lift of the defect boundary (C0)def

to Σ.) Thus Nµ is a disjoint union of 2N annuli; and H−1 (Nµ) ' ZN is generated by the µj
as curves in Nµ. The image of the inclusion

H−1 (Nµ)
i→ H−1 (Σ0) (3.22)

is preciselyG. We may compose this with the injection g : H−1 (Σ0) ↪→ H−1 (Σ) = ⊕Ni=1H
−
1 (Σ∆i)

(of finite cokernel) to get

H−1 (Nµ)
g ◦ i−→ H−1 (Σ) , im (g ◦ i) = g(G) . (3.23)

Next, we dualize the map g ◦ i with respect to the canonical symmetric pairing (µi, µj) =

δij on H−1 (Nµ) and the intersection product 〈 , 〉 on H−1 (Σ) to get a complex

H−1 (Nµ)
g ◦ i−→ H−1 (Σ)

(g ◦ i)∗−→ H−1 (Nµ) . (3.24)
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By definition, the kernel of (g ◦ i)∗ is K ′′ := ker 〈g(G), ∗〉|H−1 (Σ). This includes g(K ′), where

K ′ = ker 〈G, ∗〉|H−1 (Σ0); indeed, by Proposition 1a K ′′/g(K ′) is torsion. Moreover, setting K =

im [h : P0 → H−1 (Σ0)] as in Section 3.3, we obtain from Lemma 3 that g(K) ⊂ g(K ′) ⊂ K ′′

and K ′′/g(K) is torsion. Thus the homology of (3.24) equals g(K)/g(G) ' H−1 (Σ′) modulo

torsion.

Note that H−1 (Σ′) is isomorphic to the standard homology H1(C′) = H1(C′small) since

Σ′ → C′ is a trivial double cover (cf. Lemma 12 of Appendix A.3). The isomorphism `− :

H1(C′) ∼→ H−1 (Σ′) acts as multiplication by two on the intersection form.

We may further resolve the complex on the left using an odd version of the long exact

sequence in relative homology for the pair (Σ0, Nµ),

H−2 (Σ0)
j→ H−2 (Σ0, Nµ)

δ→ H−1 (Nµ)
g ◦ i−→ H−1 (Σ)

(g ◦ i)∗−→ H−1 (Nµ)

= =

0 H−2 (Σ′) .

(3.25)

Note that H−2 (Σ0) = 0 because Σ0 is connected; and H−2 (Σ0, Nµ) ' H−2 (Σ′) ' Z#C′ has

one generator for every component of C′ = ∂M ′ (the odd-double-lift of the fundamental class

of that component to Σ′). By Lemma 9 (Appendix A.2), the odd version of the long exact

is exact modulo 2-torsion. Thus the homology of (3.25) is zero, except at H−1 (Σ), where it

equals H−1 (Σ′) (modulo torsion).

The complex (3.25) is identical to the one presented in Theorem 4.1 of Neumann [29],

but now the various groups involved have topological meaning. The maps δ and g ◦ i are

what Neumann calls α and β. The isomorphism `− : H1(C′) ∼→ H−1 (Σ′) is called δ. We

could also extend the complex further to the right, as in [29], by dualizing the long exact

sequence. By computing the homology of (3.25) modulo torsion, we have re-proven [29,

Thm. 4.1]. Neumann goes further and carefully identifies the torsion groups as well. It would

be interesting to investigate the torsion further from the perspective of odd homology.

4 Framed flat connections on boundaries

Having described gluing in terms of odd homology — both abstractly as in Proposition 1 and

concretely in terms of path algebras P — we now proceed to describe how gluing acts on

spaces of framed flat PGL(2) := PGL(2,C) connections.

We begin by reviewing the construction of cluster-like C∗ coordinates for moduli spaces of

framed flat PLG(2) connections on boundaries of framed, triangulated 3-manifolds, following

[31, 44] and [32, Appendix A].8 We show directly that the coordinates are labelled by cycles

in odd homology, with Poisson, symplectic, and K2 structures induced by the intersection

form in odd homology (Propositions 2–3).

8Some additional subtleties and restrictions arise, especially as compared to [31] and Appendix A of [32],

because we focus only on boundaries of framed 3-manifolds rather than their interiors.
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We then explain gluing of framed PGL(2) connections works, and derive the standard

combinatorial gluing equations that appeared in [31, 32], a generalization of Thurston’s gluing

equations for hyperbolic 3-manifolds. Observing that these equations take the promised form

(1.12), we deduce that gluing is K2 symplectic reduction (Theorem 1).

4.1 Moduli spaces

Let C = ∂M be the boundary of a framed 3-manifold, as defined in Section 2.3. In particular,

C = Cbig ∪tiS1
i
Csmall ∪tjS1

j
Cdef has a splitting into big, small, and defect parts. Let t2d be a

triangulation of the big boundary — i.e. a tiling of Cbig by hexagons. Let E → C be a trivial

C2 bundle and PE its projectivization (a CP1 bundle). Let C∗ be C with a point removed in

the center of every small disc of Csmall — thus C∗ is a “punctured” boundary. We define

X [C] := {framed flat PGL(2) connections on E → C∗
with unipotent monodromy at punctures}

:= {flat PGL(2) connections on E → C∗
with unipotent monodromy at punctures

and a choice of invariant flat line on each component of Csmall}
= {flat connections on PE → C∗

with unipotent monodromy at punctures

and a choice of global flat section on each component of Csmall} .

(4.1)

We emphasize that these moduli spaces are defined modulo PGL(2) gauge isomorphism. As

stated, the framing data is a choice of invariant flat line in the C2 bundle along the small

boundary, or a flat section of the projectivized bundle.

If M has no defects, and π1(Csmall) is abelian (i.e. Csmall contains only small discs, annuli,

tori, and spheres), then X [C] has some additional properties. In this case a choice of framing

always exists and is usually unique.9 Forgetting the framing, one gets a map to the standard

character variety

X [C] forget→ Homun
(
π1(C∗), PGL(2)

)
/PGL(2) (4.2)

(where “un” means we restrict puncture holonomies to be unipotent). For particular flat

connections, there may be an enhanced choice of framing, which resolves some singularities

in the character variety. If C is connected, the complex dimension at smooth points is

d(X [C]) =





0 C is a small sphere

2 C is a small torus

(2g − 2)dim(G) + n(dim(G)− rank(G))

= 6g − 6 + 2n
χ(C∗) < 0 ,

(4.3)

where n denotes the number of small discs in Csmall, or the number of punctures of C∗. (If

C = tiCi contains multiple connected components, the space X [C] =
∏
iX [Ci] factorizes.)

9Conversely, if π1(Csmall) is nonabelian, the existence of framing is highly restrictive!
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At its smooth points, the standard character variety has a non-degenerate complex sym-

plectic form given by the Atiyah-Bott formula10

ω =

∫

C∗
Tr(δA ∧ δA) , (4.4)

which pulls back to a symplectic form on an open subset of X [C] (which we also call ω). In

some cases it is known how to extend ω to a symplectic form on all of X [C]. For example,

if C consists only of big boundary and small discs (no annuli or tori), X [C] coincides with

the space studied by Fock and Goncharov [44] using cluster coordinates, and the appropriate

extension of ω was defined therein.

We will not try to extend ω to a symplectic form on all of X [C] here, though it does

seem possible to do so. Instead we will work on open patches P[C; t2d] ⊂ X [C] of the form

(C∗)d(X [C]), labelled by triangulations t2d (as in [44]), on which it is fairly straightforward to

calculate and extend ω.

4.2 Coordinate functions

Fix a 2d triangulation t2d of Cbig as above. Let P = P[t2d] be the abelian group of paths on

Csmall defined in Section 3. For each path p ∈ P we can define a C∗-valued function xp on

X [C], which turns out to depend only on the homology class γ = h̃(p) ∈ H−1 (Σ) ⊂ H̃−1 (Σ).

Throughout this section, we use the splitting induced by h̃ (Lemma 3) to view H−1 (Σ) as a

subgroup of H̃−1 (Σ). We proceed as follows.

For every p ∈ P represented by a closed path and A ∈ X [C], set

xp := squared-eigenvalue of Holp(A) corresponding to the framing eigenline . (4.5)

This makes sense since p lies entirely on a single small boundary component, and the framing

of A specifies a distinguished eigenline on that component. For example, on a small torus t

the A- and B-cycle paths p
(t)
α , p

(t)
β give rise to

x(t)
α := x

p
(t)
α
, x

(t)
β := x

p
(t)
β

, (4.6)

which are the squares of holonomy eigenvalues along respective cycles. On every small annulus

a there is a “length” function

x
(a)
λ := x

p
(a)
λ

(4.7)

measuring the holonomy eigenvalue around the girth of the annulus (Figure 20, left). For

a small disc, the path p around the circumference of the disc gives xp = 1 since the the

holonomy must be unipotent there; this is consistent with the fact that p is contractible.

If p is represented by an open path, it starts and ends on the boundaries of some big

hexagons f, f ′, which are faces of t2d. For a given framed flat connection A ∈ X [C], let k

10Technically, (4.4) is a formula on the space of all connections; the symplectic form on the character variety

obtained by a symplectic reduction of (4.4) as in [39].
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Figure 20. Left: configuration of lines that defines the function xp for an open path (here for the

“twist” of an annulus). Right: specialization of this configuration for paths that surround a big-

boundary edge.

denote the framing line of A along p. Let a, b (respectively, a′, b′) denote the framing lines

at the two small edges of f (respectively, f ′) disjoint from p, oriented as at the ends of p(τ)

in Figure 20. We can unambiguously parallel-transport a, b, a′, b′ and k to a single fiber of

E → C above (say) the midpoint of p. For example, we first transport a, b into the hexagon

f , then transport them to the start of p, then along p; and similarly for a′, b′. Working in a

single fiber, we define the function xp to be the generalized cross-ratio

xp =
〈a ∧ k〉〈b ∧ k〉
〈a ∧ b〉 · 〈a′ ∧ b′〉

〈a′ ∧ k〉〈b′ ∧ k〉 ∈ C∗ . (4.8)

Here 〈∗∧∗〉 is a skew-symmetric volume form in the fiber of E. To calculate (4.8) one chooses

any vectors in the lines a, b, a′, b′, k and applies the volume form. The result is independent

of the normalization of these vectors, independent of the volume form, and invariant under

a PGL(2) action on the fiber — thus independent of the precise point along p at which we

compare lines. (Equivalently, working in a projectivized CP1 bundle, one can think of (4.8) as

a generalized cross-ratio of five points in CP1: (a− b)(a′− k)(b′− k)/[(a− k)(b− k)(a′− b′)].)
Note that the cross-ratio (4.8) only makes sense at points of X [C] where all pairs of lines

a, b, a′, b′, k being compared are independent — i.e. the configuration of lines is in “general

position.”

Definition 3 Let P[C; t2d] ⊂ X [C] be the algebraically open subset on which functions xp ∈ C∗

are well defined for all p ∈ P[t2d] represented by open paths (meaning all pairs of lines

being compared to form xp are in general position), with the additional restriction11 that

for each connected component of Csmall the holonomies around non-contractible cycles of

11This is largely a technical restriction, necessary for non-degeneracy to hold in Prop. 2d below. The issue is

that unipotency does not uniquely specify the conjugacy class of a holonomy matrix — it might be either trivial

or parabolic. From a 3d perspective, this conjugacy class is fixed (and generically parabolic), so restricting to

non-unipotent holonomy was not necessary in (e.g.) Appendix A.3 of [32], analogous constructions in [31], or

many years of hyperbolic geometry.
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that component are not simultaneously unipotent. (For example, x
(a)
λ 6= 1 for annuli and

(x
(t)
α , x

(t)
β ) 6= (1, 1) for tori.) Often we simply write P[C].

Remark. For components of C consisting of big boundary with holes filled by discs, P[C; t2d]

coincides with a cluster-coordinate chart of [44].

Proposition 2

a) For both open and closed paths x−p = x−1
p , and under concatenation xp ◦ p′ = xpxp′.

Therefore, we may extend path functions to all p ∈ P by linearity, defining xp+p′ := xpxp′, to

obtain a map

x :
P[C]× P → C∗

p 7→ xp ,
(4.9)

that’s a homomorphism on the second factor.

b) The function xp depends only on the homology class γ = h̃(p) ∈ H−1 (Σ) ⊂ H̃−1 (Σ).

c) If M has no defects, the surjection h̃ : P→→ H−1 (Σ) from (3.2) provides a map

x :
P[C]× H−1 (Σ) → C∗

γ 7→ xγ ,
(4.10)

that’s a homomorphism on the second factor. By defining xu := −1, we may extend (4.10)

to a map x : P[C]× H̃−1 (Σ)→ C∗.
d) If in addition π1(Csmall) is abelian12, the map (4.10) is non-degenerate in the sense

that any basis {γi}di=1 for H−1 (Σ) ⊂ H̃−1 (Σ) provides an injection

(xγi , ..., xγd) : P[C] ↪→ (C∗)rankH−1 (Σ) , (4.11)

with image the subset where x
(a)
λ 6= 1, (x

(t)
α , x

(t)
β ) 6= (1, 1).

e) With the assumptions in (d), rankH−1 (Σ) = d(X [C]), so P[C] ⊂ X [C] is a subset of

maximal dimension, with coordinates {xγ}γ∈H−1 (Σ), isomorphic to (C∗)d(X [C])∣∣
x

(a)
λ 6=1, (x

(t)
α ,x

(t)
β ) 6=(1,1)

.

Proof. For part (a), x−p = x−1
p is clear from the definitions and xp◦p′ = xpxp′ follows from from

a straightforward local calculation. When concatenating p◦p′ to produce another open path,

numerators and denominators of (4.8) cancel out to ensure xp◦p′ = xpxp′ . When producing a

closed path, all numerators and denominators cancel up to an overall factor, which is precisely

the square of the holonomy eigenvalue along the closed path.

For part (b), observe that of pe, p
′
e are paths around the endpoint of a big edge e of t2d

then xpe = xp′e (see (4.13) below). If M has no defects, the claim follows from Lemma 3. If

M has defects, we must do a bit more work. Let M ′ be the framed 3-manifold obtained by

filling in the defects of M , and consider the composition q ◦ h : P → H−1 (Σ′) as in (3.17)

12This assumption may be lifted, by using a more general version of the reconstruction procedure (with

unipotent modifications to remove extraneous punctures) from Appendix B.
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(we have trivially factored out a Z2, using untwisted versions of these maps). The kernel

of this map is PG ⊕ PE , where PE = 〈pe − p′e〉 are the relations of Lemma 3. Thus the

kernel Pdef of h is a subgroup PE ⊂ Pdef ⊂ PG⊕PE . Indeed, Pdef is generated by elements

〈pµj − p′µj 〉 for all defects Ij , corresponding to h(pµj ) − h(p′µj ) = 0 in (3.14), in addition to

the edge relations in PE . Thus, for the claim of part (b), we must show that xpµj = xp′µj
for

all defects Ij . This holds because the closed paths pµj and p′µj are homotopic on C, so the

eigenvalues of holonomies around these paths must be equal up to inversion; since the relative

orientations of pµj and p′µj with respect to Csmall are reversed and the sheets of the cover Σ

are also reversed at opposite ends of a defect, the eigenvalues xpµj and xp′µj
are exactly equal.

Part (c) follows immediately from part (b) and Lemma 3.

Injectivity of (4.11) (and the identification of the image) in (d) follows from Appendix

B, where we recreate the unique framed flat connection A ∈ P[C] associated to any point

xγ ∈ (C∗)d(X [C])∣∣
x

(a)
λ 6=1, (x

(t)
α ,x

(t)
β )6=(1,1)

.

The equality rankH−1 (Σ) = d(X [C]) in part (e) follows by comparing (2.10) and (4.3).

�

When M has no defects and π1(Csmall) is abelian, the functions xγ are actually quite

familiar. Above, we already produced functions x
(t)
α , x

(t)
β for small tori and “lengths” x

(a)
λ for

small annuli. Going further, we may choose a path p
(a)
τ traversing each annulus. Then

x(a)
τ = x

p
(a)
τ

(4.12)

is a complex generalization of the Fenchel-Nielsen “twist” function of Teichmüller theory.

Finally, for every big edge e, we let pe, p
′
e be the two paths running counter-clockwise around

endpoints of e on the small boundary (Figure 20, right). It is easy to see that the functions

xpe = xp′e both reduce to a standard cross-ratio of the four framing lines surrounding the edge

e. With orientation as on the right of Figure 20, we have

xe := xγe = xp(e) = xp′(e) = −〈a ∧ b〉〈c ∧ d〉〈a ∧ c〉〈b ∧ d〉 . (4.13)

This is a standard Fock-Goncharov cross-ratio function13, a generalization of Thurston’s shear

coordinates in Teichmüller theory.

The standard relations among functions xe, xτ , xλ, arising from xp◦p′ = xpxp′ , are illus-

trated in Figure 21. Moving the endpoints of a path pτ results in multiplication of xτ by xe
functions; the product of xe’s around any hole filled in by a small disc equals 1 (consistent

with the fact that holonomy around a small disc is trivial); and the product of xe’s around

the two ends of an annulus are inverses of each other, and equal to x±1
λ . From injectivity of

(4.11) and the presentation (3.10) of H−1 (Σ) in Section 3, it follows that these are the only

13This is the negative of the edge coordinate discussed in Appendix B of [32], and agrees with the positive

coordinates of [44].
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Figure 21. Examples of the basic relations among xλ, xτ , xe: moving the endpoints of τ path (left);

and expressing a holonomy as a product of edges (right).

non-trivial relations. Indeed, we must have

P[C] =
{

(x(t)
α , x

(t)
β , x

(a)
λ , x(a)

τ , xe) ∈ [(C∗)2\(1, 1)]#t × [(C∗\(1))× C∗]#a × (C∗)#e
∣∣∣ (4.14)

∏

e on d

xe = 1,
∏

e on ∂1a

xe =
∏

e on ∂2a

x−1
e = λ(a)

}
.

4.3 Poisson brackets, symplectic form, and K2 form

When M has no defects and π1(Csmall) is abelian, we can calculate the Poisson bracket among

functions xγ at generic points of X [C] by pulling-back the Atiyah-Bott formula (4.4). In fact,

all the relevant calculations have already been done in [44] and [4, Appendix B]. (In both

references, the idea was to calculate fundamental brackets involving the contractions of lines

〈a ∧ b〉 that appear in formulas such as (4.8) and (4.13). Holonomy eigenvalues xλ, etc., can

also easily be written in terms of such contractions.) We find

for each small torus: {log xα, log xβ} = 2 〈pα, pβ〉 = 2

for each small annulus: {log xτ , log xλ} = 2 〈pτ , pλ〉 = ±2

{log xτ , log xe} = ±1 if e on faces adjacent to ∂pτ
for big edges e, e′: {log xe, log xe′} = # faces shared by e, e′ ,

(4.15)

with all other brackets vanishing. Here 〈pτ , pλ〉 denotes an intersection number of paths on

an annulus (similarly on a torus), with orientation such that 〈pτ , pλ〉 = +1 on the left of

Figure 20 (the paths there intersect on the back side of the annulus). For the {log xτ , log xe}
bracket, there are three edges bounding the face f at the start of pτ ) and three bounding f ′

the end of pτ , with signs of brackets given in Figure 22. Finally, the number of faces in an

edge-edge bracket is counted with orientation, such that {log xe1 , log xe2} = +1 in Figure 22.

Although the brackets (4.15) are calculated at points of P[C] ⊂ X [C] that project to

smooth points of the standard character variety, we will use (4.15) to define them on the entire

(C∗)d patch P[C]. One then ought to verify that this extension is natural and consistent —

in particular that it agrees on overlaps of patches P[C; t2d] labelled by different big-boundary

triangulations. The main ingredient of such a verification (as in [44]) is the fact that a flip of
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Figure 22. Orientation convention for Poisson brackets of twist and edge coordinates. In the formulas,

we abbreviate xei = xi, xe′i = x′i, etc.

2d triangulation acts as a symplectomorphism — in fact, a K2 symplectomorphism. We will

not pursue the global nature of Poisson/symplectic structures on framed moduli spaces here.

Strictly speaking we do not need it: we will confine ourselves to working with fixed patches

and triangulations.

By direct comparison to (3.11) in Lemma 4, we see that the Poisson brackets on P[C]
are all encoded in the intersection form in odd homology: {log xγ , log xγ′} = 〈γ, γ′〉 for any

γ, γ′ ∈ H−1 (Σ). The symplectic form on P[C] can be expressed concretely by inverting the

Poisson brackets,

ω|P[C] =
1

2

∑

i,j

(ε−1)ij
dxi
xi
∧ dxj
xj

, εij := 〈γi, γj〉 , (4.16)

where {γi} is any basis for H−1 (Σ) and the xi := xγi are corresponding coordinates on P[C].
(Remember that the intersection form on odd homology is non-degenerate, so ε is invertible,

though not necessarily over the integers.) Moreover, the symplectic form lifts to a K2 avatar

ω̂ :=
1

2

∑

ij

(ε−1)ijxi ∧ xj ∈ K2(P[C])Q (4.17)

in the second algebraic K-group of the field of functions on P[C] (tensored14 with Q). Such

K2 avatars are discussed from various perspectives in [13, 14, 31, 44]. We summarize these

observations as:

Proposition 3 If M has no defects and π1(C) is abelian, so that the functions xγ (γ ∈
H−1 (Σ) ⊂ H̃−1 (Σ)) contain complete coordinates on P[C], the holomorphic symplectic form

(agreeing with the Atiyah-Bott form), its K2 avatar, and the holomorphic Poisson brackets

are all encoded by the intersection product on H−1 (Σ). In particular,

{xγ , xγ′} = 〈γ, γ′〉xγxγ′ or {log xγ , log xγ′} = 〈γ, γ′〉 . (4.18)

14It follows from Lemma 7 (Appendix A.1) that ε−1 contains either integers or half-integers. Thus one could

actually tensor with [ 1
2
] (killing 2p torsion) rather than with Q. We don’t keep careful track of this here.
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4.3.1 Example: tetrahedron

The punctured boundary of a tetrahedron C∗∆ is a four-punctured sphere, and the space of

framed flat PGL(2) connections on C∗∆ is two-dimensional. It has a canonical open subset

P[C∆] = P[C∆, t2d] ' C∗×C∗ ⊂ X [∆] corresponding to the canonical triangulation t2d of the

tetrahedron’s big boundary [31]. Given the description of odd homology H−1 (Σ∆) in Section

3.2.1, Proposition 2 says that P[C∆] is covered by six edge functions, subject to the relation

that the product around every vertex is one. In terms of cross-ratios of framing lines, we have

xe = −〈a ∧ b〉〈c ∧ d〉〈a ∧ c〉〈b ∧ d〉 , x′e = −〈b ∧ d〉〈c ∧ a〉〈b ∧ c〉〈d ∧ a〉 , x′′e = −〈d ∧ a〉〈c ∧ b〉〈d ∧ c〉〈a ∧ b〉 , (4.19)

with cross-ratios on opposite edges equal and xex
′
ex
′′
e = 1 (Figure 23). Here xe = xγ , x′e = xγ′ ,

etc. for cycles γ, γ′ ∈ H̃−1 (Σ∆). The Poisson bracket and K2 form in Prop. 3 are

{log xe, log x′e} = {log x′e, log x′′e} = {log x′′e , log xe} = 1 , ω̂ = xe ∧ x′e . (4.20)

Setting

z = −xe = xγ+u , z′ = −x′e, z′′ = −x′′e , (4.21)

we recover the familiar phase space implicit in hyperbolic geometry [17].
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Figure 23. Functions on X [C∆]

In hyperbolic geometry there is usually an additional

relation z+z′−1−1 = 0. This arises when considering framed

flat connections on C∆ that can be extended to framed flat

connections in the interior of the tetrahedron. Indeed, in

this case the flat connection can be trivialized, and all three

cross-ratios in (4.19) are computed in a single common fiber,

leading to the additional relation. The submanifold L∆ =

{z+ z′−1− 1 = 0} ⊂ P[C∆] is a K2 Lagrangian submanifold;

it simply parameterizes the configuration space of four lines

in C2. For further discussion, see [10, 17, 31].

4.4 Gluing PGL(2) connections on boundaries

Our next task is to describe the gluing equations for framed PGL(2) flat connections on

boundaries. To do so, we first explain abstractly what it means to glue framed flat connections

on boundaries.

Suppose that we glue framed 3-manifolds M  M0  M ′ in two steps, as in Section 2.5.

Assume that M and M ′ are defect-free, and that their respective small boundaries Csmall,

C′small have abelian fundamental groups.

There is always a map

g
(1)
PGL(2) : X [C]→ X [C∗∗0 ] , (4.22)

Namely, given a framed flat connection A on C∗, we may use a gauge transformation to

trivialize it in the interiors of faces of t2d, and then (trivially) identify connection on pairs
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of faces that are glued together. We also identify framing flags on adjacent pieces of small

boundary. We must recall, however, that by definition A is a framed flat connection on

the punctured boundary C∗ = C\{point on each small disc} rather than on C itself, so gluing

produces a flat connection not on C0 itself but on C0 with some collection of points (punctures)

removed from its small boundary, which we denote C∗∗0 . The connection is framed on (C∗∗0 )small,

and has unipotent holonomy around each puncture.

Next, in order to fill in the defects Ij of C∗∗0 , it is necessary and sufficient to require that

the holonomy Mj around each defect is trivial. (If the holonomy is trivial, then connection

can be trivialized along the defect, which allows the defect to be filled in.) Therefore, we get

a map

g
(2)
PGL(2) : X [C∗∗0 ]

∣∣
Mj=I

→ X [C′∗∗] . (4.23)

( 1 0
a 1 )

γ

( 1 0
a 1 )

Figure 24. Removing extraneous punctures on small boundaries. For a disc (left) we just collapse the

punctures. For an annulus or torus (right) we collapse the punctures and modify the flat connection

to trivialize the unipotent holonomy around the puncture.

Again, we observe that C′∗∗ may have extraneous punctures, arising from disjoint discs

in Csmall that have been connected in C′small. We can remove these punctures. For every small

sphere component of C′small, we collapse all (potential) punctures to a single one; the holonomy

around this single puncture is necessarily trivial, so we may remove it. For every small disc, we

similarly collapse all (potential) punctures to a single one, which still has unipotent holonomy

(Figure 24, left). For every small annulus we modify the connection so that it extends over

the punctures. There is a unique way to do this. Abstractly, we note that since all puncture

holonomies are unipotent and the connection is framed on the annulus (meaning, as usual,

that it preserves a line) it makes sense to define an invariant holonomy eigenvalue xλ and a

rescaling/twist coordinate xτ from one end of the annulus to the other, just as in Section 4.2.

In fact, we can calculate full (basepointed) holonomy matrices Mλ,M
′
λ, both with eigenvalues

xλ, around the two ends of the annulus. Then from Appendix B we know that there’s a unique

framed flat connection on the smooth annulus with fixed Mλ,M
′
λ, xτ , as long as xλ 6= 1.

To implement the modification concretely, we can collapse all punctures on an annulus

to a single point, then cut the annulus along a curve γ beginning and ending at this point
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as in Figure 24 (right). We re-glue the connection on the annulus with an extra unipotent

modification ( 1 0
a 1 ) across γ. As long as xλ 6= 1, there is a unique value of a that trivializes

the puncture holonomy.

We may similarly remove extraneous punctures from small tori, so long as the invariant

holonomy eigenvalues satisfy (xα, xβ) 6= (1, 1). Concretely, we collapse all punctures to a

single one, then add a unipotent modification along a nontrivial curve γ passing through

the single puncture. The modification that trivializes the puncture holonomy is uniquely

specified so long as the holonomy along γ itself is not unipotent — so, given (xα, xβ) 6= (1, 1),

an appropriate γ can always be chosen.

Altogether, we have built a removal-of-punctures map

g
(3)
PGL(2) : X [C′∗∗]

∣∣
xλ 6=1, (xα,xβ)6=(1,1)

→ X [C′] , (4.24)

and composing it with the first two parts of the gluing procedure we obtain a gluing map

gPGL(2) = g
(3)
PGL(2) ◦ g

(2)
PGL(2) ◦ g

(1)
PGL(2) : X [C]

∣∣
R
→ X [C′] . (4.25)

Here the restrictions ‘R’ are a lift to X [C] of the defect conditions Mj = 1 and puncture-

removal conditions xλ 6= 1, (xα, xβ) 6= (1, 1).

4.5 Symplectic properties of the gluing equations

Let’s now restrict to patches P[C, t2d], P[C′, t′2d], corresponding to the triangulation of M

and the induced triangulation of M ′, and describe concretely how the gluing map (4.25) acts

on C∗ coordinates.

Consider the intermediate space X [C∗∗0 ], where C∗∗0 is the boundary of M0, possibly with

some additional unipotent punctures. This space supports the same path-functions xp, p ∈
P0 ⊕ Z2 as X [C0] (since unipotent punctures do not affect the definition or properties of the

xp), which depend only on the homology class γ ∈ K̃ = im
[
h̃ : (P0 ⊕ Z2) → H̃−1 (Σ)

]
. As

usual, we work with the convention that xu = −1 for the fiber class u ∈ Z2. The functions

xγ , γ ∈ K̃ take well-defined C∗ values on a subset P[C∗∗0 , t′2d] ⊂ X [C∗∗0 ] that is defined the

same way as in Def. 3.

The image15 of g
(1)
PGL : P[C; t2d]→ X [C∗∗0 ] lies in P[C∗∗0 ; t′2d]. Moreover,

g
(1)
PGL

∗(xγ) = xg̃(γ) , γ ∈ K̃ , (4.26)

with g̃ : H̃−1 (Σ0) → H̃−1 (Σ) the map of (2.18) and (3.21). To understand this, suppose

γ = h̃(p) for a path p ∈ P0. We can compute the path coordinate xγ = xp by breaking p

up into segments gP(p) =
∑

i pi, pi ∈ P (as in Figure 18), applying the definition (4.8) to

each segment to get functions xpi , and multiplying them together. Successive numerators and

denominators of (4.8) cancel out — just as in the proof of the concatenation relation xp◦p′ =

15Technically, we should relax the non-unipotent restriction in the definition of P[C∗∗0 ] in order for the image

of g
(1)
PGL : P[C]→ X [C∗∗0 ] to be fully contained in P[C∗∗0 ]. This does not affect the following argument.
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xpxp′ — up to a single sign (−1). This extra sign arises due to the reversed relative orientation

at the head of one segment and the tail of the next. Thus xp = ...xpi+1(−1)xpi(−1)xpi−1 ....

The modifications by these signs are precisely encoded in the fiber-class corrections to the

twisted cutting map g̃P (3.21). Using h̃g̃P = g̃h̃, we obtain (4.26).

The gluing conditions requiring trivial defect holonomies Mj simply say that xµj ≡ 1 for

all defect cycles µj ∈ G̃ ⊂ K̃. The lifts of these conditions to P[C, t2d] are xg̃(µj) ≡ 1. If these

conditions are satisfied, we get a map

g
(3)
PGL(2) ◦ g

(2)
PGL(2) : P[C∗∗0 , t′2d]

∣∣
xµ≡1

→ P[C′, t′2d] . (4.27)

Now the functions xγ (γ ∈ H̃−1 (Σ′)) on P[C′, t′2d] pull back16 to

(
g

(3)
PGL(2) ◦ g

(2)
PGL(2)

)∗
(xγ) = xγ̂ , γ̂ ∈ K̃ , q̃(γ̂) = γ , (4.28)

where γ̂ ∈ K̃ ⊂ H̃−1 (Σ0) is any preimage of γ under the map q̃ from (3.17). This preimage is

unique modulo G̃, so xγ̂ is well defined on P[C∗∗0 , t′2d]
∣∣
xµ≡1

.

By combining (4.26) and (4.28) we see that for any γ ∈ K̃ ⊂ H̃−1 (Σ0), the path-functions

on P[C, t2d]
∣∣
Mj=1

and P[C′, t′2d], evaluated on a connection A and its glued image gPGL(2)(A),

are related by

xg̃(γ) = xq̃(γ) , ∀ γ ∈ K̃ ⊂ H̃−1 (Σ0) . (4.29)

These are the gluing equations. They subsume the gluing conditions xg̃(µ) ≡ 1 for µ ∈ G̃,

since q̃(µ) ≡ 0. Moreover, since q̃ is surjective and the path-functions on P[C′, t′2d] include a

complete set of coordinates, the gluing map

gPGL(2) : P[C, t2d]
∣∣
(xg̃(µ) ≡ 1, R′)→→ P[C′, t′2d] (4.30)

must be surjective. (Here R′ denotes the additional non-unipotent restrictions lifted from

P[C′, t′2d], namely xg̃(λ̂) 6= 1, (xg̃(α̂), xg̃(β̂)) 6= (1, 1), for q̃(λ̂, α̂, β̂) = (λ, α, β).) Indeed,

Theorem 1 The PGL(2) gluing map (4.30) is a (holomorphic) K2 symplectic reduction of

a finite quotient,

gPGL(2) : (P[C; t2d]R′/Z)
//

(C∗)rankG := (P[C; t2d]R′/Z)
∣∣
xg̃(µ)≡1

/
(C∗)rankG

∼→ P[C′; t′2d] , (4.31)

where Z ' H̃−1 (Σ)/H̃ is the torsion group of Prop. 1’(b), and the (C∗)rankG action is gener-

ated by using the xg̃(µj), µj ∈ G̃, as moment maps.

16Again, note that the unipotent modifications made by g
(3)

PGL(2) to remove extraneous punctures do not

affect path coordinates. So to understand (4.28) it suffices to look at the action of g
(2)

PGL(2), which just fills in

defects.
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Explicitly, if H̃ ⊂ H̃−1 (Σ) is the finite-index subgroup containing g(K̃), such that H̃−1 (Σ′) '
H̃//g̃(G̃) = g̃(K̃)/g̃(G̃), we recall that Z = H̃−1 (Σ)/H̃ contains at most 2-torsion and 4-

torsion. The group Z act naturally on P[C; t2d] by multiplying functions xγ by 4-th roots of

unity. Namely, letting {σi} be any generators of the Hom
(
Z,Z4 = {1, i,−1,−i}

)
, the action

on P[C; t2d] is generated by xγ 7→ σi[γ]xγ .

We may also explicitly describe the action of the moment maps as follows. Let {µi}rankG
i=1

be a basis for G̃ and let (ti)
rankG
i=1 ∈ (C∗)rankG be some corresponding parameters. If µ =∑

aiµi ∈ G̃ define tµ =
∏
i t
ai
i . Then, by virtue of (4.18) in Proposition 3, the moment map

action of xg̃(µ) is

xγ 7→ (tµ)〈µ,γ〉xγ , ∀ γ ∈ H̃−1 (Σ) , µ ∈ G̃ . (4.32)

Proof of Theorem 1. We analyze the quotient on the LHS of (4.31). By construction, the

invariant functions on the ordinary quotient P[C, t2d]/Z are precisely xγ for γ ∈ H̃ ⊂ H̃−1 (Σ).

These include a complete set of coordinates. Since g(K̃) = ker 〈g̃(G̃), ∗〉|H̃ by Proposition

1’ and Lemma 5, the functions that are further invariant under the (C∗)rankG action (4.32)

are labeled by γ ∈ g̃(K̃) ⊂ H̃−1 (Σ). These functions coordinatize (P[C; t2d]/Z)
/

(C∗)rankG.

Subsequently restricting to xg̃(µ) ≡ 1 for all µ ∈ G̃ produces a space coordinatized by x[γ]

for [γ] ∈ g̃(K̃)/g̃(G̃) ' H̃−1 (Σ′). The identification g̃(K̃)/g̃(G̃) ' H̃−1 (Σ′) sends [γ] to q̃ ◦
g̃−1(γ) and preserves the intersection form. Therefore, (P[C; t2d]R′/Z)

/
(C∗)rankG

∣∣
xg̃(µ)≡1

is

canonically (1-1) symplectomorphic to P[C′; t′2d], with path-coordinates related as xg̃(γ) =

xq̃(γ) for γ ∈ K̃. These are precisely the gluing equations (4.30), so the symplectomorphism

is the desired gluing map.

To see that this is a K2 symplectomorphism, first note that P[C; t2d] and P[C; t2d]/Z

have the same K2 forms ω̂ ∈ K2(P[C])Q, given by (4.17). Let us choose a basis {γi, µj} for

the untwisted subgroup K ⊂ K̃ such that {q̃(γi)} is a basis for H−1 (Σ′) ⊂ H̃−1 (Σ′). Complete

this to a basis {g̃(γi), g̃(µj), ηk} of a torsion-free (untwisted) subgroup H ⊂ H̃, so that the

intersection form in this basis is block-diagonal,

〈g̃(γi), g̃(γi′)〉 = 〈q̃(γi), q̃(γi′)〉 = ε′ii′ , 〈g̃(µj), ηk〉 = cj δjk (cj ∈ Z) , (4.33)

where ε′ is the intersection form on H1(Σ′) and all other intersection products vanish. (The

fact that we can find such a basis follows from the untwisted version of H̃//g̃(G̃) = g̃(K̃)/g̃(G̃) '
H̃−1 (Σ′).) Then the K2 form on P[C; t2d]/Z is

ω̂ =
1

2

∑

i,i′

(ε′−1)ii
′
xg̃(γi) ∧ xg̃(γ

′
i)

+
∑

j

1

cj
xg̃(µj) ∧ xηj . (4.34)

Setting xg̃(µj) = 1 and using the fact that 1∧ ∗ = 0 in K-theory, we find that ω̂|(xg̃(µ)≡1) = ω̂′

reproduces the K2 form on P[C′, t′2d]. �

4.6 Example: Thurston’s gluing equations, K2 forms, and volumes

In the Introduction (Section 1.3), we claimed that Thurston’s gluing equations are a special

case of (4.29), and therefore that Theorem 1 directly implies the symplectic properties found

by Neumann and Zagier. We take a moment to spell out exactly how this works.
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Suppose that M ′ is an oriented hyperbolic 3-manifold with an ideal triangulation M ′ =

∪Ni=1∆i. We denote by M = tNi=1∆i the disjoint union of tetrahedra in the triangulation,

viewing both M and M ′ as framed 3-manifolds. For example, M ′ might be a closed hyperbolic

manifold with a spun triangulation, in which case the topological ideal boundary C′ = ∂M ′

consists entirely of small spheres; or M ′ could have nc cusps, corresponding to small torus

components of C′. One might also consider M ′ with geodesic boundary, in which case C′big is

non-empty. This is another special case of our general framework, but we’ll ignore it for the

moment to keep this example simple. Thus, C′big is empty, and C′small contains nc ≥ 0 small

tori and some number of small spheres. The number of edges Ij of the triangulation is the

same as the number N of tetrahedra. We glue M  M0  M ′ as in Section 2.5, letting M0

be a framed 3-manifold with N defects Ij .

For each tetrahedron ∆i inM we find aK2 symplectic space P[C∆i] = {xi, x′i, x′′i |xix′ix′′i =

1} ' (C∗)2 as in Section 4.3.1. Here xi = xγi , x
′
i = xγ′i , etc., with γi, γ

′
i, γ
′′
i and u generat-

ing H̃−1 (Σ∆) as in Section 3.2.1. The triple of hyperbolic shapes for each tetrahedron are

(zi, z
′
i, z
′′
i ) = (−xi,−x′i,−x′′i ). Altogether,

P[C] =
N∏

i=1

P[C∆i] ' (C∗)2N , H̃−1 (Σ) = ⊕Ni=1H
−
1 (Σ∆)⊕ Z2 ' Z2N ⊕ Z2 , (4.35)

where the splitting of H̃−1 (Σ) comes naturally from Lemma 3. Similarly, for each small torus

T 2
t in C′small, there is an odd homology group H̃−1 (ΣT 2) generated by (α(t), β(t), u) and a moduli

space P[CT 2 ] = {x(t)
α , x

(t)
β } ' (C∗)2\(1, 1). Thus

P[C′] =

nc∏

t=1

P[CT 2
t
] ' (C∗)2nc , H̃−1 (Σ′) = ⊕Ni=1H

−
1 (ΣT 2

t
)⊕ Z2 ' Z2nc ⊕ Z2 . (4.36)

Now consider the intermediate manifold M0. The boundary C0 = ∂M0 small and defect

parts; N defects end at 2N holes on (C0)small. The holes on (C0)small lie at the vertices of the

triangular tiling of C′small, as illustrated back in 3. The subgroup G̃ = im [h̃ : PG → H̃−1 (Σ0)]

is generated by cycles µj (Figure 16), one for each defect Ij , coming from paths pµj that

surround the holes of (C0)small. The subgroup K̃ = im [h̃ : (P0⊕Z2)→ H̃−1 (Σ0)] is generated

by the µj , together with lifts α̂(t), β̂(t) (Section 3.3) of α(t), β(t) ∈ H−1 (Σ′), and the fiber class

u. Concretely, α̂(t) = h̃(p̂
(t)
α ) and β̂(t) = h̃(p̂

(t)
β ), where p̂

(t)
α , p̂

(t)
β are paths on Csmall representing

A and B cycles, passing in some chosen way around the holes. These are exactly the types of

boundary paths that appeared in [12, 29], said to be in normal position with respect to the

tiling of C′small.

The first part of Thurston’s gluing equations state that the product of tetrahedron shapes

zi, z
′
i, z
′′
i around any edge Ij must equal one. These are precisely our trivial-holonomy con-

straints, of the form

xg̃(µj) = 1 , ∀ µj ∈ G̃ . (4.37)

To see this, note that under the cutting map gP (Section 3.3) a path pµj surrounding defect

Ij is cut into paths pe associated to all the edges e of tetrahedra identified with Ij in the
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gluing. The extra modification in the twisted map g̃P adds a fiber class u to g̃P(pµj ) for every

cut that is made; thus from h̃g̃P = g̃h̃ we find

g̃(µj) =
∑

around Ij

(γi + u or γ′i + u or γ′′i + u) ,

xg̃(µj) =
∏

around Ij

(−xi,−x′i,−x′′i ) =
∏

around Ij

(zi, z
′
i, z
′′
i ) , (4.38)

matching the hyperbolic gluing equations.

z1
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z�3 · · ·

Figure 25. Calculating the cusp equation for `2 = x
(t)
α on a small boundary that’s tiled by small

vertex triangles of truncated tetrahedra.

The second part of the gluing equations, sometimes called the “cusp equations,” states

that the squares of A and B cycle eigenvalues `2t ,m
2
t (i.e. eigenvalues of the hyperbolic holon-

omy) around each cusp equal the product of shapes z±1
i , z′i

±1, z′i
±1 at dihedral angles sub-

tended by paths on Csmall, representing the respective cycles and in normal position with

respect to the tiling of Csmall — in other words, our paths p̂
(t)
α and p̂

(t)
β . The exponents ±1

correspond to whether an angle is subtended clockwise or counterclockwise, cf. Figure 25.

These cusp equations again are just the remaining equations of the form xq̃(γ) = xg̃(γ) in

(4.29), for γ = α̂(t) or γ = α̂(t). Indeed, on one hand,

`2t = x(t)
α = xq̃(α̂(t)) , m2

t = x
(t)
β = xq̃(β̂(t)) . (4.39)

On the other hand g̃(α̂(t)) = h̃ ◦ g̃P(p̂
(t)
α ) is a sum of cycles ±(γi + u), ±(γ′i + u), ±(γ′′i + u)

corresponding to angles subtended by p̂
(t)
α (similarly for β̂(t)); so xg̃(α̂(t)) and xg̃(β̂(t)) are

precisely the desired products of shapes.

Now Theorem 1 amounts to the statement that the defect functions xg̃(µj) are a set of

mutually commuting moment maps on P[C], which also commute with the A and B cycle

functions xg̃(α̂(t)) and xg̃(β̂(t)). Thus P[C′] is the symplectic reduction of (a finite quotient of)

P[C]. Obviously this implies that there are 1
2(dimC P[C]−dimC P[C′]) = N −nc independent

moment maps. Homologically, this follows from the easy fact that

rank G̃ = rankG = N − nc . (4.40)
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Indeed, the sum of generators µj for all defects that end on a given cusp (counted with mul-

tiplicity) is null-homologous, so each cusp produces one relation among the N generators.17

Alternatively, one could write the gluing equations in a fixed basis as

`2t = ±∏i z
Ati
i z′i

A′ti

m2
t = ±∏i z

Bti
i z′i

B′ti

1 = xq̃(µj) = ±∏i z
Cji
i z′i

C′ji

, g



α

β

µ


 =



A A′

B B′

C C ′



(
γ

γ′

)
. (4.41)

Then the matrix of the untwisted map g|K = p◦ g̃K shown here has rank rankK = N+nc and

preserves the intersection form, i.e. (g|K)J2N (g|K)T = 2J2nc ⊕ 0N×N , as in the Introduction.

The reduction of K2 forms is expressed as

ω̂′ =

nc∑

t=1

1

2
`2t ∧m2

t =

N∑

i=1

zi ∧ z′i
∣∣∣(xg̃(µ) ≡ 0) = ω̂

∣∣
(xg̃(µ) ≡ 0) . (4.42)

There is a standard map η : K2(P[C′]) → Ω1(P[C′]) defined by η(a ∧ b) = log |a| d arg b −
log |b| d arg a (see [31] and references therin), which provides a canonical anti-derivative of the

symplectic form on P[C′], since dη(ω̂′) = Imω′. By computing η(ω̂′) using both sides of (4.42)

and further restricting to the K2 Lagrangian L ⊂ P[C′] defined by zi + z−1
i − 1 = 0 together

with the gluing equations,18 we directly recover the Neumann-Zagier formula for variation of

the volume,

dVol(M ′) = η(ω̂′)
∣∣
L . (4.43)

5 Non-abelianization

We showed in Section 4 that coordinates for framed flat PGL(2) connections on the bound-

aries of framed 3-manifolds can be labelled by elements of the homology of double covers, with

Poisson brackets of the former matching the intersection product of the latter. Moreover, we

found that gluing equations (4.29) have a homological interpretation that makes their sym-

plectic properties manifest. However, we did not explain why the relation between PGL(2)

connections and homology of double covers existed, or why it was particularly natural. We

now aim to fill this gap.

We will first consider the moduli space of flat GL(1) := GL(1,C) connections on a

double cover Σ. This very simple space naturally has holonomy coordinates labelled by the

first homology of Σ (viewed as an abelianization of π1(Σ)), with Atiyah-Bott Poisson bracket

induced by the intersection form. The gluing equations for flat GL(1) connections manifestly

take the form (4.29).

Then we borrow and extend the non-abelianization construction of [6] to build a non-

abelianization map Φ, a (nontrivial) symplectomorphism between flat GL(1) flat connections

17It is a short exercise to show that these relations are all independent. See [29] or the review [48].
18This “gluing variety” generalizes the geometric component of the A-polynomial for a knot [12–14].
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on a double cover Σ and framed flat PGL(2) connections on the base C. While the non-

abelianization map of [6] was mainly discussed in a rich geometric context — involving a

choice of complex structure on C and an interpretation of Σ as a spectral cover — we will

simply used the topological structure of the boundary of a framed 3-manifold (and a choice

of big-boundary triangulation) to define Φ.19

5.1 Abelian flat connections

We begin by defining a space of abelian flat connections whose coordinates are manifestly

labelled by elements of twisted homology H̃−1 (Σ). As observed in [6] (and hinted in [44]), the

non-abelianization construction requires such twisting.

For a closed oriented surface Σ, define

X̃ab[Σ] = {twisted GL(1) flat connections on Σ} (5.1)

:= {GL(1) flat connections on T1Σ with fiber holonomy −1} .

These are flat connections on a (necessarily trivial) complex line bundle L → T1Σ, or,

equivalently, GL(1) := GL(1,C) local systems on T1Σ. The space X̃ab[Σ] is isomorphic

to (C∗)rank H̃1(Σ) = (C∗)rankH1(Σ). Indeed, a flat GL(1) = GL(1,C) connection on T1Σ is

uniquely parametrized by its GL(1) ' C∗ -valued holonomies xγ for γ ∈ H1(T1Σ), with

xγ+γ′ = xγxγ′ . We are requiring that the fiber holonomy is xu = −1, whence the holonomies

xγ naturally become labelled by elements of twisted homology H̃1(Σ).

Letting Xab[Σ] denote the space of standard (untwisted) GL(1) flat connections on Σ,

we note that there is an isomorphism X̃ab[Σ] ' Xab[Σ] induced by any splitting H̃1(Σ) '
H1(Σ)⊕ Z2. Such a splitting is given, for example, by the structure of a framed 3-manifold,

with Σ the canonical cover of the boundary (Lemma 3). Equivalently, a choice of spin

structure on Σ induces an isomorphism X̃ab[Σ] ' Xab[Σ]. Namely, a spin structure defines a

(fiber-wise) 2-fold cover of T1Σ; the pull-back of a twisted flat connection to the cover gives a

connection with fiber holonomy +1, which may subsequently be pushed forward to Σ itself,

providing the desired isomorphism (cf. [6, Sec. 10]).

Now suppose Σ
π→ C is the canonical double cover of the boundary of a framed 3-manifold.

We want an odd version of X̃ab[Σ] whose coordinates are labelled by γ ∈ H̃−1 (Σ). It can be

defined as a projectivization, in the following sense. Let {αi}ri=1 be a basis for H1(C), and for

an r-tuple of parameters t = (t1, .., tr) ∈ (C∗)r and α =
∑

i aiαi in H1(C) let tα := tα1
1 · · · tαrr .

19Topological descriptions of non-abelianization were also discussed in [6, 37] and [40], which overlap with

our constructions. In our language, [6, 37] considered moduli spaces of PGL(K) (not just PGL(2)) connections

on surfaces C consisting of an arbitrary big part Cbig, with 2d ideal triangulation t2d, and all holes of Cbig filled

by small discs. It was found for PGL(2) that coordinates induced by non-abelianization coincide with Fock-

Goncharov cluster coordinates. [40] generalized the PGL(2) non-abelianization map to construct complex

Fenchel-Nielsen coordinates for a surface C together with a pants decomposition. Such coordinates arise for us

when C (as a framed boundary) contains big 3-holed spheres connected by small annuli, cf. [32]. Our definition

of Φ in this case differs from that of [40], but is ultimately equivalent.
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We set

X̃−ab[Σ] := X̃ab[Σ]/(C∗)r , with action xγ 7→ tπ∗◦ p(γ)xγ , γ ∈ H̃1(Σ) , t ∈ (C∗)r . (5.2)

Here p(γ) ∈ H1(Σ) is the projection to standard homology, and π∗ ◦ p(γ) ∈ H1(C) is the

subsequent projection to the base. The coordinates invariant under the (C∗)r action are

precisely those xγ with γ ∈ H̃−1 (Σ). Thus the holonomies provide a map

x : X̃−ab[Σ]× H̃−1 (Σ)→ C∗ , (5.3)

which is a homomorphism on the second factor, and non-degenerate in the sense that any

basis {γi} for H̃−1 (Σ) induces an isomorphism

(xγi) : X̃−ab[Σ]
∼→ (C∗)rank H̃−1 (Σ) = (C∗)rankH−1 (Σ) . (5.4)

Remark. One could also consider a space X̃ ′ab[Σ] defined as the slice of X̃ab[Σ] on which

xP+γ = 1 for all γ ∈ H̃1(Σ). Our space X̃−ab[Σ] is a finite quotient of X̃ ′ab[Σ] by (Z2)s (acting

as multiplication by −1 on some C∗ factors), where s is the number of Z2 factors in the

torsion group H1(Σ)/(imP+ ⊕ kerP+). Under the non-abelianization map of Section 5.3,

X̃−ab[Σ] maps to framed flat PGL(2) connections on a punctured base C∗, whereas X̃ ′ab[Σ]

would map to twisted framed flat SL(2) connections on C∗.

The spaces X̃ab[Σ] and X̃−ab[Σ] have natural holomorphic Poisson and symplectic struc-

tures given by the Atiyah-Bott formula ωab =
∫

Σ δA ∧ δA .20 In this abelian setting, it is

trivial to compute the Poisson brackets (on X̃−ab[Σ], say)

{log xγ , log xγ′} = 〈γ, γ′〉 , γ, γ′ ∈ H̃−1 (Σ) . (5.5)

To write the symplectic form in coordinates, we must choose some {γi}rankH−1 (Σ)
i=1 , γi ∈ H̃−1 (Σ),

lifting a basis {γi} of H−1 (Σ). Letting εij = 〈γi, γj〉 denote the non-degenerate intersection

pairing and xi := xγi , we have

ωab =
1

2

∑

i,j

(ε−1)ij
dxi
xi
∧ dxj
xj

. (5.6)

More elegantly, the symplectic form is induced by the Poincaré dual of the cup product

(composed with a projection to odd homology)

∪∗ :
H2(Σ) → H−1 (Σ) ∧H−1 (Σ)

[Σ] 7→ 1
2

∑
ij(ε
−1)ijγi ∧ γj .

(5.7)

From (5.7) we also obtain the canonical lift to K-theory (modulo torsion)

ω̂ab :=
1

2

∑

i,j

(ε−1)ijxi ∧ xj ∈ K2(X̃−ab[Σ])Q . (5.8)

20In this formula, A is a standard flat GL(1) connection on Σ, represented locally as a 1-form. Implicitly,

A is obtained by using any isomorphism between twisted and untwisted moduli spaces X̃ab[Σ] ' Xab[Σ]. The

symplectic form is independent of the choice of isomorphism. This is manifest in expressions (5.5), (5.6), which

are invariant under sign changes xγ 7→ xγ+u = −xγ .
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5.2 Gluing abelian connections

Let M be any triangulated framed 3-manifold, and M ′ a framed 3-manifold glued by identi-

fying faces of M . As usual we split the gluing into two parts M  M0  M ′. The gluing

gluing maps for spaces of flat connections X̃−ab on the canonical covers Σ,Σ0,Σ
′ of the respec-

tive boundaries. Due to the pairing (5.3), these gluing maps are automatically dual to the

gluing maps in homology.

Concretely, first consider the gluing M  M0, in which only interiors of faces of a big-

boundary triangulation t2d are identified. The pre-images of each face in T1Σ retracts to a

single S1 fiber. Thus, any GL(1) flat connection A ∈ X̃−ab[Σ] can be trivialized along the

gluing region (aside from the universal fiber holonomy −1), and the gluing gives a map

g
(1)
GL(1) :

X̃−ab[Σ] →→ X̃−ab[Σ0]

xg̃(γ) 7→ xγ (γ ∈ H̃−1 (Σ0)) .
(5.9)

The holonomies xγ of g
(1)
GL(1)(A ) must be equal to the holonomies xg̃(γ) of A itself, with g̃

as in Section 2.5. Since g̃ is an injection, g
(1)
GL(1) is a surjection. (More precisely, there is

an isomorphism g
(1)
GL(1) : X̃−ab[Σ]/coker g̃

∼→ X̃−ab[Σ0], with generators of the 2-torsion group

coker g̃ ' coker g acting as multiplication by −1 on C∗ factors.) Moreover, since g̃ preserves

the intersection product, g
(1)
GL(1) is a symplectomorphism.

Second, when filling in defects M0  M ′, a flat connection on Σ0 induces a flat connection

on Σ′ if and only if its holonomies along defect cycles ν ∈ G̃′ are trivial (again using the

notation of Section 2.5). We denote this condition as “xν∈G̃′ = 1.” When it is satisfied, we

may trivialize the flat connection in a neighborhood of the defects, then fill them in, obtaining

a map

g
(2)
GL(1) :

X̃−ab[Σ0]
∣∣
(xν∈G̃′ = 1) →→ X̃

−
ab[Σ′]

xγ 7→ xq̃(γ) (γ ∈ K̃ ′ ⊂ H̃−1 (Σ0)) .
(5.10)

Now since H̃−1 (Σ′,Z) = H̃−1 (Σ0)//G̃′ = K̃ ′/G̃′ (Prop. 1’) we see that (5.10) is symplectic

reduction, X̃−ab[Σ′] ' X̃−ab[Σ0]//(C∗)rank G̃′ = X̃−ab[Σ0]
∣∣
xν∈G̃′=1

/
(C∗)rank G̃′ , where the (C∗)rank G̃′

action is generated by using the xν∈G̃′ as moment maps (analogous to the action described

in (4.32) following Theorem 1).

Combining the descriptions of (5.9)–(5.10), we deduce that the combined gluing map

gGL(1) := g
(2)
GL(1) ◦ g

(1)
GL(1) is a symplectic reduction of a finite quotient, governed by gluing

equations

xg̃(γ) = xq̃(γ) , ∀ γ ∈ K̃ ′ . (5.11)

When M and M ′ are defect-free, we may use Lemma 5 to replace G̃′, K̃ ′ by the finite-index

subgroups G̃ := h̃(PG) and K̃ := h̃(P0 ⊕ Z2) corresponding to the path algebra on (C0)small.

Then

gGL(1) : X−ab[Σ]
∣∣
(xg̃(G̃) ≡ 1)→→ Xab[Σ′] ' (X−ab[Σ]/Z)//(C∗)rank G̃ , (5.12)
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governed by gluing equations identical to (4.29): xg̃(γ) = xq̃(γ) for all γ ∈ K̃. (The torsion

group Z ' H̃−1 (Σ)/H̃ acts on X−ab[Σ] the same way as in Theorem 1.)

5.3 Spectral networks and non-abelianization

Suppose that C is the boundary of a framed 3-manifold without defects, with canonical cover

Σ
π→ C, and that π1(Csmall) is abelian. Fix a triangulation t2d of Cbig. By the results of

Section 5.1, the symplectic moduli space of twisted abelian flat connections on Σ, X̃ab[Σ] '
(C∗)rankH−1 (Σ) is coordinatized by xγ , γ ∈ H̃−1 (Σ). Define the open subset

Pab[Σ] :=
{
A ∈ X̃−ab[Σ]

∣∣x(a)
λ (A ) 6= 1, (x(t)

α (A ), x
(t)
β (A )) 6= (1, 1)

}
⊂ X̃−ab[Σ] , (5.13)

on which holonomies around tori and annuli are never totally unipotent. This is analogous

to the definition of the PGL(2) moduli space P[C, t] ⊂ X [C] on p. 33. In this section we

construct a non-abelianization map

Φ[t2d] : Pab[Σ]→ P[C; t2d] , (5.14)

defined via a topological “spectral network” that (slightly) extends that of [6] (cf. Footnote

19). We show that

Proposition 4 With notation as above, the map Φ[t2d] is 1-1 and a (holomorphic) K2 sym-

plectomorphism. It identifies twisted GL(1) holonomies xγ with the path-functions xγ on

P[C; t2d] labelled by elements γ ∈ H̃−1 (Σ); in other words Φ[t2d]∗(xγ) = xγ .

We construct Φ in two steps. First, given a twisted abelian flat connection A on Σ, we

can push it forward to a framed flat PGL(2) connection π∗A on C\b, i.e. in the complement

of the branch locus,

π∗ : X̃−ab[Σ]→ X [C\b] . (5.15)

To see this, note that the projection π : Σ → C can be extended uniquely to a bundle map

π : T1(Σ\b) → T1(C\b) that is globally two-to-one and an isomorphism on the unit-tangent

fibers. Then a flat line bundle L → T1Σ induces a flat rank-two bundle E′ → T1(C\b),

locally of the form L+ ⊕ L−, where L± denote (locally) the bundles over the two sheets of

the cover π : T1(Σ\b) → T1(C\b). The induced flat connection A ′ on E′ (locally of the

form A +⊕A −) has holonomy valued in GL(2), and equal to −11 around unit-tangent fibers.

Taking its projectivization, we obtain a connection A ′′ of PGL(2) holonomy. Since −11 ' 11

in PGL(2), the holonomy of A ′′ around unit-tangent fibers is trivial, so A ′′ descends to a

flat PGL(2) connection on a rank-two bundle E∗ → (C\b), which we call π∗A .

A priori, this procedure describes a map π∗ from X̃ab[Σ] to X [C\b]. Our definition of

the “odd” space X̃−ab[Σ] in (5.2), however, was precisely engineered so that the map π∗ would

factor through to X̃−ab[Σ]. Indeed, the action xγ 7→ tπ∗◦ p(γ)xγ in (5.2) is just a lift of the

projectivization action on E′.
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The connection π∗A is also naturally framed. Recall from Section 2.4 that the canonical

cover Σ
π→ C can be glued together from two sheets Σ+ and Σ−, each a copy of C\Γbr. We

correlate the local decomposition E′ = L+⊕L− above with the labeling of these sheets. Then

induces a canonical diagonal decomposition E∗ = L+⊕L− (as a projectively flat bundle) over

each connected component of C\Γbr, and in particular over Csmall. We take the flag L+ ⊂ E∗
to be the framing data on each component of Csmall.

S =

�
0 −1
1 0

�
H(x) =

�
1 0
0 x

�

S

S

S
H(xe)

H(xe)

H(xτ )
H(xλ) H(xλ)

pτ

Figure 26. Local frames and parallel transport for the flat connection π∗A

The second step is to modify the push-forward connection π∗A , defined over C\b, to

obtain a new (and more interesting) connection that extends over the branch points but may

have unipotent singularities at punctures on the small boundary. We proceed as follows.

For small-sphere and small-torus components of C, no modification is required. The

remaining connected components of C consist of triangulated big boundary with holes filled

in by small discs and annuli. We then choose local frames for the projectively flat bundle

E∗ → C\b over three points p in each face t of t2d so that the parallel transport of π∗A is

given by the transformations in Figure 26. Locally, each frame is a choice of vectors in the

lines L±. Thus the parallel transport is diagonal over connected components of C\Γbr, given

by matrices H(xp) = diag (1, xp) for appropriate functions xp = (xe, xτ , xλ) on X̃−ab[Σ]. Across

branch cuts, the lines are exchanged and the parallel transport S =
(

0 −1
1 0

)
is anti-diagonal.21

The nontrivial holonomy S3 = S around branch points is what prevents E∗ from extending

over the branch points.

To fix this we introduce a (topological) spectral network W = W[t2d, {pτ}] on C. It

depends on t2d and has a mild dependence on a choice of paths pτ traversing small annuli.

Roughly, W is an unoriented graph dual to small edges of t2d and to the paths pτ , as in

Figure 27. Formally, W has vertices at all branch points and at one point in the interior of

each small disc and annulus. Its edges connect the vertex in each small disc d to every branch

21A similar choice of local frames was used in the non-abelianization constructions of [6, 37]. Note that

the sign in S = ( 0 −1
1 0 ) is particularly natural given the push-forward construction of π∗A . Namely, since

A has holonomy −1 around unit-tangent fibers of T1Σ, it follows that the holonomy hbr of A ′ around any

cycle surrounding a branch point (and wrapping the unit-tangent fiber of T1C any number of times) must

satisfy h2
br = −11 ∈ GL(2). To be compatible with the local decomposition E′ = L+ ⊕ L−, it must also be

anti-diagonal, and can be chosen (modulo gauge equivalence) as hbr = ± ( 0 −1
1 0 ). After projectivizing, we

obtain holonomy S3 = S = ( 0 −1
1 0 ) ∈ PGL(2) around branch points.
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T =

�
1 0
1 1

�

S
T

S

S

T

T

T (w) =

�
1 0
w 1

�

pτ
T (w)

H(xτ )

Figure 27. Structure of the spectral network W (in red) on a face of t2d (left), in the neighborhood

of a small disc (center), and in the neighborhood of a small annulus (right). We indicate the unipotent

modifications of π∗A corresponding to the edges of the spectral network on faces (left) and wrapping

around annuli (right).

point in a face of t2d surrounding d; connect the vertex in each small annulus a to the branch

points in the faces surrounding a, without crossing p
(a)
τ ; and connect the vertex in a to itself

via a circular path in the homology class of p
(a)
λ .

We perform unipotent modifications of E∗ across walls of the spectral network, in two

rounds. First, note that each edge s of W ending at a branch point b ∈ b passes close to

a single point p labeling a frame for E∗. We add a unipotent modification by T = ( 1 0
1 1 )

when moving across s clockwise from the perspective of b — meaning explicitly that we split

the one frame over p into two, with new parallel transport T between them. This creates a

new projectively flat bundle E′∗. Its holonomy around any branch point is trivial by virtue

of the relation (ST )3 = 11, hence E′∗ extends over the branch locus. However, E′∗ may have

nontrivial unipotent holonomy at the vertices of W on small discs and annuli.

Now, for each small annulus a, we add a second unipotent modification to E′∗ by T (wa) :=(
1 0
wa 1

)
across the edge of W wrapped around a (homologous to p

(a)
λ ). For concreteness, we

take this modification to split either of the two frames of E′∗ at the tail of p
(a)
τ . (These frames

were already split by the first modification; since [H(wa), H(1)] = 0, it does not matter which

we take.) Then, as long as x
(a)
λ 6= 1, there is a unique wa ∈ C that trivializes the holonomy

around the vertex of W on a. (The calculation is identical to solving for t in (B.3), p. 62.)

Following these two rounds of unipotent modifications, we arrive at a projectively flat

bundle E that extends over all of C except the vertices of W on small discs — i.e. over the

“punctured boundary” C∗ of Section 4.1. Let Φ(A ) denote the flat PGL(2) connection on

E. Since unipotent modifications preserve the flag L+ ⊂ E over each component of Csmall,

Φ(A ) is a naturally a framed flat connection. Thus, we’ve defined a map

Φ : X̃−ab[Σ]
∣∣
xλ 6=1

→ X [C] . (5.16)

Its definition depends both on a triangulation t2d and on a choice of paths pτ . We will prove

momentarily that the dependence on pτ ’s is trivial and that when Φ is restricted to both

xλ 6= 1 (for annuli) and (xα, xβ) 6= (1, 1) (for tori) its image is precisely P[C, t2d].
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Proof of Prop. 4 Given A ∈ X̃−ab[Σ] with xλ 6= 1 and (xα, xβ) 6= 1, observe that Φ(A ) is a

framed flat PGL(2) connection on C∗ with exactly the same set of local frames and parallel

transports as are used in Appendix B to uniquely reconstruct a connection A ∈ P[C, t2d] from

its coordinates. Thus Φ(A ) ∈ P[C, t2d]. Indeed, the path-coordinates xp of Φ(A ) ∈ P[C],
showing up as diagonal entries of parallel transport matrices, are manifestly equal to the

corresponding path-coordiantes xp labeling the abelian holonomies of A . (In each case, xp
depends only on the twisted homology class h̃(p) ∈ H̃−1 (Σ).) From (5.4) and Prop. 2 it

follows that Φ : Pab[Σ]→ P[C, t2d] is one-to-one.

Since path-functions xp uniquely determine Φ(A ), independent of any particular choice

of traversing paths pτ for the annuli, the map Φ cannot depend on the choice of pτ ’s used in

unipotent modification. Thus it depends at most on a big-boundary triangulation t2d.

The fact that Φ is a K2 symplectomorphism follows immediately by comparing the K2

forms (4.17), (5.8) (cf. the Poisson brackets (4.18), (5.5)), which look identical in xγ coor-

diantes, and are both controlled by the intersection form on H−1 (Σ). There is also an alterna-

tive, coordinate-free, proof of the fact that Φ is a symplectomorphism. Namely, we decompose

Φ as a composition of push-forward (π∗) and unipotent modifications. The push-forward map

is obviously a symplectomorphism for the Atiyah-Bott symplectic/Poisson structures. It was

then shown in [6, Section 10.4] that unipotent modification preserves the holomorphic sym-

plectic structure. �

5.4 Non-abelianization commutes with gluing

We combine the results of the previous sections in a final theorem about gluing. Suppose

that we glue framed 3-manifolds M  M0  M ′ as in Section 2.5, where M and M ′ have no

defects, and their small boundaries Csmall and C′small have only discs, annuli, and tori. Let us

fix compatible big-boundary triangulations t2d for Cbig and t′2d for (C0)big = C′big.

Theorem 2 Gluing and non-abelianization maps fit into a commutative diagram

Pab[Σ]
∣∣
xg̃(G̃)≡1, R′

gGL(1)→→ Pab[Σ′] = (Pab[Σ]R′/Z)
//

(C∗)rank G̃

Φ[t2d] ↓ Φ[t′2d] ↓

P[C; t2d]
∣∣
xg̃(G̃)≡1, R′

gPGL(2)→→ P[C′; t′2d] = (P[C; t2d]R′/Z)
//

(C∗)rank G̃ ,

(5.17)

where R′ is the technical restriction xg̃q̃−1(λ) 6= 1, (xg̃q̃−1(α), xg̃q̃−1(β)) 6= (1, 1) and Z '
H̃−1 (Σ)/H̃ (as in Theorem 1). The vertical maps are 1-1 K2 symplectomorphisms and the

horizontal maps are K2 symplectic reduction of finite quotients. Thus the trivial symplectic

reduction in the gluing of GL(1) moduli spaces on Σ (5.12) induces the non-trivial symplectic

reduction (Theorem 1) in the gluing of PGL(2) moduli spaces on C. Both reductions are

governed by the same gluing equations

xg̃(γ) = xq̃(γ) , ∀ γ ∈ K̃ ⊂ H̃−1 (Σ0) , (5.18)
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ultimately arising from the isomorphism H̃−1 (Σ′) = H̃//g̃(G̃) = g̃(K̃)/g̃(G̃) with H̃ ⊂ H̃−1 (Σ)

of finite index (Lemma 5, Prop. 1’).

Proof. Commutativity of the square (5.17) follows easily by comparing the description of

abelian gluing in Section 5.2 to the description of PGL(2) gluing in Section 4.4. Alternatively

(and more explicitly), we have already seen in (4.29) and (5.12) that both the GL(1) and

PGL(2) gluing maps are governed by the same gluing equations (5.18), labelled by elements

of twisted odd homology; since the non-abelianization maps Φ preserve the xγ functions (by

Prop. 4), it follows that the square must commute. The remaining claims follow immediately

from the result of Prop. 4 that the non-abelianization maps are 1-1 symplectomorphisms.

�
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A Odd results

In this section, we collect some basic results about odd homology, and review their proofs.

Notation is as in Section 2.1. In particular, Σ
π→ C is an oriented double cover of a closed,

oriented surface, branched over a locus of points b.

A.1 Basics

Let σ : Σ→ Σ denote the deck-transformation homeomorphism. It preserves orientation and

its fixed-point locus is precisely b(π). It induces a push-forward automorphism on homology

groups σ∗ : H•(Σ)
∼→ H•(Σ). Letting P± := 11± σ∗, we define

H−• (Σ) := kerP+ , H+
• (Σ) := kerP− . (A.1)

Notice that

P 2
± = 2P± , P±P∓ = 0 , P+ + P− = 2 11 . (A.2)

Thus, P± are close to being orthogonal projection operators. They fail to be proper projec-

tions due to the factors of 2 in (A.2).
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Lemma 6 The quasi-projections P± obey the following properties:

a) imP± ⊂ kerP∓;

b) kerP+ ∩ kerP− = {0};
c) kerP∓/imP± ' (Z2)r± (for some r±) is finite, containing only 2-torsion;

d) H•/(kerP+ ⊕ kerP−) is also finite, containing only 2-torsion.

Proof. Parts (a-b) follows trivially from (A.2). Parts (c-d) follow because P± can be promoted

to honest orthogonal projections after tensoring with Q. More concretely, given any α ∈
H•(Σ) such that α = 2β for some β ∈ H•(Σ) we can uniquely decompose α = α+ + α− with

α± ∈ imP± (namely, α± = P±β), proving (d); and given any β ∈ kerP∓ we have 2β = P±β,

proving (c). �

The first homology group H1(Σ) has a non-degenerate skew-symmetric intersection form

〈 , 〉 :
∧2H1(Σ,Z) → Z, which is preserved by σ∗ (since σ is an orientation-preserving

homeomorphsim). Thus it is also preserved by P±. We find that

Lemma 7 Letting kerP±, imP± denote kernels and images in H1(Σ) now, we have

a) 〈kerP±, kerP∓〉 = 0 ;

b) the intersection form is non-degenerate on kerP+ and on kerP− ;

c) the intersection form is even on imP+ and imP− ;

d) if 〈α, β〉 = 0 for all β ∈ imP+ then α ∈ kerP+ (and similarly with +↔ −).

Proof. These are all simple consequences of invariance of the intersection form under σ∗, P±.

For example, if α± ∈ kerP± then 〈α+, α−〉 = 〈σα+, σα−〉 = −〈α+, α−〉, hence 〈α+, α−〉 = 0,

proving (a). Nondegeneracy on H1(Σ) then implies (b) and (d). For (c) note that if α, β ∈
imP+ (say) then 〈α, β〉 = 〈P+γ, β〉 = 〈γ, P+β〉 = 2〈γ, β〉 ∈ 2Z . �

Let π∗ : H1(Σ) → H1(C) denote the induced action of the projection Σ
π→ C . For

any oriented curve γ ⊂ (C\b) (in the complement of the branching locus), the preimage

π−1(γ) consists of one or two oriented curves on Σ. Let `+(γ) denote the homology class

[π−1(γ)] ∈ H1(Σ), and notice that it only depends on the homology class [γ] ∈ H1(C). (It

is clear that `+(γ) is invariant under local homotopies of γ that do not cross the branching

locus b. If a homotopy crosses b, invariance of `+(γ) is illustrated in Figure 28.) Thus the

“even lift” `+ can be extended by linearity to a map `+ : H1(C)→ H1(Σ). Moreover, we have

π∗ ◦ `+ = 211 , `+ ◦ π∗ = P+ , P− ◦ `+ = 0 . (A.3)

Lemma 8 a) H−1 (Σ) = kerπ∗|H1(Σ) ;

b) `+ : H1(C) ↪→ H+
1 (Σ) is an injection with finite (2-torsion) cokernel ;

c) thus H1(Σ,Q) = H+
1 (Σ,Q)⊕H−1 (Σ,Q) ' H1(C,Q)⊕H−1 (Σ,Q) , and in particular

rankH−1 (Σ) = rankH1(Σ)− rankH1(C) .
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Figure 28. Demonstrating the invariance of the even lift `+(γ) = [π−1(γ)] under a homotopy of γ

through a branch point on C. We represent Σ locally by drawing a branch cut emanating from the

branch point, and draw the curves π−1(γ) ⊂ Σ using solid and dashed lines for the two sheets of the

cover. On the bottom row of the figure, “'” denotes equivalences in H1(Σ).

Proof. From π∗ ◦ `+ = 211 we see that `+ is injective, so from `+ ◦π∗ = P+ it follows that

kerπ∗|H1(Σ) = kerP+|H1(Σ), proving (a). From P−◦`+ = 0 (or simply from the definition of `+)

we see that im `+ ⊂ H+
1 (Σ). Moreover, given any α ∈ H+

1 (Σ) we have 2α = P+α = `+(π∗α),

hence 2α ∈ im `+, proving (b). Part (c) follows from (b) and Lemma 6d. �

A.2 Chain complexes

To analyze the effect of gluing on odd homology, it is convenient to have odd versions of

standard exact sequences. The following result shows that we can restrict exact sequences to

odd homology, modulo 2-torsion.

Lemma 9 Let (A•, δ•) =
[
→ Ai

δi→ Ai−1
δi−1→ Ai−2 →

]
be a chain complex of abelian

groups. Let σ be an involution of A• that preserves grading and commutes with δ•. Set

P+ := 11 + σ and A−• := kerP+|A•, and let δ−• be the restriction of δ• to A−• . Then

a) (A−• , δ
−
• ) is also a chain complex;

b) σ induces an involution on homology H•(A•, δ•), and letting H−• (A•, δ•) := kerP+|H•(A•,δ•),
there is an isomorphism H•(A

−
• , δ

−
• ) ' H−• (A•, δ•) modulo 2-torsion;

c) If (A•, δ•) is exact and injective on the left, say 0→ Ad
δd
↪→ Ad−1

δd−1→ Ad−2 → ... for

some d, then (A−• , δ
−
• ) is exact in the first two places (at A−d and A−d−1) and its homology is

2-torsion thereafter.

Proof. For (a), observe that if α ∈ A−i then P+(δiα) = δi(P+α) = 0. Therefore, im δ−i ⊂
im δi ∩A−i−1 ⊂ ker δ−i−1, showing that (A−• , δ

−
• ) is a complex.

Next, observing that σ fixes both ker δ• and im δ•, since it commutes with δ•. Thus there

is an induced involution on classes in the i-th homology group Hi = ker δi/im δi+1, given by
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σ[α] := [σα], and it makes sense to consider

H−i := kerP+|Hi = 〈α ∈ ker δi |P+α ∈ im δi+1 〉
/

im δi+1 . (A.4)

Any class [α] ∈ H−i can be represented by α ∈ ker δi with P+α = δi+1β. We apply P+ to

this relation to find 2P+α = P+(δi+1β). Letting α′ = 2α− δi+1β we see that 2[α] ' [α′] and

P+α
′ = 0. Thus two times every class in H−i has a representative annihilated by P+. This

means that modulo 2-torsion

H−i ' (ker δi ∩A−i )
/

(im δi+1 ∩A−i ) = ker δ−i
/

(im δi+1 ∩A−i ) . (A.5)

(More precisely, the RHS injects into the LHS with finite cokernel.) Moreover, if α ∈ im δi+1∩
A−i , i.e. α = δi+1β and P+α = 0, then 2α = P−α = δi+1(P−β) ∈ im δ−i+1. Therefore, the

quotient (im δi+1 ∩A−i )/im δ−i+1 is 2-torsion, and

H−i ' ker δ−i
/

im δ−i+1 = Hi(A
−
• , δ

−
• ) (A.6)

modulo 2-torsion, as needed for part (b).

Finally, suppose (A•, δ•) is an exact sequence as in (c). Part (b) implies thatH•(A
−
• , δ

−
• ) is

2-torsion; but we can do better. Since δd is injective, δ−d is also injective, so Hd(A
−
• , δ

−
• ) = 0.

Moreover, ker δ−d−1 = ker δd−1 ∩ A−i = im δd ∩ A−i = im δ−d (the last equality again follows

because δd is injective: if α = δdβ and P+α = 0 then δd(P+β) = 0, hence P+β = 0), so

Hd−1(A−• , δ
−
• ) = 0. �

A.3 Cellular description

For a branched cover Σ
π→ C, we can describe a set of generators for H−1 (Σ) and the in-

tersection form on them very explicitly. We do so by applying Lemma 9 to a cell complex

for Σ.

Choose a finite cell decomposition of C with 2-cells {fi}, 1-cells {ei} and 0-cells {pi},
such that every branch point of the cover Σ

π→ C is a 0-cell. By lifting to the two sheets of

Σ, this induces a cell decomposition of Σ with 2-cells D2 = {f+
i , f

−
i }, 1-cells D1 = {e+

i , e
−
i },

and 0-cells D0 = {p+
i , p

−
i | pi /∈ b}∪b (where superscripts ± indicate local choices of lifts). We

immediately recover from this the standard Riemann-Hurwitz formula

χ(Σ) = 2χ(C)−#(b) , (A.7)

and in combination with Lemma 8(c) we get

Lemma 10 Suppose that C and Σ are both connected. Then their genera are related by

g(Σ) = 2g(C) + #(b)/2− 1 and

rankH1(Σ) = 2 rankH1(C) + #(b)− 2 ,

rankH−1 (Σ) = rankH1(C) + #(b)− 2

= −χ(C) + #(b) .

(A.8)
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However, we can do better than describing ranks. Let

(C•, ∂•) =
[
0→ C2

∂2→ C1
∂1→ C0 → 0

]
(A.9)

denote the cellular chain complex corresponding to D• (so that Ci = Z〈Di〉), whose homology

is H•(C•, ∂•) = H•(Σ). Let

(C−• , ∂
−
• ) =

[
0→ C−2

∂−2→ C−1
∂−1→ C−0 → 0

]
(A.10)

be the chain complex obtained by applying kerP+ to the groups Ci and specializing the

boundary maps, as in Lemma 9. (This makes sense because the deck transformation σ

commutes with ∂•.) Notice that C−2 and C−1 are generated by “odd lifts” of 2-cells and 1-cells

C−2 = Z〈`−(fi)〉 , C−1 = Z〈`−(ei)〉 , (A.11)

where `−(fi) := f+
i − f−i and `−(ei) := e+

i − e−i . It follows from Lemma 9 that H−1 (Σ) '
ker ∂−1 /im ∂−2 (modulo 2-torsion). More precisely, we have

Lemma 11 Suppose Σ and C are both connected. With a cell decomposition and notation as

above:

a) H−1 (Σ) = ker ∂−1
/

(im ∂2 ∩ C−1 ) is generated by 1-cycles
∑

i ai`
−(ei) formed from odd

lifts.

b) If the 0-cells consist entirely of branch points (D0 = b) then every odd lift `−(ei) is

automatically closed, so H−1 (Σ) is generated by the `−(ei).

c) In (b), the intersection product 〈`−(ei), `
−(ej)〉 equals the number of common endpoints

of ei and ej, counted with orientation (which is determined by the choice of lifts made in

defining `−).

Proof. First observe that ∂−2 is injective. Indeed, the kernel of ∂2 is generated by the

fundamental class [Σ] =
∑

i(f
+
i + f−i ), which is even; so if ∂2β = 0, then β = c[Σ], and

P−β = c P−[Σ] = 0; and if β ∈ C−2 as well then P−β = P+β = 0 imply (Lemma 6(b)) β = 0.

It is also useful to note that C±2 = kerP∓|C2 = imP±|C2 , and similarly for C1.

Now, as in the proof of Lemma 9, we generally have that H−1 (Σ) = kerP+

∣∣(ker ∂1/im ∂2)

is generated by classes [α] for α ∈ C1 such that ∂1α = 0 and P+α = ∂2β for some β ∈ C2.

Then 0 = P−P+α = P−∂2β = ∂2(P−β). By injectivity of ∂−2 this implies P−β = 0, and

since kerP−|C2 = imP+|C2 we get β = P+γ for some γ ∈ C2. Setting α′ := α − ∂2γ, we

find [α] = [α′] and P+α
′ = 0. Therefore, H−1 (Σ) is equally well generated by classes [α] for

α ∈ ker ∂1 such that P+α = 0, and we obtain the identity in part (a).

For part (b), notice that if D0 = b consists entirely of branch points then ∂1(e+
i ) = ∂1(e−i )

for all 1-cells ei. Therefore ∂1 `
−(ei) = 0. Part (c) follows by noting that the only intersections

of `−(ei) and `−(ej) can occur at branch points, and are simple. �

There is one situation not strictly covered by Lemma 11. If C is connected but Σ is not,

then Σ ' C+ t C− is a trivial, disconnected double cover (here the sheets C± are identical
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copies of C). There can be no branch points. The homology H1(Σ) = H1(C+) ⊕ H1(C−) is

generated by lifts γ± of cycles γ ∈ H1(C) to the two sheets. Let `−(γ) := γ+− γ− denote the

odd lift. Than it is easy to see from the decomposition H1(Σ) = H1(C+)⊕H1(C−) that

Lemma 12 If Σ ' C+ t C− is a disconnected double cover, then

a) `− : H1(C)→ H−1 (Σ) is an isomorphism ; and

b) 〈`−(γ), `−(γ′)〉 = 2〈γ, γ′〉 .

One of the main lessons of Lemmas 11–12 is that for any cover Σ
π→ C the homology

H−1 (Σ) can be represented by (sums of) curves γ ⊂ Σ that are fixed set-wise by σ, such that

σ(γ) = γ merely flips orientation. These curves are odd lifts `−(∗) of either closed curves on

C or edges that connect branch points in a cell decomposition of C. Such generators of H−1 (Σ)

are “manifestly” odd. We apply this lesson momentarily.

A.4 Cutting and gluing

A final introductory observation concerns a basic cut-and-glue operation and its odd analogue.

Let S be a closed oriented surface and {µi}ri=1 a collection of closed non-intersecting

curves on S. Form a surface S0 = S\(tiµi) (possibly disconnected) by cutting along the µi.

Now S0 has 2r circular boundary components, with images µ
(0)
i , µ

(1)
i of the curves µi running

along the boundaries. Cap off each boundary component of S0 with a disc to form another

closed, oriented surface S′, possibly with multiple components (Figure 29).

�
S

S0

S�

µ1

µ2

µ
(0)
1

µ
(1)
1

µ
(1)
2µ

(0)
2

�

Figure 29. Cutting S along curves µi to form S0, then filling in the boundaries of S0 with discs to

form the closed surface S′. In this case G = Z〈µ1〉 ⊂ H1(S) ' Z4 and H1(S′) = H1(S)//G ' Z2.

Lemma 13 Let G ⊂ H1(S) be the subgroup of H1(S) generated by the classes of the µi’s.

Let K = ker 〈G, ∗〉|H1(S) be the subgroup of elements H1(S) that have zero intersection with

all the µi. Then there is a short exact sequence

0→ G
i→ K

q→ H1(S′)→ 0 (A.12)

that identifies H1(S′) ' K/G =: H1(S)//G as a lattice symplectic quotient. In particular, the

intersection form on H1(S′) is induced by the quotient from the form on H1(S).
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Proof. First observe that since the µi’s are non-intersecting, the intersection form vanishes

on G, 〈G,G〉 = 0. This it makes sense to define K = ker 〈G, ∗〉|H1(S), and i : G ↪→ K is just the

inclusion. Exactness of the rest of (A.12) can be derived by comparing long exact sequences

in relative homology for the pairs (S, S0) and (S′, S0). However, it is useful to take a more

concrete approach.

The map q is defined as follows. Any homology class [γ] ∈ K ⊂ H1(S) can be represented

by a curve (or sum of curves) γ that does not intersect the µi’s. Thus γ can be naturally

included in S0 and (viewing S0 as a subspace of S′) as a curve γ′ ⊂ S′. We set q([γ]) := [γ′].

The only potential ambiguity in this definition comes from the µi themselves, which may be

included either as µ
(0)
i or µ

(1)
i in S0 and then in S′. But in S′ the curves µ

(0)
i , µ

(1)
i bound

discs, so they are contractible, and q([µi]) = 0 unambiguously. Thus q is well defined and its

kernel includes all of G. Moreover, it preserves the intersection form.

Conversely, any [γ′] ∈ H1(S′) can be represented by a curve γ′ ⊂ S0 ⊂ S′ (i.e. a curve in

the complement of the discs that filled in the holes of S0). Viewing S0 as a subspace of S, we

can thus include γ′ as a curve γ ⊂ S, and try to define q−1([γ′]) = [γ] ∈ K ⊂ H1(S). There is

ambiguity in this definition coming from how the representative γ′ is chosen to wind around

the discs in S′\S0; this ambiguity is precisely G. Therefore, we get a map q−1 : H1(S′)→ K/G

that provides an inverse to q, and demonstrates that q : K/G
∼→ H1(S′) is an isomorphism.

�

We actually want a generalization of (A.12) to odd homology. To this end, suppose that

we perform a basic cut-and-glue operation C  C0  C′ along some non-intersecting closed

curves µi ⊂ C. Suppose that the µi are chosen to lie in the complement of the branching locus

b of a double cover Σ
π→ C. Then the cut-and-glue operation lifts to Σ. We first take all lifts

of the µi to Σ, noting that a given µi may have a single lift µi if π−1(µi) is connected and two

lifts µ±i otherwise. We then cut Σ along the µ±i , µi to form Σ0, and we fill in the boundaries

of Σ0 with discs to form Σ′. There are induced covering maps Σ0
π→ C0 and Σ′

π→ C′, such

that each disc in C′\C0 contains a new branch point and is covered by a single disc in Σ′\Σ0

if and only if the corresponding cutting curve µi has a single connected lift µi (otherwise a

disc in C′\C0 is covered by two disconnected discs in Σ′\Σ0). We now have

Lemma 14 Let G ⊂ H1(Σ) denote the subgroup generated by the lifts µ±i , µi, and K :=

ker 〈G, ∗〉|H1(Σ). Then G and K are fixed by the deck transformation σ∗, and we can take odd

parts G− = kerP+|G = G ∩H−1 (Σ) and K− = kerP+|K = K ∩H−1 (Σ) = ker〈G−, ∗〉|H−1 (Σ).

There is a complex

0→ G−
i−→ K−

q−→ H−1 (Σ′)→ 0 (A.13)

with vanishing homology at all but the last spot, where the homology is 2-torsion. The

maps i−, q− preserve the intersection form. Therefore there is an injection H−1 (Σ)//G− =

K−/G−
q−

↪→ H−1 (Σ′) with finite (2-torsion) cokernel, which preserves the intersection form.

If every cutting curve µi ⊂ C has two distinct lifts µ±i to Σ, then (A.13) is exact, and

q− : K−/G− ↪→ H−1 (Σ′) is an isomorphism.
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Proof. First observe that σ∗ preserves G because σ∗µ
±
i = µ∓i and σ∗µi = µi; and σ∗

preserves K because it preserves the intersection form. So G− := kerP+|G and K− :=

kerP+|K make sense. Also, K− coincides with ker 〈G−, ∗〉|H−1 (Σ): inclusion kerP+|K ⊂
ker 〈G−, ∗〉|H−1 (Σ) is obvious; conversely if α ∈ ker 〈G−, ∗〉|H−1 (Σ) then 〈µ+

i − µ−i , α〉 = 0 ⇒
〈µ+
i , α〉 = 〈µ−i , α〉 = 〈σµ−i , σα〉 = −〈µ+

i , α〉 ⇒ 〈µ±i , α〉 = 0, and 〈µi, α〉 = 0 because µi is even

and α is odd; so α ∈ ker〈G, ∗〉|H1(Σ) = K, hence ker 〈G−, ∗〉|H−1 (Σ) ⊂ kerP+|K .

Consider the exact sequence 0 → G
i→ K

q→ H1(Σ′) → 0 from Lemma 13. Since σ∗
commutes with i and q, we can take kerP+ of all groups and apply Lemma 9(c) to obtain the

complex (A.13), with vanishing homology except perhaps at the last spot, where homology

must be 2-torsion. The restricted maps i− and q− must preserve the intersection form, because

i and q do.

In the case that every µi ⊂ C has two distinct lifts, the discs in Σ′\Σ0 contain no branch

points. Thus (as at the end of Appendix A.3) every element of H−1 (Σ′) can be represented

by a sum of curves γ′ ⊂ Σ0 ⊂ Σ′ that is manifestly odd, i.e. σ fixed γ′ setwise while reversing

orientation. Then the inverse map q−1 of Lemma 13 sends [γ′] to an element [γ] ∈ K/G that

is also manifestly odd, and its restriction q−1|H−1 (Σ′) : H−1 (Σ′)→ K−/G− provides an inverse

to q− in (A.13), guaranteeing that q− : K−/G− ↪→ H−1 (Σ′) is actually an isomorphism.

(If there are branch points on the discs in Σ′\Σ0 this can fail. In order to represent

all [γ′] ∈ H−1 (Σ′) by curves γ′ that are manifestly odd, the curves may have to go through

the branch points — and cannot be deformed into Σ0 ⊂ Σ while keeping them manifestly

odd. Thus while the inverse q−1|H−1 (Σ′) : H−1 (Σ′) → K/G still exists, its image may not be

completely odd. This is the source of the 2-torsion in (A.13).) �

B Reconstructing framed flat connections

Let M by a framed, triangulated 3-manifold with π1(Csmall) abelian. We briefly explain how to

uniquely reconstruct a framed flat connection A ∈ P[C] ⊂ X [C] given functions xp satisfying

the conditions on the RHS of (4.14), proving part (d) of Proposition 2 in the process.

The basic idea (following [44] and precursors, e.g. [49]) is to use the functions to construct

a distinguished set of projective bases (i.e. frames) for the fiber of the bundle E → C at various

points of C, together with maps between these bases corresponding to the parallel transport

of A. There are several steps.

Start with a connected component of the big boundary Cbig, and a hexagon f in the

triangulation t2d. We assume that the flat connection is trivialized in the interior f◦ of f .

Choose three arbitrary distinct lines a, b, c in the fiber of E over f◦, and make them framing

lines at the three small edges of f (this choice fixes gauge redundancy). Construct projective

bases b(p) for the fiber of E over six points p ∈ f◦ as in Figure 30, as follows. For the element

in b(p) take any vector v1 in the framing line on the small edge of f closest to p. For the

second element take a vector v2 in the framing line on the small edge of f second-closed to p,

normalized that v1 ± v2 lies in the third framing line. The sign is specified by orientation, as
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in Figure 30. The PGL(2) transformations among the six bases in f are given by matrices

S =
(

0 −1
1 0

)
and T = ( 1 0

1 1 ), as in the Figure, obeying (ST )3 = 1 in PGL(2).

ST

S

S

T T
d

H(xe)

H(xe)
a

b

ca

b c

p p�

f

(v1)

(v2) (v1 + v2)

S =

�
0 −1
1 0

�
T =

�
1 0
1 1

�
H(x) =

�
1 0
0 x

�

Figure 30. Left: projective bases assigned to six points in a hexagon; for example at p the basis is

(v1, v2) with v1 ∈ a, v2 ∈ b, v1 +v2 ∈ c; while at p′ the basis is (v1, w2) with v1 ∈ a, w2 ∈ b, v1−w2 ∈ c.
Middle: PGL(2) transformations among bases in any hexagon. Right: PGL(2) transformations across

big edges.

Proceed to assign three framing lines and six projective bases to the rest of the hexagons

in the connected component of Cbig, subject to the following rules:

1) framing lines at adjacent small edges (bounding a hole in Cbig) must agree;

2) the connection is trivialized in the interior of every hexagon, and the six bases there are

constructed the same way they were for f , with the same PGL(2) relations;

3) parallel transport across a big edge e is given by H(xe) =
(

1 0
0 xe

)
∈ PGL(2), where xe is

the edge function .

Following these rules, there are no more arbitrary choices to be made, and we reconstruct a

framed flat connection on Cbig — with framing lines at the holes of Cbig. We repeat for every

connected component of Cbig.

Next, we extend the framed flat connection over the small boundary. Notice that the

holonomy on a clockwise path around any hole on the big boundary takes the form

Hol(hole) =

(
1 0

∗ ∏
e at hole x

−1
e

)
. (B.1)

This preserves the framing line on the boundary of the hole, rescaling it with (squared)

eigenvalue
∏
e xe. If the hole is to be filled in with a small disc, then

∏
e xe = 1 by (4.14),

so we can uniquely extend the framed flat connection over a punctured disc with unipotent

holonomy at the puncture (as required for X [C]).
If instead a pair of holes h, h′ are connected by a small annulus, we choose two hexagons

f, f ′ adjacent to the holes and a path pτ running from f to f ′. Let p ∈ f, p′ ∈ f ′ be points

with projective bases on the two sides of the annulus, as in Figure 31. Let Mλ, M ′λ be

the PGL(2) holonomies around the ends of the annulus, with basepoints at p, p′, running

clockwise (resp., counter-clockwise) from the viewpoint of h (resp., h′). The holonomies are
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p(τ)

f

p

p�
f �

hh�
MλM �

λ

Mτ

Figure 31. Reconstructing a framed flat connection on an annulus: the parallel transports must

satisfy Mλ = M−1
τ M ′λMτ .

fixed to be

Mλ =

(
1 0

a x−1
λ

)
, M ′λ =

(
1 0

a′ x−1
λ

)
, xλ =

∏

e at h

xe =
∏

e′ at h′

x−1
e′ (B.2)

for some (determined) a, a′. The function xτ = xp(τ) fixes the eigenvalue of the PGL(2)

transformation Mτ between the bases at p and p′, given by parallel transport along pτ ,

Mτ =

(
1 0

t x−1
τ

)
(B.3)

for some undetermined t. In order to identify the framing lines at the two ends of the

annulus and extend the framed flat connection over the annulus, it suffices to require Mλ =

M−1
τ M ′λMτ , which uniquely determines t = (a′ − ax−1

τ )/(1− x−1
λ ) as long as xλ 6= 1.22

This completes the reconstruction of A over any connected component of C containing

both big and small parts. In particular, the PGL(2) holonomy along any closed path may be

obtained by combining the “traffic rules” of Figure 30 for the big boundary with the transport

Mτ along annuli. Triviality of the holonomy along any contractible path is ensured by the

local identities (ST )3 = H(x)SH(x)S = M−1
λ M−1

τ M ′λMτ = 1.

Finally, on an isolated small sphere the framed flat connection is trivial. (The connection

itself is trivial, and its residual gauge symmetry can be used to trivialize the framing data.)

For a small torus, if we are given a choice of A and B cycles with (squared) holonomy

eigenvalues (xα, xβ) 6= (1, 1), we may uniquely reconstruct the commuting holonomy matrices

(modulo PGL(2) gauge equivalence) as Mα = H(x−1
α ), Mβ = H(x−1

β ). We take the framing

to be the unique eigenline with (squared) eigenvalues (xα, xβ).

22Alternatively, one can think of Mτ as the PGL(2) gauge transformation required to identify the holonomies

Mλ and M ′λ at the two ends of an annulus. Determining Mτ fixes a relative gauge ambiguity between compo-

nents of Cbig that are connected by annuli.
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