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Abstract

We present an elementary review of some aspects of Chern-Simons theory with complex
gauge group SL(N,C). We discuss some of the challenges in defining the theory as a full-
fledged TQFT, as well as some successes inspired by the 3d-3d correspondence. The 3d-3d
correspondence relates partition functions (and other aspects) of complex Chern-Simons the-
ory on a 3-manifold M to supersymmetric partition functions (and other observables) in an
associated 3d theory T [M ]. Many of these observables may be computed by supersymmetric
localization. We present several prominent applications to 3-manifold topology and number
theory in light of the 3d-3d correspondence.

This is a contribution to the review volume “Localization techniques in quantum field
theories” (eds. V. Pestun and M. Zabzine) which contains 17 Chapters available at [1]
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1 Introduction

Chern-Simons theory with complex gauge group came to prominence in the late 80’s, partly
as a tool for understanding three-dimensional gravity with a negative cosmological constant
[2, 3, 4, 5]. Many early developments were due to Witten. Since then, it has found a
multitude of applications and deep connections with many parts of theoretical physics and
mathematics. A highly incomplete list includes:

• Many further applications of SL(2,C) Chern-Simons theory (and its SL(2,R)×SL(2,R)
cousin) to three-dimensional quantum gravity and AdS/CFT. Similarly, SL(N,C)
Chern-Simons at large N has been used to describe higher-spin theories of gravity [6, 7].

• Chern-Simons theory with gauge group SL(N,C) can naturally be embedded in string/M-
theory, opening up many powerful perspectives and techniques for analyzing the for-
mer. As a notable example, the compactification of N M5 branes on the product of
an ellipsoidally deformed lens space L(k, 1)b ' S3

b /Zk and a three-manifold M (with
a topological twist along M) leads equivalently to SL(N,C) Chern-Simons theory at
level k on M [8, 9, 10] or an N = 2 supersymmetric theory TN [M ] on the lens space
[11, 12, 13, 14]. This duality, known as the 3d-3d correspondence, fits into a series of du-
alities involving the compactification of five-branes on various d-dimensional manifolds
Md, including the AGT correspondence [15] and the duality of Gukov-Gadde-Putrov
relating Vafa-Witten partition functions on M4 and elliptic genera [16].

• There is a multitude of applications to three-dimensional geometry and topology. Fun-
damentally, partition functions of complex Chern-Simons theory on three-manifolds M
provide new topological invariants, generalizing the famous invariants (including knot
polynomials) associated with compact Chern-Simons theory [17, 18]. As yet, a system-
atic computation of the complex invariants only exists for certain classes of manifolds
(e.g. hyperbolic ones [19, 20, 21, 22]), though new tools to attack the general case are
under development [23, 24].

The perturbative expansion of SL(2,C) Chern-Simons theory on a three-manifold M
encodes various topological invariants of M , such as its hyperbolic volume and twisted
analytic torsion. In the case that M = S3\K is a knot complement in S3, it was con-
jectured by Gukov [25] that this expansion agrees with a (highly nontrivial) asymptotic
limit of colored Jones polynomials of K, providing physical motivation for a mathe-
matical statement known as the Volume Conjecture [26, 27]. The relation between
complex Chern-Simons theory and knot polynomials is essentially a result of analytic
continuation, albeit a subtle one [28].

The perturbative expansion of SL(2,C) Chern-Simons theory on knot complements
has been successfully reproduced [29, 30, 31] using the topological recursion of Eynard-
Orantin [32], a far-reaching formalism for the quantization of spectral curves.

The study of five-brane systems related to complex Chern-Simons theory recently led to
a vast generalization of the Volume Conjecture, involving asymptotic limits of colored
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HOMFLY polynomials and their categorification [33].

• There are several hints that complex Chern-Simons theory has quasi-modular proper-
ties, cf. [12, 34], though a complete physical characterization of these properties is still
missing. The asymptotic expansions of SL(2,C) Chern-Simons theory around various
singular points in the space of coupling constants (levels) [35], related by an action
of the modular group, provide evidence for the Quantum Modularity Conjecture of
Zagier [36].

• There are close connections between complex Chern-Simons theory and the mathemat-
ical theory of cluster algebras, cf. [37, 38]. Cluster algebras play an essential role in the
(local) description and quantization of phase spaces that complex Chern-Simons the-
ory attaches to two-dimensional boundaries, cf. [39, 40, 41], and Chern-Simons theory
on three-manifolds is associated with cluster-algebra morphisms.

• Very recently, SL(2,C) Chern-Simons theory at integer levels (in terms of (2.1) below,
this means k ∈ Z and is ∈ Z) has been proposed as an effective theory of quantum
Hall systems [42]. Excitingly, this may lead to tests of complex Chern-Simons theory
in the lab.

In this short review, we will only be able to touch upon a few of these topics and connec-
tions. We will actually begin in Section 2 with some basic concepts in complex Chern-Simons
theory, including the definition of the Hilbert spaces H[Σ] assigned to two-dimensional ori-
ented manifolds. One of the most prominent distinctions between Chern-Simons theory with
complex and compact gauge groups is that, in the complex case, these Hilbert spaces are
infinite-dimensional. As an illustrative example, we will outline the simple quantization of
the torus Hilbert space H[T 2] for gauge group SL(2,C), and its dependence on the coupling
constants or “levels” of the theory. We also review some features of the refined or equivariant
quantization of Hilbert spaces recently developed by Gukov and Pei [23].

This prepares us in Section 3 to discuss one of the most fundamental open problems in
complex Chern-Simons theory: defining the theory as a full TQFT. In essence, this means
being able to assign Hilbert spaces H[Σ] to any oriented surface and wavefunctions Z[M ] ∈
H[∂M ] to any oriented three-manifold, in such a way that the standard cutting-and-gluing
axioms of Atiyah and Segal are obeyed [43]. As we shall review, the difficulty with cutting
and gluing in complex Chern-Simons theory stems from the infinite-dimensional nature of
Hilbert spaces, and the fact that, naively, wavefunctions often vanish or diverge. Some
very promising routes to overcoming these difficulties are suggested by embedding complex
Chern-Simons theory in string/M-theory, and using additional symmetries to regulate zeroes
or infinities [44, 23, 24]. Interestingly, these symmetries are related to categorification of
Chern-Simons theory.

In the second half of this review, we then discuss a few relations between complex Chern-
Simons theory and the topology and geometry of three-manifolds. In each case, we view these
relations in light of string/M-theory and the 3d-3d correspondence. In Section 4, we will
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discuss 1) asymptotic expansions of SL(N,C) Chern-Simons partition functions, their rela-
tion to hyperbolic volumes, and their behavior at large N vis à vis holography of five-brane
systems; 2) state-sum/integral models for SL(N,C) Chern-Simons theory, their relation to
positive angle structures on ideal triangulations of three-manifolds, and the corresponding
implication for positivity of operator dimensions in theories T [M ] built from ideal triangu-
lations; 3) the interpretation of the SL(N,C) partition function at level k = 0 as counting
surfaces in a three-manifold M , BPS operators in T [M ], and BPS M2 branes ending on
wrapped M5 branes in M-theory (related to recent mathematical work [45]). In Section
5, we will state some of the observations and conjectures about “quantum” modularity in
Chern-Simons theory.

We emphasize that the 3d-3d correspondence provides the main link between complex
Chern-Simons theory and localization methods in supersymmetric gauge theories, which are
the focus of this collection of articles. Particularly relevant are the reviews of T. Dumitrescu
(Contribution [46]) and B. Willett (Contribution [47]). The basic idea is that whenever
T [M ] can be explicitly described as (say) a gauge theory, its partition function on spaces
such as S3 or S3/Zk is readily computed by supersymmetric localization. This has led to
new formulations and refinements of Chern-Simons partition functions on M , which in turn
produce invariants of 3-manifolds,

SUSY localization for T [M ]

complex CS theory on M
+ refinement/categorification...

topological invariants of M

(1.1)

Unfortunately, we will not say very much about connections of complex Chern-Simons
theory to cluster algebras, topological recursion, categorification, gravity, or many other
fascinating topics. We hope that some of the references above will guide readers interested
in these subjects.

2 Warmup: quantization of H(T 2)

To get a feel for the structure of complex Chern-Simons theory, we begin with a (seemingly)
elementary exercise: the quantization of the phase space that SL(2,C) Chern-Simons theory
attaches to a two-torus.

First, some generalities. As discussed in [5], the action of complex Chern-Simons theory
on a Euclidean three-manifold M takes the form

Ik,s = 1
2
(k + is)SCS(A) + 1

2
(k − is)SCS(A) , (2.1)

where SCS = 1
4π

∫
M

Tr
(
A ∧ A + 2

3
A ∧ A ∧ A

)
is the usual Chern-Simons functional. Here

A is a connection on an SL(2,C) bundle over M , and A is its complex conjugate. The
group SL(2,C) contains SU(2) as its maximal compact subgroup (in fact, as a complex
manifold, SL(2,C) ' T ∗SU(2)), and on a compact 3-manifold M there can be large gauge
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transformations g : M → SL(2,C) that wrap nontrivially around the compact SU(2). The
path-integral integration measure exp(iIk,s) is invariant under large gauge transformations
on a closed M so long as k ∈ Z. On the other hand, the coupling constant s is unconstrained.

For a unitary theory — which in Euclidean space means that partition functions are
conjugated under orientation reversal — the action must be real, which forces s to be real.
We will assume this to be true in the quantization below, though eventually in partition
functions we will find that we can analytically continue s in a straightforward manner.
There also exist exotic unitarity structures with s imaginary [5], which will lead to slightly
different Hilbert spaces.

As an aside, in the relation to 3d Euclidean gravity with a negative cosmological constant,
one identifies the Hermitian and anti-Hermitian parts of A = w + ie as a vielbein (e) and
a spin connection (w). The part of the action Ik,s proportional to s becomes the usual
Einstein-Hilbert action, while the part proportional to k is a gravitational Chern-Simons
term [3]. The classical solutions of Chern-Simons theory on a three-maniofld M are flat
SL(2,C) connections, which become identified with (possibly degenerate) metrics of constant
negative curvature, i.e. hyperbolic metrics, in 3d gravity.

Geometric quantization of complex Chern-Simons theory on a general surface Σ was first
discussed in [5] and recently revisited in [48], using a holomorphic polarization. A more
modern perspective on quantization, based on the topological A-model, appears in [49],
following [50] (see also [51]). In the case of Σ = T 2, we can take a more pedestrian approach,
following [22, 21].

The Hilbert space that Chern-Simons theory assigns to any surface Σ is a quantization
of the classical phase space

P [Σ] =Mflat(SL(2,C),Σ) ' Hom(π1(Σ), SL(2,C)) . (2.2)

This is the space of complex flat connections on Σ (modulo gauge transformations), or
equivalently, the space of representations of the fundamental group of Σ in SL(2,C). The
space P [Σ] is a finite-dimensional complex symplectic variety, possibly singular, equipped
with the Atiyah-Bott holomorphic symplectic form

Ω =

∫
Σ

δA ∧ δA . (2.3)

Of course, the actual symplectic form we use for quantization should be real; the Chern-
Simons action (2.1) tells us to take

ωk,s =
k + is

4π
Ω +

k − is
4π

Ω =
k

2π
Re Ω− s

2π
Im Ω . (2.4)

Famously, the space P [Σ] is hyperkähler. It admits an entire CP1 of complex structures,
one of which is singled out in the description (2.2) as a space of complex flat connections. The
other complex structures can be made manifest by rewriting P [Σ] as Hitchin’s moduli space
P [Σ] ' MHit(SU(2),Σ) associated to the compact group SU(2) [52]. Similarly, the space
P [Σ] admits a CP1 of real symplectic forms, spanned by the hyperkähler triplet (ωI , ωJ , ωK),
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where ωI = Re Ω and ωJ = Im Ω above. The third form ωJ is a Kähler form in our
chosen complex structure. Notably, 1

4π2ωI represents a nontrivial integral cohomology class
in H2(P [Σ],Z), while ωJ , ωK are cohomologically trivial. This provides another explanation
for the quantization of the level k: in geometric quantization, one requires ωk,s to be the
first Chern class of a line bundle, which can only happen if it has integral periods, whence
k ∈ Z, but s is unconstrained.

Now let us specialize to Σ = T 2. Flat connections on a torus are determined by the
holonomies ρA, ρB along the A and B cycles, up to SL(2,C) conjugation. Since the funda-
mental group π1(T 2) = Z2 is abelian, the holonomies commute and can be simultaneously
diagonalized.1 Letting x, y denote their eigenvalues, we find

P [T 2] = (C∗ × C∗)/Z2 ' {(x, y) ∈ (C∗)2}/(x, y) ∼ (x−1, y−1) . (2.5)

The Z2 action here is just that of the Weyl group, acting as residual gauge transformations.
The holomorphic symplectic form is

Ω = 2
dy

y
∧ dx
x
, (2.6)

reflecting the nontrivial intersection of A and B cycles on T 2, whence

ωk,s =
k

π
(d log |y|∧d log |x|−d arg y∧d arg x)− s

π
(d log |y|∧d arg x+d arg y∧d log |x|) . (2.7)

As anticipated, the period of 1
2π
ωk,s on the compact (S1 × S1)/Z2 cycle in P [T 2] is equal to

k, and is properly quantized.
In order to diagonalize the real symplectic form ωk,s, we define b to be the complex

number with Re(b) > 0 and

b2 =
k − is
k + is

, (2.8)

and make a change of variables2 from (x, y) ∈ (C∗)2 to (µ, ν;m,n) ∈ R2 × (R/2kZ)2 :

x = exp iπ
k

(
− ibµ−m

)
, x̄ = exp iπ

k

(
− ib−1µ+m

)
,

y = exp iπ
k

(
− ibν − n

)
, ȳ = exp iπ

k

(
− ib−1ν + n

)
.

(2.9)

Notice that if s is real then |b| = 1, so (x, y) and (x̄, ȳ) are complex conjugates, as written.
Then the symplectic form collapses to

ωk,s =
π

k
dν ∧ dµ− π

k
dn ∧ dm . (2.10)

1More precisely: the holonomies can simultaneously be put in Jordan normal form.
2The new variables absorb some powers of the coupling constants k, b, which obfuscates the effect of the

classical limit k →∞, e.g. in (2.11). It is important to keep in mind that the natural functions on the phase
space are still x, x̄, y, ȳ.
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We proceed to quantize the space as if it were just C∗ ×C∗, and restore Weyl invariance
later. The functions ν, µ and n,m can simply be quantized to operators with canonical
commutation relations

− [ν,µ] = [n,m] =
k

iπ
. (2.11)

Of course, since m is periodic the spectrum of n is quantized, and vice versa; altogether,
both the eigenvalues of both m and n must belong to Z/(2kZ). The well-defined operators
are actually quantizations x, x̄,y, ȳ of the C∗-valued functions in (2.9), with x = exp iπ

k

(
−

ibµ−m
)
, etc. For these we find

yx = q
1
2xy , ȳx̄ = q̃

1
2 x̄ȳ ; xȳ = ȳx , yx̄ = x̄y , (2.12)

with

q
1
2 := exp

2πi

k + is
= exp iπ

k
(b2 + 1) , q̃

1
2 := exp

2πi

k − is = exp iπ
k

(b−2 + 1) . (2.13)

Thus, abstractly, we see that the quantized operator algebra consists of two independent
Weyl algebras (or “quantum torus” algebras), one in x,y and one in x̄, ȳ.

There are many equivalent ways to represent the operator algebra on a Hilbert space
H[T 2]. The simplest is to take

H[T 2]k,s = L2(R)⊗ C2|k| ' {f(µ,m)} (2.14)

to consist of functions of a real variable µ and an integer m ∈ Z/(2kZ). Equivalently, we
may take functions of x and x̄. Formally, in geometric quantization, this corresponds to
choosing a particular “real” polarization — taking sections of a line bundle L → P [Σ] with
c1(L) = ωk,s that are covariantly constant with respect to ν and n. The operators x, x̄ act
on f(µ,m) as multiplication by x, x̄, while y, ȳ are shifts

y f(µ,m) = f(µ+ ib,m− 1) , ȳ f(µ,m) = f(µ+ ib−1,m+ 1) . (2.15)

To restore Weyl-invariance, we restrict to the Z2-invariant part of the Hilbert space, i.e.
functions that are even

f(µ,m) = f(−µ,−m) . (2.16)

Correspondingly, we should restrict to a subalgebra of the operator algebra that is invariant
under (x, x̄,y, ȳ) → (x−1, x̄−1,y−1, ȳ−1). This subalgebra is generated by operators X =
x + x−1, Y = y + y−1, and T = xy + x−1y−1 (and their conjugates), which obey

X2 + Y2 + q−
1
2T2 = XTY + 2(1 + q−1) . (2.17)

When k = 0, complex Chern-Simons theory still make sense (as long as s 6= 0), but the
above quantization procedure requires a slight modification [20]. The change of variables
(2.9) does not make sense, and is not necessary, since ωk=0,s is already diagonalized. Indeed,
ωk=0,s is the canonical symplectic form on C∗ × C∗ when viewed as the cotangent bundle
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T ∗(S1 × S1). We expect quantization to produce H[T 2]0,s = L2(Z × Z). To see it, simply
write (x, y) = (e

π
s
m+iθ, e

π
s
n+iφ). The symplectic form becomes

ωk=0,s = −dn ∧ dθ + dm ∧ dφ . (2.18)

These canonically-conjugate functions are quantized to operators with [θ,n] = −[φ,m] = i.
Since θ, φ are periodic with period 2π, the eigenvalues of m,n must be integers. We can
represent the operator algebra (say) on functions f(m,n) of two integers, such that

x f(m,n) = q
m
4 f(m,n− 1) , x̄ f(m,n) = q̃−

m
4 f(m,n+ 1) ,

y f(m,n) = q
n
4 f(m+ 1, n) , ȳ f(m,n) = q̃−

n
4 f(m− 1, n) ,

(2.19)

where now (2.13) reduces to

q
1
4 = q̃−

1
4 := exp

π

s
. (2.20)

With these new definitions of q and q̃, the operators satisfy the standard quantum-torus
relations (2.12). Alternatively, and equivalently, we may take the Hilbert space to contain
functions g(m, ζ) of an integer m and a phase ζ = eiθ, with

x g(m, ζ) = q
m
4 ζ g(m, ζ) , x̄ g(m, ζ) = q̃−

m
4 ζ−1 g(m, ζ) .

y g(m, ζ) = q
n
4 g(m+ 1, q

1
4 ζ) , ȳ g(m, ζ) = q̃−

n
4 g(m− 1, q̃−

n
4 ζ) .

(2.21)

Again, we impose Weyl-invariance at the end by restricting to even functions f(m,n) =
f(−m,−n) or g(m, ζ) = g(−m, ζ−1).

2.1 Equivariant quantization

There are several things to notice about (2.14). Perhaps the most salient is that, unlike
in the case of Chern-Simons theory with compact gauge group [17, 53], the Hilbert space
is infinite-dimensional. This is no surprise, since it comes from quantizing a noncompact
phase space. One may also recognize the C2k factor as being related to the standard Hilbert
space for SU(2) theory at (bare) level k. Indeed, if we ignore µ and consider functions
f(m) of an integer m ∈ Z/(2kZ), such that f(m) = f(−m) as in (2.16), we find exactly
|k|+1 independent values f(0), f(1), ..., f(|k|) that determine a state in the finite-dimensional
Hilbert space of SU(2) Chern-Simons.

What is less obvious, in particular for general Σ, is that the infinite-dimensional Hilbert
space of complex Chern-Simons theory admits an additional U(1)t symmetry, introduced in
[23]. The graded components of H[Σ] (i.e. the subspaces of fixed U(1)t charge) turn out
to be finite-dimensional, and in particular the subspace of zero charge is just the familiar
SU(2) Hilbert space.

The extra U(1)t symmetry comes from viewing P [M] 'MHit(SU(2),Σ) as the Hitchin
moduli space. There is a canonical U(1)t metric isometry of the Hitchin moduli space that
rotates the CP1 of complex structures about an axis. In particular, it rotates ωJ = Im(Ω)
and ωK into each other. This is an isometry of our quantization problem at least when s = 0,
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since it preserves ωk,s=0, and leads to the desired symmetry of H[Σ]k,0. (Since the Hilbert
space, abstractly, does not depend on s, one might then hope to endow even spaces at s 6= 0
with the symmetry.)

In the case Σ = T 2, it is easy to describe the U(1)t symmetry: when we view P [T 2] '
T ∗(S1 × S1)/Z2 ≈ T ∗Mflat(SU(2), T 2) as the cotangent bundle of the space of flat SU(2)
connections, U(1)t simply rotates the cotangent fibers. The U(1)t-invariant subspace of
H[T 2]k,s=0 simply consists of the functions f(µ,m) that are independent of µ — i.e. the
SU(2) Hilbert space we found above. The full U(1)t action is trickier to describe in the
polarization we are using. Roughly, one observes that at s = 0 and b = 1 the variables x, x̄
can be written as

x = zη−m , x̄ = zηm , (2.22)

where z = exp(πµ/k) and η = exp(iπ/k). Then, on functions of f(z,m) that are analytic
in z, the U(1)t symmetry just acts as rotations z → eiθz. The subspaces of fixed U(1)t
weight contain monomials in z. After imposing Weyl invariance, the graded dimension of
the Hilbert space becomes

dimU(1)tH[T 2]k,s=0 :=
∑

w∈Z t
wdimH[T 2]weight w

k,s=0 = |k|+ 1 + 2|k|(t+ t2 + t3 + ...)

= |k|+ 1 +
2|k|t
1− t .

(2.23)

2.2 Holomorphic polarizations and CFT

Often in geometric quantization of Chern-Simons theory, one uses a holomorphic polarization
instead of the real polarization above. In Chern-Simons theory with compact gauge group
(cf. [53]), this means to choose a complex structure ‘τ ’ on a surface Σ, to write the connection
one-form as A = Azdz+Az̄dz̄ in local complex coordinates, and, when quantizing, to define
the Hilbert space to consist of sections of the line bundle L → P [Σ] that are covariantly
constant with respect to Az̄.

Naively, it may appear that choosing such a complex polarization needlessly complicates
the problem. However, a complex polarization has three great advantages. First, it allows
one to ask analyze the Hilbert space varies with the choice of complex structure. Locally
the variation is trivial, expressed formally by saying that the bundle of Hilbert spaces over
the space of complex structures (i.e. over the Teichmüller space of Σ) has a projectively
flat connection. However, globally, one derives an action of the mapping class group of
Σ on the Chern-Simons Hilbert space. Second, and related to this idea, a holomorphic
polarization allows one to identify the Hilbert space of Chern-Simons theory with the space of
conformal blocks in a particular boundary CFT. In the case of compact Chern-Simons theory,
the boundary CFT is a famously WZW model [17]. The projectively flat connection on
Teichmüller space is the Knizhnik-Zamolodchikov connection of the CFT. Finally, for generic
surfaces Σ a real polarization as above simply isn’t available! Thus, using a holomorphic
polarization is the only way to go.

In the case of complex Chern-Simons theory, there are actually multiple choices of com-
plex polarizations. If we write a complex connection and its conjugate as A = Azdz+Az̄dz̄,
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A = Azdz +Az̄dz̄, then we can ask that sections of L be covariantly constant with respect
to

(A) Az̄ , Az or (B) (some components of) Az̄ , Az . (2.24)

The first choice was analyzed by Witten [5], and leads to a boundary CFT whose conformal
blocks must contain contributions from both chiral and anti-chiral sectors. This polarization
plays a central role in the relation between SL(2,C) Chern-Simons theory and quantum Hall
systems [42, 54]. The second choice is related to Liouville theory coupled to parafermions
[55, 56].

3 Complex Chern-Simons theory as a TQFT?

Now, having seen very explicitly that complex Chern-Simons Hilbert spaces are infinite-
dimensional (and exactly how they’re infinite-dimensional), let us think a bit about the
properties of partition functions.

For a closed three-manifold M , it is expected that the complex Chern-Simons partition
function takes the form

Z[M ]k,s =
∑
flat α

1

|Stab(α)|Bα(q
1
2 )B̃α(q̃

1
2 ) . (3.1)

The sum here is over flat complex connections α on M , which are the critical points of the
Chern-Simons path integral; and Bα, B̃α are holomorphic and antiholomorphic contributions
to the path integral from quantum fluctuations around the critical point, with q, q̃ defined
by (2.13). The prefactor |Stab(α)| is the volume of the stabilizer of α, i.e. the volume of the
subgroup of the gauge group that preserves a particular flat connection.

One certainly expects such a formula to be valid perturbatively, due to standard proper-
ties of path integrals in quantum field theory. (The perturbative version of (3.1) formed the
basis for the physical explanation of the Volume Conjecture in [25].) It was argued in [28],
however, that the formula is actually valid non-perturbatively as well. Roughly, one should
think of (3.1) as expanding the integration cycle in the Chern-Simons path integral into a
sum of integration cycles Γα defined by gradient flow off of each critical point with respect
to the Chern-Simons action. The Γα can further be written as products3 of cycles γα × γ̃α
in the space of (holomorphic)×(anti-holomorphic) connections, leading to the factorization

Bα(q
1
2 )B̃α(q̃

1
2 ). 4

For a three-manifold with boundary Σ, the same type of formula holds after properly ac-
counting for boundary conditions. In particular, the sum is over flat connections with a fixed
behavior at Σ, and each summand becomes a wavefunction inH[Σ]k,s. For example if Σ = T 2

3In general, there could be a nontrivial matrix nαβ connecting holomorphic and anti-holomorphic sectors.
However, when one considers unitary Chern-Simons theory with an integration contour Γ along which A is
honestly the conjugate of A, the matrix is just the identity.

4The 3d-3d correspondence relates holomorphic-antiholomorphic factorization in complex Chern-Simons
theory to a rather nontrivial statement about lens-space partition functions of 3d N = 2 theories T [M ] [57].
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is a torus, we would fix A-cycle holonomy eigenvalues x, x̄ of a flat connection as in Section
2, and the individual wavefunctions would have the factorized form Bα(x, q

1
2 )B̃α(x̄, q̃

1
2 ).

What can we learn from (3.1)? In the best-case scenario, there is a finite number of flat
connections on M , and all the flat connections have finite-volume stabilizers. This would
lead to a finite, well-defined (in principle) Z[M ]k,s. In contrast:

• If a flat connection α is isolated but its stabilizer has infinite volume, its contribution
to (3.1) vanishes.

• If flat connections come in a continuous family on which the Chern-Simons action is
constant, then the contribution to (3.1) can be infinite.

Unfortunately, the best-case scenario never holds, and both of these potentially bad situations
can arise. We consider some examples.

If M is hyperbolic (meaning that it admits a hyperbolic metric), it is expected that
there are a finite number of SL(2,C) flat connections on M . Intuitively, for hyperbolic M
the fundamental group π1(M) is sufficiently complicated that the representations π1(M)→
SL(2,C) are isolated.5 Then the partition function is finite. As we discuss in Section 4.2,
the partition function can actually be computed. However, there is always at least one flat
connection αabel whose holonomies belong to the maximal torus GL(1,C) ⊂ SL(2,C). The
stabilizer of αabel contains constant GL(1,C)-valued gauge transformations; since GL(1,C)
has infinite volume, αabel does not contribute at all to the partition function. This becomes
hugely problematic when trying to formulate complex Chern-Simons as a TQFT, as all flat
connections must be accounted for during cutting and gluing [44].

There are some simple manifolds whose fundamental group π1(M) is abelian. For exam-
ple, if M is a lens space L(p, r) ' S3/Zp, the fundamental group is Zp. In this case, every
single flat connection has holonomy in the maximal torus of the gauge group, the volume of
the stabilizer is always infinite, and Z[M ] vanishes identically.

In the opposite extreme are manifolds M on which the flat connections are not isolated.
In this case, we expect that Z[M ] diverges. For example, consider M = Σ × S1. Then
Mflat(GC,M) = Mflat(GC,Σ) × TC (where TC is the maximal torus of GC). The partition
function is

Z[M ]k,s = TrH[M ]k,s11 = dimH[M ]k,s =∞ . (3.2)

Both the zeroes and infinities appearing here obstruct the definition of consistent cutting
and gluing rules needed to make Chern-Simons theory a TQFT. The zeroes and infinities
have to be regularized. While no systematic approach to regularization has been formulated
so far, there are exist several promising and exciting proposals. Almost all of them are
motivated by string/M-theory and the 3d-3d correspondence.

5On hyperbolic M , one particular flat SL(2,C) connection — the one corresponding to the global hyper-
bolic metric — is well known to be isolated [58, 59]. Computational experiments suggest that in fact all flat
connections SL(2,C) are isolated, but there exists no general proof of this statement.
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3.1 Symmetries, regularizations, and the 3d-3d correspondence

In principle, the 3d-3d correspondence itself may suffice to resolve the difficulties with cutting
and gluing in complex Chern-Simons theory.6 The correspondence assigns to a closed 3-
manifold M and a Lie algebra g of type ADE (and a bit of extra discrete data) a three-
dimensional field theory TG[M ] with the property that that

partition function of TG[M ] on squashed lens space L(k, 1)b

= GC Chern-Simons partition function Z[M ]k,s with is = k 1−b2
1+b2

.
(3.3)

where g = Lie(G). When GC = SL(N,C), the theory TGC [M ] is the effective low-energy
worldvolume theory of N M5 branes compactified on M ; the branes wrap M × R3 in the
M-theory geometry T ∗M × R5. Similarly, the correspondence assigns to a three-manifold
M with boundary Σ a boundary condition TG[M ] for the four-dimensional theory TG[Σ] of
class S [62, 63].

Typically TG[M ] is an N = 2 superconformal theory, though both supersymmetry and
conformal invariance might be broken. Unfortunately, it is not completely understood what
conditions on M guarantee N = 2 superconformal theories. We assume for the present
heuristic argument that we do have N = 2 superconformal theories.

The basic idea, then, would be to replace GC Chern-Simons theory on M with TGC [M ],
which is a much more powerful object. Even when the Chern-Simons partition functions
Z[M ]k,s (equivalently, lens-space partition functions of TG[M ]) are ill-defined, the theory
TG[M ] itself should still make sense. Moreover, the theories TG[M ] obey cutting and gluing
rules. Gluing M = N1∪ΣN2 corresponds to “sandwiching” the four-dimensional theory TG[Σ]
between boundary conditions TG[N1] and TG[N2], and colliding the boundaries together to
produce a new effective theory TG[N1 ∪Σ N2]. In this way, we reproduce the structure
of a three-dimensional TQFT. If we should ever want to recover Chern-Simons partition
functions, we just place the superconformal theories on a lens space L(k, 1)b.

There are two practical difficulties with this proposal that will hopefully be overcome
soon. First, the full theories TG[M ] are not actually known for most manifolds, for any
nonabelian G. A construction using ideal triangulations was outlined in [14, 38] (also [64,
65]); however, that construction produces subsectors of the full theories TG[M ] that are
missing some branches of vacua, the same way partition functions of Chern-Simons theory on
hyperbolic manifolds are “missing” abelian flat connections. Examples of complete theories
TG[M ] for a handful of manifolds (including a hyperbolic one) were postulated in [44], and
theories for lens spaces M = L(p, r) were studied in [44, 23, 24].

The second difficulty, or potential shortcoming, is that zeroes and infinities still remain
in the actual Chern-Simons partition functions. Here, however, another solution presents
itself: the theories TG[M ] often have extra symmetries; and parameters associated to these
symmetries (twisted masses or fugacities) can be used to refine the squashed-lens-space
L(k, 1)b partition functions of TG[M ] — thus literally regularizing the Chern-Simons zeroes
and infinities.

6We will not review the 3d-3d correspondence here. For recent reviews and discussions, especially in the
context of Chern-Simons theory and TQFT, see [60, 44, 23, 24] as well as the related [61].
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We already met one such symmetry in Section 2.1: the U(1)t that gave an equivariant
quantization of the Hilbert spaceH[Σ]k,s=0. Via the 3d-3d correspondence, this Hilbert space
is mapped to the BPS Hilbert space of the 4d class-S theory TG[Σ] on R× L(k, 1)b=1. This
4d theory has an additional R-symmetry U(1)t that commutes with the supercharge used to
define the “BPS” Hilbert space, and provides the U(1)t grading.

Similarly, the three-dimensional theory TG[Σ× S1] (obtained by compactifying TG[Σ] on
a circle) has N = 4 rather than N = 2 supersymmetry. The larger R-symmetry group of
the N = 4 theory contains U(1)t, and including its twisted mass in partition functions leads
to finite answers that encapsulate the graded dimension (2.23).

Theories TG[M ] for Seifert-fibered three-manifolds M should also retain this U(1)t sym-
metry. In this case, it can ultimately be traced back to an exceptional isometry7 of the
M -theory geometry T ∗M × R5. An simple example of such a manifold is a lens space
M = L(p, r), whose refined partition functions were analyzed in [24], and put precisely into
the factorized form (3.1) — with the factors 1/|Stab(α)| = 1/∞ now regularized.

When M is generic (e.g. hyperbolic) this exceptional U(1)t symmetry is, unfortunately,
absent. It was nevertheless proposed in [44] that there exists yet another symmetry U(1)t′
in any theory TG[M ], related to the standard U(1) R-symmetry of three-dimensional N = 2
theories — as well as to categorification of colored knot polynomials. This U(1)t′ was used to
regularize Chern-Simons partition functions for the trefoil and figure-eight knot complements
(Seifert-fibered and hyperbolic manifolds, respectively), producing sums of the form (3.1)
that included all flat connections, even abelian ones.

4 Three connections to three-manifold topology

As discussed in Section 3, the partition function of Chern-Simons theory with gauge group
GC will take a finite, well-defined value on manifolds M that only admit finitely many flat
GC connections. For GC = SL(2,C) and possibly GC = SL(N,C), hyperbolic manifolds
are expected to be of this type. (Indeed, there exist systematic computations of partition
functions for hyperbolic manifolds with boundary of genus ≥ 1.) One may then try to relate
properties of the partition function with the topology of M . We proceed to outline some
of the more striking relations. In each case, M-theory and/or the 3d-3d correspondence
provides valuable insight.

4.1 Hyperbolic volumes, twisted torsion, and large N

The most fundamental relation between complex Chern-Simons theory and hyperbolic ge-
ometry has been understood for a long time, and concerns the semi-classical asymptotic
expansion of partition functions [3] (see also [25, 67]). It is easiest to formulate it first in

7This very same symmetry played a central role in defining refined (compact) Chern-Simons theory on
Seifert-fibered manifolds [66].
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terms of the “holomorphic blocks” Bα, B̃α appearing in (3.1), labelled by flat connections α :

as k + is→∞ or q
1
2 = e

2πi
k+is → 1 , Bα(q

1
2 ) ∼

√
4π3

τ(α)
e
i(k+is)

8π
SCS(α) ;

as k − is→∞ or q̃
1
2 = e

2πi
k−is → 1 , B̃α(q̃

1
2 ) ∼

√
4π3

τ(α)∗
e
i(k−is)

8π
SCS(α)∗ ;

(4.1)

where SCS(α) is the classical Chern-Simons action evaluated on a particular flat connection
and τ(α) is the analytic Ray-Singer torsion twisted by the flat connection α [68]. This is the
standard result expected from Chern-Simons perturbation theory [69]. In the presence of
a boundary, the classical action and torsion on the RHS depend on the choice of boundary
conditions (boundary holonomies) for α. From (3.1), it then follows that if both k+ is→∞
and k − is→∞

Z[M ]k,s ∼
∑
flat α

1

|Stab(α)|
4π3

|τ(α)|e
ik
4π

ReSCS(α)− is
4π

ImSCS(α) . (4.2)

The formula is particularly meaningful if s is analytically continued to (say) positive imag-
inary values. Then each term in (4.2) shows exponential growth or decay at large |s|,
controlled by ImSCS(α).

Now suppose that M is hyperbolic, meaning that it admits a hyperbolic metric. The
hyperbolic metric is unique (given suitable boundary conditions) and is a topological in-
variant of M [58, 59]. Moreover, the vielbein and spin connection of the hyperbolic met-
ric can be rewritten as a flat SL(2,C) connection αhyp = w + ie, with the property that
ImSCS(αhyp) = Vol(M) is the hyperbolic volume of M . The real part ReSCS(αhyp) is known
as the Chern-Simons invariant of the hyperbolic structure, and provides a natural complex-
ification of the hyperbolic volume [70, 71]. It is also useful to note that the connection αhyp

necessarily has a trivial stabilizer – the connection is fundamentally non-abelian.
Therefore, if the gauge group is SL(2,C) and M is hyperbolic, the sum (4.2) contains

a term that is controlled by the hyperbolic volume of M . Typically, ImSCS(αhyp) is larger
than the “volume” of any other flat connection, and the entire sum (4.2) is dominated by
the hyperbolic volume. (It is expected that ImSCS(αhyp) always dominates, but no general
result of this type has been proven.)

It is often useful to strip off the holomorphic part of the asymptotic expansion. This can
be done by taking a singular limit: we fix k = 1, analytically continue s to imaginary values,
and send s → −ik = −i. This has the effect of sending q → 1 but q̃ → 0, which trivializes
the anti-holomorphic blocks, B̃α(q̃

1
2 )→ 1. In this singular limit, we expect

Z[M ]1,s ∼
∑
flat α

1

|Stab(α)|

√
4π3

τ(α)
e−

1
~SCS(α) as ~ = 2πi

1− is
1 + is

→ 0 . (4.3)

This sort of limit played a major role in early analyses of partition functions for complex
Chern-Simons theory [72, 49], though it was not realized at the time that the partition
functions (derived from quantum Teichmüller theory) being analyzed had fixed level k = 1.
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The fact that the perturbative expansion of complex Chern-Simons theory (or individual
holomorphic blocks, as in (4.1)) contains geometric invariants of M played a major role
in providing a physical justification for the Volume Conjecture, and generalizing it. The
original Volume Conjecture [26, 27] claims that a particular double-scaling limit of colored
Jones polynomials of a knotK ⊂ S3 leads to exponential growth, controlled by the hyperbolic
volume of the knot complement Vol(S3\K). This was justified in [25] by embedding SU(2)
Chern-Simons theory (which computes colored Jones polynomials) into a holomorphic sector
of SL(2,C) Chern-Simons theory, and arguing that the asymptotic expansions of SU(2)
and (holomorphic) SL(2,C) theories should coincide. The argument immediately led to
generalizations, involving higher-order terms in the asymptotic expansion and a dependence
on boundary conditions, which have been carefully checked in many computations, cf. [67,
49, 73].

It is also interesting to consider “large-N” limits in complex Chern-Simons theory, tak-
ing the gauge group to be SL(N,C) and sending N → ∞. Physically, such limits are
most conveniently studied by realizing Chern-Simons theory on a stack of N M5 branes
(Section 3.1), and using AdS/CFT or large-N duality. A study of the five-brane system
[74, 75, 76] predicts that the leading asymptotic growth of the partition function Z[M ]k,s as
in (4.2) is scales as N3Vol(M) at large N [38]. This is not surprising: the hyperbolic flat
SL(2,C) connection can be embedded into SL(N,C) by using the N -dimensional representa-
tion ρN : SL(2,C)→ SL(N,C), and the Chern-Simons functional evaluates to ∼ N3Vol(M)
on ρN(αhyp), cf. [77]. As long as (4.2) is dominated by the flat connection ρN(αhyp) for any
N , one quickly recovers the scaling prediction. Much more non-trivially, the M-theory anal-
ysis predicts that the logarithm of the torsion τ(ρN(αhyp)) will grow as N3Vol(M) [78, 79]
at large N as well. This latter result was recently proved by Porti and Menal-Ferrer [80].

4.2 State-integral models and angle structures

When M = S3\K is an oriented hyperbolic knot or link complement (or, more generally,
an oriented hyperbolic manifold with non-empty boundary of genus ≥ 1), there exists a
systematic construction of SL(2,C) Chern-Simons partition functions Z[M ]k,s for all levels
k, s. The full definition of these partition functions appears in [81, 82] for k = 0, and [22, 21]
for k 6= 0, respectively. It is a culmination of much previous work, including [72, 49, 83,
19, 84] for k = 1; [20] for k = 0 (and indirectly [85, 86, 87]); and (indirectly, via 3d-3d
correspondence) [88, 89] for k > 1. The definition extends to SL(N,C) using techniques
of [38].

The construction of these partition functions uses a topological ideal triangulation of
the three-manifold M = ∪Ni=1∆i. This is a tiling of M by truncated tetrahedra ∆i, as in
Figure 4.1, such that 1) various pairs of large hexagonal faces are glued together; but 2)
the small triangles at the truncated vertices are left untouched, and become part of the
boundary ∂M .

One then proceeds in standard TQFT fashion. For gauge group SL(2,C) (or more pre-
cisely, PSL(2,C)), the boundary of each tetrahedron is assigned a Hilbert space H[∂∆]k,s '
L2(R) ⊗ Ck. The Hilbert space comes from quantizing an open subset of the space of flat
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M

@M ' T 2

Figure 4.1: Ideal (i.e. truncated) tetrahedra, glued together along their large hexagonal
faces to form an ideal triangulation of a knot complement M . The small triangular faces at
truncated vertices become part of the boundary of M .

connections on ∂∆, viewed as a four-punctured sphere; in this case P [∂∆]open ' C∗×C∗, and
the quantization of Section 2 applies in a straightforward manner, with no Weyl quotient.
Each tetrahedron is assigned a canonical partition function Z[∆]k,s ∈ H[∂∆]k,s, which has
the form of a “quantum dilogarithm” function; for |k| ≥ 1, this is

Z[∆i]k,s(µi,mi) =
∞∏
r=0

1− q1+rz−1
i

1− q̃−rz̄−1
i

, (4.4)

with q, q̃ as in (2.13) or (2.20) and zi = e
2πb
k
µi− 2πi

k
mi , z̄i = e

2πb−1

k
µi+

2πi
k
mi as in (2.9). (For

k = 0, see Section 4.3.)
The partition functionZ[M ]k,s is then obtained by taking a product

∏N
i=1Z[∆i]k,s(µi,mi),

and integrating out all pairs of variables (µi,mi) associated to the interior of M , leaving be-
hind some variables associated to the boundary. It is slightly tricky to describe this operation
in precise terms, because the tetrahedron Hilbert space H[∂∆]k,s does not easily factorize
into contributions from the tetrahedron’s four large faces.8 The right prescription comes
from viewing gluing in TQFT somewhat more globally, as a quantum symplectic reduction.
It turns out that the combinatorics of ideal triangulations have some fundamental symplec-
tic properties, first discovered by Neumann and Zagier [90, 91], that allow the quantum
symplectic reduction to be defined.

As an example, take M = S3\K to be a knot complement. In this case, there is a
canonical “A-cycle” on the boundary torus ∂M = T 2, defined by a small loop linking the

8The Hilbert space can be factorized by introducing some redundant degrees of freedom [19], in a manner
directly analogous to Kashaev’s quantization of Teichmüller space [40].
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knot K in S3 (called the meridian cycle); and there is a canonical boundary condition for
SL(2,C) connections, defined by requiring their holonomy along the meridian cycle to have
trivial eigenvalues. (Crucially, this does not require the actual holonomy to be trivial; in
SL(2,C) there are parabolic matrices ( 1 1

0 1 ) with trivial eigenvalues.) In the notation of
Section 2, the boundary condition sets x = x̄ = 1, or restricts functions f(µ,m) ∈ H[T 2]k,s
to their values at µ = m = 0. Suppose that the knot complement is glued from N tetrahedra
∆i. The combinatorics of the triangulation define a “Neumann-Zagier datum”

A , B ∈ MatN×N(Z) , ν ,∈ ZN (4.5)

consisting of two N × N integer matrices A, B (that encode adjacency relations for edges
of the tetrahedra and satisfy the symplectic property ABT −BAT = IN×N) and a vector ν
of N integers. A precise definition is given in [73]. Then the partition function Z[M ]k,s =
Z[M ]k,s(0, 0) with the canonical boundary condition takes the concise form [35]

Z[M ]k,s =
C

kN
√

detB

∑
m∈(Z/kZ)N

∫
dNµ (−ζ 1

2 )mB−1Ame−
iπ
k
µB−1Aµ−π

k
(b+b−1)µB−1ν

N∏
i=1

Z[∆]k,s(µi,mi) ,

(4.6)

with ζ = e
2πi
k . The prefactor C = ζ

1
4
fB−1νe

iπ
4k

(b2−b−2)fB−1ν depends on an integer solution
(f, f ′′) ∈ Z2N to Af + Bf ′′ = ν.

There are several things to note about this partition function:

• It approximately takes the form of a “state sum” or “state integral,” with the partition
function (4.4) assigned to every tetrahedron building-block. The “state variables”
mi ∈ Z/kZ and µi are summed/integrated over. The number of sums/integrals is the
same as the number of tetrahedra which is also the same as the number of internal
edges in the triangulation.

• As explained in [22, 35], the partition function is only defined up to an overall phase,

of the form ζ
a
24 e

iπ
12k

(a′b2+a′′b−2), a, a′, a′′ ∈ Z. This subsumes the standard framing ambi-
guity in complex Chern-Simons theory [5], which would modify the partition function

by a factor of e−
iπ
2k

(b+b−1)2
upon shifting the framing of the tangent bundle of M .

• Each tetrahedron building-block manifestly admits a holomorphic-antiholomorphic fac-
torization as in (3.1). The full partition function is also expected to admit such a fac-
torization; this was demonstrated for some simple examples in [22]. (See also [57, 92]
for k = 0, k = 1 examples.)

• Perhaps most interestingly, the precise definition of the integration contour in (4.6)
and the convergence of the integral depends crucially on the existence of a positive
angle structure on the triangulation being used. This is ultimately what restricts the
computation to a particular class of 3-manifolds that includes all hyperbolic ones. It
also beautifully makes contact with the three-dimensional superconformal theory T [M ]
defined combinatorially in [14] using an ideal triangulation — the definition of T [M ]

17



does not make sense (cannot produce a superconformal theory) unless a positive angle
structure exists. We proceed to explain this idea momentarily.

• Via the 3d-3d correspondence, the integral (4.6) has a dual interpretation as a partition
function of T [M ] on the lens space S3/Zk. This partition function is computed by
localization methods, as in Section 4.1 of B. Willett’s article, Contribution [47]. Each
Z[∆]k,s(µi,mi) is the contribution of a chiral multiplet to the partition function, and
the additional prefactor comes from background Chern-Simons terms involving flavor
and R-symmetries.

• Changes of ideal triangulations are generated by 2–3 Pachner moves, which replace a
pair of tetrahedra glued along a common face by a triplet glued along three common
faces and a central edge. The state-integral (4.6) is invariant under 2–3 moves that
preserve the positive or non-negative angle structure (as appropriate), due to a 5-term
integral identity for the quantum dilogarithm (4.4). In the case k = 1, this identity
was first discovered by Faddeev [93] (see also [94]).

An angle structure on a topological ideal triangulation is an assignment of real parameters
(“angles”) to the six long edges of each tetrahedron, in such a way that 1) angles on opposite
edges are equal (leaving three angles αi, α

′
i, α
′′
i per tetrahedron ∆i); 2) the sum of angles

around any tetrahedron vertex equals π (thus αi + α′i + α′′i = π); and 3) the sum of angles
around every internal edge in the triangulation equals 2π. In terms of the Neumann-Zagier
gluing datum (4.5) for a knot complement, the last condition translates to9

Aα + Bα′′ = πν . (4.7)

The idea of an angle structure is motivated by hyperbolic geometry. In an ideal triangulation
by hyperbolic tetrahedra, the dihedral angles precisely obey the three conditions above [59].

A positive (respectively, non-negative) angle structure is one where all angles additionally
obey αi, α

′
i, α
′′
i > 0 (≥ 0). An oriented hyperbolic three-manifold with genus-one boundary

always admits an triangulation with non-negative dihedral angles, hence there a triangulation
with a non-negative angle structure [95]. It is conjectured and strongly believed that the same
holds for strictly positive angle structures. (As evidence for this, the default triangulations
produced by the computer program SnapPy [96] for the first few thousand hyperbolic knot
complements all admit positive angle structures.)

It was shown in [81, 82] that analogue of the partition function (4.6) at k = 0 (cf. Section
4.3) is well-defined when the triangulation admits a non-negative angle structure. Similarly,
it was shown in [19] for k = 1 and [22, 21] for |k| ≥ 1 that the partition function (4.6) is
well defined if the triangulation admits a positive angle structure. In each case, the angle
structure specifies a canonical convergent integration contour.

9Technically, only N−1 out of the N components of (4.7) correspond to internal edges; the last component
of (4.7) relates to a boundary condition at ∂M = T 2, and can be removed from the angle-structure analysis.
We are bypassing such subtleties in this heuristic discussion.
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Figure 4.2: Left: dihedral angles assigned to edges of an oriented ideal tetrahedron, obeying
α + α′ + α′′ = π. Right: operators of the tetrahedron theory T [∆] assigned to the same
edges; these operators have R-charges ρ, ρ′, ρ′′ that obey ρ+ ρ′ + ρ′′ = 1.

The combinatorial construction of theories T [M ] given in [14] translates the ingredients of
the state-integral (4.6) to operations in three-dimensional N = 2 gauge theories. One starts
by associating a theory T [∆i] containing a single chiral multiplet Φi (i.e. a free complex
boson φi and a complex fermion ψi) to each tetrahedron. In addition to the chiral (BPS)
operator Φi, the theory T [∆i] contains two elementary chiral monopole operators V ±i , which
exist only in the presence of a monopole background for the flavor symmetry of the theory.10

Geometrically, the three operators Φi, V
+
i , V

−
i are associated to three pairs of ∆i, as on the

RHS of Figure 4.2. Moreover, T [∆i] has an R-symmetry11 U(1)R that rotates (φi, ψi) with
charges (ρi, ρi − 1) for some (undetermined) ρi ∈ R. One usually just says that Φi has R-
charge ρi. The other BPS operators V +

i , V
−
i have some R-charges ρ′i, ρ

′′
i , subject to a single

relation ρi + ρ′i + ρ′′i = 1.
Even for the theory of a single tetrahedron, R-charges are beginning to look like angles,

and it is tempting to identify ρi = αi/π (etc.). The analogy persists upon gluing. The theory
T [M ] of [14] is defined by taking a tensor product of N tetrahedron theories ⊗Ni=1T [∆i], gaug-
ing some flavor symmetries, and (most importantly here) adding superpotential interactions
W =

∑N
E=1OE containing a chiral operator OE for every internal edge E of the triangulation

M = ∪Ni=1∆i. If all the tetrahedron edges identified with E are labelled by elementary chiral
fields Φi, one simply constructs OE as a product

∏
i Φi of these surrounding fields. For edges

identified with monopole operators, the prescription is more subtle. In either case, one finds
that the R-charge of OE is a sum of the R-charges ρi, ρ

′
i, or ρ′′i associated to operators on the

tetrahedron edges identified with E. The superpotential breaks U(1)R R-symmetry unless
the charge of every OE is exactly 2.

Now, in order for the gauge theory T [M ] to flow (in a straightforward way) to a super-
conformal theory in the infrared, two conditions are necessary: 1) some U(1)R R-symmetry

10One does not usually talk about “flavor” monopole operators like V ±
i , but they are essential in the

construction of theories T [M ], and the relation between these theories and geometry. They can easily be
seen in the generalized index of a free chiral multiplet [87], and can also be understood as ordinary monopole
operators if the flavor symmetry of T [∆i] were weakly gauged.

11This is a global symmetry that does not commute with supersymmetry, and is related to an SO(2)
automorphism of the 3d N = 2 SUSY algebra.

19



must be preserved; and 2) there must exist a choice of U(1)R symmetry such that the charges
of all chiral operators are non-negative, because in a superconformal theory R-charges are
proportional to operator dimensions. This means that we must be able to choose ρi, ρ

′
i, ρ
′′
i for

individual tetrahedra in such a way that the sums of these charges around any internal edge
E is 2, and all these charges are non-negative. Together with the relation ρi + ρ′i + ρ′′i = 1,
the conditions become equivalent to the existence of a non-negative angle structure.

4.3 Embedded surfaces and M2 branes in the 3d index (k = 0)

The partition function of complex Chern-Simons theory at level k = 0 is rather special. Via
the 3d-3d correspondence, it takes the form of a supersymmetric index [20]. Schematically:

Z[M ]k=0,s = Z[T [M ] on S2×qS1] = TrH[T [M ] on S2](−1)Rq
R
2

+J3 , (4.8)

with q = exp 4π
2

as usual. Here S2×q S1 denotes a geometry that is fibered over S1, in
such a way that S2 rotates around an axis (by an amount π/s) as S1 is traversed. Just as
in our discussion around (3.2), the partition function of any quantum field theory in such
a geometry can be expressed as a trace. In this case, it becomes a trace over the Hilbert
space of T [M ] on S2, weighted by the spin (J3) and R-charge (R) of states. Due to the
factor (−1)R, this trace behaves like an Euler character (physically, a Witten index [97]).
In particular, only “BPS states” in the cohomology of a particular supercharge contribute.
While the “BPS sector” of the Hilbert space containing such states is infinite-dimensional,
it is expected to have finite q-graded dimension when M is sufficiently nice (e.g. hyperbolic),
so that (4.8) produces a well-defined formal Laurent series in q. Less obviously, if T [M ] is a
superconformal theory, then superconformal symmetry requires the existence of an R-charge
assignment such that only non-negative powers of q appear in (4.8) [20].

In the case that T [M ] is superconformal, one can also use the state-operator correspon-
dence to recast the RHS or (4.8) as a sum over BPS operators of T [M ] rather than states.
Then the index counts the number of operators with given spin and R-charge. Combining
this perspective with the 3d-3d correspondence really makes the geometry of M come to life,
in the following way.

Recall that for gauge group GC = SL(N,C), the theory T [M ] is the effective theory of N
M5 branes wrapped on M ×R3 inside the eleven-dimensional background T ∗M ×R5. From
this perspective, at least some of the BPS operators in T [M ] should come from M2 branes
that end on the stack of M5 branes, such that their boundary ∂(M2)= Σ × {0} ⊂ M × R3

wraps a surface in M . One might therefore expect that

The index Z[M ]k=0,s “counts” surfaces in M . (4.9)

Alternatively, we may think of T [M ] as the effective theory obtained by compactifying
the 6d (2, 0) theory of type AN−1 on M . The local BPS operators of T [M ] can come from 1)
local operators of the 6d theory; or 2) surface operators in the 6d theory, corresponding to
the boundaries of M2 branes in the M-theory picture above. Thus, a more refined statement
of (4.9) would be that the index counts surfaces in M decorated by local operators.
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The first hint that (4.9) could be true came in work of Gukov, Gadde, and Putrov [98].
They investigated the index for knot complements M = S3\K, and found contributions from
boundary-incompressible surfaces. These are incompressible surfaces Σ whose boundary
∂Σ = S1 ⊂ ∂M wraps a particular nontrivial cycle on the torus boundary of M . The
corresponding operators OΣ and all of their powers O2

Σ, O3
Σ,... (corresponding to multiply-

wrapped surfaces) are expected to contribute to the index, and this is exactly what [98]
found.

To make a more precise statement, we should recall that the index Z[M ]k=0,s(m,n) of a
knot complement depends on two integers m,n, as in (2.19). On one hand, these integers
are magnetic and electric (flavor) charges in the space of local BPS operators of T [M ]. On
the other hand, these charges label homology classes (m,n) ∈ H1(∂M,Z). For an operator
OΣ corresponding to a surface in M , the charges (mΣ, nΣ) measure the homology class of
the boundary curve ∂Σ ⊂ ∂M .

In the case of a boundary-incompressible surface Σ, the expectation is that the operator
OΣ preserves not one but two supercharges. This implies that if OΣ has R

2
+ J3 = QΣ, so

that it contributes qQΣ to the index in some charge sector (mΣ, nΣ), then the d-th power OdΣ
has R

2
+ J3 = dQΣ and contributes qdQΣ to the index in charge sector (dmΣ, dnΣ). One can

therefore detect the presence of such operators in the index because they force the minimal
power of q appearing in Z[M ]k=0,s(dm, dn) to grow linearly as d → ∞ whenever (m,n)
coincides with the charge (mΣ, nΣ) of an incompressible surface. In contrast, for generic
(m,n), the growth of Z[M ]k=0,s(dm, dn) as d → ∞ is quadratic.12 Famously, the set of
possible charges of incompressible surfaces (mΣ, nΣ) is finite [102].

The simplest example of such behavior occurs not for a knot complement but for a single
ideal tetrahedron M = ∆. The index Z[∆]k=0,s(m,n) is defined by∑

n∈Z

Z[∆]k=0,s(m,n) ζn =
∞∏
r=0

1− q1+rx−1

1− qrx̃−1
, (4.10)

where x = q
m
2 ζ and x̃ = q

m
2 ζ−1 (cf. (2.21)). Explicitly,

Z[∆]k=0,s(m,n) =
∞∑

r=(−n)+

q−
(
r+ 1

2
n
)
m∏r

i=1(1− q−i)∏r+n
j=1 (1− qj)

, (4.11)

where (−n)+ = max(−n, 0). There are three rays in the (m,n) lattice along which the
leading power of q grows linearly: γ = (0,−d), γ′ = (d, 0), and γ′′ = (−d, d) for d ≥ 0.
In terms of the theory T [∆], these three rays correspond to powers of the three operators
Φ, V +, V − that were discussed at the end of Section 4.2. Geometrically, they correspond to
the three “local” incompressible surfaces shown in Figure 4.3. (These surfaces are boundary-
incompressible if the boundary of the ideal tetrahedron is understood as a four-punctured

12Similar behavior appears in certain stable limits of the Jones polynomial [99]. In both cases, the behavior
can partially be explained by observing that 1) one is studying q-series that are solutions to recursion relations
coming from the A-polynomial of a knot [25, 100, 20]; and 2) boundary slopes of the A-polynomial are related
to boundary slopes of incompressible surfaces [101]. See [20, App. D] for further remarks.
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sphere. They are the basic building blocks of what are known as normal surfaces in three-
manifold topology [103].)

V + V �

�

Figure 4.3: Three incompressible surfaces inside an ideal tetrahedron, corresponding to three
unconstrained operators in the theory T [∆].

The boundary-incompressible surfaces in M lead to very special operators that are un-
constrained, in the sense that all their powers contribute to the index, with purely additive
R
2

+ J3 charge. In general, one might expect to find operators whose powers do obey various
relations, and do not have additive charges. Excitingly, in recent mathematical work [45],
Hodgson, Hoffman, Garoufalidis, and Rubinstein found that it was possible to rewrite the
entire index Z[M ]k=0,s of a knot complement as a sum over surfaces,

Z[M ]k=0,s(m,n) =
∑

Σ s.t. [∂Σ] = (m,n)

wΣ(q) , (4.12)

where the sum is over all normal surfaces in a given triangulation of M , making the expected
relation (4.9) true in a precise sense. The main contribution to the weights wΣ(q) looks like
a product of tetrahedron indices, corresponding to the tetrahedra in the triangulation. It
would be very interesting to understand these weights in terms of local operators of the 6d
(2, 0) theory, bound to the surface Σ.

5 The Quantum Modularity Conjecture

Our final topic concerns the relation between complex Chern-Simons theory and Zagier’s
Quantum Modularity Conjecture (QMC) [36]. Strictly speaking, the QMC concerns certain
limits of colored Jones polynomials of knots in S3. Physically, colored Jones polynomials
have to do with SU(2) Chern-Simons theory. However, by embedding SU(2) theory into a
holomorphic sector of SL(2,C) theory, one can use complex Chern-Simons theory to study
the very same limits [35]. Moreover, SL(2,C) theory and its various stringy realizations may
have a chance of explaining some of the subtler aspects of the conjecture.

To formulate a precise statement, we begin by recalling that the colored Jones polynomials
JK(N, q) of a knot K ⊂ S3 are expectation values in SU(2) Chern-Simons theory of Wilson
loops in the N -dimensional representation [104, 105, 17]. Physically, the parameter q =
exp 2πi

k
encodes the renormalized level k ∈ Z of the SU(2) theory, but (as the name suggest)

the Jones polynomials can be analytically continued to Laurent polynomials in a formal
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variable q. For any k-th root of unity qk = 1, the Jones polynomials are periodic JK(N, q) =
JK(N + k, q).

The colored Jones polynomials can equivalently be defined using the wavefunction of
SU(2) Chern-Simons at renormalized level k on the knot complement M = S3\K. (The
bare level appearing in the Lagrangian is k − 2.) Recall, e.g. from Section 2, that the
Hilbert space H[T 2]k in compact Chern-Simons theory is k − 1 dimensional. The SU(2)
wavefunction Z[M ]k is thus a vector in Ck−1, whose components are precisely the Jones

polynomials JK(1, e
2πi
k ), JK(2, e

2πi
k ), ..., JK(k − 1, e

2πi
k ).

For any rational number α = a/c, Zagier defines

JK(α) := JK(c, e
2πia
c ) . (5.1)

Crucially, this is just outside the natural range of states in SU(2) Chern-Simons at renor-
malized level c, hinting that some analytic continuation will be necessary for a physical
interpretation of (5.1) (just like it was in the Volume Conjecture).

The QMF states in part that JK(α) shows exponential growth as α tends to any fixed
rational number α0 through rational values, with the rate of growth governed by the hyper-
bolic volume of M = S3\K. Specifically, let ( a bc d ) ∈ SL(2,Z) with c > 0, and let X → ∞
in a fixed coset of Q/Z (for example: X = 1, 2, 4, 5, ... or X = 3

4
, 7

4
, 11

4
, ... with constant

denominators). Set ~ = 2πi/(cX+d). Then, conjecturally, there is an asymptotic expansion

JK
(
aX + b

cX + d

)
∼ JK(X)

(
2πi

~

) 3
2

e
1
c~SCS(geom)φK,a/c(~) , (5.2)

where SCS(geom) = CS(M) + iVol(M) is the volume of the geometric flat connection on M ,
containing the hyperbolic volume as in Section 4.1; and φK,a/c(~) is a formal power series in
~ that depends only on a/c mod 1. Moreover, it was conjectured that after dividing by the

leading coefficient to make φ̃K,a/c(~) = φK,a/c(~)/φK,a/c(0) monic, the subleading coefficients

all belong to the trace field of K adjoined a c-th root of unity ΓK(e
2πia
c ). (The number field

ΓK contains the traces of all holonomies of the geometric flat SL(2,C) connection on M .)
For ( a bc d ) = ( 0 −1

1 0 ) and X = 1, 2, 3, ... ∈ N, the QMC (5.2) reduces to the usual Volume
Conjecture.13 Heuristically, one may think of the Volume Conjecture as studying a limit of
colored Jones polynomials as q → 1, and the QMC as studying limits where q approaches
all the rational points on the unit circle.

In order to embed the QMC in SL(2,C) Chern-Simons theory, one can consider singular
limits very similar to (4.3).14 Namely, it was argued in [35] that when fixing the integer level
k and sending s→ −ik in complex Chern-Simons theory, or equivalently (k + is, k − is)→

13The number-theoretic properties of the asymptotic expansion in the Volume Conjecture were explored
from a physical perspective in [49], leading to the notion of an Arithmetic Quantum Field Theory.

14There may be other ways to embed the QMC into complex Chern-Simons theory. It was proposed in
[106] that setting (k+ is, k− is)→ (a, c) to finite integer values, which is a perfectly regular limit in complex
Chern-Simons, may also be related to the QMC.
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(2k, 0), the knot-complement partition function has an asymptotic expansion

Z[M ]k,s
s→−ik∼

(
2πi

~

) 3
2

e
1
k~SCS(geom)φK,1/k(~) , ~ = 2πi

k − is
k + is

(5.3)

with the same series as in (5.2). Using the state-sum construction (4.6) (on one hand) and
detailed computations of Garoufalidis and Zagier for asymptotics of colored Jones polyno-
mials (on the other hand), the agreement between (5.2) and (5.3) was verified in dozens of
examples. By performing a saddle-point expansion of the state-sum model, one also deduces
that coefficients of φ̃K,1/k(~) lie in the number field ΓK(e

2πi
k ) as desired.

In terms of the 3d-3d correspondence, the singular limit in (5.3) corresponds to computing
the partition function of T [M ] on a squashed lens space L(k, 1)b ' S3

b /Zk, and sending to
zero the squashing parameter b2 → 0. The 1/k dependence in the leading asymptotic can be
explained from the simple fact that the lens space is a k-fold quotient of the three-sphere.
It would be interesting to make further physical predictions for the QMC by relating the
partition functions of T [M ] on different lens spaces L(k, 1)b, or more generally L(c, a)b.

points of the graph with argument near any fixed rational point differ by vertical translations:

5

10

15

0 1

Fig. 3. Graph of f(x) = log(J(x))

To make more sense of this graph, we do as in Examples 1–4 and compare the values of f(x) at x
and 1/x. The graph of the difference indeed looks much better than the graph of f itself:

−3

−2

−1

1

2

3

4

1 2 3 4

Fig. 4. Graph of h(x) = log(J(x)/J(1/x))
14

log(JK(↵)/JK(1/↵))

↵

Figure 5.1: The graph of JK(α)/JK(1/α) when K is the figure-eight knot, from [36].

Another observation of [36] is that, for hyperbolic several knots, the ratio JK(α)/JK(γ(α))
for γ ∈ SL(2,Z) has some very interesting finite behavior. This ratio measures the failure of
JK(α) to be truly “modular.” For the figure-eight knot, a graph of this function appears in
[36, Fig. 4], reproduced above. The graph is almost monotonic (it violates monotonicity at

24



a very fine scales) and discontinuous at all rational points a/c, the size of the discontinuity
being roughly proportional to the denominator |c|.

If we turn this graph on its side, any condensed matter theorist would recognize it imme-
diately: it is the plot of Hall resistivity as a function of magnetic field in a two-dimensional
electron system. The plot has plateaus at rational points, due to the fractional quantum Hall
effect. It is extremely tempting to think that this must be related to the effective complex
Chern-Simons theory in quantum-Hall systems [42]; the connection is investigated in [54].
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