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ABSTRACT: We propose that a simple, Lagrangian 2d A/ = (0, 2) duality interface between the
3d N =2 XYZ model and 3d N = 2 SQED can be associated to the simplest triangulated
4-manifold: the 4-simplex. We then begin to flesh out a dictionary between more general
triangulated 4-manifolds with boundary and 2d N = (0,2) interfaces. In particular, we
identify IR dualities of interfaces associated to local changes of 4d triangulation, governed by
the (3,3), (2,4), and (4,2) Pachner moves. We check these dualities using supersymmetric half-
indices. We also describe how to produce stand-alone 2d theories (as opposed to interfaces)
capturing the geometry of 4-simplices and Pachner moves by making additional field-theoretic
choices, and find in this context that the Pachner moves recover abelian N' = (0, 2) trialities of
Gadde-Gukov-Putrov. Our work provides new, explicit tools to explore the interplay between
2d dualities and 4-manifold geometry that has been developed in recent years.
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1 Introduction

The past decade has seen incredible progress in physics and mathematics inspired by com-

pactifications of the 6d (2,0) theory (a.k.a. the M5-brane worldvolume theory) on manifolds

of various dimensions. Some of the first results, concerning compactification on Riemann sur-

faces, produced new webs of dualities in 4d N = 2 theories, interconnected with wall crossing



and cluster algebras [1-3]. Compactifications on 3-manifolds, initially studied in [4-8], con-
nected 3d N = 2 theories and their dualities to three-dimensional geometry and topology
(in particular, hyperbolic geometry), and produced new quantum three-manifold invariants.
In recent years, this led to a definition of Khovanov-like homological invariants of compact
three-manifolds [9, 10] (inspired by the original work on knot homology and BPS states in
M-theory [11], and its field-theoretic counterpart [12]). Compactifications on 4-manifolds [13]
(generalized in [14]) incited the discovery of new, fundamental 2d N = (0,2) dualities [15],
and have given new structure to Vafa-Witten and Seiberg-Witten invariants [16].

In this paper, we add a short chapter to the 4-manifold story: we describe 2d N = (0, 2)
theories associated to the simple pieces of 4-manifolds, namely to ideal 4-simplices — also
known as (ideal) pentachora. We will argue that the pentachoron theory is

T[A%] ~ two free 2d N' = (0,2) fermi multiplets (1)

= two 2d chiral fermions.
This is rather similar in form to the 3d N = 2 theory associated to an ideal tetrahedron [6]

T[A%] ~ one free 3d N = 2 chiral multiplet . (1.2)

The identifications (1.1)—(1.2) are only interesting insofar as they are supplemented with
gluing rules, explaining how free fields should be coupled together when the corresponding
simplices are glued together. We describe a partial set of gluing rules, and check that two
different gluings related by four-dimensional Pachner moves of type (3,3), (2,4), and (4,2) lead
to two IR-dual 2d N = (0,2) theories. In particular, we verify the dualities by computing
identities of elliptic genera.

Again, this parallels the three-dimensional story quite closely. A full set of rules for gluing
tetrahedron theories was spelled out in [6]. It was found there that the basic Pachner move of
type (3,2), which relates ideal triangulations of 3-manifolds, corresponds to the fundamental
duality [17] between the 3d XYZ model (a theory of three chirals with a cubic superpotential)
and 3d V' = 2 SQED.

Amusingly, the 2d N' = (0,2) dualities that we find associated to 4d Pachner moves
recover abelian versions of the more general NV = (0, 2) trialities of [15]. The latter were mo-
tivated by applying fundamental moves to handle decompositions of 4-manifolds, as opposed
to triangulations. In particular, the (3,3) Pachner move is based on a simple duality between
1) Ty, a2d N = (0,2) U(1) gauge theory with two chiral multiplets, three fermi multiplets,
and a cubic superpotential; and 2) Tpp, two free fermi multiplets. The Pachner move itself
relates two copies of Tyy(1) to two other copies,

Toe) @ Toay = Toay © Ty - (1.3)

Each side flows to four fermi multiplets Trr @ Tr g, but the two sides are related by a nontrivial
permutation of flavor symmetries.
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Figure 1. The (3,3) Pachner move relates two sequences of (2,3) and (3,2) Pachner moves applied to
triangulated octahedra. In field theory, it relates two composite interfaces Ziop, and Zyo, between the
3d N = 2 theories I and IV associated to octahedra on the far left and right of this figure.

One may well wonder what it means to “compactify” the 6d (2,0) theory on a simplex,
which has boundaries, and corners, and corners of corners. ... In the three-dimensional case,
an answer was carefully described in [6, 7, 18]: the theory T[A?] is not really an isolated 3d
N = 2 theory, but a boundary or interface in a 4d N' = 2 theory T[0A3]. Additional choices
are required to make T[A%] truly three-dimensional; such choices were implicitly involved
in the description (1.2). Similarly, the pentachoron theory most naturally appears as a 2d
N = (0,2) interface between 3d N' = 2 theories; namely, it is the duality interface for the
(2,3) move

T[A*] =~ duality interface between 3d V' =2 XYZ and 3d N = 2 SQED . (1.4)

We explain this perspective further in Section 3. Geometrically, (1.4) corresponds to the
fact that the boundary of a pentachoron contains five tetrahedra, which may be split into two
clusters containing 3 and 2 tetrahedra each, exactly as in the XYZ-SQED duality. In order
to obtain a purely 2d description (1.1) of T[A%], additional choices must be made.

The physical properties of the duality interface (1.4) were studied in detail in our re-
cent work [19], on dualities of boundary conditions in 3d N' = 2 theories. This was actually
our starting point for the current paper. The duality interface is also closely related to the
transformation walls of [20], studied via holomorphic blocks [21]. Once the duality interface
is identified as T[A%], the ensuing analysis of gluing and 4d Pachner moves becomes system-
atic. For example, the (3,3) Pachner move translates to a relation between two sequences of



duality interfaces among 3d A/ = 2 theories associated to triangulated octahedra, depicted
schematically in Figure 1. We will explain this picture in detail in Sections 2 and 4.

The results of this paper are just the first steps in a (potential) program of associating
2d (0,2) theories to more general 4-manifolds, via their ideal triangulations. Specifically, one
may hope to construct oriented 4-manifolds M with “ideal boundary” that are complements
of embedded surfaces in closed 4-manifolds,

M=M\X. (1.5)

This is the 4d analogue of a knot or link complement. The gluing rules we describe are
only sufficient to build a restricted class of four-manifolds, which in particular are bundles
over S' (so-called mapping tori). This is because the interface interpretation (1.4) necessarily
separates the boundary of a pentachoron into 3+2 tetrahedra, and our current rules are based
on this particular splitting. The rules must be generalized a bit, treating pentachora more
symmetrically, to construct more general four-manifolds. We hope to pursue this in future
work.!
Several other future directions include:

1. Exploring the (homological) chiral algebras associated to pentachoron theories T[A%]
and their gluings. Such chiral algebras have been studied in [13, 16, 23]; they “cate-
gorify” the elliptic genera computed in this paper.

2. Compactifying setups such as (1.4) on a Riemann surface 3. In the case of (1.4), the
4d theory T[A%] should correspond to a chain equivalence that acts on the BPS Hilbert
space of the XYZ model to give the BPS Hilbert space of SQED. More generally, one
expects theories associated to triangulated 4d cobordisms to act as chain maps on the
BPS Hilbert spaces of theories associated to triangulated 3-manifolds. The latter Hilbert
spaces have already been studied extensively in [9, 24].

3. The interpretation of T[A%] as an interface in a 3d theory can naturally be lifted all the
way to four dimensions. Namely, since the 3d XYZ and SQED theories are themselves
interfaces in a 4d NV = 2 theory [7] (the Argyres-Douglas Ay theory), the pentachoron
theory T[A%] lifts all the way to a 2d defect lying at a junction of 3d interfaces in 4d
N = 2 theory. It should be very similar to the duality defects of [25], and the more
recent work of [26-29].

2 Ideal triangulations and Pachner moves in d dimensions

We begin by reviewing some standard notions from topology.

'Even so, 2d (0,2) theories associated to ideal triangulations of 4-manifolds M may not capture the full
SCFT (as in [13, 16]) obtained by compactifying the 6d (2,0) theory on M. Such a discrepancy arose already
in constructions of 3d theories associated to triangulated 3-manifolds, cf. [9, 22], and has not yet been fully
resolved. Thus, both pitfalls and possibilities await; but we try not to get ahead of ourselves by making
predictions for theories that don’t yet exist!



In any dimension d, one can consider the category of PL manifolds. These are topological
manifolds equipped with a piecewise linear structure, meaning a set of open charts whose
transition functions are piecewise linear maps. Two PL manifolds are deemed equivalent if
there exists a piecewise linear homeomorphism between them.

In dimensions d < 3, the category of PL manifolds is equivalent to the category TOP
of topological manifolds [30, 31] (up to homeomorphism) and the category DIFF of smooth
differentiable manifolds (up to diffeomorphism). In dimension d = 4, PL is equivalent to
DIFF, but distinct from TOP [32]. For d > 5, all three categories are distinct [33].2

From now on, we will work exclusively within the realm of PL manifolds. By “homeo-
morphism” we mean PL-homeomorphism.

A triangulation of a PL manifold M is a decomposition into d-simplices A%

M= ]a7, (2.1)

il

such that the (d—1)-dimensional faces of the simplices are identified with each other pairwise,
and the interiors of simplices remain disjoint. This is also called a tiling by d-simplices.
Pachner [36] proved that any two triangulations of a PL manifold could be related by a finite
sequence of moves — now commonly referred to as Pachner mowves.

The Pachner moves in dimension d admit a uniform description as cobordisms through
a (d + 1)-simplex A%F!. We explain this in some detail, as it will be useful for constructing
the field-theoretic analogue of a 4-dimensional Pachner move later in the paper.

Let us number the vertices of a simplex A%! as 0,1, ...,d+1, and denote the simplex itself
as AT = [012...(d+1)]. The simplex A" has d+ 2 distinct faces (OAT!) ), each obtained
by deleting the i-th vertex, and constructing the convex hull of the remaining vertices:

(A1) ) = [01.i..(d + 1)] ~ A”. (2.2)
As indicated, each face is (PL-)homeomorphic to d-simplex A?. Altogether, the boundary of

A% which is homeomorphic to a sphere S9, is triangulated by the faces:

d+1
oA = | J(0A™ ). (2.3)
i=0
Now, to define a Pachner move, one chooses an integer 1 < n < d + 1, and splits the
boundary of A%*! into two parts,

n—1 d+1
(aAdJrl)_ — U (8Ad+1)(l) 7 (8Ad+1)+ = U (8Ad+1)(l) . (24)
=0 i=n

2More precisely, every PL manifold of dimension d < 6 possesses a unique compatible differentiable
structure—see [34] and references therein. PL is a stronger condition than triangulable, and this distinc-
tion leads to many foundational results (see, e.g. [35]), but we will focus on PL-manifolds in this note.



Note that both (A1) _ and (OAT1), are homeomorphic to discs D?. Moreover, any other
splitting of the boundary into two collections of n and d + 2 — n faces is related to the one
above by a reordering of the vertices (which is a symmetry of A%+1).

Given a triangulated d-manifold M, a (n,d + 2 — n) Pachner move acts by choosing
a collection of n simplices in the triangulation of M that are glued together the same way
as (OATY)_ | and replacing them with the d + 2 — n simplices that appear in (A1)
Alternatively, working in d+ 1 dimensions, we may think of the Pachner move as gluing A4*!
to M along (OA%1)_, to obtain a new triangulation of M that includes (OA%*!) . This
can also be thought of as a cobordism through A%*!. Since (GA%1)_ and (9A4F!) | are
PL-homeomorphic to each other (and both homeomorphic to standard discs), the underlying
PL structure of M is left unchanged.

Altogether, in dimension d, there are d+ 1 distinct Pachner moves, labelled by the integer
1 <n <d+1. They are of type (1,d+ 1), (2,d), (3,d—1),...,(d+1,1). The moves of types
(n,d+2—mn) and (d 4+ 2 — n,n) are inverses of each other.

Examples:

In dimension d = 2, triangulations are literally tilings by triangles. There are three
Pachner moves, of types (1,3), (2,2), and (3,1). They each correspond to a cobordism through
A3 ~ a tetrahedron. Namely, the (1,3) move corresponds to splitting the boundary of the
tetrahedron into 143 triangles; it replaces a single triangle in the triangulation of a surface
with three triangles that all share a common vertex

The (3,1) move does the reverse: it replaces three triangles that share a common vertex
with a single triangle. The (2,2) move, often called the flip, corresponds to splitting the
boundary of the tetrahedron into 242 triangles; in the triangulation of a surface, it replaces
two triangles glued along a common edge with two new triangles where the edge has “flipped”:

(1.3 2,2)
— A —a
) S -

@3,1) 2,2

In dimension d = 3, triangulations are tilings by tetrahedra, and Pachner moves are
cobordisms through a 4-simplex A%, also called a pentachoron. The pentachoron has five
tetrahedra on its boundary, and the Pachner moves are of types (1,4), (2,3), (3,2), and (4,1).
The (1,4) move takes single tetrahedron and replaces it with four tetrahedra that share a
common vertex, while the (4,1) move does the reverse:



The (2,3) and (3,2) moves replace two tetrahedra glued along a common face with three
tetrahedra that share a common edge:

N &) 3 _
(2.5)

In dimension d = 4, the Pachner moves act on clusters of pentachora, and correspond to

cobordisms through a 5-simplex A® (whose boundary consists of six pentachora). The moves
are thus of type (1,5), (2,4), (3,3), (4,2), and (5,1).

2.1 A visualization of 4d moves

The 4-dimensional Pachner moves are difficult to visualize directly. We thus introduce a
standard trick that effectively reduces their dimensionality. The general principle is that

A Pachner move in d dimensions can be described as a relation between sequences of
moves in d — 1 dimensions. In particular, the (n,d + 2 — n) move relates a sequence of n
(d—1)-dimensional moves (of various types) to another sequence of d+2—n (d—1)-dimensional
moves.

To warm up, we illustrate this idea with 3-dimensional Pachner moves first. Consider
the (2,3) move. It relates two different triangulations of a bipyramid, which is homeomorphic
to a 3-disc D> (i.e. a ball). The boundary of the bipyramid is topologically a sphere S,
triangulated into five triangles. We choose a splitting of this boundary into two triangulated



discs, which each look like a pentagon

O(bipyramid) = pentagon_ U pentagon, ; or topologically, S%~ D?Ug D?.
1
1 1
back
i
2 4 ) 0 2 4 (26)
-
front
3 0 3
pentagon 3 pentagon

Figure 2. The (2,3) Pachner move, interpreted as relating two different sequences of flips.

Then we interpret the bipyramid itself as a cobordism from pentagon_ to pentagon. .
When the bipyramid is composed of two tetrahedra (on the “2” side of the (2,3) move), the
cobordism may be decomposed as two successive flips, i.e. two (2,2) moves, one for each
tetrahedron. This is illustrated at the top of Figure 2. When the bipyramid is composed
of three tetrahedra, the cobordism may be decomposed a sequence of three flips, as on the
bottom of Figure 2. The (2,3) move itself relates/replaces the sequence of flips on the top
with the sequence of flips on the bottom.

Now consider a 4-dimensional Pachner move, say of type (3,3). We may interpret it in a
similar way, as relating sequences of moves in three dimensions, acting on triangulations of a
suitable 3d polyhedron.



To make this precise, let A5 = [012345] be the 5-simplex, with vertices numbered from
0 to 5. To describe the (3,3) move, we first split the boundary of A% into 3+3 pentachora,
which we choose here to be

(OA)_ = [12345] U [01345] U [01235],  (DA®), = [02345] U [01245] U [01234]. (2.7)

(Thus (OA®)_ omits vertices 0, 2, and 4; while (OA5), omits vertices 1, 3, and 5.) Note that
(OAD) 1 are triangulations of the same 4d polyhedron, homeomorphic to a standard 4-disc
D*, which plays a role analogous to the bipyramid above.

Next, we claim that the boundary of both (OA%), and (OA®)_ can be split symmetrically
into two 3-dimensional octahedra:

6((8A5)i) = octahedron_ U octahedron, ; or topologically, S3 ~ D3 Ug. D3.
‘W”‘ &>- 4>
octahedron_ octahedron

Combinatorially, the boundary of (9A®)_ consists a collection of tetrahedra obtained by
omitting a vertex from any of the three pentachora [12345], [01345], [01235] that appear
n (2.7). We find:

9[12345] = [2345] U [1345] U [1245] U [1235] U [1234]
9]01345] = [1345] U [0345] U [0145] U [0135] U [0134] (2.9)
9]01235] = [1235] U [0235] U [0135] U [0125] U [0123]

U
U

Of the 15 tetrahedra in this list, three of them (in bold) appear twice. The tetrahedra
that appear twice are glued together pairwise, and do not contribute to the total boundary
8((8A5)_); put differently, they are internal 3-faces in the triangulation of (OA’%)_. The
actual boundary 9((9A®)_) consists of the remaining nine tetrahedra,

d((6A°)_) = ([2345] U [1245] U [0345] U [0145]) +— oct_

U ([1234] U [0134] U [0235] U [0125] U [0123]) + octy (2.10)

We split the boundary as indicated into two octahedra octL. The first octahedron, trian-
gulated into four tetrahedra, is shown on the far left of Figure 3. The second octahedron,
triangulated into five tetrahedra, is shown on the far right of Figure 3.

Successive cobordisms through the three pentachora [12345], [01345], [01235] may now
be interpreted as a sequence of (2,3) and (3,2) Pachner moves that take us from oct_ to oct..
This sequence of moves is shown in the top part of Figure 3. Explicitly, cobordism through



[12345] is a (2,3) move; cobordism through [01345] is a (3,2) move; and cobordism through
[01235] is another (2,3) move. Note that the three internal tetrahedra [1345], [1235], [0135]
that appeared twice in (2.9) all play a role in Figure 3. Namely, they are the tetrahedra that
are both ‘created’ and subsequently ‘annihilated’ by moves in the top sequence.

[01345]
[01 235] ] .
[12345]
Ieft
{ r|ght

3 3 bottom
back V
0 2 top

[02345] [01234]

Figure 3. The (3,3) Pachner move, interpreted as relation between sequences of (2,3) and (3,2) moves.

AA

Similarly, we may compute the triangulated boundary of (OA%), by first considering

9[02345) = [2345] U [0345] U [0245] U [0235] U [0234]
9[01245] = [1245] U [0245] U [0145] U [0125] U [0124] (2.11)
9[01234] = [1234] U [0234] U [0134] U [0124] U [0123]

After removing the internal (repeated) tetrahedra, we find

d((0A%)4) = ([2345] U [1245] U [0345] U [0145]) — oct_
U ([1234] U [0134] U [0235] U [0125] U [0123]) + oct. (2.12)
= 0((0A%)-).

As required, this boundary is identical to O((0A%)_). We split it into the same two octa-
hedra octy as before, and interpret the pentachora [02345], [01245], [01234] as a sequence of
cobordisms — a sequence of (2,3) and (3,2) moves — shown along the bottom of Figure 3.
The three internal tetrahedra [0245], [0234], [0123] now appear at intermediate stages of this
bottom sequence, first created and then annihilated.

Altogether, the (3,3) Pachner move is an operation that replaces a cluster of 3 pentachora
represented by the top sequence in Figure 3 by a cluster represented by the bottom sequence.

,10,



The remaining 4-dimensional Pachner moves can be given similar interpretations/visualizations.
In particular, the (2,4) and (4,2) moves can be visualized in terms of the same six triangulated
octahedra in Figure 3! The (2,4) move relates a two-step sequence of moves going around
the circle of octahedra in one direction, with a four-step sequence of moves going around the
circle of octahedra in the opposite direction. The (4,2) move does the reverse. The (1,5) and
(5,1) moves require a different underlying 3d polyhedron, we will not consider them in this
paper, because they do not preserve ideal triangulations (see the next section).

This sort of interpretation of 4d Pachner moves in terms of sequences of 3d moves has
been used frequently in the mathematics literature. A particularly clear discussion and visu-
alization appeared in [37] (see also [38, 39]). The choice of splitting of O((9A®)+) described in
[37] and used in [38, 39] differs from the one above; it is less symmetric, but has the advantage
of only involving sequences of (2,3) moves, with no (3,2) moves.

2.2 Comments on ideal triangulations

As noted in the introduction, a bottom-up approach to constructing 2d N = (0,2) theories
T[M*] associated to triangulated 4-manifolds is only likely to make sense in the case of
oriented 4-manifolds with boundary and ideal triangulations thereof.

Topologically, an ideal d-simplex is a d-simplex whose vertices have been removed. In
the category of PL manifolds, it is more convenient to think of an ideal d-simplex Afd as a
d-simplex with small neighborhoods of the vertices removed, i.e. a d-simplex that has been
slightly truncated. Examples of ideal triangles and ideal tetrahedra are shown in Figure 4.
Note that the boundary of an ideal simplex is not triangulated; rather, it is tiled by d + 1
“big” faces, each an ideal simplex Afd_l, which are truncations of the original faces of A%; and
in addition by d + 1 “small” faces, each an ordinary simples A?~! which are the boundaries
of the removed vertex neighborhoods. For example, the boundary of an ideal tetrahedron
consists of four big hexagons (ideal triangles), and four small triangles. The boundary of an
ideal pentachoron consists of five ideal tetrahedra, and five small ordinary tetrahedra.

a) b)
A&

Figure 4. a) An ideal triangle, and an ideal triangulation of a punctured 2-torus into two ideal
triangles; b) an ideal tetrahedron.

Given an oriented PL d-manifold M¢ with boundary 9M¢?, an ideal triangulation of M?
is a tiling by ideal (and oriented) d-simplices, such that all the big faces are glued pairwise,
while all the small faces are left unglued, and compose a standard triangulation of OM?.

— 11 —



An example of an ideal triangulation of a 2d surface with small S boundaries is shown
in Figure 4. In three dimensions, ideal triangulations were popularized by W. Thurston [40],
and are now extremely common (e.g.) in the study of knot and link complements. In the
case of a knot complement, the underlying 3-manifold M3 is obtained by starting with a knot
K c S and excising a neighborhood of K,

M3 = S3\neighborhood (K) . (2.13)

Topologically, the boundary of the knot complement is a torus, OM?3 ~ T?. An ideal triangu-
lation of M? is a tiling by truncated tetrahedra, whose small-triangle boundary components
are left unglued, and tile the boundary T2.

For most of the current paper, it will not be important to distinguish between ordinary
and ideal triangulations. The triangulated manifolds that we study are local: they are formed
from clusters of simplices, partially glued along their (big) boundaries to form oriented poly-
hedra. Whether or not neighborhoods of the vertices are removed is immaterial. We will
continue writing A% instead of Agd to refer to simplices.

One relevant consequence of using ideal triangulations is that they restrict the set of
valid Pachner moves. In d dimensions, (truncated versions of) the Pachner moves of types
(n,d+ 2 —n) with 2 < n < d can all be used to change the local structure of an ideal
triangulation. The exceptional moves of type (1,d 4+ 1) and (d 4 1,1) are no longer allowed,
since in the context of ideal triangulations they would add or remove a boundary component.
For example, in three dimensions, the (1,4) move replaces a single tetrahedron with four
tetrahedra that share a new, common vertex; in the context of ideal triangulations, this move
would create a new, spherical boundary component. In four dimensions, the Pachner moves
that act on ideal triangulations are of types (2,4), (3,3), and (4,2).

The distinction between ideal and non-ideal triangulations becomes very important glob-
ally. Ultimately, we would hope to be able to associate 2d N = (0,2) theories to ideal
triangulations of complements of knotted surfaces in 4-manifolds. Namely, given a surface X
(PL-)embedded in a closed (PL) 4-manifold M, one can consider the complement

M* = M\neighborhood () . (2.14)

The boundary dM* will be an S'-bundle over ¥ (in particular, it will be a Seifert-fibered
3-manifold). As long as OM* is nonempty, M* has a chance of admitting an ideal 4d trian-
gulation.

Knotted surfaces and their complements in 4-manifolds have been studied in e.g. [41, 42]
(see also references therein) and more recently in the context of cusped hyperbolic 4-manifolds
[43-46]. A few concrete examples of such ideal triangulations, for the complement of knotted
¥ ~ 5% in S*, were discussed in [47, 48]. At the moment, though, the literature on 4d ideal
triangulations is rather less developed than in 3d.

In dimensions two and three, it is known that all ideal triangulations of a manifold with
boundary are connected by finite sequences of allowed Pachner moves (type (2,2) in 2d, and
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types (2,3) and (3,2) in 3d). The result in three dimensions is a nontrivial generalization of
Pachner’s theorem [49-53]. One would expect an analogous result to hold in four dimensions
as well, though to the best of our knowledge it has not yet been established.

3 The pentachoron theory

We saw in the previous section that (d + 1)-simplices mediate d-dimensional Pachner moves.
We now combine this geometric construction with the expected physics of compactifications
to associate a 2d N' = (0,2) theory to a 4-simplex, a.k.a. a pentachoron.

The abstract reasoning goes as follows. Let us suppose that the 6d (2,0) SCFT can be
compactified on a d-manifold M¢, with a suitable d-dimensional topological twist, to produce
an effective (6 — d)-dimensional theory T[M¢]. Moreover, suppose that the data of T[M?] is
explicitly presented in a way that depends on a choice of triangulation t for M?, but that the
dependence on this choice disappears in the far infrared. In other words, given any t one can
construct a (6 — d)-dimensional theory T[M? t], in such a way that theories T[M?, t] and
T[M?,t'] associated to any pair of triangulations t,t’ are infrared dual. Then we should be
able to identify the (6 — d — 1)-dimensional theory T[A%*!] associated to a (d + 1)-simplex as
a duality interface between any pair of theories T[M?,t] and T[M?,t/], where t and t’ differ
by a single Pachner move.

We will apply this abstract reasoning to concrete examples of theories T[M?, t] labelled
by triangulations, which descend from the 6d (2,0) theory of type A;. In particular, we are
interested in:

e d=2 M? = ¥ a punctured surface, with T'[%] the associated 4d N = 2 theory of class S
[1, 2]. An ideal triangulation t of M? leads to in IR description T'[%,t] of T'[%] in some
region of its Coulomb branch, determined by the choice of t [3]. T[X,t] is described as
an abelian gauge theory with a particular collection of BPS states [54].

e d=3 A 3-manifold M3, with T[M?3] an associated 3d N' = 2 theory. If M? is a knot or
link complement with an ideal triangulation t, one can assemble a 3d N = 2 theory
T[M3,t] of class R from the data of the triangulation [6]. Different triangulations lead
to IR-dual theories. It is expected that the T[M3,t]’s capture a subsector of T[M?3], far
out on its Coulomb branch.

3.1 Warmup: T[A?] as an interface

As a warmup, we briefly review how the abstract reasoning above can be used to recover the
class-R theory T[A3] of a single tetrahedron, just by knowing the 4d Seiberg-Witten theories
associated to punctured surfaces with ideal triangulations. This particular interpretation of
T[A3] was developed in detail by [7] and [18] (and is also related to ideas in [5, 55]).
Suppose that T[X,t] and T[X,t'] are two Seiberg-Witten theories associated to a pair
of triangulations t,t’ of the same surface ¥ that differ by a single flip — i.e. a single (2,2)
Pachner move. The two theories T[X, t] and T'[3,t'] look almost identical. Indeed, they are
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merely related by a permutation of the fields in a 4d BPS hypermultiplet, which effectively
swaps a particle and an antiparticle [3]. There is a 3d N' = 2 duality interface between
T[%,t] and T[X,t'] that implements this permutation. The interface carries a single 3d
N = 2 chiral multiplet, coupled to hypers of both T[X,t] and T[X,t]. The bulk-interface
couplings effectively serve to equate 4d hypers across the 3d interface, modulo the expected
permutation.

The theory T[A3] then becomes associated with this duality interface. Note that T[A?]
is independent of the choice of surface ¥ or particular triangulations t,t’. Just as the flip of
an edge is a local move relating t and t/, the interface T[A%] couples “locally” to an isolated
sector of T'[3,t] and T[X,t'] containing a single BPS hypermultiplet (corresponding to the
flipped edge). The remaining gauge fields and BPS hypers of T[X,t] and T[X,t'] remain
unchanged when passing through the interface; i.e the interface is transparent with respect
to the remainder of these theories.

This description of T[A3] as an interface serves to highlight another important feature.
Despite the fact that one often describes T[A3%] as “a 3d chiral multiplet,” T[A®] is not truly
an isolated 3d N = 2 theory. This is a direct consequence of the fact that the tetrahedron
A3 itself has a boundary and is not a closed 3-manifold; thus one should not expect the
compactification of the 6d (2,0) theory on A3 to make sense on its own. It is possible to
extract a purely 3d theory from the interface T[A3], at the cost of making additional, non-
canonical choices. For example, one may choose boundary conditions for the 4d bulk theories
T[3,t] and T[X, t'] on either side of the interface. A particularly simple choice of boundary
conditions kills all remaining bulk 4d degrees of freedom, leaving behind

T[A%] ~ single 3d N = 2 chiral multiplet (3.1)

Other choices of boundary conditions lead to other 3d theories, such as chiral multiplets
coupled to dynamical 3d U(1) gauge fields, with various Chern-Simons levels.

3.2 T[A%] as an interface

We now wish to increase the dimension in the above analysis, to find a theory T' [A4] associated
to the pentachoron A*. As in the case of a tetrahedron, T[A*] will not be a stand-alone 2d
theory; rather, it will appear as a duality interface.

Let us consider a pair of class-R theories associated to some 3-manifold M3 (a knot or
link complement), with ideal triangulations t, t’ that differ by a single (3,2) Pachner move.
The Pachner move acts locally, replacing a part of the triangulation t that is isomorphic to
a bipyramid composed of three tetrahedra (as on the right of (2.5)), with a bipyramid in t’
composed of two tetrahedra (as on the left of (2.5)).

The corresponding transformation of class-R theories, described in [6], is also “local,”
with respect to field content. The Pachner move replaces a subsector of T[M?3,t] containing
three chiral multiplets coupled by a cubic superpotential, with a new subsector in T[M?3,t]
that contains two chiral multiplets charged under a U(1) gauge field. In other words, the
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Pachner move replaces a 3d N = 2 “XYZ model” with 3d N’ =2 SQED:

XYZ model SQED
3 chirals, W = X34Y37234 “ U(1) w/ 2 chirals ®, ® of charge +1. (3.2)

These two simple 3d N = 2 theories are dual to each other in the infrared [17].

More concretely, we can isolate the sector of theories T[M?3, t] and T[M?3,t'] that par-
ticipate in the Pachner move by simply considering the bipyramid B itself. Since B is a
3-manifold with boundary, defining a stand-alone 3d theory associated to it requires (as al-
ways) an additional choice. In the formalism of [6], this choice was encoded in a “polarization”
IT of the boundary of B. Geometrically, the most important part of the data of a polarization
II is a maximal subset of the edges of the triangulated boundary 0B, with the property that
no two edges in the subset bound a common triangle on 9B. (Physically, the edges in this
subset correspond to electric BPS states of the Seiberg-Witten theory T'[0B].)

N

Figure 5. a) The three “electric” edges in the polarization Il.q, shown in bold. b) Chiral multiplets
associated to tetrahedra in the two triangulations of the bipyramid B.

Here we take an equatorial polarization Ile, of the bipyramid, whose subset of edges
contains the three horizontal edges on the equator of the bipyramid, as in Figure 5a. Given
this choice, the class-R theory associated to a bipyramid cut into three tetrahedra is precisely
T'[B,ts;Ileq] = XYZ, and the theory associated to a bipyramid cut into two tetrahedra is
TB, to; Il = SQED.

The superpotentials, flavor symmetries, gauge symmetries, and Chern-Simons levels (for
both global and gauge symmetries) of these two bipyramid theories are all uniquely deter-
mined. We list them here for reference:

Xvyzloe & vy
U(l)gauge 0 001 -1 XYZ =
1), |-110[/-10 T [XYZ] = yz (3.3)

U(
Ul), |[-10 1|0 -1
ULg |2 001 1

We have denoted the chirals of the XYZ model (resp. SQED) as X,Y, Z (resp. ®, ®). There
are two flavor symmetries U(1), . and a U(1)r R-symmetry, in addition to the U(1) gauge
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symmetry of SQED. We encode 3d Chern-Simons couplings in anomaly polynomials® Jpu,
following our conventions in [19], where y, z, r, f are field strengths for the U(1), ., U(1)r, U(1)gauge
symmetries, respectively. Note that both U(1), and U(1), function as axial symmetries in
SQED. They are distinguished in SQED because their difference is the topological flavor sym-
metry that rotates the dual photon; this is reflected by the f(y — z) coupling in the anomaly
polynomial Ty, [SQED].

A duality interface between the XYZ model and SQED that preserves 2d N' = (0, 2)
supersymmetry was found in [19]. It resulted from analyzing dual boundary conditions,
somewhat similar in spirit to analyses performed in [20] and generalized in [13] (see [57-59]
for other recent studies of 1/2-BPS codimension-1 defects in 3d N = 2 theories). The duality
interface is nontrivial in the UV, but was precisely engineered so as to flow to a trivial interface
in the IR.

In the conventions of [19], the interface may be constructed as follows. We envision the
XYZ theory supported on the “left” half-space Rb! x R, <o and SQED supported on the
“right” half-space RV x R,1>0, with the 2d interface at z = 0. The gauge multiplet of
SQED is given a Neumann (A) boundary condition, which preserves gauge symmetry at
the interface, as well as 2d N' = (0,2) SUSY. The bulk chiral multiplets on the left and
right may each be decomposed under the N' = (0,2) subalgebra of 3d N' = 2 SUSY into
pairs of N = (0,2) chiral and fermi multiplets, which we denote (X, ¥x), (Y, ¥y), (Z,¥y)
and (@, W), (®,¥). Initially, (Y, Uy), (Z,¥y), (®,¥), and (&, ¥) are given Neumann (N)
boundary conditions at the interface, which means all the fermis ¥y, W, etc. are set to zero
while Y, Z, etc. are left unconstrained. The pair (X, Ux) is given a Dirichlet (D) boundary
condition, which means X is set to zero at the interface, with ¥x unconstrained.

So far, we have just described two independent boundary conditions at z = 0. These
boundary conditions are tied together at the interface by introducing

e an additional 2d (0, 2) fermi multiplet I", supported at 1+ =0, with charges

U(D)gauge U(1)y U(1): U()R

3.4
[ 1 -1 1 0 (3:4)

e N = (0,2) superpotential couplings at z+ =0, of the form
/d6+ [YT® + Ux®®],  Ep=Z2, (3.5)

3Given a theory in d = 2n + 1 dimensions with some Chern-Simons term that we may denote by Lcs, the
anomaly polynomial J¢s is given by dLcs. For example, given a 3d Chern-Simons term for a U(1) gauge theory
of the form [ Lcs =k [ AN F (appropriately quantized), we have an anomaly polynomial dLcs = kF A F,
which we denote by kf2. Given a bulk 2n + 1-dimensional theory with a 2n-dimensional boundary, the bulk
current from such Chern-Simons term can cancel one-loop boundary anomalies arising from the presence of
chiral fermions by the usual anomaly inflow mechanism. The anomaly polynomials are naturally interpreted as
terms in 2n + 2-dimensional theories that extend to the 2n 4+ 1-dimensional boundary and for compact groups
G are classified by elements of H*"*2(BG,Z) [56].
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where T is given both J and E terms Jp = Y®, Fr = Z®. Given the charge assignments,
these couplings are unique up to fermionic T-duality [19].

The interface superpotential deforms the initial boundary condition X ‘x 1_o=0to
X|,og=Juy =P ., (3.6)

whereupon the product of J and E terms for I' becomes

JrEr = (Y®)(28) Y XYZ = Wy (3.7)
Thus, the bulk superpotential is factorized at the interface, as required to solve an analogue
of the “Warner problem” [13, 60] (further explored in the recent [57]).

This interface also satisfies a highly nontrivial constraint of anomaly cancellation. All
UV gauge and ’t Hooft anomalies at - = 0 must vanish, in order for the interface to flow to
a trivial interface in the IR. There are three sources of such anomalies: 1) the difference of
bulk Chern-Simons terms Ik [XYZ] — Iuk[SQED]; 2) anomalies Jy from bulk fermions that
survive at 2+ = 0 given the initial boundary conditions in the construction of the interface
(noting that bulk fermions contribute exactly half the usual anomaly of a purely 2d fermion
[19]); and 3) the chiral anomaly Jr of I". A careful calculation yields

XYZ SQED

Jo=35(-y—z+r)? =5y -1 51+’ -5 -y’ -3(-f-2)°,  (38)

or=(f-y+2)?, (3.9)

with Jpuk[XYZ] — Tpuk[SQED] 4+ J9 + Jr = 0 as required.
Altogether, we will represent the duality interface schematically as

XYZ SQED
T[A*] ~ (D,N,N)|T|(N,N,N). (3.10)

Since the interface implements the (3,2) Pachner move, we identify it with the pentachoron
theory.

3.2.1 Reversed orientation

There are several other versions of the duality interface (and hence the pentachoron theory),
related to (3.10) by making some slightly different choices.

Above, we decided to look at a (3,2) Pachner move, rather than a (2,3) Pachner move.
Geometrically, this meant splitting the boundary of the pentachoron A% in a particular way.
Had we considered the (2, 3) Pachner move instead, we would have found the inverse interface

SQED XYZ
T[AY ~ (N,N,N)|I|(D,N,N). (3.11)
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The construction of this interface is virtually identical to that above. The only difference is
that the fermi multiplet IV now has charges

U(Dgange U(L)y U(L): UMk
I 0 0 0

(3.12)

and superpotential couplings [ df* [‘i)F’ Z - X<I><i>] , Br = —®Y, consistent with the charge
assignments.* Anomaly cancellation now takes the form Jp1[SQED]—Jpu [ XYZ]+Jo+Ir =
0, with Jp = £2.

3.2.2 Alternate polarizations

In order to isolate 3d bipyramid theories above, we also had to make a choice of polariza-
tion, namely Iloq. Other choices are possible. Changing the choice of polarization modifies
the interface T[A%] in (3.10) by gauging or ungauging various U(1) symmetries. This is a
generalization of Witten’s SL(2,Z) action on 3d theories [61], now applied to 3d theories
containing 2d interfaces. (Similar setups were considered in [20].)

We emphasize that the necessity of choosing a polarization stems from the fact that there
is no completely canonical way to isolate a sector of the class-R theory T[M?3, t] associated to
a single bipyramid B ¢ M?3. Rather, there is a family of ways to do this, labelled by different
polarizations.

One could obtain a canonical, polarization-independent description of the pentachoron
theory by coupling the entire bulk-interface system of (3.10) to a 4d N' = 2 U(1)? gauge
theory (by gauging the U(1), x U(1), flavor symmetry). This leads to a characterization of
T[A%Y as a 2d N = (0,2) defect, on the 3d N = 2 boundary of a 4d N = 2 gauge theory. We
will not pursue such 2d-3d-4d systems further in the present paper.

For future reference, we do mention one convenient, alternative choice of polarization for
the bipyramid: a “longitudinal polarization” Ilj,,g, whose preferred subset of edges contains
two vertical edges as in Figure 6. With this polarization (also considered in [6]), the 3d theory
T[B, t3, iong] roughly becomes 3d N' = 4 SQED, and T'[B, ta, Ijone| roughly becomes a 3d
N = 4 hypermultiplet. We say “roughly” because these are still viewed as 3d N' = 2 theories,
and their flavor symmetries (and background Chern-Simons couplings) are shifted slightly
from standard 3d A/ = 4 conventions.

The charges and Chern-Simons levels of the two new bipyramid theories are:

¢ q q|\YZ i
U(1)gauge[0 =1 1[0 0 W = 4 5QED = ¢qq
Ul)y, (1 -10(10 JpukN =4 SQED] = f(y —z) —yz +r(y +z) — r? (3.13)
U, |1 0 -1/0 1 Tbulk [hyper] = —1(y-r)?—-1L(z—r)?
Ulgr |01 1]00

“Some minus signs are introduced here to ensure that J- E = Wieg, — Whight factorizes the difference of bulk
superpotentials. In this case, the coupling — U x®d deforms the D b.c. on X to X = —(Joy) = +od (since
X is sitting on the right of the interface); and we correctly get J - E = (®Z)(—®Y) = —XY Z = —Whight.
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Figure 6. a) The two “electric” edges in the polarization Iliong, shown in bold. b) Chiral multiplets
associated to tetrahedra in the two triangulations of the bipyramid B, adapted for this polarization.

In V' = 2 language, TB, t3; jone| contains the three chirals ¢,q, ¢, with a U(1) gauge field
and a superpotential ¢qq; while T'[B, to; IIjong| just contains the two chirals Y, Z. The flavor
symmetry is U(1), x U(1)y, and there is a U(1) g R-symmetry.

The duality interface corresponding to the (3,2) Pachner move now takes the form

N =4 SQED hyper
T[A% Miong] =~ (N, D,N,N)[T|(N,N), (3.14)

with an extra 2d N = (0,2) fermi multiplet I" of charges

U (1)gauge U(1), U(1), U(1)g
r\ 1 0 0 0

(3.15)

and interface superpotential couplings [ df* [\I/¢YZ + qFY], Er = ¢Z. We encourage the
reader to check that UV anomalies at the interface are perfectly cancelled, and that the bulk
superpotential is factorized as EpJp.

In the opposite orientation, the (2,3) Pachner move corresponds to the interface

hyper N =4 SQED 1) oauce 1 1), 1
T[A4;H10ng]/ ~ (N, N)‘F/|(N,D,N,N), F/U( )]_g g U(l )y U( 1) U(O)R

(3.16)

with superpotential couplings [ df* [qF’Z — \II¢YZ], Er = —qY .

3.3 A purely 2d pentachoron theory

One may wish two isolate a purely two-dimensional version of the pentachoron theory. Purely
2d versions of the pentachoron theory come from “sandwiching” the interfaces (3.10) or (3.14)
between a pair of boundary conditions. As we have emphasized many times, there is no
canonical way to choose the boundary conditions. There are, however, some especially simple
and convenient choices.

Let us focus on the version (3.10) of the interface. One minimal choice of boundary
conditions is

e (N,D,D) as a left b.c. for the XYZ model (meaning Vx, Y, Z are set to zero)
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e (D,D,D) as a right b.c. for SQED (meaning Dirichlet for the gauge multiplet, and &, ®
set to zero)

We depict this schematically as

interface SQED
\NXDYDZ - DXNyNZ\F|Nqu>N~ — DyDgDy| (3.17)

This choice kills all the bulk degrees of freedom, in both XYZ and SQED. Flowing to the
infrared, we find a purely 2d N' = (0, 2) theory consisting of the fermi multiplet T" alone.

Unfortunately, this choice of boundary conditions is a little oo minimal. A useful 2d
version of the pentachoron theory would have the property that it can be re-coupled to XYZ
on one side, and SQED on the other, in order to recover the full duality interface (3.10).
The single fermi multiplet I' does not have this property. In order to recover the duality
interface (3.10) one would somehow need to know to add a 2d superpotential ¥y ®® that
couples together fields of XYZ and SQED; and this is not information carried by I'

A better choice of 2d pentachoron theory is the following. Consider

interface SQED
\DXDYDZ — DXNYNZ\FWfN@N — DyDgDy| (3.18)

e (D,D,D) as a left b.c. for the XYZ model (setting X,Y,Z to zero while keeping
U, ¥y, U, unconstrained)

e (D,D,D) as a right b.c. for SQED

In the infrared, the interface sandwiched between these boundary conditions flows to a 2d
N = (0,2) theory containing two fermi multiplets: T" and ¥x. Let us call the second fermi
multiplet 7 instead of Wx, to avoid confusion when re-coupling to the bulk. We have found

T[AY ~ two 2d N = (0,2) fermi multiplets ', 7 (3.19)

These two fermi multiplets carry the full U(1), x U(1), flavor symmetry of the bulk XYZ
and SQED theories. In the current conventions, the flavor and R charges are

(3.20)

Moreover, this simple 2d theory has the property that it can be re-coupled to XYZ on one
side, and SQED on the other, to recover the full duality interface (3.10). To implement this
recoupling, we consider right b.c. (N,N,N) for XYZ and left b.c. (N ,N,N) for SQED, with an
interface superpotential

W = /dm [YT® +n(®® - X)], Er=2%, E,=-YZ. (3.21)
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Note that
J-E=JrEr + J,E, = (Y®)(Z®) 4+ (- X)(-YZ) = XY Z, (3.22)

factoring the bulk superpotential of the XYZ model, as required. Moreover, integrating
out the fermi multiplet 7 precisely reproduces our original duality interface (3.10), with the
couplings in (3.5).

Other versions of the duality interface for the (3,2) move, e.g. (3.14), can similarly
be sandwiched between boundary conditions to produce isolated 2d theories. In all cases,
the simplest choice of boundary conditions that still allows one to recover the interface (by
re-coupling to the 3d bulk) leads to a 2d theory containing a pair of fermi multiplets.

4 The (3,3) move and 2d N = (0,2) dualities

Having identifed the interface theory corresponding to a pentachoron, we can begin to con-
struct sequences of interfaces corresponding to clusters of glued pentachora. We expect to
find equivalences among gluings corresponding to the four-dimensional Pachner moves.

In this section we will focus on the (3,3) Pachner move, deferring the (2,4) and (4,2)
moves to Section 5. Let us recall from Section 2.1 that (3,3) move can be interpreted as
a relation between two sequences of (2,3) and (3,2) moves. In the model of Figure 3, each
sequence acts locally by changing the triangulation of a 3d octahedron.® The first sequence
(containing two (2,3) moves and one (3,2) move) is depicted along the top of the figure, and
the second sequence (again containing two (2,3) moves and one (3,2) move) is depicted along
the bottom.

Using the dictionary of Section 3.2, we can translate the two sequences of 3d Pachner
moves on the octahedron to two sequences of duality interfaces. If the anticipated corre-
spondence between field theory and geometry is robust, the two sequences of interfaces must
themselves be IR dual to each other.

Let us expand briefly on this statement. After choosing a polarization for the boundary of
the octahedron (discussed further below), the six triangulations of the octahedron in Figure 3
produce six different 3d N = 2 theories of class R. We label the octahedra (and associated
theories) I-VI, as in Figure 7 on page 23. These six 3d bulk theories are all IR dual.

The sequence of 3d Pachner moves along the top of Figure 7 corresponds to a sequence
of three duality interfaces connecting the 3d theories 71 — 71 — T — Tiv. Colliding
these interfaces together produces a single duality interface Zio, between theories I and IV.
The collision involves a partial flow to the IR, enough to make most modes of the 3d fields
inbetween interfaces massive. We will obtain a description of Zi., as a Lagrangian 2d N =
(0,2) theory with finitely many fields, coupled to the bulk 3d Lagrangians of theories I and IV.

® As mentioned at the end of Section 2.1, there are other ways to model the (3,3) move. In [37-39] there
appeared sequences with only (2,3) moves, and no (3,2) moves. Unfortunately, translating the model of [37-39]
to field theory necessarily involves 3d A/ = 2 theories with monopole operators in their superpotentials. The
octahedron model of Figure 3 neatly avoids this complication.
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Similarly, the Pachner moves along the bottom connect the 3d theories 71 — Tvi — Tv — Tiv
with a different set of interfaces, whose collision (with partial flow to the IR) produces a second
duality interface Zy,o; between theories I and IV.

Now, in the deep IR, both of the bulk theories 71 and Try should flow to the same 3d
SCF'T, say Tir. Similarly, we expect the interfaces Ziop and Ty, to both flow to the identity
(transparent) interface in Tir. This expectation ultimately relies on being able to commute
two RG flows: 1) the flow implicit in the collision of duality interfaces between adjacent
octahedron theories; and 2) the flows to the IR in the 3d bulks of the various octahedron
theories. Assuming the flows do commute, the IR equivalence of Zio, and Zy,o, becomes the
most basic physical manifestation of the (3,3) Pachner move. We will verify the equivalence
of Ziop and Iy, explicitly in Section 4.2.1, by computing interface indices.

More interesting consequences of the IR duality between Ziop, and Zyo, can be obtained
by “probing” these interfaces with additional boundary conditions. For example, given any
left boundary condition® By for theory 71, we can collide it with either Ziop or Zpo (using
a partial IR flow) to produce a new boundary condition for theory Try. We denote these
collisions as ByoZiop and ByoZyet, respectively. Assuming again that collision commutes with
bulk RG flow, the (3,3) Pachner move should manifest as a duality between pairs of boundary
conditions for theory Try:

(3,3) move on b.c.: Br o Ziop R Jual Br o Tyt VB. (4.1)

Going one step further, we may also choose a right boundary condition Bry for theory
Trv. Then “sandwiching” interfaces between By on the left and Bry on the right (doing a

partial flow to collide) produces a pair of purely 2d N' = (0, 2) theories, By o Ziop © Bry and
By o Iyot © Bry. The Pachner move now manifests as an IR duality of 2d theories

IR dual
(3,3) move on 2d theories: Bi 0 Ziop © Bry ~ B o Ty,or © Brv VB, Bry. (4.2)

We will consider scenarios of both types (4.1) and (4.2) below, and will use supersym-
metric indices to check the expected dualities.

4.1 3d theories and interfaces

To proceed, we carefully identify the 3d class-R theories associated to the six octahedra,
and the duality interfaces that link them. We choose a polarization for the boundary of the
octahedron (independent of its internal triangulation) whose subset of edges form a great

5 As usual, we restrict ourselves to boundary conditions that flow to superconformal b.c. in the infrared; in
particular, we require boundary conditions to preserve 2d A" = (0,2) SUSY and a U(1)r symmetry
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circle, shown in bold here:

N

| t ‘_) 11T y

YA
N

Vv

Figure 7. Six theories of class R, labelled I - VI, are associated to the triangulated octahedra in
the (3,3) move. Each tetrahedron (labelled w,x,y, z, ...) gives rise to a 3d chiral multiplet (labelled
Gw, P, Py, @z, ...) in one of these theories.

This choice of polarization makes the initial theory 77 as simple as possible: it contains
four chiral multiplets coupled by a quartic superpotential. The other theories can be described
schematically as follows. In Figure 7 we label the tetrahedra corresponding to the various
chiral multiplets that appear here.

Ti: Four chirals, Wi = ¢,¢20y¢-.

Tii: Five chirals ¢, ¢s, ¢, ¢y, ¢ with charges (1,—1,0,0,0) under a U(1),, gauge symmetry,
with WII = ¢T¢s¢t + ¢t¢y¢z-

Ti: Four chirals ¢, ¢s, ¢y, ¢y with charges (1,—1,0,0), (0,0,1,—1) under U(1)g, x U(1)g4,
gauge symmetry, coupled by Wi = ¢,.¢5¢,¢y, i.e. two coupled copies of Ny = 1 SQED.



Trv: Five chirals ¢y, ¢q, g, ¢r, ¢, with charges (0,1,-1,1,0), (1,0,-1,0,1), (1,-1,0,0,0)
under U(1)g, x U(1)g, x U(1)g, gauge symmetry, with Wiy = ¢qdpdg + dgdrdy, i.e. two
copies of Ny =1 SQED with a common axial symmetry gauged.

Tv: Similar to T, with chirals relabeled as (¢, ¢, ¢v, du) — (Db, Pd, Pa, de)-
Tvi: Similar to Ti1, with chirals relabeled as (¢, ¢s, ¢t, Oy, ¢2) = (b, Pds P f, by, Pu)-

Notice that the theories along the bottom and top halves of the loop look identical, up
to a relabeling of fields. This simply reflects the geometric fact that the sequence of 3d
Pachner moves along the top of the loop is related to the sequence of Pachner moves along
the bottom of the loop by a rotation of 180° about a diagonal axis, as shown in Figure 8.
This rotation permutes various chirals associated to tetrahedra. Crucially, it also permutes
the action of flavor symmetries, which we have yet to spell out. We shall see that matching
flavor symmetries between the top and bottom sequences is where much of the nontriviality
of the (3,3) move lies.

Figure 8. A 180° rotation relates the top sequence of triangulated octahedra to the bottom sequence.
Here the triangulated octahedra I and IV are depicted, for which the rotation is a symmetry. (In
contrast, octahedra II++VI and III++V are interchanged.)

Each octahedron theory has a U(1)% flavor symmetry, which we denote as U(1),, X
U(1)y, x U(1)g below. (The notation is suggestive of “vector” and “axial” symmetries in the
SQED-like theories along the top.) In theory 7r, the flavor symmetry acts in a standard way by
rotating the chiral multiplets; while in theory 7y the flavor symmetry is entirely topological,
and rotates the three dual photons. The flavor charges and Chern-Simons couplings for each
octahedron theory are summarized in Appendix A. (The precise way in which the flavor
theories become topological can be read off from the Chern-Simons couplings.)

4.1.1 Interfaces along the top

Let us now go through the top half of the loop in steps (71 — T — Tir — Tiv). We wish
to describe the basic duality interfaces between each pair of theories, and to collide them
together to obtain the composite interface Zi,, between 7y and Trv.
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Tt — Ti: This interface is a copy of (3.16), implementing a (2,3) Pachner move on two of the
chiral multiplets of 7r. It is defined by using N b.c. for ¢,, ¢, (on the left) and N,N,D
b.c. for ¢,, ps, ¢ (on the right); then introducing a 2d fermi multiplet I" with interface
superpotential

Wit = / 08" (6aTbs — dodw ) . Er =~y (4.30)

The —¢zd, ¥y coupling sets @b, = ¢ as desired, and the boundary E and J terms
factor the difference of bulk superpotentials: JrEr = —@pshr Py = — sy = W1 —
Wir. We summarize the interface as

NNy || Ny, DN, N . (4.3b)
Note that the interface is completely invisible (transparent) to ¢, and ¢..

Tit = Tir: The next interface is a copy of (3.10) involving ¢, ¢, ¢, on the left and ¢,, ¢, on the
right, with a 2d fermi multiplet IV in the middle. It can be summarized as

DtNyNz‘F/‘NggNqu ’ WHfIH = /de+ (¢yrl¢v + ¢u¢v\1’t) ’ EF’ = sz@bu . (4'4)

This interface is transparent to ¢, ¢s and to the gauge multiplet for U(1),.

Trr1 — Trv: The final interface is again a copy of (3.16), involving a 2d fermi multiplet T
NuNs’FH}NgngNaNba Wii-1v = /d9+ (¢urll¢b - ¢u¢s‘1jg) s Erin = *Qbsﬁba . (4'5)

When we collide these interfaces together to form Z,, the bulk chiral multiplets ¢, ¢, ¢y
get trapped, and potentially contribute additional 2d degrees of freedom. Note that these
bulk chirals correspond to the three “internal” tetrahedra of (2.9). To determine precisely
what 2d degrees of freedom remain, we must examine the boundary conditions for ¢¢, ¢, ¢y
on the interfaces that trap them:

e ¢; has Dirichlet b.c. on the left from (4.3) and Dirichlet b.c. on the right form (4.4).
Decomposing ¢; under the N' = (0,2) SUSY subalgebra into a chiral /fermi pair (®y, ¥y),
we find that ¥; survives and contributes a purely 2d fermi multiplet to Zgp.

e ¢s has Neumann b.c. on the left from (4.3) and Neumann b.c. on the right from (4.5).
It contributes a 2d chiral multiplet ®4 to Zigp.

e ¢, has N b.c. on the left from (4.4) and N b.c. on the right from (4.5). It contributes
a 3d chiral multiplet ®, to Zip.

The composite interface Zio, thus contains four 2d fermi multiplets (I',IV, I, ¥;) and
two 2d chiral multiplets (®g, ®,). Their couplings to the bulk matter of theories 71 and Trv
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(and to each other) come from the sum of the three interface superpotentials above, as well
as from E-terms. Notably, the fermi multiplet ¥; also has an E-term E; = —0Wy/0¢; =
—(¢py¢» + &, Ps), induced by the bulk superpotential of theory 71. (As explained e.g. in [19],
the decomposition of 3d N' = 2 chirals into 2d N/ = (0, 2) chiral/fermi pairs turns 3d F-terms
into 2d E-terms.) Altogether, the composite interface Ziop, may be summarized as:

Ztop : NriNyNz |F, F/, FH, Uy D, q)u|Ng1Ng2Ng3NaNngNUNT . (463)
The J and E terms of the 2d fermi multiplets are
R W, | (W,)

J ¢xq>s ¢y¢v (I)u¢b q)u¢v - ¢x¢w (_(buq)s) (4'6b)
E *¢r¢w ¢zq)u *(I)sﬁba *d)yﬁbz - Qbrq)s (*gbaﬁbb - Qbrd)v)

(Here we have also indicated the couplings involving the fermi half of the bulk ¢, from Try.
At the interface, these couplings set ¢, = ®,P,.) Rather beautifully, the interface J and F
terms factorize the difference of bulks superpotentials,

J-E = JrEr + Jr Er + Jpo Ern + JiEy = ¢u¢20yd. — Gadpdy — dgdrdp = W1 — Wiy (4.6¢)

The charges of various fields under the U(1)y, x U(1)g4, x U(1)g, gauge group (on the
right), the U(1),, x U(1)y, x U(1), flavor symmetry, and U(1)r R-symmetry are completely
determined by the J and E couplings. For reference, these charges are:

Puw Pa ¢y ¢z I 1w o, o, ba Db Cbg v O
U1)y,/O 0 0 0/1 0 0 0 -1 0|1 0—-10 1
U(1)g,|0 0 0 0010 0 0 1|0 1 -1 1 0
U(l)g;0 0 0 0|00 -10 0 0|-11 0 0O (4.6d)
Uly|1 =10 0[1 0 0 0 0 0/0 0 0 0 O
U1)p|0 1 0 =1/0 0 =1 -1-1 1[0 0 0 0 0
Ul)|0 0 1 -110-10 0 0 0[O0 0 0 0 O
UMrlz 2 3 200 0 0 5 3] 3 1 5 3

4.1.2 Interfaces along the bottom

We can follow the same procedure to determine the interfaces along the bottom half of the
loop. Alternatively, we can simply apply the symmetry of Figure 8 (discussed in greater detail
in Appendix A.1) to the description of interfaces along the top, to obtain the interfaces along
the bottom.

Applying the symmetry is more direct and revealing. It amounts to 1) modifying charges
of I, TV, T and ¢y, ¢s, ¢, according to the field redefinition

V2 — Vi —a—Va, g1 — 82 + 83, g2 — 21— 83; (4-7)

and 2) relabeling ¢tu ¢57 ¢u — st? (stv ¢e and Swapping the roles of (st, <Z>a, (z)b) <~ (¢za (sta ¢7‘)
in all 2d or 3d superpotentials. (By a slight abuse of notation, we will denote the fermi

multiplets on basic (2,3) and (3,2) interfaces as I' once again.)

— 26 —



In particular, this leads to the following description of the composite interface Zy,o;. As
before, there are four 2d fermi multiplets and two 2d chiral multiplets, coupled to 3d bulk
fields with boundary conditions

Toot © NuNGNyNL|T, T, T, W g5 @y, @ | Ny, Ny Ny, NaNy DN, N, (4.8a)

The J and E terms have become
| r U | (W,)

J ¢Z®d ¢y¢a <De¢v q)e¢a - ¢z¢w (_(I)eq)d) (4'8b)
E _¢b¢w ¢xq)e _(I)dgbr _gby@bx - ¢bq)d (_¢a¢b - ¢r¢v)

and the charges are now

¢w d’az ¢y (Z)ZFF/ F// \Pfq)d cI)e ¢a ¢b (bg (z)v(z)r
U1),|0 0 0 0[/0-10 0 0 —1/1 0 -10 1
U1)y,|0 0 0 0(1 0 0 0 -10[0 1110
U1)gs0 0 0 01 1 =10 =1 1|=11 0 0 0 (180)
Ul)y|1 =10 0[1 0 -1 -1—-11[0 0 0 0 0
U0 1 0 =10 0 1 1 1 —1/0 0 0 0 0
Ul|0 0 1 =10-11 1 1 =1{0 0 0 0 0
UMrl3 5 53 300 0 0 5 505 5 1 35 3

4.2 A functional identity for the (3,3) move

The interfaces Ziop and Iy, are distinct in the UV. Though their 2d matter content is similar,
both the charges under bulk flavor symmetries and the J and E couplings between 2d and
3d matter are manifestly different. As explained in the introduction to this section, the (3,3)
Pachner move should correspond to an IR duality between Zio, and Zy,o. We can check the
expected duality by computing supersymmetric indices that count protected local operators
bound to Ziop and Ty

The computation of “interface indices” in this case turns out to follow quickly from
considering the collision of Zi,, and Zy,o; with a particular boundary condition for 71. Recall
from (4.1) that given a left boundary condition By for 7; (that preserves N = (0,2) SUSY
and U(1)R), we also expect the collisions of By with Zio, and Zye, to be IR-dual:

BI o] Itop ~ BI o Ibot . (49)

We can check an identity of the form (4.9) by computing half-indices.

The half-index was introduced in [13] and further explored in [19, 62]. We will largely
follow the conventions and definitions of [19] for the half-index, except we use a Z/2Z homo-
logical grading given by fermion number F', rather than the grading given by R-symmetry.
The half-index of a boundary condition B for a 3d theory 7 then becomes

ET,B(*R Q) = TrOpsB(_l)FqJ+R/2$e > (4'10)
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where the trace is taken over boundary local operators, R is U(1)g charge, J is the generator
of Spin(2) rotations in the plane of the boundary, and z is a shorthand for any (and all)

7 We record the basic functions used in the subsequent

flavor fugacities with generators e.
expressions in Appendix B and refer to [19] for the systematics of how these expressions are
obtained.

Now, consider the left boundary condition By = (DDDD) for theory 7y. In other words,
we simply put Dirichlet b.c. on each of the four chirals ¢, ¢., ¢y, ¢.. The corresponding

half-index may be immediately written down:

I7i5 = Ip(giv)Ip(givevy ) Ip(gia)Ip(qT /(avs))

3 _ 3 _ 3 _ 3
= (g1 /v7 5 @)oo (11195 5 @)oo (g a1 @) o (T av2; @)oo (4.11)
1 1 v 1 1 v av
—1+ (———1—av2> ¢+ (av1++v2++1+2> %+ 0(¢"Y)
a U1 V9 avy V2 avy (%1

We use fugacities vy, v2,a for flavor symmetries U(1)y,,U(1)y,, U(1),. Note the manifest
symmetry of this expression with respect to the exchange vy — v1/(avy), corresponding to
the 180° rotation of Figure 8.

Next, consider the collisions By o Ziop, and By o Zy,o, which define boundary conditions
for Try. Since Ziop and Tyt should both be duality interfaces, both By o Zio, and By o Zyy
should be IR-dual to the simple boundary condition By for 7;. In particular, By o Zi,, and
By o0 Ii,ot should be IR-dual to each other.

Let us determine the matter content of ByoZip, and BroZy,et. Since By = D,,D;DyD., col-
liding with Zop = NwaNyNz}... as in (4.6a) completely kills all four 3d chirals ¢, ¢z, ¢y, @2
from 71. (The D b.c. kills their 2d chiral parts and the N b.c. kills their 2d fermi parts.) We
are simply left with

BioTLiy = [TV, T, Wy; @y, @ | Ny, Ny, Ny, NaNpDgN, N, (4.12)

i.e. with 2d multiplets I, IV, I, ¥, &, ®,,, coupled to the bulk fields of 71y via the J and FE
terms of (4.6b), restricted to ¢ = ¢z = ¢y = ¢, = 0. Similarly,

BioTIne = I,IV, T, Wy; ®g, Pe| Ny, Ny, Ny, NaNy DN, N, (4.13)

where now I', ", T refer to the 2d fermis of (4.8).
By using the charge assignments from (4.6) and (4.8), the two new half-indices are readily
written down:

N3 dg1 dgz dgs
I = 0% i § G § et
x F(g101)F(1/(ag2))F(1/(g5v2))F(1/02)C(q7 /(g102))Clg i v2/ g2)

x Iy (g5 91) In (a7 g2)Ip (a7 /(9192) In (a7 g293) In(aigr/gs),  (4.14)

"For theories with integral R-charges, changing to this new grading amounts to replacing ¢'/? — —¢'/?

in all formulas. We use (—1)F rather than (—1)R precisely because our theories are most naturally assigned
non-integral R-charges.
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Iro por :(q):s% dg: 7{ dgo 7{ dgs
IV,21Pbot o (271'2'91) (27['igg) (27Ti93)

x F(019293)F (93/(ag1))F (ava/ (g301))F (ava /01)C(q 1 ava/ (92g301))Cq i v1g3/ (agiv2))
In(q790)In(q792) In (a7 /(9192)) In (a7 9295) En (a7 91/ g3) . (4.15)

Here F and C denote half-indices of 2d fermi and chiral multiplets — see Appendix B.®

Satisfyingly, one can expand both of the functions I, B0z, and Iy oz, , and check
order-by-order in ¢ that they are both equal to II';; 5,. In particular, they are equal to each
other! We have checked to O(q®). We suspect that equivalence

Eﬁv,BIOItop = I8, = I77y BioTioy (4'16)

can be proved using difference equations, similar to some of the examples in [19].

We also observe that I, gioz,,, and I,

web. The simple boundary condition By = DDDD for 77 has a manifest Sy symmetry, coming

BioTy., are actually involved in a larger duality

from permuting the four bulk multiplets ¢y, ¢z, ¢y, .. As generators of Sy, we may take the
three Z /27 symmetries that act on flavor fugacities as

1
1) v2<—>£, 2) vy ea, vy & —, 3) v1<—>v—2. (4.17)
avy V2 V1

The transformation (1) relates I, B;o7,0, and I 7 B0z, - (The integrands of 7, 5oz, and
I'r, BioT,., are related by (1) together with (g1,92) < (9293,91/93), which becomes trivial
once the integration is performed.) From I7; Bz, (V1,v2,a) = I7; 5,(v1,v2,a) combined
with (4.17) we find more generally that

71y BroTiep (V1,2, @) = I3y BroZio, (V1,v1/(av2), @) = I71y BioTie, (@5 1/v2,v1) = I3y BroZie, (V1/V1, V2, @)
:EﬁV’BIOIbOt (Ul 7“270)

= any other S; permutation of flavor symmetries . (4.18)

4.2.1 Upgrade to interface indices

We come back to the question of whether the interfaces Zio, and 7o, themselves are IR dual.
We would like to test this by computing an index that counts local operators bound to them.
We expect the result to be equal to the “interface index” of the identity interface in either
theory 7Tt or theory 7rv — a.k.a. the full bulk 3d index [63, 64] of theories Ty or Try.

The bulk 3d index of 77 is almost trivial to calculate, since there are no gauge fields.

Comparing the formulas of [8, 64] to Appendix B, we find that the bulk index factorizes:
1 1 1 1
I = In(gv1) DN (giv2vy ) In (g7 a) In (g7 /(avz)) (4.19)
1 1 1 1
x Ip(qivi)Ip(qivevy ) Ip(qia)Ip(qt/(avs)).

8Also note that the contour integrals, corresponding to 3d gauge fields in Trv, are not to be evaluated

via a Jeffrey-Kirwan prescription. They simply denote projections to invariants. The integrand should be
expanded as a series in ¢, whose coefficients are polynomials in g1, g2, g3; and the integrals pick out the terms
independent of g1, g2, g3.
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This reflects the fact that one can “factorize” the identity interface in 71 by coupling a
right (NNNN) boundary condition to a left (DDDD) boundary condition, using a canonical
quadratic 2d superpotential. More succinctly:

17} = E’Y},NNNN X E’E,DDDD . (4.20)

The interface indices for Ziop, Zy,or behave in a similar way. Using a standard folding trick,
we can think of an interface between the two theories 71, Trv as a boundary condition for the
tensor product 71 ® Try. This allows us to compute interface indices using standard formulas
for half-indices.? Moreover, the left sides of Ziop and Iy are especially simple, in that there
are no nontrivial gauge degrees of freedom involved in coupling to 7;. Correspondingly, the

interface indices factorize
Iz, = I7; NNNN X 77y BioTiop

(4.21)
Iz, = I7 NNNN X I iy BroTi, -
Therefore, the equivalence of interface indices
Iz, = Ix = Iz, (4.22)

becomes a direct consequence of (4.16).

4.3 2d dualities from sandwiches

It is satisfying to find dualities of interfaces, and half-index identities, that encode the ge-
ometry of the (3,3) move. However, one might also hope for dualities of purely 2d theories
that are in some way intrinsic to the 4d geometry. As explained in (4.2), this can is achieved
by choosing a pair of boundary conditions By, Bry for 7Ty, Trv, and sandwiching the duality
interfaces between them.' We consider one particularly simple sandwich here.

We choose By = (DDDD) as in Section 4.2, and choose the right boundary condition

By = N91N92D93NCLDIJN9N”DT|77’ Ul (4.23)

Here U(1)4, x U(1)g, remain gauge symmetries on the boundary (due to Neumann b.c. on
the corresponding gauge multiplets) while U(1)y, is broken to a boundary flavor symmetry
(by Dirichlet b.c. Dg,). This turns out to be one of the simplest boundary conditions for
Tiv that is free from gauge (or mixed gauge-flavor) anomalies. There are two extra 2d fermi

90One should in general take care to distinguish contributions from bulk fields coming from the right and
from the left; however, in practice this only becomes important in the presence of Dirichlet b.c. for gauge
fields. In the current setup, all boundary conditions on gauge fields are Neumann.

19Some choices of sandwiching boundary conditions may have interesting geometric origins. In particular,
Br and Bry may themselves correspond to 4-manifolds with a single 3d boundary component (homeomorphic
to an octahedron), which are glued onto the complex of pentachora in the (3,3) move, closing it off. Analogous
proposals in the smooth context were discussed in [13]. We hope to flesh out the geometric counterpart of
sandwiching in future work. Here we content ourselves by presenting a two-dimensional duality arising from
boundary conditions with simple field-theoretic definitions.
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multiplets 1, 7" on the boundary, whose role is to cancel boundary anomalies. Explicitly, the
charges of 1,77 and the total boundary anomaly are

‘U(l)m U(l)QQ U<1)93‘U(1)v1 U(l)w U(l)a‘U(l)R
n 1 0 -1 -1 1 0 0 (4.24)

2 1

R 1
ITiv]+ -1 —S(g1—gs—ir)? + 3 (go+2gs — ir)? — L (—g1 —g2)? — (g2 — ir)* + (g1 — ir)?

2

+(g1—g3— V1 +v2)2—|—(g2—a—v2)2

= %r2+g§+g3(2v1—r)—l—v%—I—v%—{—aQ—VlVg—l—an.

This anomaly polynomial is independent of g; and g3, indicating the absence of gauge and
mixed gauge-flavor anomalies (there remain flavor 't Hooft anomalies).

4.3.1 Top sandwich

To identify the result of sandwiching the top interface Zio, between B; and Bry, we can
proceed in two steps. We first collide with Br on the left, obtaining a left boundary condition
(4.12) for Trv, and then collide with Bry on the right to get a 2d theory

7;op =Bio Ztop o Brv
=TT T Wy By, @4 | N NNy NaNy DNy N, — Ny, Ny, D NaDpNoNoDy [, 1 (4.25)
~ U(1)91 X U(1)92 + D, 1,17, Uy, n,n; Oy, Dy, Py, D, .

The bulk multiplets ¢, and ¢, of Try survive, as they are sandwiched between N b.c. on
either side, and give rise to 2d chiral multiplets ®, and ®,. In addition, 2d vector multiplets
associated to the U(1)y, x U(1),, gauge symmetry survive, while U(1),, has become a 2d
flavor symmetry. Altogether, we find a 2d theory with U(1)? gauge symmetry, six fermi
multiplets, and four chiral multiplets. Its charges and remaining couplings are summarized
in Appendix C.

Here it is more instructive to observe that the theory Tiop factorizes into two completely
decoupled subsectors, Tiop = 7;(1)13 ® 7'{(2)p. The factorization is most manifest if we redefine
(gauge and) flavor charges according to the field redefinitions g1 — g1 +a — va, g2 — —go,
g3 > g3ta—vy— Ve, Vi » V] +Vy—a, vy = v —a. We also swap the fermi multiplets
I and 7' with their fermionic T-duals I, 77’ (essentially their conjugates, cf. [19]). Then
we find that both T, and T2, are U(1) gauge theories with three fermi multiplets and two
chiral multiplets, namely

LT nl|®, @ 7 v, I'|®, d,
Ul)g,|1 0 1]1 —1 Ul)g,|[1 0 1|1 —1
U(1)g,|0 1 —1{—1 0 ) U1),|0 1 —1|—1 0
T 93 T 4.26
P U()y 1 =1 01 0 P U(1)y,|1 =1 0|1 0 (4.26)
ULr/0 0 0|5 3 Ulr/0 0 0|3 3
Jin = oD, Jy, = ,®,
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We see that 7;(1)13 and ﬂ%p are essentially identical. One carries the flavor symmetry U(1)g, x
U(1),, and the other carries U(1), X U(1)y,.

The only J and E couplings obviously induced from the sandwich (4.25) are the two
J-terms above. Curiously, the flavor charges of the various fields allow for additional 2d
superpotential terms that are cubic in fermi multiplets (and their T-duals),!

wl = / doT [ ®®, + I"T'n(®,)? + LT (P,)?] (4.27)

in t(l)p, and similarly in 7;(2)13. We suspect that these additional terms will be generated during
the collisions of boundaries and interfaces.

The elliptic genus of 7;})1) is very simple. Using the Jeffrey-Kirwan contour prescription
of [65, 66] the evaluate the contour integral for the gauge multiplet (not a direct projection

to invariants, as would be appropriate for 3d gauge fields) we find

Z[Teop) = (Q)goF(g?)/vl)/ 2d.1 F(g101)F (91/93)C(q7 9101 /93)C(g7 /g1) (4.28)
JK 4741

1 1 _
= F(qtv1)F(q1g5 "),

suggesting that 7;(1)13 flows to two free fermi multiplets in the IR. Similarly, Z [7'{(2)13] evaluates
to F(qivg)F(qicfl). Thus, the elliptic genus of the full sandwiched theory is
1 1 1 1
Z[Trop) = Flg7v1)F (g7 g5 )F(g7v2)F(g7a™), (4.29)

and we suspect that the full sandwiched theory flows to four free fermi multiplets in the IR.

We observe that the dualities between 7&5 to two free fermi multiplets are precisely an
instance of the abelian duality from [15] with Ny = 2. As in [15], we have the 7;(1)19 duality
map ¥} = &', U, = &, where ¥/, U/, are the two dual fermi multiplets (and similarly for
Tiop)- Notice that (I',n) and (¥], %) both transform in the fundamental of an SU(2) flavor
symmetry whose Cartan is generated by vi 4+ gs, under which the other fields are singlets.
There is also an additional U(1) flavor symmetry generated by %(Vl — g3) under which I/
transforms in the antifundamental and ®, transforms in the fundamental. These fields are

the counterparts of (Py,T'y),a=1,..., Ny —1in [15].

4.3.2 Bottom sandwich

A nice feature of the boundary condition Bry is that it is invariant under the “180° rotation”
of Figure 8. In particular, it treats the pairs of chirals (¢q, ¢,) and (¢p, ¢,) corresponding to
tetrahedra exchanged by the rotation in a symmetric way, giving them both N b.c. or both D

"To see that these couplings preserve N7 = (0,2) SUSY, we must check that the total D variation of
the superpotential vanishes. (This is a generalization of the usual E - J = 0 constraint.) The couplings
themselves correct the fermion variations to DI = 0, DI’ = —I"'7j(®,)?, DI’ = —1"'n(®,)?, Dy = I"'T(®,)?,
Dij = T"'I'(®,)%. Notably, these are all proportional to I''. Then, simply due to (I")? = 0, we will have
D[I"®,®, + ["'I'n(®s)* + I"'T(®,)?] = 0 as required.
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b.c. Thus we may expect that sandwiching the bottom interface Zy,,; between Br and Bry will
produce a 2d N = (0, 2) theory Tyt that looks the same as Trop above — up to an important
permutation of fields and flavor symmetries. This is indeed what we find.

The sandwich with Zy,q defines a 2d N = (0,2) theory Tpot with U(1)y, x U(1)g, gauge
symmetry, six fermi multiplets, and four chirals

Toot = Bi 0 Iot, © Brv

= T, T, T, Wg; @, D [Ny Nyy Ny No Ny DN, N, — Ny, Ny, Dy No DNy N, D,
~ U(l)g, x U(1)g, + T, T, T, Wy, m, 15 ®g, Pe, Py, Dy

n,n" (4.30)

This theory is distinguished from T;op, by the flavor charges of I', IV, I, W ¢; ® 4, ®., summarized
in Appendix C.

As before, we find a factorization Tyt = 7;310t ® 7-1;20t’ with two almost identical decoupled
subsectors. After redefining charges g1 — g1 + 83 — v2,82 — —£9,83 — g3 +a — v — Vo,
V1 — Vi+Va—a, Vo — vo—a ezactly the same way as above (4.26),'? we obtain the simplified

description
o, |0, O 7 I T |®y &,
Ul)g, |1 0 1[1 —1 Ul)g|l 0 1|1 —1
U1)a|0 1 —1|—1 0 9 U1)g 0 1 —1/—1 0
T T 9 4.31
P U(1)y |1 -1 01 0 PO U(1)yy|1 =1 01 0 (4.31)
UDgr|0 0 0|3 & UDgr|/0 0 0|3 3
J\I/f = @aée wa - q)d®1)

The flavor charges allow a more general 2d superpotential W' = [ do+ [\Pf<I>a<I>e+\Ilff/n(¢>e)2+
T’ ﬁ(é[)a)Q] in 7{)10“ and a similar superpotential for 7'80,5.
The elliptic genera are computed as in (4.28) to be

Z[TL) = F(giv)F(gia),  Z[T2,] = Flqiv)F(qigs "),

1 1 -1 1 1 -1 (432)

Z[Toot] = F(q1v1)F(gia")F(q1v2)F(q1g; ).
Again we find four free fermions. This matches (4.29), but in a nontrivial way: the pairs of
ép?
7%10,5, 7-1;20‘5 flow. The difference is detected by the flavor symmetry. (The two setups are related

fermions to which Ty, Tio,, individually flow are distinct from the pairs of fermions to which

by swapping a <> g3.) Only after taking a product of sectors do we match elliptic genera and
recover a plausible IR duality

7;<13p ® 7;(2)p = Rlot ® 71)20‘5 . (4'33)

2There is one exception: g1 — g1 + g3 — v2 here, while g1 — g1 +a — vo in (4.26). The difference is a shift
of flavor charges by multiples of gauge charges, which is not physically meaningful.

— 33 —



4.4 Toward more systematic gluing rules

In Section 3.3, we posited a minimal model for a purely two-dimensional pentachoron theory
T[A%], involving two 2d fermi multiplets ', 7. Moreover, we showed how this theory could be
re-coupled to bulk XYZ and SQED theories (say), to recover the duality interface governing
(2,3) and (3,2) Pachner moves. A nice feature of constructing the basic interface this way
was that every bulk multiplet started off with Neumann boundary conditions, which then got
deformed by coupling to the pair of 2d fermi multiplets.

We can use the 2d description of T[A%] from Section 3.3 to make the sequence of interfaces
in the (3,3) Pachner look a bit more canonical. Every pentachoron mediating a (2,3) or (3,2)
move will contribute a pair of fermi multiplets; and every internal tetrahedron (trapped
between pentachora) will contribute a 2d chiral multiplet.

For example, from this perspective, the composite interface Zi,, takes the form

Tiop NN NN | Ty, T 0 T s @y, B, @y [Ny Ny Ngy NaNyNgNy N, . (4.34a)

All bulk chirals and gauge multiplets have Neumann b.c. All interface couplings are encoded
in the (somewhat intricate) E and J terms for the six 2d fermi multiplets. A bit of careful
work reveals them to be

‘ T IR r” ‘ n 77/ 77”
J ¢xq)s ¢y¢v q)u¢b Oy — ¢x¢w (I)u(bv — ¢g — 0, P (4'34b)
E _Qbr@bw szq)u _(I)s¢a _(Z)yd)z - ¢rq>s _¢y¢z - d)rq)s _¢a¢b - d)rd)v

These satisfy J - E = Wi — Wy on the nose, with no additional relations required.

We emphasize that the description (4.34) is completely equivalent to the slightly simpler
(4.6). To get from (4.34) to (4.6), we can integrate out i’ (and thus solve for ®;), identify n
with ¥, and integrate out 1 to effectively “flip” the Neumann b.c. on ¢, to Dirichlet. (Such
“flips” were discussed at length in [19].)

We suspect that this more canonical characterization of interfaces will be useful when
investigating 2d N' = (0, 2) theories associated to more general triangulated four-manifolds.

5 The (2,4) and (4,2) moves

It is simple to modify the above discussion slightly to obtain the interface for the (4,2) and
(2,4) moves. The geometric picture is nearly identical to the one for the (3,3) move, except
we need to reverse the arrow between Trv and 7y so that the top sequence gains one step
and the bottom sequence loses one step, as in Figure 9. We will then obtain two different
composite interfaces between 71 and 7y: an interface Z, from collisions along the bottom,
and an interface Z, from collisions along the top.

We start with the two-step sequence for simplicity. The composite bottom interface is
simply the interface obtained by truncating the bottom sequence in the (3,3) move after the
second step:
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Figure 9. Sequences of (2,3) and (3,2) moves that encode the (2,4) and (4,2) Pachner moves.

Ty i NuNoNyNL|T, TV, W | Ny Ny NoNp NN (5.1a)
The J and E terms of the 2d fermi multiplets are
| T T Uy
J| G200 Pyda Peda — Pz (5.1b)

E _¢b¢w ¢x¢e _¢y¢x - QZ)bd)d
which immediately factorize the superpotential:
J-E=JrEr + JrEr + J\I/fE‘I/f = ¢x¢y¢w¢z - ¢a¢b¢c¢d =W —Wy. (5.1C)

For simplicity in what follows, we will use conventions for gauge charges that are better
adapted to the bottom sequence — corresponding to fugacities and field strengths denoted
g1, 95, 95 and gf, g5, g in Appendix A. The charges of fields involved in Z, are

bw Gx Gy &2 |0 T Wildy Gy da de
Ul)y[0 0 0 010 00 1 -10
U(l)y|0 0 0 0/0-10[1 0 0 -1
Ul)y|1 -1 0 0|1 0 —1/0 0 —1 1 (5.1d)
Ul)w|0 1 0 —1j0 0 1|0 0 1 -1
UMa|0 0 1 —1{0-11]0 0 1 —1
G0a[3 5 5 5100 0135 13

Alternatively, we may reach 7Ty by passing through interfaces 71 — 711 — Trr — Tiv just
as in Section 4.1.1, and then applying one final (2,3) move Ty — Tv using a basic interface
(3.14), in the form

Ny DgNo N, [T”|NNg, Wiy = / do™ (0ol b + GeWyda) ,  Erm = ¢rpa.
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The interface is transparent to the fields ¢, ¢p.

The composite interface for this four-step sequence can be obtained by colliding our
previous Ziop from (4.6) with (5.2). By the same reasoning outlined in constructions of
Section 4, the final collision traps two 2d chirals ®,, ®,, and a 2d fermi ¥,. In addition, the
3d vector multiplet for the U (1)gé symmetry of Try has Neumann b.c. on either side, and
reduces to a 2d vector multiplet Vgé for a “trapped” purely 2d gauge symmetry. Summarizing,
the composite four-step interface is:

1y NwN:pNyNz ‘Fa F,7 F”, FW, Uy, \I/gQ Dy, D5, Dy, P Vgé

Ngi/\fgé NaNpNgNe .  (5.2a)
The J and E terms of the 2d fermi multiplets are

‘ F Fl F/l F/l/ \Ijt \Ilg
J ¢ocq>s ¢y¢v q)u¢a Qse(pv (IDu(I)v - beﬁbw _q)uq)s + ¢e¢d (5'2b)
E _q)r¢w szq)u _(I)s(bb ¢dq)r _¢y¢z - (I)rq)s _¢a¢b - (I)rq)v

Again, the interface J and F terms factorize the difference of bulk superpotentials,

J-E = JpEp+Jp Bpr+ Jpo Bro 4 Jow By + T B+ Jy By = bubadyds — dadsbade = Wi— Wy

The charges of the various fields are'3:

¢w (ZS.I ¢y (252 rr oo Uy \I/g o &, O, D, Qba ¢b ¢d Ge
U(l)gg 0o oo000~-10-10140-101(01-10
U(l)gé 0o oo0o0f1001O01-101T0|1 00 -1
U(l)gé o o0o00iz1-1100-111-110020 0 (5.2¢)
U1)y,/1 -10 01 0 0 -10 0 0 0 0 0|0 0-11
UL)|0 1 0 -1{0 0 -1 1 =10 -1 1 0 0[0 0 1 —1
Ul1)e|0O 0 1 -1j0-10 1 0 0 0 0 O 0|0 0 1 —1
G0a[3 5 5 50000003 5133133

Note again that U(1), is a purely 2d gauge symmetry.

g3
5.1 Half-indices

Just as we did for the (3,3) move, we can collide the 71 — Ty interfaces with an all-Dirichlet
boundary condition By = (DDDD) in 77, to get an expected dual pair of left boundary
conditions for Ty:

BI o IQ ~ BI o) I4 . (53)

Of course, since both Zy and Z4 are duality interfaces, we expect both of these to simply be
dual to By itself, in the deep IR where the bulk theories 71 and 7y flow to the same 3d SCFT.

13For neatness of presentation, we perform an additional redefinition: g — g + vi — 2va — a.
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The expected dualities are borne out by half-index calculations. The following nontrivial-
looking expressions are both equal to the simple half-index I7; g, from (4.11), and in particular
are equal to each other:

dq’ dg! 1 1 1 1
a— f( 9 74 s In (a4 I (aha) Tt (aghon) T (ag* o2/ (g0)

2mig)) 2mig),
x F(giv1)F(ava/v1)F(a tgs ") (5.4)
and
Ir pioz = %(2:2; }'{ 2?5‘5' / dg'é'
1) 95) Jik 2migs
In(q19})In (a1 gh) In (g7 1/ (aghv)) In (agiva/(giv1)) (5.5)
Clq7/(ghghv2))ClaTghva/g)Clat ghgs) Clat gt /gh)

F(gs9501)F (95/(agy))F(1/(g3v2))F (1/v2)F(gag5ava/(g1v1))F(1/(9195)) -

The contour integral of the (now 2d) gauge field ¢4 is performed first with the Jeffrey-Kirwan
prescription (say, by evaluating and summing the residues at g5 = ¢}/(v2g'/*) and g} =
1/ (g’2q1/ 1)), followed by the contour integrals for g}, g4 over the unit circle, which project to
g}- and g)-invariants [19].

Since these half-indices are both equal to II';; 5,, they possess they same non-manifest
vy — v1/(v2a) symmetry discussed in Section 4.2.
5.2 Sandwiches for the (4,2) move
As before, we can make sandwiches for various choices of boundary conditions. We will
describe two interesting possibilities. Many others are also possible.
5.2.1 Mostly Neumann for gauge fields
To start, we again choose left boundary condition By = (DDDD) as above, and the right
boundary condition

By = Ny Dy NoNpNgDe + 1 Fermi multiplet p (5.6)

We summarize the resulting 2d theory below. The anomaly polynomial of By is given by

I+ (gL —a—v2)?

_i(gz_%rQ)z (g/l 3 2)24-%(—g’z—a—i-vl—vz—%rQ)Q—%(—g’1+a_V1+V2_2

=a’+gh(r+2a) — ir* + r(v2 —v1)+vive +a(r+va).

Notice that the Fermi multiplet (which contributes the second term) has charges chosen to
cancel the pure and mixed g} anomalies, as required.

The collision with Br and By will kill all the degrees of freedom coming from the bulk
fields in 77, while trapping 2d chirals associated to the three 3d chirals ¢g, ¢y, ¢¢ in Ty, in
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addition to trapping a 2d gauge field Vg, and contributing a new Fermi multiplet p from the
right boundary. The bulk gauge symmetry U(1) g, becomes a 2d flavor symmetry.
Let us denote the 2d N = (0, 2) theories resulting from these sandwiches as

To=Biolyo By, Ti=BioZyoBy. (5.7)

We propose that these theories are IR-dual to one another. Summarizing their field content,
we have

T : F,FI,\IIf,p; @a,éb,éd;vgi ,
(5.8a)
Ta : I‘,F’,I‘”,F”’,\Ilt,\lfg,p; <I>u,<I>S,<I>T,<I>v,<1>a,<1>b,<1>d;VgllVgé.
The basic J and E terms we can infer from the collision are
rr v, p rroromow, v, p
To: J|0 O 0 0 To: J|OO ©,2, 0 @,9, -0, 0 (5.8b)
FE|0 0 -9, 0 E0 0 -0,y &0, -0, 0, —D, P, — D, D, 0.

In both cases, J- E = 0, as required for supersymmetry-preservation. Finally, the charges for
the two theories are

LTV U p|®, Oy By
Ul)g|l 0 0 1]0 1 —1
U(1)g 0 =10 0|1 0 0
Ul)y|1 0 =1 00 0 -1 (5.8¢)
Ul)y/0 0 1 —1{0 0 1
Ul)g[0-1 1 —1/0 0 1
Ulgr/0 0 0 0|4 5 2
and
T I I 00, p & &, ¢ 0,0, & Py
Ulgl0-10 -10 1 1 0-10 1[0 1 -1
Ulgll 1 =11 0 0 0 -1 1 1 =10 0 0
Ulg(t 00 1.0 1 0-10 1 01 0 0 (5.84)
Ul)w(l 0 0 -10 0 0 0 00 0[0 0 -1
Ul)w/0 0 -1 1 =10 -1-11 0 0[0 0 1
Ulg,l0-10 1 0 0-10 0 0 0|0 0 1
ULr/0O 0 0 0 0 0 5 35 5 5|35 5 5

As before, we can check the proposed duality of these 2d theories by computing their
elliptic genera. The elliptic genera can be written as

Z[T) = (@)% [k %C(géqm)c(giq1/4)0(aq1/4vz/(g’1U1))F(g’lvl)F(avz/vl)F(a’lgé_l)F(g’l/(aW))
= Clg5q"*)C(q 2 ava /v1)F (01 /q"/*)F (avz/v1)F(1/(agh))F (1 /avaq'/*)
= Clghq"*)F (v1/q"/*)F(1/(agh))F (1/(avag*’*))
=1+q'/* (gé — vy — L) +q'/? ( L —agh + g — ghvr — Z ”*1) +0(¢¥*)

avs B agh B ava ava
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and (evaluating the residues at, for example, ¢} = ¢~ /4, g4 = gb 'q~ /%)

ZIT] = (D% [ ooty [15 522 Clg"95)Cg"97)Cla" *vaa/ (g1v1))C a7/ (ghgsv2))C a7 ghva/ 1) Cat ghgh)

Tig| Tigh
< Cla g4 /94 (ghson F(gh/ (agh) F (L) (hv2) F(L/ua)F (ghghave/ (6o IP(1/ (615 F (g} (020)
= Clgha4YF (01 /g 4)F (1 (agh) F(1/ (avag'4)
=1+¢"/ (9’2 — v — ﬁ) +q'/? (—i —agh+gf — gho — 2 + ;’712> +0(g*"),

where the last equality follows from a large number of pairwise cancellations of chiral and
fermi multiplet contributions.

Notice that the elliptic genera reduce to that of a single chiral multiplet and three fermi
multiplets. This is apparent from reexamining the two theories. In the case of 73, IV and
P, are decoupled from the rest of the theory'* and simply carry the U (1)9/2, U(1), flavor
symmetries. The rest of 73 furnishes another example of the basic abelian duality of [15],
exactly as in Section 4.3. Repeating the argument therein yields the contribution of the two
fermi multiplets I}, Iy dual to the rest of the fields, with the identification ¥} = ®4p, ‘I;’Q =
®,I", where we write the T-dual of W), in the last equality to match the sign of flavor charges
of ¥}, in the index identity. Similar manipulations apply to 7; which contains, in addition to
the 5 fields dual to those in 7Tz, 4 chiral/fermi pairs that acquire masses along the RG flow
and can be integrated out.

5.2.2 All Dirichlet for gauge fields

We consider one more sandwich to obtain a particularly nice identity of elliptic genera. Con-
sider the sandwich by the boundary conditions By = (DDDD) on the left and

By = Dy Dy DeDpDgDe (5.9)
on the right. This sandwich completely removes all bulk modes in 71 and 7y alike. The data
for the 2d theories is now simply

T3 - IR (5.10a)
T r,r’,r”,r’”,\pt,q/g;q)u@s,q)r,cpv;vgé. (5.10b)

The J and E terms are

NN
J[oo o (5.10¢)
E00 0

and
‘F IV 1‘\// 1‘\/// \I]t ‘llg
JOoO 0O 0 ¥, —B,P, (5.10d)
E0O0 0 0 —-9,0, —9,0,.

MThis is clear if we redefine v — va — a.
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In both cases, the condition J - £ = 0 is immediately satisfied.

and

Finally, the charges in the two theories (where ¢}, g5 are now flavor symmetries) are

NS
U(l)g|1 0 0
U(1)g [0 =1 0
U(l)y|1 0 -1 (5.10e)
U(1)y,[0 0 1
U(1)a |0 -1 1
UMr|0 0 0
r T r"r”w v, o o o 0,
Ulgll 1 =11 0 0 -1 1 1 -1
Ulgl0-10 =10 1 0 -10 1
Ulglt 00 1.0 1 =10 1 0 (5.100)
Ul)y(1 0 0 =10 0 0 0 0 0
U1)y[0 0 =1 1 =10 =1 1 0 0
U1)e[0-10 1 0 0 0 0 0 0
ULgrg/0 0 0 0 0 0 2 & 1 1

The resulting elliptic genera are

Z[T3] = F(ghv1)F (avz/v1)F(1/(agy))

1 1 v av
:1+<_z—@g§—,—9101—1—2)q1/2+-~-
ag2 glvl avy V1

dg: 1 1 1 1
2T = (@ | 5 Clat (ahdsen))Cla’ g/ ) Clat04h)Clat ot /63
JK 4T3

x F(ga9501)F(g3/(ag)))F(1/(g3v2)) ) F(1/v2)F (gag5ava/(g1v1))F(1/(9195))
= C(v2/(9195))F(1/(aghghq"/*))F (v1g~/*)F (ghq"/* Jv2)F (ava/(giq"*v1))
+ Clghgh/v2)F ("% /91)F (agh/ (q"/*01))F (1/(aq" *v2))F (gl ghv1 / (q"/*v2))

1 1 U1 avsy
=1+ (—/—agé—/—g’lvl——>q1/2—|—...
ags g1 avy U1

where the latter integral can be evaluated by summing over the contribution from the poles
at, say, g5 = gi/(v2q"*) and g} = 1/(¢"/*g}). Notice also that although these functions ap-
parently have five flavor fugacities, we do not actually have that number of flavor symmetries,
since they only appear in the combinations ¢} vs, ave/v1,1/(agh).

6 Discussion

We conclude this note by describing some new opportunities for future progress in view of
our results, as well as a discussion of some of the expected challenges and subtleties.
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In this note we have proposed that a certain 2d A = (0, 2) duality interface can be asso-
ciated with a 4-simplex, viewed with a certain 342 splitting of its boundary components. As
mentioned earlier, this somewhat restricted way of viewing the 4-simplex is already sufficient,
in principle, to describe a certain class of 4-manifolds that admit layered ideal triangulations
(see [48, 67] for discussions of layered triangulations). Topologically, these 4-manifolds are
bundles over S' (or over an interval), whose fibers are the complement of a knot or link in
a closed 3-manifold M3. In particular, sweeping over S! (or the interval), one views the 4-
manifolds of interest as a sequence of triangulated 3-manifolds, related by 3d Pachner moves.
Physically, this translates to a sequence of class-R theories connected by duality interfaces,
much as in our study of 4d Pachner moves.

Though we have the machinery in hand to discuss such triangulated 4-manifolds, we
are currently able to do so only on a case-by-case basis, keeping careful track of boundary
polarizations, etc. It would be useful to find a more algorithmic way of producing ' = (0, 2)
theories and interfaces associated to this class of manifolds.

One may also hope to find 4-manifold invariants (which, from this viewpoint, will entail
chiral algebras, elliptic genera and half-indices, or entire N' = (0,2) theories and interfaces)
associated to more general ideal triangulations of 4-manifolds. This requires making the sym-
metries of the pentachoron more manifest in field theory. It turns out that some symmetries,
such as a Z/3Z subgroup of the pentachoron’s As rotational symmetry admit simple inter-
pretations in the duality interface. To realize other subgroups, by contrast, requires studying
IR-dual 3d theories arising from a rather involved chain of manipulations involving integrat-
ing chiral multiplets in and out, and rotating polarizations. We defer a full discussion of
penatachoral symmetries to future work, and leave systematizing the requisite gluing rules
for general ideal triangulations as a future objective.

As first discussed in [13], one expects a 4d-2d dictionary that associates observables
of the 2d N' = (0,2) theory T[My;g] to observables in the Vafa-Witten twisted theory on
M, [68]. For example, [13, 20] proposed that the Vafa-Witten partition function should
equal the 2d elliptic genus. The categorification of the latter is a vertex algebra, sometimes
called VOA[My], which has recently been explored in detail in the abelian case for smooth
(toric) 4-manifolds in [13, 69]; general properties of VOA[My;g] have also been discussed
in these works. These vertex algebras are expected to act on the cohomology of the VW
instanton moduli spaces via correspondences, generalizing the seminal works of Nakajima and
Grojnowski [70, 71]. The 4d-2d dictionary should also dovetail with 3d-3d correspondence and
AGT correspondence when the 4-manifold has boundaries, corners, etc. [13]. In other words,
we anticipate that the duality interfaces have as their 4d counterparts Vafa-Witten theories
with a boundary condition inherited from the 3d-3d correspondence [5, 6]; the latter dictates
that the 3d A/ = 2 theory should capture SL(2,C) Chern-Simons theory on the boundary
3-manifold. In the presence of such boundary conditions, we expect that the Vafa-Witten
theory should capture a moduli space of ramified instantons on My. It would be of great
interest to study the theory with these boundary conditions directly for (smooth or PL) Mj.

Returning to the framework of ideal triangulations, we also recall that the 3d-3d pre-
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scription of [6, 72] captures only a subsector of T[Ms3;g| [22] (though see [73] for recent
developments). It is already a fascinating and challenging open problem to understand if one
can augment the triangulated 3d-3d story to recover the full T[M3]. With this in mind, we
anticipate that our N' = (0,2) theories will also capture only a subsector of the full T'[My].
The virtues, of course, in elucidating these subsectors as we have done include their explicit
Lagrangian descriptions and the eminent computability of their indices, anomaly polyno-
mials, etc—analogous to the virtues of Seiberg-Witten descriptions of 4d N' = 2 theories.
Understanding this subsector directly on the Vafa-Witten side and relating our findings to
VOA[M,] will be insightful, and help us precisely demarcate the scope of our prescription in
4-manifold geometry. We expect, however, that recovering the complete T[My] by enhancing
the existing triangulation prescription will be another long-term challenge (if it can be done
at all). Nonetheless, on the geometry side, triangulations have been used to give an expe-
dited, computational proof that classes of Cappell-Shaneson homotopy spheres are standard
(i.e. do not possess exotic smooth structures, as initially hoped) [48], which was previously
demonstrated laboriously using Kirby moves; we believe that exploring triangulations fur-
ther in both geometry and physics will complement our current tools for studying 4-manifold
invariants.

It would be interesting to further explore the uplift of the field theory side to 4d N = 2
theories as discussed in the main text: viewing duality interfaces in 3d as junctions of defects
in 4d [13]. Boundary conditions in abelian 4d N' = 2 (e.g. Seiberg-Witten) theories transform
into one another under a symplectic group action [61]. It would be insightful to understand
what remnant of this duality action, if any, is induced on the junction and check this at the
level of junction indices. Analogous configurations in 4d N' = 4 and the associated “quarter-
indices” were recently considered in [29].

Finally (and a priori independently of any geometry), one can consider putative dual 2d
N = (0,2) theories arising from numerous sandwiches of IR-dual 3d A/ = 2 theories. We are
currently exploring the resulting dualities and their relation to the trialities of [15].
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A Charges & Chern-Simons levels

Below we summarize the charges and bulk Chern-Simons levels of the 3d N = 2 class-R
theories associated to the six triangulated octahedra.

To be very precise, these theories are derived from the geometry of triangulated octahedra,
using the rules and orientation conventions of [8] (there is a difference in orientations between
[6] and [8]). The initial polarizations of all tetrahedra correspond to the edges labelled by
w,T,Y,2,7,8,t,u,v,a,b,g in Figure 7. The final boundary polarization for all octahedra is
chosen to contain the four edges w,z,y, z in octahedron I. At the end, we have shifted R-
charges slightly (mixing them with flavor symmetries) in order to obtain a more symmetric
and non-negative R-charge assignment.

The charges of the theories along the top of the loop are:

Pt Pr D5 Py b2
Sw br by b2 R
U(l)g,|0 1 =1 0 0
Ul)y,|1 =10 0
U1)y|0 0 0 0 0
Ti: ULy 0 1 0 -1 T (A.1)
Ul)y|1 0 =1 0 —1
U1)a|0 0 1 —1
Up1 T 11 U1a|0 0 0 1 —1
QORI
o Pa Py Pr Pu
Or Ps Pv u b g
U1)y|0 1 =11 0
UL)g| 1 100 U(l)g|1l 0 =10 1
Ul)g,(0 0 1 —1 92
Ul)g,|1 =1 0 0 0
Tm: UL)y|0 0 0 0 Tiv : s (A.2)
U1)y,|0 0 0 0 0
U1)y,|0 -1 0 1
v lo 0 0 o U1)y,|0 0 0 0 0
U(1)a1111 U1),[0 0 0 0 0
LI L L1
ORI
Similarly, along the bottom of the loop:
¢f d)b ¢d ¢y Cbx
Ul)g|0 1 =10 0
Ul)y,|1 0 -1 0 —1
: b : ! A3
Ti: as above ™M Wul-10 1 0 1 (A-3)
Ul)g|-10 1 1 0
UDr|1 3 5 3 3
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b ¢a ¢ r Pv
o Pa Pa Pe s g Or 0
Ul)y|1 0 =10 1
Ul)y|1 =10 0 1
1 Ul1),|0 1 =11 0
U1),|0 0 1 -1 2
2 , Ul)y|0 0 0 1 —1
Tv: U(l)y|0 -1 0 1 Ty a (A.4)
U1)y|[0 0 0 0 0
U1)y,|0 1 0 —1
U1)w|0 0 0 0 0
Ul)g|0 1 0 —1
ONEEE U1)a|0 0 0 0 0
HEen e HONEE I

The two instances of theory IV that appear here (7rv and Tjy,) are identical, as they must
be. They are simply related by a redefinition of the gauge fields. Writing the field strengths
as g;, g, etc, the necessary redefinition is:

gi=g2+83, 8 =81 —83, 83=2¢3 (A.5)

We present the polynomials in the conventions of [19]. For each octahedron theory T,
we write J7 := J — J7;, where J is the full anomaly polynomial of 7 and we subtract
the contribution from the initial theory 77 for neatness of presentation. The shift by the
contribution of the four ungauged chirals is easily written down, but does not affect any of
our computations.

3] =0 (convention)

1
J[Ti] = 281v1 — 81ve + viva — §V22

J[Tm) = 2ags + 2g1v1 — ave — g1v2 + g2va + Vive — va?

ITiv] = —§g12 +2ags + g182 — §g22 + 8183 — 8283 + 2g1V1 — avy

— 2g1v2 + 2822 + 283Va + V1Va — V2
I3[ Tvi] = —%a2 +ag) +givi+ %V12 —avg +gjva — %v22
J[Tv] = agy’ + ags’ + g1 v1 + ghv1 — ava + giva — ghva + viva — va©
I[Tiv] = 2ag; — %g’lz +8182 — %g’f — 2ag3 + 8185 — 8283 T 285V1 + 285V1
—avg + Qg?lvz — 2g/2v2 — 2g§vz +viva — va?
A.1 Symmetry

The sequence of (2,3) and (3,2) Pachner moves performed in the bottom part of the loop is
related to the sequence in the top part of the loop by a simple symmetry. The symmetry is
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evident in the geometry of Figure 7: if we permute tetrahedra

top bottom
w7x’y72 w?’Z’y’m
A6
t,s,u <+ f,de (4.6)
a’7b7g7/U77ﬂ U7r7g7a7b

then the bottom looks just like the top.

The symmetry becomes manifest at the level of associated class-R theories, provided that
we reparameterize gauge and flavor symmetries to match the permutations of chirals. The
reparameterization of gauge symmetries is just the relation between g; and g;’ in (A.5) above.
The reparameterization of flavor symmetries is nontrivial; it is determined by w,x,y, 2z <
w, z,Yy,x to be

vl =v1, Vh=vVvi—a-—va, a'=a. (A.7)
For example one can easily check that after rewriting the charges of the chirals in Ty, Tv, Ty
entirely in terms of v}, v5,a’, g!, and implementing the permutation (A.6), one recovers the
charges of i, Tiir, Tiv. The same is true of Chern-Simons levels.

B Useful functions for (half-)indices

We define the basic functions that appear in the 3d N' = 2 half-index and the 2d N = (0, 2)
elliptic genera, mostly following notation introduced in [19]. We refer to the latter for the
prescription to compute the half-index from these building blocks and, e.g., [65, 66, 74] for
the corresponding computation of elliptic genera.

n=0
(@)oo = (€1 Q)0
Ip(z;q) == (¢/;0) o
Iy(z;q) == (7:9)
F(z;q) == (24"% ¢)oo(q"/? /23 q)
C(x;q) == !

(73 9)o0 (g7 @) 0

We will typically suppress the second, ¢ argument of IIp y(z;¢) and F(z;q),C(x;q) in our
index formulas for concision.

C Sandwich theories for the (3,3) move

The sandwich Tyop = BroZyop o Bry described in (4.25), which is a purely 2d N = (0, 2) theory
encoding (half of) the (3,3) Pachner move, is described in detail as follows. The 2d gauge
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group is U(1)4, x U(1)g,, and the flavor symmetry is U(1)g, X U(1)y; X U(1)y, x U(1)4. There
are six fermi multiplets and four chiral multiplets with charges

T I o n o |d & & D,
Ul)g(l 0 0 0 1 0/-10 1 0
Ul)g(0 -1 0 0 0 1|0 -1 0 1
U1)g0 0 =1 0 =1 00 0 -1 0 1)
Ul)y/1 0 0 0 -1 0/0 0 0 0
Ul)p(0 0 =1 -1 1 —=1|]-=1 1 0 0
U1)a[0-10 0 0 —1{0 0 0 0
ULr/0 0 0 0 0 03 2 1 3

There are also J and E terms induced from the collision of boundaries, given by

rr v gy
JOo 0 ®,9,00 (C.2)
E|0 0 —®,®d, 0 00

The sandwich Tpot = Br o Zpot © Bry described in (4.30) has essentially identical field
content, but different charges under flavor and gauge symmetries:

PTI" U o0 & O, D,
Ul)g0-10 0 1 0[0 -1 1 0
Ul)g,|1 0 0 0 0 1|-10 0 1
Ul)g(l 1 =10 =1 0|-1 1 -1 0 (©3)
Ul)y|l 0 -1-1-10|-1 1 0 0
Ul)p/0 0 1 1 1 —-1/1 -1 0 0
Ul)a[0-1 1 1 0 —-1|1 -1 0 0
ULgr/0 0 0 0 0 05 3 & 3

The J and E terms induced from the collision of boundaries are given by

‘1’\ 1'\/ F” \I/f 7,’ ,’7/
JO0O 0 ®.P,00 (C.4)
El0 0 —®;5, 0 00
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