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In the framework of nonlinear spin-optics, we investigate self-confined light beams in reorienta-
tional nematic liquid crystals. Using modulation theory and numerical experiments, we analyse
spatial solitary waves supported by the geometric phase arising in a uniaxial when subject to a
nonlinear modulation of its optic axis distribution. Spin evolution and optical reorientation in an
index-homogeneous medium give rise to a longitudinally periodic, transversely inhomogeneous po-
tential able to counteract the diffraction of a polarized bell-shaped beam, generating a spin-optical
solitary wave. Spin-optical solitary waves evolve in polarization and have an oscillatory character
in amplitude, size and ellipticity.

PACS numbers: 42.65.Tg, 42.70.Df, 05.45.Yv

INTRODUCTION AND MOTIVATIONS

Self-focusing of light beams via the nonlinear response
of dielectrics to intense excitations is known to yield
transverse confinement and diffractionless propagation
into spatial solitary waves— loosely, solitons— since the
early work of Chiao et al. [1]. In the applied mathematics
literature there is a distinction between the terms solitary
wave and soliton [2], but here we will use interchange-
ably terms such as solitary waves, solitons, self-localized
beams, diffractionless wavepackets, self-trapped or self-
confined beams and their combinations as this is com-
mon in the physics literature. Self-trapped wavepackets
have been reported in a wide variety of materials and
on the basis of diverse nonlinearities, among them the
quadratic cascading of parametric interactions [3] and
the cubic, Kerr-like response of intensity dependent di-
electrics [4]. The latter include the local response of, e.g.,
glass, the weakly nonlocal response of photorefractives,
the highly nonlocal response of thermo-optics, as well as
of nematic liquid crystals [5–7]. Nonlocality, i.e. the ma-
terial’s ability to respond even at finite distances from
the electromagnetic disturbance, is one of the features
which allows the stability of spatial solitons in two trans-
verse dimensions (2D), that is, in bulk [8–10]. An impor-
tant benefit of 2D solitary waves in nonlocal Kerr-like
media— at variance with those in quadratic crystals—
is that they are normal modes of the corresponding self-
induced graded-index waveguides; otherwise stated, not
only do they self-trap, but can also confine optical signals
of different frequencies as long as their wavelengths can
be guided by the nonlinearly sustained refractive index
potential [11].

Of particular interest is the electro-mechanical non-
linear optical response of birefringent molecular crystals

in the fluid state, referred to as the reorientational non-
linearity. The latter is common, e.g., in uniaxials such
as nematic liquid crystals (NLC), consisting of angu-
larly aligned, nonpolar and anisotropic molecules which,
bound to one another by elastic forces, in the presence
of large electric fields (at light frequencies) are able to
rotate in space and yield beam self-focusing due to the
resultant refractive index increase [12]. In physical terms,
when a suitably polarized intense light beam propagates
through the material, the torque due to the reaction of
the optically-induced dipoles to the electric field vector
is able to change the molecular angular orientation, low-
ering the system energy and the phase speed of extraor-
dinary waves [13]. The nonlinear redistribution of the
refractive index, higher wherever the beam is more in-
tense, as well as nonlocal because of the intermolecu-
lar links in the fluid, can give rise to a graded potential
with light guiding properties, i.e., a waveguide prevent-
ing beam diffraction and supporting stable spatial soli-
tons. Such (linearly polarized) solitary waves in NLC
have been termed nematicons and their properties, as
well as their applications, have been investigated both
experimentally and theoretically in the last two decades
[14–18]. We recall here that nematicons can be gener-
ated by continuous wave beams at milliWatt powers [14],
have governing equations which admit no (known) ex-
act solutions [18, 19], exhibit optical bistability versus
power excitation [20, 21], can be exploited in synergy
with other nonlinear effects [22–25], including random
lasing [26, 27], and can be redirected by external volt-
ages [28, 29], beams [30, 31] and magnetic fields [32–34].

Nematicons are extraordinarily (e-) polarized
wavepackets in uniaxial NLC, whereby the beams
maintain their electric field oscillating in the principal
plane of the optic axis and the wavevector. Whenever
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the input beam polarization (i.e., each of its plane
wave components) does not match either of the two
eigenwaves of the uniaxial, it excites ordinary and
extraordinary waves detuned in phase velocities, so
that the wavepacket evolves in its “spin” state during
propagation. In the presence of a non-uniformity, such
as a transversely varying orientation of the optic axis (or
symmetry axis), the evolution can involve the periodic
coupling of ordinary and extraordinary waves and so
result in a “cascaded” process. The additional phase
term generated during this polarization transformation
(i.e., the path followed along the surface of a Poincaré
sphere) is often referred to as the Pancharatnam-Berry
(PB) geometric phase [35, 36], which is linked to various
phenomena in the frame of so-called “spin-orbit interac-
tions of light” or “spin-optics” [37–41]. Early work on
the geometric Berry phase dealt with the propagation of
linearly polarized light in the presence of homogeneous
refraction [42]. Most recent optical manifestations
have been associated with dielectric anisotropy in 2D
metasurfaces and birefringent crystals [41, 43–45],
entailing several applications in photonics [46]. When
the spin transformation is a pointwise function of the
anisotropic distribution across the beam profile, the
PB phase can alter the phasefront of a propagating
wavepacket and yield transverse confinement, leading
to novel waveguiding approaches which do not rely on
total internal reflection [47–49]. Furthermore, in bulk
anisotropic dielectrics, such as homogeneously aligned
nematic liquid crystals, the modulation of the optic
axis distribution can be nonlinearly induced through
all-optical reorientation, as mentioned above. In config-
urations for which the optic axis is perpendicular to the
beam wavevector and the input wavepacket couples to
both ordinary and extraordinary components (as it is
not just one eigenwave), the propagation is not affected
by changes in refractive index and the PB phase can be
nonlinearly tailored by reorientation according to the
light polarization and intensity at each point, i.e., the
“local” spin. Otherwise stated, the (inhomogeneous)
optic axis modulation required to provide transverse
confinement via geometric phase, as described, e.g., in
Ref. [47], can be obtained by the nonlinear action of a
suitably polarized and shaped beam. In this limit, the
input excitation can generate a reorientational spatial
solitary wave with varying polarization, a “spin-optical”
soliton. A pioneering experiment on such spin-orbit
interaction of light was experimentally carried out in
a one-dimensional setting by Karpierz et alia, who
observed beam self-localization of mixed TE/TM beams
in homogeneous (homeotropically aligned) NLC planar
waveguides [50]. This early demonstration of one dimen-
sional spin-optical solitons was not interpreted in terms
of self-confined waves and Pancharatnam-Berry phase,
although the inherent roles of polarization transforma-
tion and reorientation were invoked a few years later to

derive the approximate profile of such solitary waves [51].
Experimental evidence of 2D spin-optical solitons due to
the interplay of PB phase and nonlinear reorientation in
initially uniform samples was subsequently reported by
Kwasny et alia in (planarly aligned) bulk NLC [52].
In this Paper we afford the ambitious goal of using

modulation theory [2] to model two dimensional optical
solitary waves stemming from the interplay of nonlinear
reorientation and spin transformation in nematic liquid
crystals. These solitary waves are not associated with a
refractive index change as they stem from spin-orbit in-
teractions, an entirely innovative approach to light guid-
ance [47]. Such an unusual self-trapping mechanism
could hold promise towards new all-optical switching
schemes, as well as signal waveguiding in novel soliton-
defined permanent structures in polimerizable media [53].
These spin-optical solitons have an oscillatory character
versus propagation and therefore shed radiation which
cannot be totally trapped by the light-induced waveg-
uide, as is the case for nonlocal, linearly polarized ne-
maticons [18]. Finally, spin-optical solitons evolve to
have elliptical profiles, as expected due to the inherent
anisotropies in nonlinearity and diffraction.

MATERIAL, NONLINEARITY AND

INTERACTION GEOMETRY

Hereby, we consider nematic liquid crystals, a birefrin-
gent material with a single symmetry axis, which consists
of anisotropic molecules bound in a fluid state. NLC
are thermotropic liquid crystals exhibiting large birefrin-
gence, extended spectral transparency and a reorienta-
tional response to electromagnetic fields [54, 55]. Stan-
dard NLC are positive uniaxials with optic axis coin-
cident with the molecular director n, a unit vector lo-
cally aligned with the long axis of the ellipsoid-shaped
molecules. For a given wavevector k, the two ordi-
nary (o-) and extraordinary (e-) plane wave eigensolu-
tions propagate with phase velocities c/n⊥ and c/ne, re-
spectively, with c the speed of light in vacuum, ne(θ) =
(

cos2 θ/n2
⊥ + sin2 θ/n2

‖

)−1/2

the extraordinary refractive

index, θ the angular orientation of n with respect to k, n⊥

the ordinary refractive index and n‖ = ne(π/2) the upper
limit of the extraordinary index. In the presence of an
electric field of vector E, below the so-called Freédericks’
threshold the optical torque acting on the induced dipoles
can be cast in the form [55]

Γ = ǫ0ǫa(n · E)(n×E), (1)

with ǫ0 the vacuum dielectric constant and ǫa the dielec-
tric anisotropy ǫa = n2

‖ − n2
⊥. When the initial E, k

and n are not mutually orthogonal, an intense e-wave
field can generate a torque Γ counteracting the elastic
forces (intermolecular links) in the liquid and so increase
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θ and ne to yield a saturable self-focusing response. This
nonlinear response is therefore nonlocal and polarization
preserving, and supports the propagation of nematicons
[14–16]. The torque given by Eq. (1) can also act on
n when k · n = 0, i.e., when the beam propagates or-
thogonally to the optic axis. In this case, a transverse
electric field can reorient n in the (x, y) plane according
to the beam shape, altering the system anisotropy and
introducing pointwise coupling between the spatially dis-
persive o- wave and e- wave components.
For the sake of simplicity, and with reference to the ex-

perimental evidence reported earlier, the interaction we
investigate hereby for spin-optical spatial solitary waves
due to a reorientation tuned geometric phase resembles
the NLC configuration in Ref. [52], as sketched in Fig. 1.
A coherent bell-shaped input beam with main wavevec-
tor along k ‖ z and electric field components Ex and Ey

along x and y, respectively, propagates into planar ho-
mogeneous NLC with optic axis n aligned along y. In
this setting (i.e., at normal incidence with respect to n),
the relative dielectric susceptibility can be expressed as

ǫjk = n2
⊥δjk + ǫanjnk, j, k = x, y, z, (2)

with δjk the Kronecker delta and nj the components of
n = (sin ξ, cos ξ, 0). The angle ξ fully describes the op-
tic axis reorientation in the plane (x, y) under the action
of an electric field purely transverse (Ez = 0) with re-
spect to k ‖ z. The eigen-wavevectors take the values
ko = k0n⊥ and ke = k0n‖ for electric fields oscillating
along x and y, respectively. Hence, an input beam en-
compassing both transverse components populates the
o- and e- eigensolutions with a (momentum) mismatch
∆k = k0(n⊥−n‖). In the linear regime, these eigenwaves
acquire an additional phase term ∆φ = ∆k z when prop-
agating along z, yielding a polarization state transforma-
tion from, e.g., linear to elliptical, circular, elliptical to
linear etc., with a beat length lb = 2π/∆k [56]. When re-
orientation of the symmetry axis occurs in the transverse
plane (x, y) owing to the electric field distribution across
the beam profile, the point dependent coupling between
eigenwaves translates to a geometric phase as the latter
depends on the spin evolution across the wavepacket, i.e.,
it is non-transitive [49]. The PB phase needs to be larger
on beam axis (than in its outskirts) while monotonically
accumulating retardation along z in order to balance out
diffraction [47]. Both these requirements are satisfied by
the reorientational response, inasmuch as the nonlinear-
ity is maximum at the beam intensity peak and exhibits a
recurrent change in sign with period Λ = lb owing to the
polarization rotation. This change in sign counteracts
the sign change in PB phase accumulation due to spin
evolution, so that the PB distribution in (x, y, z) resem-
bles a “quasi-phase-matched” [57, 58] three dimensional
photonic potential able to compensate spatial spreading
and so guide light [47].
In the configuration described above, invoking the

FIG. 1: Sketch of the considered sample and interaction ge-
ometry. A planar cell of thickness L contains the homoge-
neously aligned nematic liquid crystal. The ellipses represent
the elongated NLC molecules, with long axes along n and
parallel to y at rest. The input light beam impinges on the
sample normally to n, carrying both ordinary (wavevector ko)
and extraordinary (wavevector ke) components of the electric
field E. In the absence of longitudinal field components, the
optic axis n can reorient within (x, y) at an angle ξ with re-
spect to y.

paraxial approximation for wavepacket propagation in a
nonlocal uniaxial environment, the dimensional model for
the evolution of a beam with both transverse components
of the electric field and in the presence of nonlinear re-
orientation can be written as

2ik0n⊥
∂Ex

∂z
+
∂2Ex

∂x2
+
∂2Ex

∂y2
+ k20ǫaEx sin

2 ξ

+
1

2
k20ǫaEye

ik0(n‖−n⊥)z sin 2ξ = 0, (3)

2ik0n‖
∂Ey

∂z
+
∂2Ey

∂x2
+
n2
‖

n2
⊥

∂2Ey

∂y2
− k20ǫaEy sin

2 ξ

+
1

2
k20ǫaExe

−ik0(n‖−n⊥)z sin 2ξ = 0, (4)

with the nonlinear, nonlocal response given by

K∇2ξ +
1

4
ǫ0ǫa

[

2
(

|Ex|2 − |Ey|2
)

sin 2ξ

+2Re ExE
∗
ye

−ik0(n‖−n⊥)z cos 2ξ
]

= 0. (5)

Here, the Laplacian ∇2ξ is in the transverse plane (x, y)
and K is the scalar strength for the elastic NLC molecule
interaction in the liquid, assuming equal elastic constants
for bend, splay and twist deformations [55]. For the com-
putational analysis we will use the material parameters
of the standard E7 mixture at room temperature, a posi-
tive uniaxial NLC with n‖ = 1.73 and n⊥ = 1.53 and
elastic constant K = 12pN . Coherent and polarized
Gaussian beams are launched with plane wavefront at
wavelength λ = 1.064µm with waist w of 2.5µm at the
origin x = y = z = 0 of a planar cell of size L = 42µm
across x. The latter thickness, slightly smaller than in



4

reported experiments [52] for which beam alignment is a
crucial issue, was selected to reduce computation times,
while having minimal effects on the results. It should
be noted that, as long as the beams are well removed
from the boundaries, the solutions for Ex, Ey and ξ have
negligible dependence on the cell size.

MODULATION THEORY

The paraxial equations (3)–(5) used in the present
work can be derived from a more general, Helmholtz-
type system as in [52], and are also related to the model
in [51]. The derivation of the paraxial equations involves
a number of approximations and transformations which
are relevant for the interpretation of the results, as will
be detailed. The full, Helmholtz-type model governing
the field components Ex and Ey and the director angle ξ
are [52]

ǫa cos
2 ξ
∂2Ey

∂x∂y
+

1

2
ǫa sin 2ξ

∂2Ey

∂x2

+
(

n2
⊥ + ǫa sin

2 ξ
) ∂2Ey

∂x2
+ n2

⊥

∂2Ey

∂y2
+ n2

⊥

∂2Ey

∂z2

+
1

2
ǫa sin 2ξ

∂2Ey

∂x∂y

= −k20n2
⊥

[

(

n2
⊥ + ǫa sin

2 ξ
)

Ex +
1

2
ǫa sin 2ξ Ey

]

, (6)

ǫa sin
2 ξ
∂2Ey

∂x∂y
+

1

2
ǫa sin 2ξ

∂2Ey

∂y2

+
(

n2
‖ − ǫa sin

2 ξ
) ∂2Ey

∂y2
+ n2

⊥

∂2Ey

∂x2
+ n2

⊥

∂2Ey

∂z2

+
1

2
ǫa sin 2ξ

∂2Ey

∂x∂y

= −k20n2
⊥

[

(

n2
‖ − ǫa sin

2 ξ
)

Ey +
1

2
ǫa sin 2ξ Ex

]

,(7)

K∇2ξ +
1

4
ǫ0ǫa

[(

|Ex|2 − |Ey |2
)

sin 2ξ

+
(

ExE
∗
y + E∗

xEy

)

cos 2ξ
]

= 0. (8)

This system describing the evolution of the two, x and
y, components of the electric field and the resulting di-
rector response is highly nonlinear in orientation ξ and
not amenable to exact analysis. There are a number of
dispersive terms in the equations for Ey and Ey which
are small due to the factor ǫa and can be asymptotically
simplified. A solitary wave stems from a balance between
natural diffraction and effective self-focusing. Hence, the
system (6) and (7) can be simplified by balancing first
order diffraction, which is O(1), and first order nonlin-
earity, which is O(ǫa). In addition, the equations can be
recast in paraxial form using

Ex = Xeik0n⊥z, Ey = Y eik0n‖z. (9)

Taking the usual slowly-varying approximation— in
which ∂2X/∂z2 and ∂2Y/∂z2 are neglected— results in
the paraxial equations

2ik0n⊥
∂X

∂z
+
∂2X

∂x2
+
∂2X

∂y2
+ k20ǫaX sin2 ξ

+
1

2
k20ǫaY e

ik0(n‖−n⊥)z sin 2ξ = 0, (10)

2ik0n‖
∂Y

∂z
+
∂2Y

∂x2
+
n2
‖

n2
⊥

∂2Y

∂y2
− k20ǫaY sin2 ξ

+
1

2
k20ǫaXe

−ik0(n‖−n⊥)z sin 2ξ = 0, (11)

K∇2ξ +
1

4
ǫ0ǫa

[

2
(

|X |2 − |Y |2
)

sin 2ξ

+2ReXY ∗e−ik0(n‖−n⊥)z cos 2ξ
]

= 0. (12)

This intuitive compensation of leading order diffraction
and nonlinearity can be formalised through a coordinate
scaling analysis. Due to ǫa being small, the x and y scales
of the solitary wave are long. So we can set the long wave
spatial scales as x̄ =

√
ǫax and ȳ =

√
ǫay, with z̄ = ǫaz.

The full equations (6)–(8) are then transformed to these
new, slowly varying space variables. Keeping only the
first order, O(1), terms and making the paraxial approx-
imation (9) yields the equations (10)–(12) (transformed
back to (x, y, z) from (x̄, ȳ, z̄)).
Moreover, the equations can be set in non-dimensional

form using the re-scaled space variables

z̃ =
k0ǫa
n⊥

z, x̃ = k0
√
ǫay, ỹ = k0

√
ǫay. (13)

These non-dimensional variables are the long wave vari-
ables (x̄, ȳ, z̄) scaled by the wavenumber k0. The electric
fields can be non-dimensionalised on an input wavepacket
of power Pb, amplitude Ab and width Wb, so that Ey =
AbX and Ey = AbY . For a Gaussian beam, the ampli-
tude scale Ab is determined from the power by

Pb =
π

2
CA2

bW
2
b , C =

1

2
ǫ0cne. (14)

Applying this non-dimensionalisation, Eqs. (10)–(12) be-
come

2i
∂X

∂z̃
+
∂2X

∂x̃2
+
∂2X

∂ỹ2
+X sin2 ξ

+
1

2
Y e

iz̃
1+γ sin 2ξ = 0, (15)

2iγ
∂Y

∂z̃
+
∂2Y

∂x̃2
+ γ2

∂2Y

∂ỹ2
− Y sin2 ξ

+
1

2
Xe

−iz̃
1+γ sin 2ξ = 0, (16)

ν∇2ξ +
(

|X |2 − |Y |2
)

sin 2ξ + 2Re
(

XY ∗e
−iz̃
1+γ

)

cos 2ξ

= 0, (17)
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FIG. 2: Evolution of beam and transverse director orientation
for an in-phase initial excitation with aX0 = aY 0 = 1.3, σX0 =
σY 0 = 0. (a) Numerical solution of equations (15)–(17) versus
z. Red (solid) line: total amplitude ab; black (dashed) line:
amplitude aX of X; pink (dashed) line: amplitude aY of Y ;
blue (dotted) line: director angle amplitude α, (b) same as
(a), but for solution of the full modulation equations (23)–(31)
with same line types. Lines with symbols: solution (32)–(36)
of the approximate modulation equations; (c) numerical X
evolution through ỹ = 0, (d) numerical X evolution through
x̃ = 0, (e) numerical Y evolution through ỹ = 0, (f) numerical
Y evolution through x̃ = 0, (g) colour plot of beam intensity

cross-sections
√

|X|2 + |Y |2 calculated numerically at fixed
propagation intervals.

where

γ =
n‖

n⊥
, ν =

4Kk20
ǫ0A2

b

. (18)

These scalings, applied to the material and geometry out-
lined earlier, correspond to typical dimensionlesss nonlo-
cality ν = 600, anisotropy γ = 1.13, thickness L = 200
and input waists wX0 = wY 0 = 12, which are used to
obtain the results presented in the following. The non-
dimensional equations (15)–(17) have the Lagrangian for-
mulation

L = i (X∗Xz̃ −XX∗
z̃ )− |Xx̃|2 − |Xỹ|2 (19)

+ iγ (Y ∗Yz̃ − Y Y ∗
z̃ )− |Yx̃|2 − γ2|Yỹ|2 −

1

2
ν|∇ξ|2

+Re
(

XY ∗e−
iz̃

1+γ

)

sin 2ξ + sin2 ξ
(

|X |2 − |Y |2
)

.

Unfortunately, there are no known solitary wave solu-
tions of the reduced system (15)–(17), as for the nematic
equations [18]. In these cases, other than using numerical
methods to find solitary wave solutions, variational ap-
proximations have proved to be useful and give results in
good agreement with numerical and experimental results
[7, 18, 59, 60]. The Gaussian approximations

X =
(

aXe
−r2/w2

X + igX

)

eiσX ,

Y =
(

aY e
−r2/w2

Y + igY

)

eiσY ,

ξ = αe−r2/β2

, (20)

with r2 = x̃2+ ỹ2, are appropriate for variational approx-
imations to nematicons, where the parameters aX , aY ,
wX , wY , σX , σY , gX and gY are functions of z̃ [18]. The
trial functions for the electric fields X and Y have space
independent terms igX and igY . The beam components
oscillate as they propagate, which generates diffractive
radiation, forming a shelf under them [59]. These shelf
terms igX and igY represent the long wavelength radi-
ation produced in the vicinity of the beam, whose exis-
tence and spatially independent form was shown from the
inverse scattering method applied to the NLS equation
[59]. The shed radiation away from the beam is not dealt
with here [59, 60] as it has appreciable effects exclusively
on long z̃ scales [60]. The radiation shelves under the
beam can be assumed as circles of radii ℓX and ℓY under
X and Y , respectively [59, 60]. Note that the inclusion
of the radiation generated by the evolving beam is an
alternative to the chirp method of Anderson [61].
Since the ỹ-component electric field equation (16) has

non-symmetric x̃ and ỹ diffraction coefficients, the trial
function for Y in (20) should have different widths in
x̃ and ỹ, wY x̃ and wY ỹ. Indeed, numerical solutions
show that even if the initial components have circular
cross-section, they evolve to an elliptic shape, see Fig.
2(g). Even though the trial functions (20) could be ex-
tended to have different widths wXx̃ and wXỹ in x̃ and
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FIG. 3: Evolution of beam and transverse orientation of optic
axis for an excitation with aX0 = aY 0 = 1.3, wX0 = wY 0 =
12, σX0 = −π, σY 0 = 0. (a) Numerical solution of Eqs. (15)–
(17) versus z. Red (solid) line: total amplitude ab; black
(dashed) line: amplitude aX of X; pink (dashed) line: ampli-
tude aY of Y ; blue (dotted) line: director amplitude α, (b)
same as (a), but for approximate solution (32)–(36) of mod-
ulation equations, (c) numerical X evolution through ỹ = 0,
(d) numerical X evolution through x̃ = 0, (e) numerical Y
evolution through ỹ = 0, (f) numerical Y evolution through
x̃ = 0.

ỹ for X and, likewise, different wY x̃ and wY ỹ for Y , this
would significantly increase the complexity of the result-
ing modulation equations, with only marginal changes
in their solution as ǫa is small, γ ∼ 1. Hence, for the
sake of simplicity, the circular trial functions (20) will be
employed in the following.

The trial functions (20) are substituted into the La-
grangian (19), which is then averaged by integrating in
x̃ and ỹ from −∞ to ∞ [2], noting that the beam pa-
rameters aX , aY , wX , wY , α, β, σX and σY depend on
z̃. However, it is not possible to calculate the averag-
ing integrals for the terms involving sin2 ξ and sin 2ξ in
(19), so another convenient assumption is that the direc-
tor angle |ξ| is small and the trigonometric functions can
be expanded to their first terms in Taylor series. The
resulting modulation equations provide solutions in good
agreement with numerical integration of the full equa-
tions (15)–(17). The averaged Lagrangian L is then

1

π
L = −

(

a2Xw
2
X + 2ℓXg

2
X

)

σ′
X + 2w2

XgXa
′
X

+ 4aXwXgXw
′
X − 2aXw

2
Xg

′
X − a2X

− γ
(

a2Y w
2
Y + 2ℓY g

2
Y

)

σ′
Y + 2γw2

Y gY a
′
Y

+ 4γaYwY gY w
′
Y − 2γaYw

2
Y g

′
Y − 1

2

(

1 + γ2
)

a2Y

+
2

D
αaXaY w

2
Xw

2
Y β

2 cos θ − 1

2
να2

+
1

2
α2

[

a2Xw
2
Xβ

2

β2 + w2
X

− a2Y w
2
Y β

2

β2 + w2
Y

]

. (21)

Here

D = β2w2
X + β2w2

Y + w2
Xw

2
Y , θ =

z̃

1 + γ
− σX + σY .

(22)
Taking variations of the above averaged Lagrangian with
respect to all the parameters, except the director width
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FIG. 4: Evolution of beam and transverse director orientation
for an initial excitation with aX0 = aY 0 = 1.3, σX0 = π/2,
σY 0 = 0. (a) Numerical solution of Eqs. (15)–(17) versus z.
Red (solid) line: total amplitude ab; black (dashed) line: am-
plitude aX of X; pink (dashed) line: amplitude aY of Y ; blue
(dotted) line: director orientation amplitude α, (b) same as
(a), but for solution of the full modulation equations (23)–(31)
with same line types. Lines with symbols: solution (32)–(36)
of the approximate modulation equations, (c) numerical X
evolution through ỹ = 0, (d) numerical X evolution through
x̃ = 0, (e) numerical Y evolution through ỹ = 0, (f) numerical
Y evolution through x̃ = 0, (g) colour plot of beam intensity
cross-sections at fixed propagation intervals.

β, gives the modulation equations

d

dz̃

[

a2Xw
2
X + 2ℓ2Xg

2
X

]

=

− 2αaXaY w
2
Xw

2
Y β

2

D
sin θ, (23)

γ
d

dz̃

[

a2Y w
2
Y + 2ℓ2Y g

2
Y

]

=

2αaXaY w
2
Xw

2
Y β

2

D
sin θ, (24)

d

dz̃
aXw

2
X = ℓ2XgX

dσX
dz̃

, (25)

d

dz̃
aY w

2
Y = ℓ2Y gY

dσY
dz̃

, (26)

dgX
dz̃

=
aX
2w2

X

(27)

− 2αaY w
2
Y β

2

D2

(

w2
Xβ

2 − w2
Y β

2 + w2
Xw

2
Y

)

cos θ,

γ
dgY
dz̃

=

(

1 + γ2
)

aY

4w2
Y

(28)

− 2αaXw
2
Xβ

2

D2

(

w2
Y β

2 − w2
Xβ

2 + w2
Xw

2
Y

)

cos θ,

dσX
dz̃

=
−2

w2
X

+
2αaY w

2
Xw

2
Y β

2

aXD2

(

β2 + w2
X

)

cos θ,(29)

γ
dσY
dz̃

= −1 + γ2

w2
Y

+
2αaXw

2
Xw

2
Y β

2

aYD2

(

β2 + w2
Y

)

cos θ, (30)

plus the algebraic equation

α =
2aXaY w

2
Xw

2
Y β

2 cos θ

D [ν − β2∆]
, ∆ =

a2Xw
2
X

β2 + w2
X

− a2Y w
2
Y

β2 + w2
Y

,

(31)
for the amplitude of the director (re)orientation. In prin-
ciple, these equations are completed by taking variations
of the averaged Lagrangian with respect to β in order to
determine the width of the director reorientation. How-
ever, away from the components X and Y , the solution
of the director equation (17) varies as ln r, which is one
of the homogeneous solutions of Laplace’s equation. This
means that the appropriate width of the director response
is not that given by the variational equation for β, as
the trial function for the director is based on a Gaus-
sian, but the thickness L of the NLC cell. We then set
β = L/(2

√
ln 100), so that the angular director response

(20) falls to 0.01 of its value in the centre and the bound-
ary condition is approximately satisfied. It should be
stressed again that the results do not depend significantly
on this approximation to the boundary condition. In pre-
vious applications of this Lagrangian technique, the di-
rector distribution decayed exponentially away from the
beam due to the director being pre-tilted by an external
electric field, so that the boundary condition was auto-
matically satisfied [18, 60]. The trial function (20) for ξ
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then represents the director distribution directly forced
by the beam. However, it does not include the ln r be-
haviour away from the beam, because owing to the ex-
ponential decay this contributes negligibly to the beam-
director interaction when averaging the Lagrangian (19).

The modulation equations (23) and (24) model the
power of the components X and Y . Adding them shows
that the total light power is conserved, although the
power cycles between the two components, causing them
to oscillate in amplitude and width. The inclusion of
the radiation shelf, the gX and gY terms in the trial
functions (20), is vital to obtain consistent modulation
equations which yield physical results and agree with nu-
merical solutions. By neglecting the radiation shelf and
setting gX = 0 and gY = 0 in Eqs. (27) and (28), when
α is substituted from (31), these modulation equations
would become singular for cos θ = 0. The circulating
radiation into and out of the shelf as the beam evolves
stops this unphysical singularity and causes the ampli-
tudes and widths to oscillate between non-zero limits, in
agreement with numerical solutions. The final quantities
to be determined are the shelf radii ℓX and ℓY , evaluated
by matching the solitary wave phase to the oscillation pe-
riod of the modulation equations around their fixed point
[59, 60]. However, this leads to highly involved expres-
sions. As the shelf radii are proportional to the widths
wX and wY [59, 60], we picked the pertinent factor to
match modulation and numerical solutions for a partic-
ular parameter choice and then fixed it for all other so-
lutions [62, 63]. We thus set the values ℓX = 0.3wX and
ℓY = 0.3wY .

In general, the modulation equations (23)–(31) need
to be solved numerically. If the oscillations in the com-
ponents are small, little radiation is fed into the shelves
under the beam and |gX | and |gY | can be assumed small,
as well [7, 59, 60]. In this case, Eqs. (23)–(31) can be
solved to yield, to O(|α|),

aX = aX0 −
aX0a

2
Y 0w

2
X0w

4
Y 0β

4

D2
0ψ(ν − β2∆0)

[cos 2(ψz̃ − σX0 + σY 0)

− cos 2 (σX0 − σY 0)] , (32)

aY = aY 0 +
a2X0aY 0w

4
X0w

2
Y 0β

4

γD2
0ψ(ν − β2∆0)

[cos 2(ψz̃ − σX0 + σY 0)

− cos 2 (σX0 − σY 0)] , (33)

wX = wX0 +
a2Y 0w

3
X0w

4
Y 0β

4

2D2
0ψ(ν − β2∆0)

[cos 2(ψz̃ − σX0 + σY 0)

− cos 2 (σX0 − σY 0)] , (34)

wY = wY 0 −
a2X0w

4
X0w

3
Y 0β

4

2γD2
0ψ(ν − β2∆0)

[cos 2(ψz̃ − σX0 + σY 0)

− cos 2 (σX0 − σY 0)] , (35)

α =
2aX0aY 0w

2
X0w

2
Y 0β

2

D0 (ν − β2∆0)
cos(ψz̃ − σX0 + σY 0), (36)
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FIG. 5: Evolution of beam and transverse director orientation
for an input excitation with aX0 = aY 0 = 1.3, σX0 = π/3,
σY 0 = 0. (a) Numerical solution of Eqs. (15)–(17) versus
z. Red (solid) line: total amplitude ab; black (dashed) line:
amplitude aX of X; pink (dashed) line: amplitude aY of Y ;
blue (dotted) line: director angle amplitude α, (b) same as
(a), but for approximate solution (32)–(36), (c) numerical X
evolution through ỹ = 0, (d) numerical X evolution through
x̃ = 0, (e) numerical Y evolution through ỹ = 0, (f) numerical
Y evolution through x̃ = 0, (g) colour plot of beam intensity
cross-section at fixed propagation intervals.
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where

ψ =
1

1 + γ
+

2

w2
X0

− 1 + γ2

γw2
Y 0

. (37)

The subscript 0 denotes quantities at z̃ = 0. This approx-
imation agrees well with numerical solutions, as long as
the components do not evolve far from their initial state.
It shows that the only effect of an initial phase difference
between X and Y is a shift of their oscillations and the
director oscillation, without changes in amplitudes and
periods.These basic findings for the evolution of beam
and director reorientation based on modulation theory
will be confirmed below through comparisons with nu-
merical solutions of the paraxial equations (15)–(17).

RESULTS AND DISCUSSION

Figure 2 shows a set of results for equal amplitude,
in-phase input components X and Y , comparing full
numerical solutions of Eqs. (15)–(17) with those of the
modulation equations (23)–(31) and the approximate so-
lutions (32)–(36). This case corresponds to a linearly
polarized input beam, with electric field initially oscillat-
ing at π/4 in the plane (x̃, ỹ) and therefore producing a
strong nonlinear response [14], at variance with purely
extraordinary (ordinary) waves polarized along ỹ (x̃), as
they induce no reorientation based on Eq. (1) below the
Freédericks threshold [13]. The initial conditions for X
and Y are the trial functions (20) and the amplitudes aX ,
aY and widths wX , wY chosen so that the beam ampli-
tude |(X,Y )| undergoes minimal adjustments down the
NLC sample. Figs. 2(a) and (b) show the total beam
amplitude ab, the amplitudes of its x̃ and ỹ components
and the amplitude of the director reorientation, respec-
tively. The various solutions show substantial agreement
of theory and numerics despite the approximations, even
though some small discrepancies are visible, particularly
in the detailed evolution of the amplitudes and the pe-
riodicity of the nonlinear director modulation. The in-
herent physics, stemming from a periodic orientation of
the optic axis in the transverse plane (x̃, ỹ) about its ini-
tial alignment along ỹ, with the geometric phase yielding
phasefront curvature and self-focusing, emerges clearly
from the model. The role of the geometric phase, previ-
ously described by polarimetry and the Poincaré sphere
using the Jones calculus and the Stokes parameters (see
Refs. [64, 65] and references therein), is clearly mani-
fested through the evolution of beam size and amplitude
owing to self-trapping. The solitary wave is transversely
confined despite propagation in a uniform index environ-
ment and, as pointed out for the 1D case in Ref. [51],
it oscillates in width and amplitude versus z̃ (Figs. 2(c–
f)) owing to the phase velocity mismatch between eigen-
polarizations (birefringence). The beam intensity evolves

to an elliptic cross-section owing to the lack of circular
symmetry around z̃ (Fig. 2(g)).
The full modulation solution for the overall amplitude

is in excellent agreement with the numerical result, in-
cluding the slight decay versus z̃. The approximate mod-
ulation solution (32)–(36) agrees well also, but it oscil-
lates about the initial amplitude without the slight de-
cay versus z̃. The agreement between X and Y ampli-
tudes given by the numerical and modulation solutions is
also satisfactory, although the modulation amplitude has
larger oscillations. The full and approximate modulation
solutions for X and for Y match quite well; the curves
for Y are not displayed to avoid cluttering Fig. 2(b). The
amplitude of the director oscillation is correctly predicted
by the modulation theory, with the modulation period
slightly shorter than the numerical one.
Figures 2(c)–(g) display cross-sections of each evolv-

ing component and snapshots of the beam intensity. In
Fig. 2(g) we plotted values for which

√

|X |2 + |Y |2 ≥
0.5

√

a2X + a2Y . Out of phase oscillations of the ampli-
tudes and widths of X and Y can be appreciated, as pre-
dicted by the modulation theory, while the beam evolves
from its initially circular profile to an elliptic shape with
the major axis in the ỹ direction. This can be attributed
to the ỹ diffraction coefficient γ2 in Eq. (16) being dif-
ferent to that for X (Eq. 15). This, discussed above for
the choice of the trial functions for X and Y , suggests
that the ỹ width of Y should be γ = n‖/n⊥ = 1.13 times
that of X . The ratio of the numerical ỹ widths of Y and
X oscillates between 0.96 and 1.22 during propagation,
in agreement with theory. In addition, the ratio of the
ỹ and x̃ widths of the total beam (X,Y ) in Fig. 2(g)
monotonically increases to 1.16 at z̃ = 100.
Figure 3 displays similar results as in Fig. 2, but for

an initial phase difference of π between components, i.e.,
a linear input polarization with electric field at −π/4.
Consistent with the inherent physics of the all-optical re-
orientation of neutral molecules, the approximate mod-
ulation solution (32)–(36) predicts that the amplitudes
and widths evolve in an identical manner to that for the
in-phase components, with the director oscillations sim-
ply shifted by π. This is borne out by the numerical
solutions in Figs. 3(a) and (c)–(f). The equivalent of the
beam evolution in Fig. 2(g) is redundant and is not dis-
played.
Figure 4 presents solutions and comparisons for an ini-

tial phase difference of π/2, i.e., a circularly polarized
input.The numerical solutions show that the total beam
amplitude ab and the component amplitudes aX and aY
slightly increase versus z̃; the director oscillates uniformly
with the same amplitude as in Fig. 2 and Fig. 3. The
amplitude trend can be explained from panels (c)–(f),
showing that X and Y have constant x̃ widths, but a
contraction in the ỹ widths, which translates into an am-
plitude growth due to power conservation. This asym-
metric evolution of the profile can also be observed in
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FIG. 6: Evolution of beam and transverse director orien-
tation for an initial excitation with in-phase components
σX0 = σY 0 = 0 and aX0 = 1.7, aY 0 = 0.7. (a) Numerical
solution of Eqs. (15)–(17) versus z. Red (solid) line: total
amplitude ab; black (dashed) line: amplitude aX of X; pink
(dashed) line: amplitude aY of Y ; blue (dotted) line: direc-
tor angle amplitude α, (b) same as (a), but for approximate
solution (32)–(36) of modulation equations, (c) numerical X
evolution through ỹ = 0, (d) numerical X evolution through
x̃ = 0, (e) numerical Y evolution through ỹ = 0, (f) numerical
Y evolution through x̃ = 0, (g) colour plot of beam intensity
cross-section at fixed propagation intervals.

Fig. 4(g) calculated up to z̃ = 300. The total beam pro-
file oscillates as the beam propagates down the cell. The
beam initially contracts across ỹ and becomes distinctly
elliptical, but the ỹ width then expands again, with this
process repeating so that the beam ellipticity oscillates
down the cell. The ỹ widths of X and Y in Figs. 4(d)
and (f) mirror this elliptical evolution of the profile. As
for the in-phase (and π out-of-phase) field inputs, the
approximate and full solutions of the modulation equa-
tions are in good agreement, with some deviation versus
z̃, as expected. The modulation solution Y has a rise in
amplitude similar to the numerical solution, while the X
amplitude decreases, resulting in a nearly constant total
amplitude.

Figure 5 presents the solutions for a π/3 initial phase
difference. The results are similar to those for the π/2
phase case (Fig. 4), except for the expected initial trans-
lation of the director modulation and the details of the
evolution. In particular, the beam cross-section again
oscillates in ellipticity as the beam propagates down the
cell. The solutions of the full modulation equations are
not shown for the sake of visual clarity.

Finally, we studied the formation of spin-optical soli-
tons when the input consisting of in-phase components,
of equal profile and waists, but power imbalanced by a
factor of 6. The latter was arbitrarily chosen to provide
a substantial intensity mismatch. Fig. 6 shows the re-
sults for an input with x̃ and ỹ component powers in the
ratio 6:1. As the X field is stronger than the Y and the
input is linearly polarized, strong reorientation of the op-
tic axis occurs and affects the polarization evolution, i.e.,
the resulting geometric phase. The spin-orbit interaction
produces more marked self-focusing of both components
across ỹ, as visible in Figs. 6(d) and 6(f). Noteworthy,
the solitary profile assumes an elliptical shape with a pe-
riodic evolution in ellipticity, as seen in Fig. 6(g), over an
extended propagation distance, as noted for the π/2 and
π/3 phase differences for components of equal power.

An opposite trend can be observed in Fig. 7 for the
formation of spin-optical solitons when the input compo-
nents are in-phase, but with powers mismatched in the
ratio 1:6, i.e., with Y larger than X . Nonlinear reori-
entation is substantially reduced in amplitude and pe-
riod, both for the numerical and modulation solutions
(see Figs. 7(a)–(b)). Correspondingly, the numerical am-
plitudes tend to decay because self-focusing is weaker, as
can be observed in Figs. 7(c)–(f). Also, the solitary wave
profile assumes a distinctly elliptical shape with a peri-
odic evolution in ellipticity, as visible in Fig. 7(g) over
z̃ = 200. The ratio of the ỹ widths of the Y and X com-
ponents oscillates between 0.98 to 1.33, i.e., around the
theoretical value γ = n‖/n⊥ = 1.13. In contrast to the
equal component power cases, however, the ratio of the ỹ
and x̃ widths of the total beam (X,Y ) in Fig. 7(g) grows
monotonically from 1 at z̃ = 0 to 2.69 at z̃ = 200. The
evolution of profile ellipticity is a remarkable peculiar
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feature of these spin-optical solitons, deserving further
investigation.

CONCLUSIONS

Spin-orbit interactions of light in optically anisotropic
dielectric media encompass a wealth of effects and phe-
nomena. When all-optical reorientation is available, as
in nematic liquid crystals, nonlinear periodic changes in
transverse orientation of the optic axis, together with the
accumulation of a geometric Pancharatnam-Berry phase
stemming from point-to-point beam polarization evolu-
tion, can lead to self-confinement and spatial solitary
waves even in the absence of changes in refractive indices.
Is it worth noting that spin-optical solitons stemming
from nonlinearity and non-uniform changes in polariza-
tion state recall the “quadratic cascading” which occurs
in parametric optical interactions, for which velocity mis-
matched fundamental and generated frequency compo-
nents exchange energy in a periodic fashion, while acquir-
ing a net relative phase. Even though after a period (beat
length) all the energy can be retrieved back at the initial
frequencies, the pointwise (amplitude dependent) non-
linear distortion of the phasefront can lead to transverse
confinement and the formation of quadratic solitons (or
“simultons”) with no associated refractive index waveg-
uides [3, 57, 58, 66–68]. An in-depth study of the formal
connection between such rather diverse nonlinear mech-
anisms is worth pursuing, as a wealth of other physical
effects could benefit from the gained understanding, both
in terms of models, numerical techniques and solutions
and the role of physical features, particularly nonlocality
and periodicity. We have numerically and theoretically
investigated spin-optical solitons in nematic liquid crys-
tals, studying a planar configuration with purely trans-
verse orientation of the molecular director with respect
to the propagating beam wavevector. Spin-optical soli-
tons are self-confined solutions connected with a longitu-
dinally modulated orientation of the symmetry axis: they
exhibit periodically evolving polarization state, widths
and peak amplitudes, profile ellipticity, for all the inves-
tigated input configurations at normal incidence, includ-
ing relative phase and amplitudes. Self-confinement is
weakly dependent on the initial polarization state, ex-
cept for those cases in which either nonlinear reorienta-
tion does not take place (pure extraordinary or ordinary
eigenwaves) or is weakly effective (stronger field compo-
nent along the optic axis at rest). Other peculiar features
of these PB-phase solitons include a transverse profile
with elliptical shape and varying ellipticity, which will
be analysed and discussed in a forthcoming publication
with reference to both field components. In addition, the
role of longitudinal nonlocality in the medium needs be
addressed, as it is expected to affect the response to light
beams and their polarization state evolution, intervening
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FIG. 7: Evolution of beam and transverse director orientation
for an initial excitation with in-phase components and aX0 =
0.7, aY 0 = 1.7. (a) Numerical solution of (15)–(17) versus
z. Red (solid) line: total amplitude ab; black (dashed) line:
amplitude aX of X; pink (dashed) line: amplitude aY of Y ;
blue (dotted) line: director amplitude α, (b) same as (a), but
for approximate solution (32)–(36), (c) numerical X evolution
through ỹ = 0, (d) numerical X evolution through x̃ = 0,
(e) numerical Y evolution through ỹ = 0, (f) numerical Y
evolution through x̃ = 0, (g) colour plot of beam intensity
cross-section at fixed propagation intervals.
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on some of the features of these fascinating spin-optical
solitons.
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