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Phase behaviour of the quantum Lennard-Jones solid

H. Wiebe,1, a) T. L. Underwood,2 and G. J. Ackland1

1)School of Physics & Astronomy, The University of Edinburgh, Edinburgh,

EH9 3JZ, United Kingdom.
2)Department of Chemistry, University of Bath, Bath, BA2 7AY,

United Kingdom.

The Lennard-Jones potential is perhaps one of the most widely-used models for the

interaction of uncharged particles, such as noble gas solids. The phase diagram of the

classical LJ solid is known to exhibit transitions between hcp and fcc phases. However,

the phase behaviour of the quantum Lennard-Jones solid remains unknown. Thermo-

dynamic integration based on path integral molecular dynamics and lattice dynamics

calculations are used to study the phase stability of the hcp and fcc Lennard-Jones

solids. The hcp phase is shown to be stabilized by quantum effects in PIMD while fcc

is shown to be favoured by lattice dynamics, which suggests a possible re-entrant low

pressure fcc phase for highly quantum systems. Implications for the phase stability of

noble gas solids are discussed. For parameters equating to Helium, the expansion due

to zero-point vibrations is associated with quantum melting: neither crystal structure

is stable at zero pressure.

a)Electronic mail: h.wiebe@ed.ac.uk
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I. INTRODUCTION

Since its inception in 1924, the Lennard-Jones (LJ) potential,1

ULJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (1)

has remained the canonical model for short-ranged particle interactions. The properties of

this potential are uniquely defined due to the presence of only two parameters, σ and ε,

which set the length and energy scales respectively. Despite this simplicity, the LJ system

shows remarkably rich phase behavior, including transitions between hexagonal close packed

(hcp) and face-centered cubic (fcc) solids.2–7 For the classical system hcp is the most stable

phase at low temperature and pressure conditions, with fcc becoming preferred upon heating

and/or compression. However, the free energy differences between hcp and fcc are small,

and careful calculation of long-range interactions as well as both harmonic and anharmonic

thermal effects are important.8,9

The attractive 1/r6 part of the potential describes van der Waals interactions, making

it suitable for studying the noble gas elements. Indeed, at low pressures the heavy noble

gas elements such as Ar, Xe and Kr10,11, as well as small molecules like methane,12 are well

described as classical particles interacting via the LJ potential. However, as the density of

the system is increased or the mass of the particles is decreased, quantum effects become

increasingly important. He, the lightest of the noble gas elements, is dominated by quantum

effects. This has motivated investigations into the quantum LJ system, which is far more

complicated than the classical system. For one thing the uniqueness of the phase diagram is

lost: in the quantum system there is an additional free parameter, h̄2/2m, which corresponds

to the "quantumness" of the particles.13

The solid phase of the quantum LJ system has been investigated using a number of

computational methods.13–23 These include quasi-harmonic lattice dynamics (QHLD), clas-

sical molecular dynamics, and path-integral methods. QHLD24 captures effects such as the

zero-point energy which are inaccessible to classical methods. However, it cannot capture

anharmonic effects associated with interacting phonons, something well known to play an

important role in quantum crystals21,25,26. Path integral methods27,28 do not suffer from this

shortcoming, capable in principle of providing exact properties of quantum systems. These

methods exploit the path integral formulation of quantum mechanics, and sample the con-

figuration space of the quantum system using molecular dynamics (PIMD) or Monte Carlo.
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However, the downside of these methods is that they are more computationally demanding

than QHLD.

The focus of previous studies has been on properties such as the thermal expansion and

heat capacity of the quantum LJ solid. These studies all assumed fcc to be the stable solid

phase. However, as mentioned above, the classical LJ solid exhibits regions of both fcc

and hcp stability, and thus the expectation is that the phase diagram of the quantum LJ

solid should also exhibit both these phases. Interestingly, an exploration of the solid phase

diagram in this system has not yet been undertaken. Experimentally, while there is some

uncertainty with regards to the question of hcp vs. fcc stability in Ne, Ar, Kr and Xe at

low pressures, it appears that the fcc phase is at least metastable in these systems.29 By

contrast, He is exceptional in that hcp is the observed phase (notwithstanding a small region

of bcc stability near melting at low pressures).26 It is not known why He readily takes the

hcp structure. One might speculate that quantum effects somehow act to stabilise the hcp

structure, and that the effect is more pronounced in He than the heavier noble gas elements

due to its high quantumness. An investigation into the phase behaviour of the quantum LJ

solid will shine light on this.

Here, we use PIMD in combination with QHLD to determine the phase diagram of the

quantum LJ solid, focusing on low pressure regime. We determine the relative stability of

hcp and fcc for a range of quantumnesses, ranging from the classical limit to that comparable

to He. In Section II we describe our model for the LJ solid, including approximations utilised

in our calculations. Full descriptions of the PIMD and QHLD methodologies employed are

provided in the supplementary materials. Results of our PIMD calculations are presented

in Section III, followed by results of our QHLD calculations in Section IV. In Section V

we reconcile the PIMD and QHLD results and discuss their implications for the noble gas

elements. Finally, in Section VI we restate our main conclusions.

II. MODEL

We consider a system of N distinguishable quantum particles interacting via the LJ

potential (Eqn. 1). We emphasise that we do not consider exchange effects, which in the

LJ solid are expected to be insignificant for the range of quantumnesses we consider.13,30

Further justification for this assumption is provided in the supplementary material. In
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addition, the systems we consider are perfect crystals without point defects such as vacancies

or intersitials. Defects have been shown to be important for the observation of supersolid

behaviour in quantum systems,31 but would not affect the relative stability of hcp and fcc

phases and are therefore not included here.

A. Reduced units

As the length and energy scales are set by the σ and ε parameters, it is convenient to

define all physical properties of the system in terms of dimensionless reduced units, as in

Table I. The inclusion of quantum effects adds a second lengthscale to the system: the

TABLE I. Reduced units defined in terms of model parameters σ and ε.

Quantity Expression

Length r∗ = r/σ

Energy E∗ = E/ε

Free energy F ∗ = F/ε

Temperature T ∗ = kBT/ε

Density ρ∗ = ρσ3

Pressure P ∗ = Pσ3/ε

Time t∗ = t
√
ε/(mσ2)

Quantumness Λ∗ = h̄/(σ
√
mε)

de Boer parameter32 Λ∗. This is a dimensionless quantity which describes the relationship

between the particle diameter σ and the de Broglie wavelength of particles with energy ε.

Large values of Λ∗ indicate a more delocalized quantum system, while Λ∗ = 0 corresponds

to the classical limit. In this unit system, the mass of the particle m is a dimensionless

parameter uniquely defined by the value of Λ∗, σ and ε. For the noble gases Λ∗ ranges from

≈ 0.01 (for Xe) to ≈ 0.4 (for He).26 Thus we consider the range Λ∗ = 0 to 0.4 in this work.
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B. Truncation scheme

In MD simulations it is necessary to truncate the potential interactions in order to

avoid artefacts due to self-interaction through the periodic boundary. Previous work3,8,9

has demonstrated that for the classical LJ solid one must take great care with regards to the

truncation scheme and the treatment of the long-range interactions. The most commonly-

used scheme is to shift the potential so that it is continuous at some cutoff radius r∗c :

USTS(r∗) =

ULJ(r
∗)− ULJ(r

∗
c) if r∗ < r∗c

0 if r∗ > r∗c .
(2)

This treatment, referred to as the spherically truncated and shifted (STS) model, avoids

errors from discontinuous jumps in the potential but it fails to account for the interactions

occurring beyond r∗c . It therefore displays differing phase behaviour from the "true" LJ

potential.3 Conventional tail corrections,33 which assume that the radial distribution function

g(r∗) is uniform and equal to 1 at r∗ > r∗c , are not useful for our purposes because they are

independent of the crystal structure.

Instead, the contributions of these long-range interactions to the total energy of the sys-

tem can be accounted for using what we will refer to here as the ground state perturbation

(GSP) model.3 Here the ground state of the LJ system, where all particles reside on their lat-

tice sites, is treated exactly and only the excitations of the system are subject to truncation.

To do so, we introduce a correction term to the potential:

UGSP(r∗) = USTS(r∗) + ULRC, (3)

where ULRC is defined by

ULRC = UGS(ρ∗)− 1

2

∑
i,j:Rij<rc

USTS(Rij), (4)

UGS(ρ∗) is the ground state energy of the untruncated "true" LJ system at density ρ∗ and

Rij is the inter-particle distance in said ground state. The UGS(ρ∗) term is found from

lattice-summation2,34–36 as

UGS(ρ∗) = 2

[(
ρ∗√

2

)4

A12 −
(
ρ∗√

2

)2

A6

]
. (5)

The A12 and A6 terms have been tabulated for different phases of the LJ solid, and in this

work parameters for the fcc and hcp phases were taken from ref. 37. For simulations in
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the NV T ensemble where density is constant, the ULRC term simply amounts to a constant

shift in the relative fcc and hcp energies and will therefore not affect the dynamics of either

system.

III. PATH INTEGRAL MOLECULAR DYNAMICS

The free energy F ∗ of the quantum LJ system can be calculated from PIMD simulations

by partitioning it into two components:

F ∗ = F ∗c + F ∗q (6)

The classical free energy term F ∗c can be calculated using the standard Einstein crystal

method.38–40 The excess quantum free energy F ∗q term is obtained using mass thermody-

namic integration, as outlined in the supplementary material. As this procedure is quite

computationally expensive, it is not feasible to use it to fully explore the phase diagram

of the quantum LJ solid. Instead, we chose to perform a full calculation of the quantum-

corrected free energy for a single reference point F ∗0 (V ∗0 , T
∗
0 ) and then use Gibbs-Helmholtz

integration of the free energy to generate the rest of the phase diagram. For a given (V ∗, T ∗)

point the free energy can be calculated from the reference point using the thermodynamic

relationships

F ∗(T ∗;V ∗) = T ∗

F ∗0
T ∗0
−

T ∗∫
T ∗
0

U∗(T ∗)

T ∗2
dT ∗

 (7)

for constant volume and

F ∗(V ∗;T ∗) = F ∗0 −
V ∗∫
V ∗
0

P ∗(V ∗)dV ∗ (8)

for constant temperature. PIMD trajectories must still be run to obtain values for U∗(T ∗)

and P ∗(V ∗), but only one trajectory is required for each point instead of a full mass ther-

modynamic integration.

A. PIMD computational details

Classical molecular dynamics and PIMD simulations were performed with LAMMPS41

using the i-PI wrapper.42 Simulations were run with σ = 2.96 Å and ε = 0.00295 eV,
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parameters which have been shown to give good results for PIMC calculations of noble

gas solids.17,18 Systems of 256 Lennard-Jones particles with either the fcc or hcp crystal

structures were initialized at a specified density ρ∗. Trajectories were then initiated in

the NVT ensemble with orthorhombic periodic boundary conditions. Temperature was

kept constant using the stochastic PILE-G thermostat43 with a relaxation time of 0.01 t∗.

Simulations were run at temperatures ranging from T ∗ = 0.10 to 0.50 and ρ∗ = 0.65 to 1.30,

well below the melting curve for the classical LJ solid.44,45 A timestep of 0.001 t∗ was used

for all trajectories, and PIMD calculations were performed with 144 beads. For all phase

diagrams the reference point was chosen to be at T ∗0 = 0.10 and ρ∗0 = 1.07255, which is the

zero-pressure density for the classical LJ solid.

B. Classical free energies

As a starting point for the PIMD calculations, we first determined the classical free energy

term F ∗c at the chosen reference point of T ∗0 = 0.10 and ρ∗0 = 1.07255 using the standard

Einstein crystal method.38–40 The interaction cutoff r∗c was initially chosen to be 2.5, as it

is the most popular choice in the literature. The sensitivity of the F ∗c term to the choice of

cutoff length r∗c was investigated by running simulations with r∗c = 2.2 and 2.8 as well. The

results are listed in Table II, with the phase stability expressed relative to the hcp phase as

∆F ∗c = F ∗c,hcp − F ∗c,fcc. (9)

Predictably, the phase stability of the STS model is highly dependent on the chosen

cutoff,8,9 with r∗c = 2.2 and 2.5 favouring hcp while 2.8 favours fcc. To reduce this cutoff

effect the GSP correction to ∆F ∗c was calculated from the ground state fcc and hcp structures

using Eqn. 4 as ∆U(ρ∗)LRC = Uhcp
LRC(ρ∗hcp) − U fcc

LRC(ρ∗fcc). The resulting correction term and

corrected free energy difference ∆F ∗c,corr = ∆F ∗c + ∆U(ρ∗)LRC is also listed in Table II. The

net result is that the effect of the cutoff length is almost entirely eliminated in the GSP

model, with all systems showing the same ∆F ∗c,corr within error and stabilization of hcp in

all cases.

From here, the rest of the phase diagram up to T ∗ = 0.5 and ρ∗ = 1.30 was calculated

using Eqns. 7 and 8. For systems with different densities it was necessary to scale the cutoff

length so that the same number of neighbour shells were included inside the cutoff for all
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TABLE II. Classical free energy differences for the fcc and hcp phases in units of ε per atom,

obtained using thermodynamic integration at T ∗ = 0.10 and ρ∗0 = 1.07255. Negative values of ∆F ∗c

indicate stability of the hcp phase. Results are shown for the spherically truncated and shifted

(STS) model as well as the correction for the ground state perturbation (GSP model). Errors were

obtained using block averaging.

r∗c

STS GSP

F ∗c,fcc F ∗c,hcp ∆F ∗c ∆U(ρ∗)LRC ∆F ∗c,corr

2.2 −5.33423(4) −5.33667(4) −0.00244(6) 0.00152 −0.00092(6)

2.5 −5.86319(4) −5.87210(4) −0.00892(6) 0.00797 −0.00094(6)

2.8 −6.18448(4) −6.17927(4) 0.00521(6) −0.00618 −0.00097(6)

simulations. This was done relative to the reference point at ρ∗0 = 1.07255 as

r∗c (ρ
∗) = 2.5

(
1.07255

ρ∗

)1/3

. (10)

The resulting phase diagrams are shown in Figure 1 for both the STS and GSP models.

The STS model shows that hcp is stable at low densities and is in agreement with previous

assessments of the phase behaviour of the uncorrected r∗c = 2.5 LJ solid.37 Inclusion of long-

range GSP correction shifts the phase boundary by stabilizing fcc over hcp, and as such

the hcp phase is only stable at low density and temperature. Since the fcc phase has been

shown to have higher entropy than the hcp phase,46–50 it is then perhaps unsurprising that

inclusion of long-range order works to stabilize fcc. All in all, these results demonstrate the

delicate balance between solid phases and the surprising complexity in this simple model.

Further information about the phase stability may be gleaned from a consideration of finite

size effects, but this is beyond the scope of this work.

C. Quantum free energies

The excess quantum free energies ∆F ∗q for each phase were obtained from PIMD using a

13-point mass thermodynamic integration from m = m0 to m =∞ at the chosen reference

point T ∗0 = 0.10, ρ∗0 = 1.07255. The free energy difference

∆∆F ∗q = ∆F ∗q,hcp −∆F ∗q,fcc (11)
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hcp

fcc

hcp fcc

(a)

(b)

-0.001

FIG. 1. Phase diagrams for the classical LJ solid obtained using thermodynamic integration for

(a) the STS model and (b) the GSP-corrected model. Red regions indicate hcp stability, and blue

corresponds to fcc.

between the two phases was monitored and trajectories 150-200 t∗ in length were required

for adequate convergence of this quantity. An example is shown in Figure 2. Five m0 values

were chosen such that the solid ranged in quantumness from Λ∗ = 0.1 to 0.4 (m0 = 20 amu

to 1 amu for the σ and ε values used in this work).

The phase stability of the quantum LJ solid was then calculated using Eqns. 7 and 8

with F ∗0 = F ∗c + ∆F ∗q at the reference point of T ∗0 = 0.10, ρ∗0 = 1.07255. For each Λ∗
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FIG. 2. Convergence of ∆∆F ∗q with respect to PIMD trajectory length for T ∗ = 0.10 and m0 = 1.

An initial equilibration period of 5 t∗ is not included in this plot. The inset shows the convergence

of the individual fcc and hcp ∆F ∗q values.

value, calculations were run from ρ∗ = 1.30 to whichever density gave P ∗ ≈ 0. Note that

only densities where the system remained solid across the whole temperature range were

considered here, thus in some cases it was not possible to reach P ∗ ≈ 0 due to melting at

higher temperature. The resulting phase diagrams are shown in Figure 3 for both the STS

and GSP models. Phase stability is represented as ∆F ∗ = F ∗hcp − F ∗fcc.

The quantum contribution to the pressure is immediately apparent in these plots, since

the highly quantum systems require significantly lower densities to reach P ∗ ≈ 0 than in

the classical case. Even though the GSP model favours fcc more than the STS model, the

inclusion of nuclear quantum effects stabilizes hcp over fcc in both cases. This is evidenced

by the increase in size of the hcp region with increasing quantumness, which is observed even

with a relatively heavy particle at Λ∗ = 0.1. Since these phase diagrams are plotted against

ρ∗, this growth of the hcp region means that the fcc region is being pushed to higher and

higher pressures with increasing quantumness and is therefore being destabilized relative to

hcp. Interestingly, the slope of the phase boundary changes sign at Λ∗ = 0.4. This may be

due to fluctuations in this highly quantum system, or it may indicate a change in the nature

of the phase boundary at high quantumness.
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FIG. 3. Phase diagrams for the quantum LJ solid. As in Figure 1, red regions correspond to hcp

stability and blue correspond to fcc stability. The STS model is shown on the left, and the GSP

model on the right. The columns are arranged in order of increasing quantumness, with Λ∗ = 0 at

the top and Λ∗ = 0.4 at the bottom. Dashed lines correspond to isobars for the hcp phase at P ∗ =

1, 2, 5, 10 & 50. Isobars for the fcc phase are indistinguishable from the hcp phase on the scale of

this plot.
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IV. QUASI-HARMONIC LATTICE DYNAMICS

An alternative assessment of the free energy of the quantum LJ system was obtained

using QHLD. This technique involves using the phonon density of states to calculate physical

quantities such as free energy or pressure. QHLD relies on the harmonic approximation and

so is less accurate than the PIMD, however decomposition into individual phonon modes

provides valuable insight. In QHLD, the free energy difference between hcp and fcc phases

∆F ∗ ≡ F ∗hcp − F ∗fcc is expressed as:

∆F ∗ = ∆U∗GS + ∆F ∗zp +
kBT

∗

N

3N∑
i=1

ln

[
1− e−βh̄ω

hcp
i

1− e−βh̄ωfcc
i

]
, (12)

where ∆U∗GS is the ground state energy of the crystal and ω
hcp(fcc)
i denotes the angular

frequency of the ith phonon for the hcp(fcc) crystal. ∆F ∗zp is the zero-point contribution to

the free energy difference:

∆F ∗zp =
3

2
h̄

(
〈ωhcp〉 − 〈ωfcc〉

)
(13)

where the angled brackets denote the mean phonon frequency. In the classical limit, ∆F ∗zp =

0 and Eqn 12 becomes:

∆F ∗ = ∆U∗GS + 3kBT
∗∆〈lnω〉 (14)

In the quantum zero-temperature limit, Eqn 12 simplifies to:

∆F ∗ = ∆U∗GS + ∆F ∗zp = ∆U∗GS +
3

2
h̄∆〈ω〉 (15)

The above equations can be used to determine ∆F ∗ at a given ρ∗ and T ∗ from the hcp

and fcc phonon densities of states at ρ∗. By considering many ρ∗ and T ∗, the regions of the

ρ∗–T ∗ phase diagram where hcp is stable (∆F ∗ < 0) and where fcc is stable (∆F ∗ > 0) can

be deduced. Moreover, it is also possible to use the hcp and fcc densities of states over a

range of ρ∗ to determine the P ∗–T ∗ phase diagram. This is achieved by first calculating the

hcp and fcc Gibbs free energies as functions of P ∗ and T ∗ via

G∗(P ∗, T ∗) = F ∗(ρ∗′, T ∗) + P ∗(ρ∗′, T ∗)/ρ∗ (16)

where ρ∗′ in this expression is the ρ∗ such that P ∗(ρ∗′, T ∗) = P ∗, and

P ∗(ρ∗, T ∗) = ρ∗2
(
∂F ∗

∂ρ∗

)
T

(17)
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is the pressure at a given ρ∗ and T ∗. Then, the Gibbs free energy difference ∆G∗ = (G∗hcp−

G∗fcc) is evaluated as a function of P ∗ and T ∗. Finally, ∆G∗(P ∗, T ∗) is used to deduce the hcp

and fcc regions of the P ∗–T ∗ phase diagram similarly to above for the ρ∗–T ∗ phase diagram:

∆G∗ < 0 indicates that hcp stable; ∆G∗ > 0 that fcc is stable.

A. QHLD computational details

For our QHLD calculations we used the code GULP51 to calculate phonon density of states

(DoS); and to calculate static crystal energies we used the lattice-sum-based expressions

provided in ref. 3. In the GULP calculations we employed a 12-atom orthorhombic unit cell

for both hcp and fcc. The hcp unit cell corresponded to six planes stacked in the z-direction,

with two particles per plane, and a stacking sequence of ABABAB. The fcc unit cell was

the same except the stacking sequence was ABCABC, this ensures both structures have the

same reduced Brillouin zone. The accuracy and precision of the DoS output by GULP is

determined by how many k-points, Nk-points, are used in sampling the Brillouin zone, and

how many bins Nbins are used in the DoS histogram – which is the key output by GULP for

our purposes. We performed preliminary calculations at ρ∗ = 0.8, 1.07255 and 1.3 in order

to determine appropriate values for these parameters, and found that a Monkhorst-Pack

scheme with 40 grid points along each dimension of the Brillouin zone, and 300,000 bins in

the DoS histogram, was sufficient. To elaborate, these parameters yielded an error for ∆〈ω〉

(associated with numerical integration over the DoS histogram) which was significantly less

than |∆〈ω〉|, ensuring that the calculations had sufficient precision to distinguish which of

hcp and fcc was stable according to the zero-point energy. These parameters also yielded

values for ∆〈ω〉 which were converged with respect to both Nk-points and Nbins. Finally, we

note that we found it necessary to modify GULP’s source code for this work. Specifically,

we increased the number of significant figures used in the output file containing the DoS

histogram; the default output format lacked the precision to reduce the error in ∆〈ω〉 to

what was required for this work.
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B. Initial investigations

The hcp and fcc phonon density of states (DoS) for r∗c = 10.0 at ρ∗ = 1.07255, the density

for the classical LJ solid at T ∗ = P ∗ = 0, are shown in Figure 4. The figure shows that the

hcp DoS has both low and high frequency peaks, while fcc has more intermediate frequency

modes. Moreover, both structures share the same peak at high frequency, though the high-

frequency peak is larger in fcc than hcp. However, despite the qualitatively different shapes

of the densities of states of the two crystals, the mean frequencies and mean log-frequencies,

which, as shown in Eqns 14 and 15, play an important role in determining which of the

structures is stable, are indistinguishable on the scale of this figure. Hence the fine structure

of the DoS must be considered to determine which of hcp and fcc is stable. We return to

this point in a moment.
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FIG. 4. Phonon density of state for the hcp and fcc structures at ρ∗ = 1.07255 for the LJ solid

with r∗c = 10.0.

Preliminary calculations revealed that the hcp and fcc crystals were mechanically unsta-

ble for densities less than ρ∗ = 0.8: at these densities the system exhibited phonons with

imaginary frequencies for all cutoffs considered. Hence, keeping in mind that we are inter-

ested in the low pressure region of the phase diagram, we focused on densities ranging from

ρ∗ = 0.8 to 1.3.
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The hcp pressure is shown as a function of T ∗ over this density range for various Λ∗ in

Figure 5. The fcc pressure is indistinguishable from that of hcp on the scale of this figure.

As expected, increasing the quantumness while fixing the density results in an increase in

the pressure of the system. This is primarily due to zero-point vibrations. To elaborate,

using Eqn. 17, in conjunction with the fact that the zero-point energy is F ∗zp = 3h̄〈ω〉/2 (c.f.

Eqn. 13), the contribution to the pressure from this energy is

Pzp = ρ2

(
∂Fzp

∂ρ

)
T

=
3

2
ρ2∂〈h̄ω〉

∂ρ
. (18)

Noting that ∂〈h̄ω〉/∂ρ is positive and proportional to h̄/
√
m, and hence also Λ∗, it follows

that Pzp is also proportional to Λ∗. Figure 5 also reveals that for Λ∗ = 0.2, 0.3 and 0.4 there

is no mechanically stable hcp or fcc density corresponding to P = 0 in the quasi-harmonic

approximation: the figure implies that the hcp and fcc densities for P = 0 would be achieved

at ρ < 0.8, which, as just mentioned, are mechanically unstable within the approximation.
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FIG. 5. P ∗ vs. ρ∗ for the hcp phase of the LJ solid (r∗c = 10) obtained from QHLD for various Λ∗

and T ∗. The inset shows the low density region in more detail.

To validate our implementation of QHLD we also considered Λ∗ = 0.0103, 0.0166, 0.0296

and 0.0896, which correspond to Xe, Kr, Ar and Ne respectively,16 and compared results for

r∗c = 10 to those of ref. 16. Plots of P ∗ vs. ρ∗ for these Λ∗ at T ∗ = 0 (not shown) were

in good agreement with those given in ref. 16, as were plots of ρ∗ vs. T ∗ at P ∗ = 0 (not
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shown).

C. Sensitivity to cutoff

To investigate the sensitivity of the phase behaviour to r∗c , we focused on ρ∗ = 1.07255.

We considered r∗c = 2.2, 2.5 and 2.8, supplementing our calculations described above for this

density using r∗c = 10. The hcp and fcc DoS for r∗c = 2.2, 2.5 and 2.8 are almost identical to

those shown in Figure 4 (which recall are for r∗c = 10) on the scale of the figure. However,

differences in the fine structure of the DoS for different r∗c have important implications for

the stability of hcp vs. fcc.

Recall that in the zero-temperature limit ∆F depends on the zero-point energy through

the difference in the mean phonon frequencies ∆〈ω〉 ≡ (〈ω〉hcp − 〈ω〉fcc) (Eqn. 15), while

in the classical limit ∆F depends on the difference in the mean log-frequencies ∆〈lnω〉

(Eqn. 14). In Table III ∆〈ω∗〉 and ∆〈lnω∗〉 are compared for various values of r∗c . It can be

seen that ∆〈lnω∗〉 is positive for all r∗c . This implies that vibrational effects act to stabilise

fcc in the classical limit for all considered r∗c . This follows from Eqn. 14: if ∆〈lnω∗〉 > 0,

∆F ∗ increases with T , which corresponds to fcc stabilisation.

By contrast, the sign of ∆〈ω∗〉 depends on r∗c . ∆〈ω∗〉 is negative at r∗c = 2.2, implying

that the zero-point energy of hcp is lower than that of fcc. Since increasing quantumness

increases the size of the zero-point contribution to ∆F ∗ (c.f. Eqn. 13), this means that

increasing quantumness stabilises hcp for r∗c = 2.2 (in the zero-temperature limit). On the

other hand, for r∗c = 2.5, ∆〈ω∗〉 is positive, which implies the opposite, i.e. that fcc is

stabilised by quantum effects. The same is true for r∗c = 2.8 and r∗c = 10.0, though for these

cutoffs ∆〈ω∗〉 is of a smaller magnitude and hence the stabilisation of fcc by quantum effects

is less pronounced than at r∗c = 2.5.

The above discussion is borne out in Figure 6, which shows ∆F ∗ vs. Λ∗ at this density

for various T ∗ and r∗c . Note that for T ∗ = 0 increasing the quantumness increases ∆F ∗

for r∗c = 2.5, 2.8 and 10.0, with a more pronounced increase for r∗c = 2.5; while increasing

quantumness decreases ∆F ∗ for r∗c = 2.2. These trends are in accordance with the values

of ∆〈ω∗〉 for each cutoff described above. Note also that, at Λ∗ = 0, increasing T ∗ increases

∆F ∗, in accordance with the above discussion that ∆〈lnω∗〉 is positive for all r∗c , i.e. that

vibrational effects always stabilise fcc in the classical limit. This is also the case away from
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TABLE III. Differences in the phonon mean frequencies and mean log-frequencies between the hcp

and fcc structures, i.e. ∆〈ω∗〉 and ∆〈lnω∗〉, for the LJ solid at ρ∗ = 1.07255 and various cutoffs r∗c .

A positive value indicates that ∆〈ω∗〉 or ∆〈lnω∗〉 is higher for the hcp structure than for the fcc

structure.

r∗c ∆〈ω∗〉 ∆〈lnω∗〉

2.2 -0.0012 0.0005

2.5 0.0102 0.0013

2.8 0.0021 0.0008

10.0 0.0033 0.0009

the classical limit: thermal effects always act to stabilise fcc.

A key result to be drawn from the above discussion is that the difference in the zero-point

energies of the hcp and fcc structures in the LJ solid is highly sensitive to r∗c , to the point

that changing r∗c can reverse whether hcp or fcc is stablised by increasing the quantumness

of the system. There is no analogous problem in the classical case; the discussion above,

and previous studies, have revealed that changing r∗c does not change the fact that the fcc

structure is stabilised by thermal effects.

D. Phase behaviour

We now consider the phase behaviour for r∗c = 10 over the density range ρ∗ = 0.8 to 1.3.

∆F ∗ vs. ρ∗ is shown in Figure 7 for various Λ∗. The figure shows that increasing quantumness

generally has the effect of stabilising fcc: as Λ∗ is increased, ∆F ∗ also increases. The effect

on the phase diagram is shown in Figure 8, which shows the hcp-fcc phase boundaries for

various Λ∗ in the ρ∗–T ∗ plane. Note that increasing quantumness has the effect of reducing

the size of the hcp region; the hcp region of the phase diagram is "compressed" towards

ρ∗ = 0.8 as Λ∗ is increased.

This behaviour is largely due to the zero-point energy. Recall that for r∗c = 10 we found

for ρ∗ = 1.07255 that the zero-point energy favours fcc: ∆F ∗ZP > 0. The same is true at

all other densities we considered. As the quantumness is increased, ∆F ∗ZP becomes a larger

contribution to ∆F ∗, and therefore fcc becomes increasingly favoured. This is especially
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FIG. 6. hcp-fcc free energy difference, ∆F , from QHLD vs. de Boer parameter, Λ∗, for the LJ solid

at ρ∗ = 1.07255. Each panel corresponds to a different cutoff r∗c .

true at high densities, where, as shown in Figure 7, ∆F ∗ZP is larger than at lower densities,

leading to a more pronounced effect.

Of course, temperature also affects ∆F ∗ through the difference in the vibrational energies.

At low pressures ∆F ∗ZP is smaller and temperature plays a larger role. At very low densities

the phase behaviour is non-trivial: at ρ∗ = 0.84 as Λ∗ is increased there is an increase in

the hcp-fcc transition temperature until Λ∗ = 0.2, followed by a decrease as Λ∗ is increased
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FIG. 7. hcp-fcc free energy difference ∆F vs. ρ for the LJ solid at r∗c = 10 obtained from QHLD,

for various T ∗ and Λ∗.

further.

As can be seen from Figure 5, much of the range covered in Figures 7 and 8 pertain

to densities which correspond to negative pressures. ∆G∗ vs. P ∗ is shown in Figure 9,

and the hcp-fcc phase boundaries in the P ∗–T ∗ plane are shown in Figure 10. Recall that

neither crystal structure is mechanically stable at P ∗ = 0 for Λ∗ >∼ 0.2 in the quasi-harmonic

approximation, which is why not all the curves in these figures extend to P ∗ = 0. Figure 10
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reveals that as the quantumness is increased the location of the hcp-fcc transition is moved to

lower pressures. Moreover, at P ∗ = 0, increasing Λ∗ from 0 to 0.1 moves the P ∗ = 0 transition

temperature to lower temperatures; the size of the region of hcp stability is reduced upon

moving from Λ∗ = 0 to Λ∗ = 0.1. Interestingly, for Λ∗ = 0.4 there are no pressures at which

hcp is thermodynamically stable. Hence no phase boundary exists in the quasi-harmonic

approximation for Λ∗ = 0.4; the only stable phase is fcc.

V. DISCUSSION

A. Reconciling the two methods

Our PIMD and QHLD calculations make qualitatively different predictions for the phase

behaviour of the quantum LJ solid. At P ∗ ≈ 0 the classical LJ solid exhibits a phase

transition from the hcp phase (stable at T ∗ = 0) to the fcc phase at T ∗ ≈ 0.3. Our QHLD

results suggest that this is also the case in the quantum solid for Λ∗ <∼ 0.2. However,

our PIMD results suggest that hcp is stable at P ∗ ≈ 0 for all temperatures up to at least

T ∗ = 0.5. Another clear discrepancy between the two methods arises with regards to the

phase behaviour at low temperatures. QHLD implies that at T ∗ ≈ 0 the hcp-fcc transition
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FIG. 9. hcp-fcc free energy difference ∆G∗ vs. P ∗ for the LJ solid at r∗c = 10 obtained from QHLD,

for various T ∗ and Λ∗.

moves to lower densities as the quantumness is increased, going as low as ρ∗ = 0.835 at

Λ∗ = 0.4. By contrast the PIMD transition density never drops below ρ∗ = 1.0 (see Figures 3

and 8). Finally, the hcp-fcc free energy differences obtained from PIMD are typically about

an order of magnitude larger than those obtained from QHLD (see Figures 3 and 7).

There are a number of possible causes for the discrepancies between the two methods.

Firstly, the models used in the QHLD and PIMD calculations were different: the QHLD
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calculations employed r∗c = 10, while the PIMD calculations used a value of r∗c which scaled

commensurately with the density (Eqn. 10). To investigate this further, we repeated our

QHLD calculations using the same cutoff scheme used in our PIMD calculations. However,

we found that this worsened the agreement between the two methods: using the scaled

cutoff scheme makes the fcc more stable in the quasi-harmonic approximation than it is for

r∗c = 10. This can be seen by comparing Figures 7 and 11, the latter of which shows ∆F vs.

ρ∗ using the scaled cutoff scheme. Another key difference between our QHLD and PIMD

calculations is that they pertain to different system sizes, namely N = ∞ and N = 256

particles, respectively. It is well known that the quantitative details of the phase diagram

for the classical LJ solid are sensitive to the system size, and surely the same is true for

the quantum solid. However, we do not believe that finite size effects are the main cause

of the discrepancies. Rather, the main cause is the approximations which underpin the two

methods.

A key difference between PIMD and QHLD is that the former takes into account anhar-

monic effects. It is well known that anharmonic effects play an important role in quantum
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FIG. 11. hcp-fcc free energy difference ∆F ∗ vs. ρ∗ for the LJ solid obtained from QHLD using the

cutoff scheme described by Eqn. 10, for various T ∗ and Λ∗.

crystals.26 Hence we expect that anharmonic effects are the main reason for the discrepancy

between the PIMD and QHLD results. The breakdown of QHLD due to anharmonic effects

even extends to low temperatures: anharmonic effects have been found to be significant even

at zero temperature in the noble gas solids.21,25 This brings into question the accuracy of our

QHLD results at low temperatures. Interestingly, while the anharmonic contribution to the

total free energy has been found to be significant at zero temperature,21,25 the significance
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of the anharmonic contribution to the hcp-fcc free energy difference is still somewhat an

open question. It has been suggested that this contribution is negligible.25 If this were true,

then our QHLD prediction that fcc is stabilised by quantum effects at low temperatures

would remain valid. One way of reconciling this with our finding that hcp is stabilised by

quantum effects at high temperatures (implied by our PIMD results, which recall do not

extend to temperatures as low as we considered with QHLD) would be if the phase diagram

exhibited a re-entrant fcc-hcp-fcc transition at low pressures for highly quantum LJ systems,

as illustrated schematically in Figure 12.

T
em

pe
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tu
re

hcp

quantum
classical

fcc

Pressure

FIG. 12. Schematic phase diagrams of the classical LJ solid, and a speculative quantum LJ solid

where the fcc phase is re-entrant at moderate pressures.

B. Origin of hcp stabilisation in PIMD

The origin of the fcc stabilisation with increased quantumness in QHLD was shown to be

due to its lower mean vibrational frequency and thus lower zero point energy. The origin of

hcp stabilization in PIMD is less clear, due to the opaque nature of PIMD simulations. To

investigate this further we partition the ∆F ∗ values from Figure 3 into contributions from

internal energy and entropy. The average difference in internal energy ∆E∗ can be extracted

24



directly from the PIMD trajectories and so −T ∗∆S∗ is easily accessible as:

−T ∗∆S∗ = ∆F ∗ −∆E∗ (19)

The results are shown in Figure 13 for the cases of Λ∗ = 0, 0.1 and 0.3 at the reference

temperature T ∗ = 0.1. Here we only consider the GSP-corrected model, as we do not wish

to include fluctuations in the energy due to cutoff effects. The ∆F ∗ curve is reminiscent of the

QHLD result in Figures 7 and 11, but larger in magnitude and shifted to more dramatically

favour hcp at low densities. From these plots we can clearly see that ∆E∗, which contains

the zero point energy, is practically negligible and that the free energy difference between

the two phases is due to the difference in entropy −T ∗∆S∗. Therefore the stabilization of

quantum hcp in PIMD must be due to anharmonic effects which are not accounted for in

QHLD.

C. Implications for noble gases

The LJ potential is often used to model interactions in noble gas solids and it is therefore

interesting to consider our results in that context. Of the noble gases, only He has been

observed in the hcp phase; all others adopt the fcc structure.52,53 Explanations for this

phenomenon have been offered in the literature54–56 but a consensus has not been reached.

In Figure 14 we compare the values of the de Boer parameter Λ∗ for the noble gases with

our PIMD results for the GSP-corrected model.

By and large these results agree with the experimental observations. The heavy noble

gases (Ar, Kr and Xe) are clustered near the fcc phase, while He has a strong preference for

hcp. The only discrepancy is Ne, which is shown to prefer hcp with this treatment but has

an fcc structure in reality. However, the LJ potential is a somewhat simplistic treatment

and a more realistic potential which includes many-body effects may show more accurate

phase behaviour for Ne. Overall, our results show that the hcp structure of He is due to

quantum effects, while the heavy noble gases prefer the classically-favoured fcc structure.

Moreover, there are very large contributions of zero-point vibrations to the pressure, in the

case of helium these are large enough to drive the density below the region in which the

Lennard-Jones potential can stabilize a crystal structure.
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D. Prospect of other phases

One key conclusion of our QHLD calculations was that P = 0 was inaccessible for Λ >∼ 0.3

on account of the mechanical instability of the fcc and hcp crystals at very low pressures.
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Keeping in mind that QHLD is a perturbation method, the question remains as to whether

any crystal structure is stable for Λ >∼ 0.3 at such pressures. In this work we have only

considered the hcp and fcc phases, which are the only two phases known to be stable in the

classical LJ solid. Of course, there is the prospect that phases other than hcp and fcc are

stable at certain temperatures and low pressures for the quantum LJ solid.

VI. CONCLUSION

Through a combination of PIMD simulations and lattice dynamics calculations, the in-

clusion of nuclear quantum effects in the LJ solid has been shown to stabilize the fcc phase at

low temperature and the hcp phase at high temperature. In addition, the quantum effects

on the phase behaviour of the quantum LJ solid in PIMD is relatively insensitive to the

truncation scheme or cutoff length used, which makes it somewhat easier to draw definitive

conclusions than their classical counterparts - despite the increased computational cost. We

also offer an explanation for the experimentally observed phase behaviour of the noble gas

solids. Helium, which is highly quantum, has a sufficiently large de Boer parameter that it

falls squarely in the quantum-favoured hcp region. Thus the contrast between hcp helium
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and fcc structures for the other noble gases solids is purely due to quantum effects.
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