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Abstract

Reports on the commensal organism and opportunistic pathogen Staphylococcus schleiferi have largely considered isolates 
from humans and companion dogs. Two subspecies are recognized: the coagulase-negative S. schleiferi ssp. schleiferi, typically 
seen in humans, and the coagulase-positive S. schleiferi ssp. coagulans, typically seen in dogs. In this study, we report the isola-
tion, genome sequencing and comparative genomics of three S. schleiferi ssp. coagulans isolates from mouth samples from two 
species of healthy, free-living Antarctic seals, southern elephant seals (Mirounga leonina) and Antarctic fur seals (Arctocephalus 
gazella), in the South Orkney Islands, Antarctica, and three isolates from post-mortem samples from grey seals (Halichoerus 
grypus) in Scotland, UK. This is the first report of S. schleiferi ssp. coagulans isolation from Antarctic fur seal and grey seal. 
The Antarctic fur seal represents the first isolation of S. schleiferi ssp. coagulans from the family Otariidae, while the grey seal 
represents the first isolation from a pinniped in the Northern Hemisphere. We compare seal, dog and human isolates from both  
S. schleiferi subspecies in the first genome-based phylogenetic analysis of the species.

INTRODUCTION
Staphylococcus schleiferi appears primarily to be a commensal 
and opportunistic pathogen of humans and domestic dogs. 
Two subspecies are recognized, S. schleiferi ssp. schleiferi [1] 
and S. schleiferi ssp. coagulans [2]. S. schleiferi ssp. coagulans 
is identified phenotypically on the basis of free coagulase 
production (tube test), urease production and the ability to 
ferment ribose, which are properties that S. schleiferi ssp. 
schleiferi typically lacks [2]. The two subspecies are also differ-
entiated based on DNA–DNA hybridization [2] and matrix-
assisted laser desorption/ionization time-of-flight mass 
spectrometry [3]. However, not all studies differentiate the 
two subspecies and some authors have highlighted potential 
difficulties with their separation [4, 5]. Both subspecies can 
encode methicillin resistance, as well as other antimicrobial 
resistance, heightening their potential clinical significance 
[6–9].

S. schleiferi ssp. schleiferi can be isolated from human preax-
illary skin [10, 11] and nares [12] and is associated with a 
range of nosocomial infections, including urinary tract infec-
tions [13], brain abscess and cerebrospinal fluid culture [14], 
pacemaker- and catheter-related infections [10, 14], surgical 
wound infections [14, 15] and endocarditis [16]. In contrast, 
S. schleiferi ssp. coagulans is rarely found in humans [5], but 
is frequently isolated from healthy dogs from the skin [17] 
and the external ear canal [18], as well as being associated 
with external ear otitis [2, 18–20] and pyoderma [19, 21, 22]. 
S. schleiferi ssp. schleiferi has also been reported from dogs 
[19] and both subspecies have been isolated from cats [23]. 
In addition, S. schleiferi ssp. coagulans has been reported 
from chicken meat [24], ready-to-eat retail fish [25] and 
the posterior nares and cloaca of healthy feral and domestic 
pigeons (family Columbidae) [26]. S. schleiferi, not delineated 
to subspecies level, has been isolated from clinical material 
in farmed mink [27]. Finally, S. schleiferi ssp. coagulans 
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has been isolated in Antarctica from the cloaca and beaks 
of Adélie penguins (Pygoscelis adeliae), from South Polar 
skua (Stercorarius maccormicki) droppings, and the anus 
of two species of seals from the family Phocidae: Weddell 
seals (Leptonychotes weddellii) and southern elephant seals 
(Mirounga leonina) [28]. Thus the host range of S. schleiferi 
extends beyond humans and dogs and likely includes a range 
of hitherto unreported host species.

In this study, we report the isolation and genome sequencing 
of three S. schleiferi ssp. coagulans isolates from three 
Antarctic seals; two southern elephant seals (M. leonina) and 
an Antarctic fur seal (Arctocephalus gazella) and three isolates 
from grey seals (Halichoerus grypus) in the North Sea. To the 
best of our knowledge, isolates from these three host species 
have not been genome sequenced previously and this report 
represents the first isolation of S. schleiferi from a member of 
the family Otaridae, an Antarctic fur seal (A. gazella) and the 
first from grey seal (H. grypus). To place these seal isolates into 
the context of the S. schleiferi population we present the first 
genome-based phylogenetic analysis of the species comparing 
both subspecies and including isolates from humans, dogs 
and three seal species.

MATERIAL AND METHODS
Bacterial isolation
Healthy, free-living Antarctic seals were sampled by the 
British Antarctic Survey at two separate sites on Signy 
Island in the South Orkney Islands, Antarctica in 1993. A 
swab on the end of a broomstick was used to collect an 
oral sample when a male (territorial) seal yawned. The 
samples were freeze-dried and subsequently examined by 
microbiological culture at Scotland’s Rural College (SRUC) 
Veterinary Services, Inverness. Three further isolates were 
collected post-mortem from three grey seals found dead on 
the North Sea shoreline in Fife, eastern Scotland between 
2002 and 2016 and reported under the Scottish Marine 
Animals Strandings Scheme (SMASS). Carcases were 
transported to SRUC Veterinary Services, Inverness for a 
post-mortem examination and selected tissues and gross 
lesions were sampled for microbiological and histopatho-
logical diagnoses. The animals likely died from phocine 
distemper virus, emphysema and necrotizing haemorrhagic 
gastro-enteritis, respectively. S. schleiferi ssp. coagulans 
was isolated from several organs from these grey seals; the 
isolates subjected to further study here were collected from 
the lungs. Isolation was made on Columbia agar supple-
mented with 5 % sheep blood (CSBA) (Oxoid, Basingstoke, 
UK) incubated in air plus 5 % CO2 at 37 °C for 18–24 h. 
Sub-cultures were made to CSBA for characterization tests. 
Initial identification to species was made by API ID 32Staph 
(bioMérieux, Basingstoke, UK). Antimicrobial sensitivity 
testing was performed using Vitek 2 (bioMérieux, Basing-
stoke, UK) following the manufacturer’s instructions. Using 
the AST-P634 Staphylococcus card the antimicrobials 
tested were: cefoxitin screen, benylpenicillin, oxacillin, 
gentamicin, ciprofloxacin, inducible clindamycin resistance, 

erythromycin, clindamycin, linezolid, daptomycin, teico-
planin, vancomycin, tetracycline, nitrofurantoin, fuscidic 
acid, chloramphenicol, rifampicin and trimethorprim, with 
interpretation performed using the Clinical and Labora-
tory Standards Institute (CLSI) criteria (2015). Clumping 
factor and free coagulase were tested with lyophilized rabbit 
plasma with EDTA (Oxoid).

Whole-genome sequencing
Whole-genome sequencing was performed by Microbes NG 
(University of Birmingham, UK) using Illumina technology 
with 2×250 bp paired-end reads. Genomic DNA libraries 
were prepared using the Nextera XT Library Prep kit 
(Illumina, San Diego, USA) following the manufacturer’s 
protocol with the following modifications: 2 ng of DNA 
instead of 1 were used as input, and the PCR elongation 
time was increased to 1 min from 30 s. Reads were trimmed 
using Trimmomatic version 0.30 [29] and a sliding window 
quality cut-off of 15. Genome assembly was performed de 
novo using SPAdes version 3.7, with default parameters for 
250 bp Illumina reads [30], and annotated by the National 
Center for Biotechnology Information (NCBI) Prokaryotic 
Genome Annotation Pipeline [31].

Genome analysis
Average nucleotide identity (ANI) was calculated using the 
EZBioCloud ANI Calculator (https://www.​ezbiocloud.​net/​
tools/​ani) [32]. Acquired resistance genes were identified 
using ResFinder-3.1 employing the threshold of 60 % for 
percentage identity and minimum length of 60 % [33].

Phylogenetic relationships between study isolates and 
previously sequenced, assembled and annotated S. schleiferi 
isolates [34–37] was inferred using CSI Phylogeny 1.4 
(Call SNPs and Infer Phylogeny) [38] with S. schleiferi ssp. 
schleiferi ATCC43808T (GCA_900458895.1) as the refer-
ence genome and applying default settings [minimum 
depth at single-nucleotide polymorphism (SNP) posi-
tions: 10×; minimum relative depth at SNP positions: 10 %; 
minimum distance between SNPs (prune): 10 bp; minimum 
SNP quality: 30; minimum read mapping quality: 25; and 
minimum Z score: 1.96]. We found 2 115 918 positions in all 
analysed genomes. The resultant tree was annotated using 
the Interactive Tree of Life (iTOL) [39]. Two further, hith-
erto unpublished, S. schleiferi ssp. coagulans canine isolates 
from the Royal (Dick) School of Veterinary Studies were 
also included for comparison (Table S1, available in the 
online version of the article).

Isolate and data availability
Isolates metadata and nucleotide accessions are provided in 
Table S1. The genome sequenced isolates A/G14/99/8, A/
G16/00/1, A/W41/99/1 and M615/02/4 have been deposited 
with the Culture Collection University of Gothenburg as 
CCUG52137, CCUG52138, CCUG53690 and CCUG 52139, 
respectively.

https://www.ezbiocloud.net/tools/ani
https://www.ezbiocloud.net/tools/ani
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RESULTS
Isolation of Antarctic and North Sea seal  
S. schleiferi
In the course of British Antarctic Survey bacteriological 
investigations of mouth samples collected from seals at 
Signy Island, South Orkneys in Antarctica, four isolates of 
S. schleiferi were isolated from three animals. Isolates A/
G14/99/8 and A/G16/00/1 and AG16/00/7 were recovered 
from two southern elephant seals (M. leonina) sampled at 
the Gourlay Peninsula at the south-easternmost end of the 
island and A/W41/99/1 was recovered from an Antarctic 
fur seal (A. gazella) sampled at the Wallows in the north-
east. With isolates A/G16/00/1 and A/G16/00/7 having 
been isolated from the same animal, only A/G16/00/1 
from these two was taken forward for further study. Isolates 
M615/02/4, M31/11/1, M611545/16/1 were collected post-
mortem from the lungs of grey seals that had stranded in 
different parts of Fife (North Sea coast), Scotland in 2002, 
2011 and 2016, respectively. The three North Sea isolates 
were tube coagulase- and urease-positive, clumping factor-
negative and unable to ferment trehalose, phenotypes 
indicative of S. schleiferi ssp. coagulans. The three Antarctic 
seal isolates shared these features, with the exception that 
they were each able to ferment trehalose.

Genome sequencing and genomic-based 
identification
To investigate these six isolates further they were genome 
sequenced using HiSeq technology. The genome sizes and 
GC % content were as follows: A/G14/99/8, 2 402 027 bp, 
35.8 %; A/G16/00/1, 2 374 021 bp, 35.9 %; A/W41/99/1, 
2 402 964 bp, 35.8 %; M615/02/4, 2 590 557 bp, 35.9 %; 

M31/11/1, 2 471 374 bp, 35.9 %; and M611545/16/1, 2 399 
198 bp, 36.1 %. To confirm the identity of the six seal isolates 
to species and subspecies levels on the basis of genome 
sequence, a comparison with the two genome-sequenced 
S. schleiferi subspecies type strains (accessions in Table S1) 
was performed using ANI. In each case the ANI was closer 
to S. schleiferi ssp. coagulans (97.47 %–98.89 %) than to  
S. schleiferi ssp. schleiferi (95.09–95.68 %), consistent with 
all six seal isolates belonging to S. schleiferi ssp. coagulans 
(Table S1).

Phylogenetic relationships among S. schleiferi
To compare the relationships between the six seal isolates and 
other genome-sequenced S. schleiferi isolates, a phylogenetic 
tree was constructed based on SNPs across the core genome 
(Fig. 1). The phylogeny clearly delineated the two S. schleiferi 
subspecies, with the six seal isolates belonging to S. schleiferi 
ssp. coagulans. The six seal isolates were split between three 
clades, indicating that diverse S. schleiferi ssp. coagulans 
lineages are present in seals. The Antarctic seal isolates A/
G14/98/1 and A/W41/99/1 are identical and most closely 
related to the third Antarctic seal isolate, A/G16/00/1 (sepa-
rated by 4289 SNPs). Likewise, the two North Sea grey seal 
isolates M31/11/1 and M615/02/4 are closely related, being 
separated by 150 SNPs. These two clusters of seal isolates are, 
however, distinct, being separated by at least 14 621 SNPs. In 
contrast, the final North Sea grey seal isolate (M611545/16/1) 
is not closely related to any other analysed isolate, with its 
closest relative differing by 22661 SNPs and the closest seal 
isolate being separated from it by 23 316 SNPs. There were 
two other closely related clusters of S. schleiferi ssp. coagulans 
isolates. Isolates 2142, 2317, 5909 and OT-1 are separated by 

Fig. 1. Phylogenetic tree of sequenced S. schleiferi isolates. Generated from SNPs across 2 093 618 positions in the core genome using 
CSI Phylogeny 1.4(38) with S. schleiferi ssp. schleiferi ATCC43808T (GCA_002901995.1) as the reference genome and the tree root. Seal 
isolates from this study are highlighted in bold. Host and country of origin indicated, where known. Genome accessions are provided 
in Table S1. Subspecies assigned based on ANI to type strains of S. schleiferi ssp. coagulans (DSM6628T) and S. schleiferi ssp. schleiferi 
(ATCC43808T).
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a mean pairwise SNP difference of 187, while 1360 and 6124 
are separated by 142 SNPs (Fig. 1).

Antimicrobial resistance
None of the six seal isolates, A/G14/99/8, A/G16/00/1, A/
W41/99/1, M615/02/4, M31/11/1and M611545/16/1, 
displayed phenotypic resistance against the antimicrobials 
tested. Consistent with that finding, no acquired antimicrobial 
resistance genes were identified in their genome sequences.

DISCUSSION
We describe here the isolation and whole-genome sequencing 
of six isolates of S. schleiferi ssp. coagulans from three species 
of pinniped, namely southern elephant seal, Antarctic fur seal 
and grey seal. While S. schleiferi ssp. coagulans has been isolated 
from Antarctic seals previously [28], those isolates have not 
been characterized further than identification using partial 
16S rRNA gene sequencing and to the best of our knowledge 
this study represents the first isolation of S. schleiferi from 
Antarctic fur seal and grey seal. This finding enhances our 
understanding of the distribution of this commensal and 
opportunistic pathogen and extends the known host range 
of S. schleiferi ssp. coagulans to now include dogs, humans, 
feral and domestic pigeons, southern elephant seals, Antarctic 
fur seal, grey seals, Weddell seal, Adélie penguins, South Polar 
skua and possibly chicken and fish. This diverse range of host 
species suggests that S. schleiferi ssp. coagulans may have a 
broad host range comprising other as yet unrecognized host 
species. Veterinary diagnostic laboratories should therefore 
consider the possible diagnosis of S. schleiferi ssp. coagulans 
among coagulase-positive staphylococci isolated from any 
host species. In the case of the Antarctic seal isolates in this 
study, they were recovered from mouth swabs from apparently 
healthy animals, suggesting that S. schleiferi ssp. coagulans is 
an oral commensal in this setting. The grey seal isolates in 
this study were isolated post-mortem from dead seals with 
underlying diseases, but may also have carried commensal 
S. schleiferi ssp. coagulans that disseminated to the lungs and 
other organs during ill health or following death. While no 
link to infection is apparent from these current data, it would 
be reasonable, based on its epidemiology in dogs, to consider 
that S. schleiferi ssp. coagulans may also act as a commensal 
and opportunistic pathogen in seals and other hosts.

The three Antarctic seal isolates in this study were able to 
ferment trehalose, which is considered to be a feature of  
S. schleiferi ssp. schleiferi but not typical of S. schleiferi ssp. 
coagulans [2]. The isolates therefore represent further pheno-
typic diversity among S. schleiferi ssp. coagulans and highlight 
the potential difficulty of relying on any single phenotype to 
differentiate closely related bacterial species or subspecies.

The phylogenetic analysis clearly differentiated the two  
S. schleiferi subspecies, and in agreement with ANI data, 
showed that all six seal isolates belonged to the subspecies  
S. schleiferi ssp. coagulans. While some of the seal isolates were 
closely related to each other, distinct strains are nonetheless 

present in seal species. Interestingly, A/G14/99/8 and A/
W41/99/1 were identical across all 2 093 618 positions, despite 
being isolated at different sites and being from different host 
species, which is suggestive of transmission between indi-
vidual Antarctic seals or exposure to a common source.

While the number of sequenced isolates is small for both  
S. schleiferi subspecies, the phylogenetic analysis does indicate 
rather limited diversity among the S. schleiferi ssp. schleiferi 
isolates sequenced to date compared to S. schleiferi ssp. coagu-
lans (mean pairwise SNP distance 816 versus 14 189). This 
may be partly caused by the wider range of host species and 
country of origin among the currently sequenced S. schleiferi 
ssp. coagulans isolates.

In addition to cases of related seal isolates, two other clusters 
of related S. schleiferi ssp. coagulans are also apparent in the 
phylogenetic analysis. These were all canine isolates, but 
in each case these included isolates from distant countries, 
the USA and the UK in one instance and the USA and the 
Republic of Korea in the other. This suggests the international 
dissemination of these clones and such apparent clonal 
expansion may represent particularly successful or virulent 
clones that may merit further investigation. Of course, the 
phylogenetic tree is limited to a rather small number of avail-
able genome sequenced isolates and the sequencing of further 
isolates from different geographical areas, host species, 
isolation sites, carriage and disease will greatly improve our 
knowledge of S. schleiferi biology. For instance, certain strains 
of S. schleiferi ssp. coagulans may show host specificity, as seen 
among Staphylococcus aureus lineages [40, 41].

None of the isolates showed phenotypic or genotypic resist-
ance to antimicrobials, although it is worth noting that 
methicillin-resistant S. aureus (MRSA) has been isolated from 
wild harbour seals (Phoca vitulina) previously, including one 
animal inhabiting Scottish waters [42, 43].

In conclusion, we report the isolation and genome sequencing 
of six S. schleiferi ssp. coagulans isolates from three species of 
seal, including Antarctic fur seal, which represents the first 
report from an otariid species, and the first report from grey 
seal, which represents the only isolation from a species of 
seal resident in the Northern Hemisphere to date. We present 
the first genome-based phylogeny for the S. schleiferi species, 
showing that the two currently recognized subspecies are 
clearly defined. In addition, while this phylogenetic analysis 
is limited by the availability of sequenced isolates, it does 
highlight the international dissemination of canine isolates, 
which may be linked to the clonal expansion of particularly fit 
or virulent lineages and should be investigated further.
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