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We apply a fully automated extension of the R� operation capable of calculating higher-loop anomalous
dimensions of n-point Green’s functions of arbitrary, possibly nonrenormalizable, local quantum field
theories. We focus on the case of the CP-violating Weinberg operator of the Standard Model effective field
theory whose anomalous dimension is so far known only at one loop. We calculate the two-loop anomalous
dimension in full QCD and the three-loop anomalous dimensions in the limit of pure Yang-Mills theory. We
find sizable two-loop and large three-loop corrections, due to the appearance of a new quartic group
invariant. We discuss phenomenological implications for electric dipole moments and future applications of
the method.
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I. INTRODUCTION

The absence of evidence for beyond-the-Standard Model
(BSM) physics in high-energy proton-proton collisions at
the LHC, and in large classes of low-energy precision
measurements, all indicate that the scale of BSM physics
(Λ) is significantly higher than the electroweak scale (v):
Λ ≫ v ≃ 246 GeV. In such a scenario, the effects of BSM
physics at low energies E ≪ Λ can be described in terms of
effective operators consisting of SM fields that obey the SM
gauge and Lorentz symmetries [1–3]. The resulting frame-
work is called the SM effective field theory (SMEFT). The
SMEFT Lagrangian contains an infinite number of oper-
ators that can be ordered by their dimension. Effects of
higher-dimensional operators on low-energy observables
are suppressed by additional powers of E=Λ.
The connection between observables at (relatively) low

energies and the SMEFToperators at the scale Λ, where the
effective operators can be matched to specific UV-complete
BSM models, is determined by renormalization-group
equations (RGEs). The RGEs depend on anomalous
dimensions that can be calculated in perturbation theory

in an expansion in small coupling constants. The complete
one-loop anomalous dimension matrix of dimension-six
SMEFT operators has been obtained [4–6]. Already for
dimension six, the number of operators is large and the
general mixing structure of the RGEs is rather complex. It
has been observed that the one-loop anomalous dimension
matrix is almost holomorphic [7], but it is not clear whether
this feature extends to higher order. Higher-order anoma-
lous dimensions have been calculated for subsets of
dimension-six operators [8–23], but due to the hard
technical nature of the calculations the complete matrix
is not known. Higher-order anomalous dimensions can be
used to (i) improve the precision of SMEFT contributions
to LHC processes or low-energy precision observables,
(ii) study the convergence of the perturbative expansions,
and (iii) investigate the structure of the SMEFT mixing
pattern.
In this paper we extend the R� operation to the

framework of the SMEFT and develop an efficient and
highly automated method to calculate higher-order QCD
anomalous dimensions of SMEFT operators. The R�
operation provides a way to subtract UVand IR divergences
from Euclidean Feynman diagrams, taking care of the
combinatorics of overlapping divergences [24–26].
Recently, it has been extended to Feynman diagrams with
arbitrary numerator structure [27]. So far the R� operation
has been used extensively in calculations of anomalous
dimensions in QCD; see, e.g., [28–31]. However, the R�
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method is not limited to pure QCD and can be applied to
arbitrary local quantum field theories.
To avoid the complicated mixing structure of SMEFT

operators, we focus on a specific SMEFT dimension-six
operator. Once tested and developed, the method can be
extended to a larger set of operators without too many
additional complications. The operator we now consider is
the CP-violating gluonic operator, often called “the
Weinberg operator” [32], defined as

L6 ¼
CW

6
fabcϵμναβGa

αβG
b
μρG

cρ
ν ≡ CWOW; ð1Þ

in terms of the gluon field strength Ga
αβ, the Levi-Civita

tensor (LCT) ϵμναβ, the gauge group structure constants
fabc, and the Wilson coefficient CW ∼ 1=Λ2. The Weinberg
operator is induced in various classes of BSM models with
additional CP-violating phases such as supersymmetric
models, two-Higgs doublet models, and models with
leptoquarks [33–35]. The Weinberg operator is also
induced from dimension-six CP-odd operators in the
SMEFT Lagrangian involving heavy quarks, prominent
examples being heavy-quark chromoelectric dipole
moments [36,37], and heavy-quark Yukawa interactions
[36,38,39]. At lower energies, the Weinberg operator leads
to nonzero electric dipole moments (EDMs) of nucleons,
nuclei, and diamagnetic atoms (such as 199Hg [40]). Current
experimental EDM limits [41] set strong constraints on
BSM models that induce the Weinberg operator.
To use EDM limits to constrain the Weinberg operator,

and the associated BSM models, it is necessary to evolve
the Weinberg operator from the high-energy scale where it
is induced to the low-energy scale where the Weinberg
operator is matched to hadronic CP-violating operators.
This evolution is determined by the anomalous dimension
of the Weinberg operator. The one-loop anomalous dimen-
sion of the Weinberg operator was obtained in the original
paper by Weinberg [32], albeit with the wrong sign, finding
sizable QCD corrections from the evolution of CW from
high- to low-energy scales. The calculation was corrected
in Refs. [42–44] that also calculated the mixing, propor-
tional to the small quark masses, of the Weinberg operator
into the quark chromoelectric dipole moment. The only
other operator CW can mix with is the QCD theta term
∼ϵμναβGa

αβG
a
μν, but this mixing is of little phenomenological

use as the bare theta term is an unknown SM parameter.
Furthermore, the renormalized theta term vanishes after a
Peccei-Quinn mechanism [45]. We will not consider the
mixing into the theta term in this paper.
The potential phenomenological implications of the

unknown higher-loop anomalous dimensions of CW , in
addition to the high complexity of the Feynman rules
induced by the Weinberg operator, make determining the
higher-order corrections a suitable real-world test case for
the R� method.

II. THE BACKGROUND-FIELD METHOD

The renormalization of Green’s functions with a single
insertion of the Weinberg operatorOW requires in general a
counterterm matrix Zij. The matrix Zij takes into account
mixing with all the operators of equal or smaller mass
dimension, which share the same quantum numbers as OW
[46,47]:

OR
W ¼

X
j

ZWjOB
j : ð2Þ

The operators that contribute to Eq. (2) are divided into
three classes [48,49]:

(i) gauge invariant (GI) physical operators,
(ii) operators that vanish after applying the classical

equations of motion (EOM), and
(iii) Becchi-Rouet-Stora-Tyutin (BRST)-exact operators.

The EOM and the BRST-exact operators are unphysical,
since they have vanishing S-matrix elements. Nevertheless
they have nonzero Green’s functions and associated UV
counterterms which mix with OW , as in Eq. (2).
We use the background-field method [50–53] to simplify

the mixing pattern of Eq. (2). The main advantage of this
method is that it preserves gauge invariance of the back-
ground field, so that the UV counterterms of 1PI correlators
of the background fields involve only GI operators. This
feature puts strong constraints on the nonphysical operators
in Eq. (2): BRST-exact operators will not contribute to the
UV counterterms and gauge invariance will restrict EOM
operators too. For example, in Yang-Mills theory without
fermions (nf ¼ 0), there is only one independent gauge
invariant EOM operator

ÕE ¼ 1

4
ϵμ1μ2μ3μ4ðDμ1Gμ2μ3ÞaðDλGλμ4Þa; ð3Þ

whereDa
μ is the covariant derivative. However, ÕE vanishes

by the Bianchi identity. Therefore it is impossible to
construct purely gluonic unphysical operators mixing with
OW . In the rest of this paper, we will compute directly the
UV counterterm ZWW , which cancels the local UV diver-
gences of the background-field correlators with a singleOW
vertex. The R� operation, which subtracts recursively all the
UV subdivergences of the diagrams in a fully automated
way, will be the key tool to isolate the gauge invariant local
UV divergence of the correlators. We calculate ZWW at the
two-loop level in full QCD. At three loops, we only
consider ZWW in Yang-Mills theory without fermions.
The corresponding diagrams are the most computationally
demanding. In general, the inclusion of fermions will also
generate off-diagonal mixing ZWj with quark (chromo)
electric operators [54,55]. These contributions will be the
subject of a separate work.
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III. THE R� OPERATION FOR GENERAL
FEYNMAN DIAGRAMS

The renormalization constant ZWW can be extracted from
the 1PI correlator Γnb

W of n background fields with a single
insertion of OW—see Fig. 1 for examples of Feynman
diagrams—by acting on it with the UV-counterterm oper-
ation Z:

ZWWZ
3=2
b Onb

W ðCW ;p1;…; pnÞ
¼ ZðΓnb

W ðαs; CW ;p1;…; pnÞÞ; ð4Þ

where Zb is the well-known wave function renormalization
of the background gauge field [52,53] and the Z operation
is defined to include counterterms for all the UV sub-
divergences of Γnb

W . Here Onb
W denotes the Feynman rule of

the n background-field vertex generated by the Weinberg
operator. The calculation of renormalization constants can
be simplified by nullifying the external momenta of Γnb

W
after applying a Taylor expansion in the external momenta
whose order equals the superficial degree of divergence of
the correlator; for the case of Γnb

W this is ωðΓnb
W Þ ¼ 6 − n,

e.g., ωðΓ3b
W Þ ¼ 3. After the external momenta are nullified,

a convenient scale can be reintroduced into the correlator
by introducing either arbitrarily chosen external momenta
into each Feynman diagram or inserting a mass into a single
propagator. This is known as the procedure of infrared
rearrangement (IRR) [56]. Nullifying the external momenta
introduces new IR divergences, which are fully automati-
cally subtracted by the local R� operation.
In contrast to earlier works which made use of the R�

operation, we now act it on Feynman diagrams before
contracting any of the Feynman rules. This makes the
algorithm more efficient and allows us to directly compute
the UV counterterm of a particular diagram in MS. As
discussed in Ref. [27], this is not possible if the Feynman
rules are contracted before the action of R�. The algorithm
of [27] was therefore only capable of extracting the pole
terms of self-energy diagrams from simpler self-energy
diagrams. The more general method used in this work
allows us to reduce the calculation of UV counterterms of
correlators with arbitrary numbers of external legs to the
calculation of massless self-energy diagrams of one loop

less. Therefore, this method has quite some advantages
compared to the former, but its implementation introduces
new complications. For instance, the Taylor expansion
must be applied before the contraction of the Feynman
rules, which leads to a new set of “differentiated” Feynman
rules (essentially new vertices and propagators). A more
detailed overview of the method will be given in an
upcoming publication [57]. Employing this new formalism
we write

ZðΓnb
W Þ ¼ −KR̄�ðT ð6−nÞ

p1;…;pnΓnb
W jpi¼0Þ; ð5Þ

where the operation R̄� acting on a Feynman diagram Γ
subtracts from it counterterms for all UV subdivergences
and all IR divergences. The operation K extracts the single-
and multipole contributions in the dimensional regulator

ϵ ¼ ð4 −DÞ=2 and T ðωÞ
p1;…;pn denotes the Taylor expansion

operator for the order ω term in the expansion around the
(external) momenta p1;…; pn. More precisely (although
we leave the nitty gritty of the graph combinatorics to the
literature; see, e.g., [27] or [58]), the R̄� is defined as

R̄�ðΓÞ ¼
X
γ∩γ̃¼=0

Z̃ðγ̃Þ � ZðγÞ � Γnγ̃=γ; ð6Þ

where the sum goes overall nonintersecting UV subgraphs
γ (but not including the full graph Γ) and IR subgraphs γ̃
(including also Γ in the case that Γ is a log-divergent
vacuum graph). The operation Z̃ here is the IR-counterterm
operation which can always be rewritten in terms of the
UV-counterterm operation of γ̃ and its subgraphs. The
remaining contracted graph Γnγ̃=γ is constructed by delet-
ing the IR subgraph and then contracting the UV subgraph
to a point. The � operation denotes insertion of the
counterterms into the remaining contracted graph; it
reduces to the usual multiplication for log-divergent
counterterms.
To simplify the calculation of the counterterm we use the

fact that the Z operation commutes with the Taylor
expansion operator. In the following we give some exam-
ples of this procedure. Let us start with the calculation of
the UV counterterm of the following one-loop graph:

ð7Þ

Here the thicker red vertex continues to denote the
Weinberg operator. The Taylor expansion operator has to
applied before the contraction of the Feynman rules.
This procedure can be carried out diagrammatically,
after choosing a momentum routing. Here we pick p1

and p2 as independent external momenta and write

(a) (b) (c)

FIG. 1. Two-loop diagrams with three (a) and four (b) external
background fields and a three-loop diagram with three external
background fields (c). Gluons are denoted by curly lines and an
insertion of the Weinberg operator by a red dot.
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p3 ¼ −p1 − p2 ¼ −p12. To simplify the derivative calcu-
lation it is usually best to pick the shortest paths through the
diagram. Subsequently one differentiates along the path
using nothing but the product and chain rule; thereby one
generates a (potentially large) sum of new diagrams which
contain differentiated propagators and vertices and with the
external momenta nullified.
We graphically depict the differentiated vertex or

Feynman rule with a small line p, and a label denoting
that the momentum p has been differentiated with operator
p:∂p. The orientation of the derivative fixes the direction of
the path. Subsequently we need to nullify the external
momenta; we introduce an encircled vertex to denote that
the external momentum (in our case always associated to
the background field) has been nullified. Naturally both
nullification and derivation will also occur simultaneously
on certain vertices. In this case the expression is to be
understood as p:∂pð•Þjp¼0. After the derivations, external
momentum nullifications and mass insertions have been
carried out we then obtain (writing just a few terms)

ð8Þ

To evaluate one of the counterterms we need to introduce a
scale back into the vacuum diagrams. Given that they are
logarithmically divergent, the counterterms are indepen-
dent of all scales. A simple choice is to insert a mass into a
single propagator, denoted graphically by a thicker line.
When possible it is convenient to insert the mass in such a
way as to prevent IR divergences from occurring. Let us
consider just the first term on the right-hand side of Eq. (8).
A possible IR rearrangement to avoid the IR divergence is

ð9Þ

The absence of infrared singularities in the rearranged
diagram of Eq. (9) is verified by applying a power counting
procedure in the infrared region of the loop momentum,
characterized by kμ → λkμ with λ ≪ 1. In this limit, each
massless propagator diverges as Oð 1

λ2
Þ. However, each

vertex provides a suppression in the numerator, given,
respectively, by

ð10Þ

Therefore, the infrared region gives a vanishing contribu-
tion to the diagram

ð11Þ

An IR counterterm would have been required had we
used instead

ð12Þ

ð13Þ

Here we introduced a doubly encircled vertex, which
corresponds to a single encircled vertex with a further
gluon’s momentum nullified. Such a vertex vanishes in
fact, and so for this reason the counterterm would not
survive. Let us nevertheless continue with its evaluation to
give an example of the procedure. The IR counterterm can
be evaluated by relating it to a UV counterterm; this
procedure has been used extensively in the R� literature
for scalar diagrams and we straightforwardly extend it to
the nonscalar case. Here we can do this as follows:

ð14Þ

Having introduced the basic concepts let us now illustrate
the procedure for the evaluation of a suitably differentiated
and IR-rearranged two-loop diagram:
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ð15Þ

This diagram requires several counterterms, some of which
we discard immediately due to scalelessness of the remain-
ing or contracted graphs. The second term on the right-hand
side captures a one-loop IR subdivergence. The third term
has the same IR divergence with the remaining graph also
giving rise to a UV subdivergence. The last term corre-
sponds to another UV subdivergence, which was originally
of box type.

IV. CALCULATION AND RESULTS

The actual calculation of the Feynman diagrams con-
tributing to Γnb

W , which we first generate using QGRAF [59],
is done via two independent codes. The Levi-Civita tensor
appearing in the Weinberg operator is not strictly defined in
D dimensions and one must fix a scheme when encounter-
ing it within dimensional regularization. In the first code,
written in MAPLE, we use the Larin [60] scheme for the LCT
appearing in the Feynman rules. The second code is written
in FORM [61] and applies the ’t Hooft-Veltman (HV)
scheme [62]. The implementation of these schemes is
further discussed in the Appendix. Since the implementa-
tion of these two schemes results in rather different
algorithms, obtaining a consistent result provides a power-
ful check. For the reduction to master integrals both our
implementations heavily rely on the FORCER program [63].
To calculate the two- and three-loop anomalous dimen-

sions of the Weinberg operator one can extract ZW from the
correlator Γnb

W for n ¼ 3–6. Ward identities ensure that the
resulting anomalous dimension is independent of n.
A smaller n implies a lower number of diagrams to
compute. However, this is counterbalanced by the fact that

the n-background field correlator must be differentiated
6 − n times with respect to external momenta in order for
IRR to be applicable. Even though the Taylor expansion
proliferates terms for the n ¼ 3 case, it is nevertheless the
least computationally demanding and involves 250 dia-
grams. At the two-loop level we obtain the result

ZWWð2− loopÞ¼
�
αs
4π

�
2
�
C2
A

�
−

19

24ϵ2
þ119

36ϵ

�

−CAnfTf

�
7

3ϵ2
þ 4

3ϵ

�

þ3CFnfTf

ϵ
þ10n2fT

2
f

3ϵ2

�
; ð16Þ

where CA is the adjoint Casimir, CA ¼ Nc for the gauge
group SUðNcÞ, with Nc the number of colors.
We have checked our two-loop results in four ways.

First, as discussed above we have applied two independent
codes to the nf ¼ 0 terms, obtaining the same result.
Second, in the form code we investigated gauge invariance
by performing the computation with a single power of the
gauge parameter ξ1 and verified that it cancels. Third, we
have extracted ZWW from the n ¼ 4 case. The evaluation of
the associated 2389 diagrams leads to the same two-loop
result for ZWW. Finally, the 1=ϵ2 poles can be determined
from one-loop results, and we have verified that our results
match the one-loop predictions.
Using the form code, which is optimized for large

expressions, we evaluated the nf ¼ 0 three-loop correction
to ZWW . This required the computation of 6203 diagrams
involving up to Oð109Þ terms in intermediate expressions.
The total computation time came to 48 h on a 24-core
machine with 2.4 GHz Intel Xeon E5-2695v2 CPUs and
150 GB of memory, whereas the two-loop computation
only took 20 min. We obtain the result

ZWWð3-loopÞ¼
�
αs
4π

�
3
�
C3
A

�
779

432ϵ3
−
5389

648ϵ2
−

3203

1944ϵ

þ44ζ3
3ϵ

�
þdabcdA dabcdA

NACA

�
40

3ϵ
−
352ζ3
ϵ

��
: ð17Þ

Here we encounter the Riemann zeta value ζ3 ≃ 1.202
and the quartic Casimir dabcdA dabcdA =ðNACAÞ; see Ref. [64]
for more details. For SUðNcÞ this becomes
dabcdA dabcdA =ðNACAÞ ¼ NcðN2

c þ 36Þ=24. We checked this
result by verifying that the 1=ϵ2 and 1=ϵ3 poles match one-
and two-loop predictions. Furthermore, the fact that ZWW is
proportional to the three-gluon Feynman rule of the
Weinberg operator is another nontrivial cross-check.
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V. DISCUSSION

The UV counterterm determines the anomalous dimen-
sion of the Weinberg operator up to three loops:

γWW ¼ αsðμ2Þ
4π

�
CA

2
þ 2nfTf

�

þ
�
αsðμ2Þ
4π

�
2
�
119

18
C2
A þ nfTf

�
6CF −

8CA

3

��

þ
�
αsðμ2Þ
4π

�
3
�
C3
A

�
−
3203

648
þ 44ζ3

�

þ dabcdA dabcdA

NACA
ð40 − 1056ζ3Þ þOðnfÞ

�
; ð18Þ

where we included the complete dependence on nf, the
number of active quark flavors, at one and two loops.
Remarkably the two-loop nf dependence drops out since
CF ¼ 4=3 and CA ¼ 3 for Nc ¼ 3. This is an accidental
cancellation for Nc ¼ 3 but even for a larger number of
colors the nf corrections are negligible due to the large
prefactor of the C2

A term. It is interesting that ζ3 and the
quartic group invariant enter at three loops, unlike the QCD
beta function where they appear only at the four-loop order.
However, to the best of our knowledge, there is nothing that
forbids their appearance at lower order in the Weinberg
operator. We notice that the coefficient of the quartic group
invariant is directly proportional, up to a factor 2CA=9, to
the same quartic group invariant appearing in the four-loop
QCD beta function. While this could simply be a coinci-
dence, it would be interesting to see if similar patterns
appear at higher loop orders. Finally, we have not calcu-
lated the nf corrections at three loops, but if a similar
pattern appears as at two loops, then neglecting their
contributions would provide a good approximation.
In order to estimate the impact of the two- and three-loop

contributions to the anomalous dimension we set CA ¼ 3,
CF ¼ 4

3
and nf ¼ 0 in Eq. (18) and we obtain the series

8πγWW

αsðμ2ÞCA
¼ 1þ 3.15657αs − 23.72872α2s : ð19Þ

The next-to-next-to-leading-order (NNLO) coefficient
can be decomposed as 23.72872 ¼ 5.46537 − 29.19409,
where the underlined number stems from the contribution
of the quartic group invariant, which is responsible for the
large negative correction. The size of the coefficients
increases drastically with the loop order and undermines
the convergence of the αs expansion, unless large cancel-
lations occur in the nf-dependent pieces of the three-loop
anomalous dimensions that are not computed in this work.
As an example, we calculate the evolution of CW ,

determined by

μ2
dCWðμÞ
dμ2

¼ γWWCWðμÞ; ð20Þ

from a specific high-energy scale μH ¼ 1 TeV, where we
assume CWðμHÞ ¼ 1, to various low-energy scales. We use
αsðMZÞ ¼ 0.118 and MZ ¼ 91.2 GeV [65], and apply the
QCD beta function at two [66–68] and three loops [69,70].
When evaluating the beta function we adjust the number of
fermions nf at the top, bottom and charm thresholds:

mtðmtÞ ¼ 160 GeV; mbðmbÞ ¼ 4.18 GeV;

mcðmcÞ ¼ 1.28 GeV: ð21Þ
The Wilson coefficient at the different energy scales is
given in Table I, where we kept the LO and NLO nf
dependence. Around and above the electroweak scale, αs is
sufficiently small such that NLO and NNLO corrections are
suppressed. For μ ≤ 100 GeV, NNLO corrections are as
large as, or larger than, NLO corrections. At lower energies
higher orders become relevant, and in particular for
μ ¼ 1 GeV, the scale where the Weinberg operator is often
matched to hadronic quantities, the NLO and NNLO
correction are −21% and þ33% of the LO result, respec-
tively. The total result, however, is not far from the LO
result due to cancellations between NLO and NNLO
corrections. The lack of convergence is worrying and
warrants a four-loop calculation.
The main phenomenological impact of a nonzero

Weinberg operator is its contribution to the neutron
EDM dn. The QCD matrix element connecting dn to CW
is difficult to calculate, but future lattice-QCD calculations
might be up to the task [71–73]. Two techniques have been
used to estimate the matrix element. A QCD sum-rule
estimate [33,74] gives dn ¼ ð25� 12Þ MeV eCWð1 GeVÞ.
Another technique that is often applied is naive dimen-
sional analysis (NDA) [75]. NDA predicts [32,76]

jdnj ≃ e
Λχ

4π
CWðμmatchÞ; ð22Þ

where Λχ ≃ 1.2 GeV denotes the chiral-symmetry-break-
ing scale and μmatch a matching scale at hadronic energies.
Unlike the QCD sum rules calculation, the NDA estimate is
sensitive to the evolution of the Weinberg operator to the
low hadronic matching scale. Which scale to pick is
unclear, but typically the scale where αsðμmatchÞ ¼ 2π=3
is applied as suggested by Weinberg [32]. Using one-loop
evolution this leads to jdLOn j ≃ e40 MeVCLO

W ð1 GeVÞ in
reasonable agreement with QCD sum rules as pointed out
in [33]. However, the large NNLO corrections significantly

TABLE I. Evolution factors at different perturbative orders that
relate CWðμÞ to CWð1 TeVÞ.
μ½GeV� LO NLO NNLO

100 0.76 0.75 0.76
5 0.48 0.44 0.48
2 0.39 0.34 0.40
1 0.33 0.26 0.37
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affect the running in the nonperturbative regime and lead to
much larger estimates jdNNLOn j ≃ e1 GeVCLO

W ð1 GeVÞ,
indicating that NDA estimates are not stable. We therefore
recommend the use of QCD sum rules [33,74], which
only depend on the evolution to the perturbative scale
μL ≃ 1 GeV. Ideally, these calculations are replaced by
lattice-QCD results in the future [71–73,77].
Using the conservative QCD sum rule expression

dn ¼ 13 MeV eCWð1 GeVÞ, and our result for the anoma-
lous dimension, the current neutron EDM limit, dn < 1.8 ×
10−13 e fm [78] can be used to constrain the Weinberg
operator. We write CWðΛÞ ¼ dWðΛÞ=Λ2, where dWðΛÞ is a
dimensionless constant. For Λ ¼ 1 TeV, we obtain the
constraint dWð1 TeVÞ < f2.1; 2.7; 1.9g × 10−4, where the
results in brackets are obtained with the LO, NLO, and
N2LO anomalous dimension, respectively. The limits are
rather stringent, in particular in comparison with limits on
the CP-even counterpart of the Weinberg operator

L6 ¼
cG
Λ2

fabcGa;ρ
ν Ga;ν

λ Gcλ
ρ ; ð23Þ

that is constrained at the percent level cGð1 TeVÞ ≤ 4 ×
10−2 from an analysis of multijet production at the
LHC [79].

VI. CONCLUSION

In this paper we have reported a new method to calculate
higher-order QCD anomalous dimensions of SMEFT
operators in a highly automated manner. To develop
and test the method we focused on one particular operator,
the CP-violating gluonic Weinberg operator, whose
anomalous dimension is hard to calculate, even at one
loop [32,42–44]. Due to its CP-violating nature this
operator does not mix into lower-dimensional operators
containing just gauge fields. By also applying the back-
ground-field method, we avoid complications associated to
operator mixing. We extracted the two-loop anomalous
dimension by calculating 250 diagrams contributing to the
three-background-gluon vertex. We verified our result by
extracting the same anomalous dimension of the 2389
diagrams contributing to the four-background-gluon vertex,
as predicted by gauge invariance. Finally, due to the
automated nature of the framework we were able to
immediately calculate the three-loop anomalous dimension
at nf ¼ 0 by evaluating 6203 diagrams.
We found a sizable positive two-loop correction to the

anomalous dimension, which turns out to be independent
on nf, the number of flavors, due to an accidental
cancellation for Nc ¼ 3. Even at Nc ≠ 3, the nf-dependent
corrections are negligible. We proceeded to calculate the
three-loop correction in nf ¼ 0 limit and found a negative
contribution, which is sufficiently large to threaten the
perturbative convergence, as the two- and three-loop
evolution factors almost cancel. The lack of convergence

motivates a calculation of the four-loop anomalous dimen-
sion and the missing three-loop nf corrections.
The R� operation combined with the background-field

method provides a powerful framework for higher-order
loop calculations, and our calculation can be extended into
several directions without too much additional effort. In
fact, our setup works up to five loops. Currently the only
hurdle is computing time. Beyond five loops—should the
need for such corrections ever arise—there exists neither a
complete basis of master integrals nor a suitable reduction
onto such a basis. However, the R� operation itself is valid
to all loop orders.
So far, we have only performed higher-order loop

calculations for operator without external quarks, and the
framework must be extended to renormalize SMEFT
operators containing quark fields. There are no inherent
additional complications associated to the inclusion of
quarks, but a consistent treatment of γ5 in the R� method
needs to be developed. This is left to future work. Here we
have taken a first big step by presenting methods for the
consistent use of LCTs beyond one loop in both the Larin
and HV schemes. Once developed, we can calculate the (so
far unknown) higher-loop mixing of the Weinberg operator
into the quark electric and chromoelectric dipole moments
and CP-odd four-quark operators. It would also be inter-
esting to compute four-loop corrections to the anomalous
dimension, to see whether the trend of large coefficients
continues and whether other surprising relations, such as
the one found for the quartic group invariants, to the QCD
beta function appear.
While this work focused on the Weinberg operator, this

is by no means an inherent limitation of the method. We
envision calculations of higher-order anomalous dimen-
sions of a much larger class of SMEFT operators. Isolating
the footprints of SMEFT operators left behind at the LHC,
or future colliders, from SM contributions is an active field
of research [80,81]. Higher-order QCD corrections to
SMEFT contributions can be sizable, as shown here, and
are important to disentangle SMEFT operators [82].
Higher-loop anomalous dimensions will further reduce
theoretical uncertainties and make the theoretical frame-
work of the SMEFT more robust.
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APPENDIX: LEVI-CIVITA SYMBOLS AND
THE R� METHOD

We define the LCTs in the respective schemes by εμ1…μ4
HV

and εμ1…μ4
L . While εHV , associated to the HV scheme [62],

lives in the four-dimensional subspace, εL, associated
to the Larin scheme [60], has components in the full
D-dimensional space. As such, we can freely commute
εHV with the pole operation K which appears in the
R�-counterterm operation:

Kðεμ1…μ4
HV Fμ1…μ4…Þ ¼ εμ1…μ4

HV KðFμ1…μ4…Þ: ðA1Þ

A simple, although inefficient, procedure to use the local
R� operation in the HV scheme is to commute εHV out of all
the potentially nested Ks and then to apply a standard
tensor reduction on the remaining tensor as described in
Ref. [83]. In the Larin scheme Eq. (A1) does not hold and
we apply a different procedure. To compute the expression

KðFν1…νn
ε Þ ¼ Kðεμ1…μ4

L Fν1…νn
μ1…μ4Þ; ðA2Þ

we first tensor-reduce the object Fν1…νn
ε , which (assuming

that the object is superficially log divergent) can be reduced
in terms of εμ1…μ4

L and metric tensors gμ1μ2 . We thus write

KðFν1…νn
ε Þ ¼

X
σ

Tν1…νn
σ KðFσ

εÞ; ðA3Þ

where

Tν1…νn
σ ¼ ε

νσð1Þ…νσð4Þ
L gνσð5Þνσð6Þ…gνσðn−1ÞνσðnÞ ; ðA4Þ

and the sum goes over all permutations of the indices which
do not leave the tensor structure invariant. The coefficients
Fσ
ε are defined

Fσ
ε ¼ Pσ

ν1…νnF
ν1…νn
ε ; ðA5Þ

where the projector Pσ satisfies

Pσ
ν1…νnT

ν1…νn
τ ¼ δστ ðA6Þ

and δστ is a Kronecker delta which yields 1 if the two
permutations τ and σ are identical and 0 otherwise. The Pσ

themselves can be constructed as linear combinations of
Tσ’s. Using the identity

εν1…ν4
L εμ1…μ4

L ¼ det

0
BBB@

gμ1ν1 gμ1ν2 … gμ1ν4

gμ2ν1 gμ2ν2 … gμ2ν4

… … … …

gμ4ν1 gμ4ν2 … gμ4ν4

1
CCCA; ðA7Þ

products of two LCTs in the Larin scheme can always be
evaluated in terms of D-dimensional metric tensors. The
scalar functions Fσ

ε are thus functions of D-dimensional
scalar products only and therefore may never contain
any LCTs.
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