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Abstract
A common model of stochastic auto-regulatory gene expression describes pro-
moter switching via cooperative protein binding, effective protein production
in the active state and dilution of proteins. Here we consider an extension of
this model whereby colored noise with a short correlation time is added to
the reaction rate parameters—we show that when the size and timescale of the
noise is appropriately chosen it accounts for fast reactions that are not explicitly
modeled, e.g., in models with no mRNA description, fluctuations in the protein
production rate can account for rapid multiple stages of nuclear mRNA process-
ing which precede translation in eukaryotes. We show how the unified colored
noise approximation can be used to derive expressions for the protein number
distribution that is in good agreement with stochastic simulations. We find that
even when the noise in the rate parameters is small, the protein distributions
predicted by our model can be significantly different than models assuming
constant reaction rates.
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1. Introduction

Proteins perform a large range of cellular functions and hence it is of great interest to understand
how the genes that produce them operate. Autoregulation is a mechanism to regulate gene
expression whereby proteins expressed by a certain gene can subsequently bind to the same
gene and cause an increase or a decrease in its expression (positive and negative feedback,
respectively) [1]. Autoregulation is common; for example in Escherichia coli it is estimated
that 40% of all transcription factors are self-regulated [2, 3].

For at least two decades, it has been known that gene expression is inherently stochastic [4,
5], and as such the modeling of gene regulatory networks must account for this stochasticity.
Following van Kampen [6], given a system of interest, noise can be seen as originating from
two different sources: (i) noise that is inherent to the system itself and cannot be turned off, also
called internal or intrinsic noise; (ii) noise coming from a source outside the system of interest,
known as external or extrinsic noise. This noise can be switched off via a coupling parameter.
If we specify a system of interest that is described by a set of reactions with constant rate
parameters, then it follows that any fluctuations in the molecule numbers must be due to the
inherent randomness in the time at which the reactions fire, and hence the noise is intrinsic. In
contrast, if we add fluctuations to the rate parameters to account for external processes, then
it follows that this noise is extrinsic. For example, if one models mRNA transcription from a
gene by a first-order reaction with a constant rate parameter then one is only modeling intrinsic
noise. However, if one adds noise to the transcription rate to account for fluctuating numbers of
polymerases and transcription factors that are not explicitly described in the system, then one
is modeling both intrinsic and extrinsic noise sources. Note that these definitions of intrinsic
and extrinsic noise are generally different from, and not to be confused with, the definitions
proposed using dual-reporter methods in [7].

The division of noise into these two categories is of course artificial but it is useful from a
conceptual and modeling point of view. The simulation of stochastic biochemical processes is
most commonly done using the stochastic simulation algorithm (SSA) [8] which assumes that
the rate parameter of a reaction will not change in the interval between two successive reaction
events, i.e., it models intrinsic noise only. While this may be the case in many situations, it is
not generally true. This is because whenever we have an effective reaction that lumps together
a large number of intermediate reactions (a multi-stage reaction process), we are making the
inherent assumption that these intermediate reactions occur very fast and hence naturally the
effective rate parameter is fluctuating on a fast timescale.

Taking into account these fluctuations is however not a simple feat. The chemical mas-
ter equation (CME, [6, 9]) describing the Markov process simulated by the SSA has been
solved exactly or approximately to obtain the protein number distribution in steady-state for a
wide variety of models of autoregulation [10–22], provided the rate parameters are assumed
to be constant. There are however a number of studies that have analyzed stochastic mod-
els with fluctuating rate parameters. The importance of studying these models stems from
the fact that they potentially offer a compromise between model precision (how well can the
model capture the complexity of the underlying biochemical dynamics by means of fluctuating
parameters) and analytical tractability (how easy it is to solve the stochastic model). Modi-
fications of the linear noise approximation (LNA) (a type of Fokker–Planck approximation
of the CME) incorporating noise in the rate parameters have proved popular to approximate
moments for systems subject to small magnitudes of noise with certain properties: (i) for time-
independent Gaussian colored noise [23, 24] and (ii) more realistic lognormally distributed
noise [25]. Wentzel–Kramers–Brillouin methods have also been utilised for cases where the
correlation time of the colored noise is tending either to zero or to infinity [26]. These methods
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provide probability distributions for systems where the noise on the rate parameters is drawn
from a negative binomial distribution, however their analysis does not easily translate to find-
ing good approximations for steady states probability distributions where the correlation time
of colored noise is neither small or large.

The focus of the present article is threefold: (i) to provide a general method by which one
can obtain analytical expressions for the steady-state protein distributions of auto-regulatory
gene circuits with fluctuating rate parameters, through the use of the unified colored noise
approximation (UCNA) [27], (ii) to use this method to investigate the effects that extrinsic
noise of different magnitude and timescales has on auto-regulatory gene expression and (iii) to
show how the colored noise formalism can be used to describe complex models of autoregula-
tion that involve multi-stage protein production and multi-stage protein degradation. We note
that the UCNA was previously utilised in a gene expression context [28] for linear reaction
networks that are deterministically monostable and in which there is no feedback mechanism.
Our analysis goes further, exploring the addition of colored noise to a non-linear reaction net-
work which expresses deterministic bistability, whilst also incorporating intrinsic fluctuations
from the core gene expression processes.

The structure of our paper is as follows. In section 2 we introduce the cooperative
auto-regulatory reaction scheme that we will study in this article. We also show that for
non-fluctuating rate parameters, the analytical protein distribution given by the chemical
Fokker–Planck equation (FPE) provides an excellent approximation of the protein distribu-
tion solution of the CME, in the limit of fast gene switching. In section 3 we add colored noise
to each reaction in the auto-regulatory reaction scheme (assuming fast gene switching) and
use the UCNA to derive the protein number distribution solution of the chemical FPE. The
solution is shown to be in good agreement with a SSA modified to account for extrinsic noise
on the rate parameters. We also use the solution to investigate the effect that extrinsic noise
has on the number of modes of the protein distribution and clarify the limits of the UCNA
derivation, including the three main conditions which cause it to breakdown. In section 4 we
extend the analysis to the limit of slow gene switching by introducing a conditional version
of the UCNA. In section 5 we show two examples of how one can successfully model com-
plex auto-regulatory systems by means of simpler ones with colored noise on the reaction rate
parameters, here done for multi-stage protein production and multi-stage degradation. We con-
clude in section 6 with a discussion of our results and further problems to be addressed on this
topic.

2. Approximate solution for autoregulation with non-fluctuating rate
parameters

We consider the reaction scheme for a genetic non-bursty cooperative feedback loop, where
for simplicity we neglect the presence of mRNA:

G
ru−→G + P, G∗ rb−→G∗ + P, G + 2P

sb�
su

G∗, P
d−→∅. (1)

The reactions G
ru−→G + P and G∗ rb−→G∗ + P model the production of protein P in each gene

state, G + 2P
sb�
su

G∗ models the binding and unbinding of the gene to the proteins (with coopera-

tivity 2), and P
d−→∅ models the dilution/degradation of proteins inside the cell. For simplicity

we assume that there is only one gene copy present in the system and it can be in one of two
states, G or G∗, at any one time (some models in the literature consider more states than two
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Figure 1. Comparison of the heuristic reduced master equation solution from
equation (8) (red dots), the FPE solution from equation (10) (black line) and the solution
of the full cooperative network using FSP (green shaded region). Shared parameters in
each plot are ru = 50, rb = 400, Ω = 200 and d = 1. The FSP gives the exact solution
for a truncated state space chosen such that the neglected probability mass is negligible.
The top plot shows distributions for the case su = sb = 5, where clearly the heuristic
master equation and FPE solutions are a poor approximation of the FSP. The middle
plot shows distributions for the case su = sb = 50 where we can observe a convergence
of the heuristic master equation and FPE solutions toward the FSP solution. The bottom
plot shows excellent agreement of the FSP with the heuristic master equation and FPE
solutions for fast switching where su = sb = 5 × 103.

[29–31]). Note also that the reaction modeling protein binding to the gene is to be under-
stood as an effective reaction in cases where the protein binds to enhancer regions rather than
directly to the promoter [32]. Before considering the addition of colored noise to the reaction
rate parameters above, we first consider the solution with constant rate parameters to provide
a reference point for approximations made in section 3, and to clarify the approximation of a
CME by a one variable chemical FPE.

The CME for the reaction scheme in equation (1) does not have a known exact solution,
even at steady-state for constant reaction rate parameters, and so approximations are necessary.
Note that in what follows, we will use the terminology ‘reaction rate parameters’ and ‘rates’
interchangeably. We first consider the limit of fast gene switching—i.e., the frequency of gene
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activation and inactivation events is much larger than the frequency of any other reaction in the
system. Later in section 4 we will discuss approximations for the slow switching limit. Where
[g∗] and [g] are the deterministic mean number of bound and unbound gene respectively and
[n] is the mean protein number, the rate equations for the reaction scheme in equation (1)
are:

d[g]
dt

= su[g∗] − sb

Ω2 [g][n]2, (2)

d[n]
dt

= 2su[g∗] − 2sb

Ω2 [g][n]2 + ru[g] + rb[g∗] − d[n], (3)

where [g] + [g∗] = 1. For clarity we state the units of each rate parameter: ru, rb, d and su

have units of s−1, and sb has units of volume2 s−1. This ensures a matching of the units with
the left-hand side of equations (2) and (3), which has units of s−1. In the fast switching limit,
the gene rapidly equilibrates to quasi-steady state conditions, i.e., d[g]/dt ≈ d[g∗]/dt ≈ 0 and
hence the deterministic rate equation for mean protein number reduces to a much simpler
form:

d[n]
dt

=
Lru + rb([n]/Ω)2

L + ([n]/Ω)2
− d[n], (4)

where L = su/sb. Note that the reaction scheme here described exhibits deterministic bistabil-
ity over some regions of the parameter space. This equation is consistent with a birth–death
process where proteins are produced via a reaction with a rate that is dependent on the number
of proteins and are destroyed by a first-order reaction [33]. The CME for this reduced process
is given by:

dPa(n, t)
dt

= T+(n − 1)Pa(n − 1, t) + T−(n + 1)Pa(n + 1, t) − (T+(n) + T−(n))Pa(n, t), (5)

where Pa(n, t) is the probability that at a time t there are n proteins in the system; T+(n) and
T−(n) are the propensities of protein production and degradation respectively. The subscript a
denotes that this is the probability for the reduced system, an approximate solution to the master
equation of the full system. T+(n)dt is the probability, given n proteins are in the system, that
a protein production reaction occurs, increasing the protein number of the system by 1, in the
time interval [t, t + dt). Similarly, T−(n)dt is the probability, given n proteins are in the system,
that a protein degradation event occurs, decreasing the protein number by 1, in the time interval
[t, t + dt). These propensities are given by:

T+(n) =
ruL + rb(n/Ω)2

L + (n/Ω)2
, (6)

T−(n) = d n. (7)

These propensities are deduced directly from the form of the effective rate equation in
equation (4). Essentially, the probability for a particular reaction per unit time is taken to be
the same as the reaction rate in the effective deterministic rate equation with [n] replaced by
n. We emphasise that while this appears to be a heuristic rule with no apparent fundamental
microscopic basis, it has been shown that the reduced master equation based on it provides an
accurate approximation to the SSA of the full reaction system in fast gene switching conditions
provided the low protein number states are rarely visited [15, 33].
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The exact steady state solution of the one variable master equation given by equation (5)
can be found using standard methods [34]:

Pa(n) = Pa(0)
n∏

z=1

T+(z − 1)
T−(z)

, (8)

where Pa(0) is the steady state probability evaluated at n = 0 (acting effectively here as a
normalisation constant). We can further approximate the reduced master equation in
equation (5) by the Stratonovich form of the FPE [35]:

∂P(n, t)
∂t

= − ∂

∂n

[
(a1(n) + a′

2(n)a2(n))P(n, t)
]
+

1
2
∂2

∂n2
[a2(n)P(n, t)] , (9)

where a1(n) and a2(n) are the first two jump moments, given by a1(n) = T+(n) − T−(n)
and a2(n) = T+(n) + T−(n) respectively, and P(n) denotes the FPE solution (a notation used
throughout the paper). The purpose of this further approximation by means of an FPE will be
made clear in section 3.1. Equation (9) has a steady state solution of the form [6]:

P(n) =
N√

T+(n) + T−(n)
exp

(
2
∫ n T+(z) − T−(z)

T+(z) + T−(z)
dz

)
, (10)

where N is a normalisation constant. Although the integral in the exponent of equation (10)
can be solved exactly with propensities of the form of equations (6) and (7) since it is the
integral of the ratio of two cubic polynomials, the solution is too complicated to be detailed
here. The approximations made by the FPE approximation are that (i) fluctuations in the pro-
tein number are small and (ii) we are in the fast switching regime between the gene states.
Figure 1 compares the FPE solution equation (10) with the solution of the heuristic CME in
equation (8) and the solution of the full CME of the reaction scheme in equation (1) using
the finite space projection method (FSP) [36]. Note that provided the state space is truncated
large enough, the FPE solution matches the solution of the heuristic CME almost exactly.
Clearly, when gene switching is fast (bottom plot of figure 1) all three solutions agree with
each other. However, when gene switching is not fast (top and middle plots on figure 1) both
the reduced CME and FPE solutions are a poor approximation of the true distribution from
FSP.

3. Accounting for fluctuating rates using the UCNA

Fluctuating rate parameters can be used to include a description of processes not explicitly
taken into account in the formulation of a model. In figure 2 we illustrate this idea. In this
section, we add fluctuations to the rate parameters of the FPE description derived earlier and
use the UCNA to obtain a new effective FPE that is valid when the timescale of the noise
on the rates is either very small or very large. We remind the reader that in this section we
consider gene switching to be fast, and we consider the case of slow switching in section
4.

3.1. Fluctuating degradation rate

We begin by considering the case of a fluctuating degradation rate. These fluctuations could
for example stem from details of the degradation machinery that are not explicitly described
in the model, e.g. multi-step degradation mediated by enzymatic reactions.

6
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Figure 2. Illustration of the cooperative auto-regulatory reaction scheme, with colored
noise included on each individual reaction. For the case of non-fluctuating rates explored
in section 2 the noise terms, ηi, on the rate parameter can be set to zero. Where colored
noise is included in section 3 these noise terms are not set to zero. The addition of noise
onto rate parameters can be thought of as accounting for processes that are not explic-
itly included in the gene expression model. Here we show two examples, where colored
noise on the rate parameters of the reduced model can be used to account for mRNA num-
ber fluctuations during protein translation, or the degradation of proteins via an enzyme
catalytic mechanism.

The equivalent Langevin equation to the chemical FPE from equation (9) using the
propensities from equations (6) and (7) is given by [6, 37]:

dn
dt

=
ruL + rb(n/Ω)2

L + (n/Ω)2
− dn +

√
ruL + rb(n/Ω)2

L + (n/Ω)2
+ dn · Γ(t), (11)

where Γ(t) is Gaussian white noise with zero mean and correlator 〈Γ(t)Γ(t′)〉 = δ(t − t′). Now
we introduce a fluctuating degradation rate by setting d = d0(1 + η(t)), where η(t) is Gaus-
sian colored noise with a mean of zero and correlator 〈η(t)η(t′)〉 = (D/τ )exp(−|t − t′|/τ ) [27,
38]. Here, τ is the correlation time of the colored noise, D/τ is the noise strength (the vari-
ance of fluctuations) and d0 is the mean degradation rate. Since D/τ is the noise strength,
i.e., D scales the noise strength at constant τ , we occasionally refer to D itself as the noise
strength (where τ is a fixed parameter). In the limit of τ → 0 colored noise becomes white
noise since limτ→0〈η(t)η(t′)〉 = Dδ(t − t′). Note that η(t) must satisfy |η(t)| 	 1 such that d is
a positive quantity (and hence admits physical interpretation as a rate parameter). The inclusion
of colored noise can be approximated by the following two component system [27]:

dn
dt

=
ruL + rb(n/Ω)2

L + (n/Ω)2
− d0(1 + η) n +

√
ruL + rb(n/Ω)2

L + (n/Ω)2
+ d0 n · Γ(t), (12)

7



J. Phys. A: Math. Theor. 53 (2020) 405601 J Holehouse et al

dη
dt

= − 1
τ
η +

1
τ
θ(t), (13)

where θ(t) is Gaussian white noise with zero mean and correlator 〈θ(t)θ(t′)〉 = 2Dδ(t − t′),
and the time dependence on the protein number n(t) and noise η(t) is suppressed for notational
convenience. Note that in the argument of the square root above we have replaced η(t) by
its mean of zero; this constitutes a mean-field type of approximation, and is useful such that
one can solve equations (12) and (13) analytically—however, where the noise is small this
is generally a very good approximation. Note that we also use this mean-field assumption in
sections 3.2 and 3.3. For transparency, we rewrite equations (12) and (13) as:

dn
dt

= h(n) + g1(n)η + g2(n)Γ(t), (14)

dη
dt

= − 1
τ
η +

1
τ
θ(t), (15)

with

h(n) =
ruL + rb(n/Ω)2

L + (n/Ω)2
− d0n, (16)

g1(n) = −d0n, (17)

g2(n) =

√
ruL + rb(n/Ω)2

L + (n/Ω)2
+ d0 n. (18)

In order to approximately solve equations (14) and (15) we next utilize the UCNA to obtain
reduced Langevin equations when the noise η is either very fast or very slow. For completeness,
we present a non-rigorous but intuitive proof of the UCNA along the lines found in [27] which
essentially consists of a direct adiabatic elimination on the stochastic differential equations
(SDEs) in equations (14) and (15). For a more rigorous derivation of a UCNA-like FPE we
advise reader to read the seminal work of Fox, who introduced a functional calculus approach
to the study of colored noise SDEs [39–42]. A review of the differing UCNA-like derivations
can be found in [43].

It has been discussed in [27, 43] that the adiabatic elimination we employ below is exact
for τ → 0 (white noise) or τ →∞ (highly correlated noise) but that it should give a useful
approximation for intermediate values of τ . We note that the theory provided by Roberts et al
[26] does not provide such a result as they consider separately the cases of τ → 0 and τ →∞.
For the biological applications we consider in section 5 the limit of τ →∞ is not of interest,
and we will later focus on the limit of τ small, although the derivation shown here holds for
large τ too. First, where we use overdots to represent derivatives with respect to time t, one
should proceed in rearranging equation (14) for η:

η(n, ṅ) =
1

g1(n)
(ṅ − h(n) − g2(n)Γ(t)). (19)

In what follows we will utilise a mean-field approximation (denoted by the subscript mf ) to
approximately calculate the time derivative of η(n, ṅ). We start by defining the mean-field
approximation of η(n, ṅ) as:

ηmf(nmf, ṅmf) =
1

g1(nmf)
(ṅmf − h(nmf)). (20)

8
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Taking the time derivative with respect to non-dimensional time t̂ = t/τ (denoted by the
overdot) we obtain:

η̇mf =
1

g1(nmf)

(
h(nmf)g′

1(nmf)
g1(nmf)

− h′(nmf)

)
ṅmf +

τ−1

g1(nmf)

(
n̈mf −

g′
1(nmf)

g1(nmf)
ṅ2

mf

)
, (21)

where the prime on each function of nm f denotes the derivative with respect to nm f . In the limit
of τ → 0, the second term on the right-hand side of equation (21) goes to infinity and hence
the only way to keep the time derivative finite is to impose the condition:

n̈mf −
g′

1(nmf)
g1(nmf)

ṅ2
mf = 0. (22)

This then implies that in this limit we have:

η̇mf ≈
1

g1(nmf)

(
h(nmf)g′

1(nmf)
g1(nmf)

− h′(nmf)

)
ṅmf. (23)

Note that taking the limit of τ →∞ gives the same result and hence the approximation
equation (23) is valid in both the limit of small and large τ . This can be shown to be
self-consistently true; taking the time-derivative of equation (14) alongside a mean-field
approximation we get,

n̈mf =
(
h′(nmf) + g′

1(nmf)ηmf

)
ṅmf + g1(nmf)η̇mf. (24)

Assuming equations (20) and (23) to be true one then recovers

n̈mf −
g′

1(nmf)
g1(nmf)

ṅ2
mf = 0, (25)

which means that if equation (23) holds true then so does equation (22) (and vice versa).
In equation (15) we can now substitute η from (19) and η̇mf for η̇ from equation (23) giving

us the UCNA for the system with colored noise on the degradation rate, which is exact in the
limits τ → 0 or τ →∞:

ṅ ≈ h(n)
C(n, τ )

+
1

C(n, τ )
(g1(n)θ(t) + g2(n)Γ(t)), (26)

where

C(n, τ ) = 1 + τ

(
g′

1(n)h(n)
g1(n)

− h′(n)

)
. (27)

Note that we have dropped off the mf subscript for clarity. Finally, in order to get a simplified
Langevin equation, we modify equation (26) such that we only have one effective Gaussian
white noise term. We begin by proposing:

g(n)Γ̃(t) = g1(n)θ(t) + g2(n)Γ(t), (28)

where Γ̃(t) is Gaussian white noise with mean zero and correlator 〈Γ̃(t)Γ̃(t′)〉 = 2δ(t − t′), and
then use relations between the correlators to find our unknown g(n). Note that we assume
zero correlation between Γ(t) and θ(t), i.e. 〈Γ(t)θ(t′)〉 = 〈Γ(t′)θ(t)〉 = 0. Explicitly, utilising
the correlators, we find:

g(n)2〈Γ̃(t)Γ̃(t′)〉 = g1(n)2〈θ(t)θ(t′)〉+ g2(n)2〈Γ(t)Γ(t′)〉, (29)
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which gives us

g(n) =

√
Dg1(n)2 +

1
2

g2(n)2. (30)

Hence, our final reduced Langevin equation is given by:

ṅ =
h(n)

C(n, τ )
+

g(n)
C(n, τ )

Γ̃(t), (31)

which corresponds to the result in [38]. Note that equations (26) and (31) are identical. Here we
pause to make a couple of comments on C(n, τ ), which can be interpreted as a renormalisation
of the Langevin equation in equation (14) to account for the addition of colored noise to the
rate parameters. In fact, when τ = 0, equation (31) recovers the correct Langevin equation for
a process with white noise on the rate parameters. One should also note the independence of
C(n, τ ) from the strength of the noise D; the renormalisation with respect to the addition of
colored noise on the degradation rate is not specific to the size of the noise, it simply accounts
for the finite correlation time.

The FPE corresponding to this SDE should be chosen in the Stratonovich form, following
from [41, 44, 45], as this is the physical implementation of an SDE with colored noise having
a non-zero correlation time τ . This FPE is:

∂P(n, t)
∂t

= − ∂

∂n

[(
h̃(n) + g̃(n)g̃′(n)

)
P(n, t)

]
+

∂2

∂n2

[
g̃(n)2P(n, t)

]
, (32)

where h̃(n) = h(n)/C(n, τ ) and g̃(n) = g(n)/C(n, τ ). Following equations (9) and (10) in
section 2 and [6], the steady state solution to this equation is then given by:

P(n) =
N

g̃(n)2
exp

(∫ n h̃(z) + g̃(z)g̃′(z)
g̃(z)2

dz

)
=

N
g̃(n)

exp

(∫ n h̃(z)
g̃(z)2

dz

)
, (33)

where N is the normalisation constant, chosen over the domain n ∈ [0,∞).
Having made various approximations to arrive at equation (33) we now pause and

summarise the approximations made thus far, clarifying the conditions under which we expect
equation (33) to produce meaningful distributions. We started by considering equation (11)
which is the chemical Langevin equation describing protein dynamics and which was derived
from the CME describing the reaction scheme in equation (1) under the approximations of
large protein numbers and fast promoter switching. Subsequently we added colored noise
to the degradation rate in equation (11) and made a mean-field approximation (valid for
small fluctuations about the mean degradation rate) to obtain the coupled Langevin equations
equation (12) and (13). These equations were then reduced to a single effective Langevin
equation equation (31) by the UCNA under the assumption that the correlation time of col-
ored noise is very small or very large. Finally the solution of this Langevin equation is
given by equation (33). Hence summarizing, we expect the latter solution to be an accu-
rate stochastic description of the protein fluctuations in reaction scheme (1) with a fluctuat-
ing degradation rate provided the protein numbers are large, promoter switching is fast and
the correlation time of fluctuations in the degradation parameter is either very small or very
large.

To test the accuracy of the distributions for colored noise provided by the UCNA in
equation (33), we compare the UCNA solution to a distribution produced from a modified
SSA that explicitly accounts for the colored noise on the degradation rate. This modification
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Figure 3. Comparison of the UCNA (black line) from equation (33) and white extrinsic
noise (UCNA with τ = 0, dashed blue line) with stochastic simulations using the modi-
fied SSA (red points) of the cooperative reaction scheme in equation (1), where the col-
ored noise is added to the degradation rate. Aside from variation in the strength of noise
D (shown on each plot), the shared parameters are ru = 24, rb = 464, sb = su = 1000,
d0 = 1,Ω = 200 and τ = 1. Parameters sb and su are chosen to be large compared to
other system parameters such that the frequency of gene activation and inactivation
events is much larger than the frequency of other reaction events, i.e. the fast gene
switching assumption. Note that for this choice of rate parameters, the rate equations are
bistable with equilibrium points at n = 47.4, 360.4. The criterion

√
D/τ < 1 is required

to ensure positivity of the degradation rate. As the extrinsic noise is increased, the mass
of the distribution shifts from the mode at 360.4 to the mode at 47.4. The inset of (D)
shows the same distribution but with the y-axis on a log scale, emphasising the exponen-
tial tail of the distribution for large n. SSA data in each case comes from a single steady
state trajectory of 9 × 106 s.

is given in full detail in appendix A. Essentially, the dilution/degradation reaction P →∅ is
replaced by three new reactions alongside the introduction of a ghost species Y, these being
(i) ∅ � Y and (ii) P + Y → Y . The rates of these new reactions are then chosen to ensure
the magnitude of effective external noise on the degradation reaction, due to fluctuations in
molecule numbers of the ghost species, match the colored noise SDE given in equation
(13).

Figure 3 shows steady state probability distributions produced by the UCNA for various val-
ues of D for a deterministically bistable set of parameters. The UCNA correctly captures the
shift of the probability mass from the equilibrium point of higher molecule number (referred
to as the upper mode) to the lower equilibrium point (referred to as the lower mode) as D is
increased. Importantly, this shows that when gene switching is assumed to be fast, colored
noise can induce bimodality—one should keep this in mind for when we look at slow gene
switching in section 4. Readers should also note that the parameter choices have been selected
such that the Fokker–Planck approximation is good, notably that the system size is large, i.e.,
Ω � 1, and the mean number of proteins in the system is also large. In all cases

√
D/τ < 1
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so that the degradation rate remains positive. The behavior seen as D increases in figure 3 can
be explained as follows. When D is small (figure 3(A)) the colored noise η in equation (15)
is also small compared to the mean number of molecules in the system, and the noise cannot
force the system out of the upper mode. As D gets larger (figures 3(B) and (C)) the fluctuations
η at the upper mode also become larger, allowing the system to explore the lower mode. When
the system is found in the lower mode the pre-factor of the colored noise in equation (14),
g1(n) ∝ n, is lesser in magnitude, and the fluctuations in η are much smaller than when the
system inhabits the upper mode hence the increased probability mass at the lower mode. That
the system is less noisy at the lower mode means that the system struggles more to get a fluc-
tuation large enough to propel it into the upper mode. These properties of the system as D
increases can be further seen through (i) the increase in probability mass found at the lower
mode as D increases throughout all of figures 3(A)–(D), and (ii) the increased probability
mass found in the tail of the distribution for large n (figure 3(D)); while the tail is very slowly
decaying it is still exponential and hence the distribution is not heavy-tailed (see the inset
of figure 3(D)). This ability to induce bimodality through a more detailed description of the
details of the degradation process is important in the context of cellular decision-making. It
is hence possible for regions of the reaction rate parameter space previously thought unable
to induce multiple phenotypic states to do so with an increasing influence of more complex
degradation mechanisms. Note that for the majority of cases in figure 3, the UCNA provides
a much better approximation than the white noise approximation, hence one cannot simply
assume that since the correlation time τ is relatively small that it can be approximated as
zero.

Figure 4 shows how the UCNA responds to increasing correlation time τ while the noise
strength, D/τ , remains fixed. For all cases where τ is small, the UCNA performs very well.
As τ increases however the UCNA starts to predict ever increasing negative probabilities
for some values of n. Notably though, figure 4(B) shows that even where significant nega-
tive probability is predicted at large τ , the UCNA still manages to capture the rest of the
distribution. This negativity of C(n, τ ) is commented on in both [27, 41]. The former deals
with this negativity by taking the absolute magnitude of the pre-factor of the exponential in
equation (33), while the latter comments that the proof of their UCNA-like FPE is only for-
mally valid where C(n, τ ) > 0, ∀n. Here we choose not to take the magnitude of the pre-factor
in equation (33), since although this leads to a positive probability for all n it is nonethe-
less a poor approximation; but we take careful note of the comment made by Fox in [41],
as this indicates where the UCNA will perform well. The intuition behind the argument of Fox
can be stated as: if for some n, C(n, τ ) < 0 there must be a transitory value of n for which
C(n, τ ) = 0, at this point the equation (31) becomes physically ill-defined and our solution is
invalid.

Finally, we observe that the parameter values chosen for both plots in figure 4 correspond
to deterministically monostable systems. The bimodality that is observed in figure 4 is hence
noise induced bimodality. The mode that appears for small τ corresponds to the determinis-
tic equilibrium point, whereas the noise induced mode does not correspond to an equilibrium
point of the deterministic system. We notice that the ability to exhibit a noise induced mode
as τ becomes large is especially true for monostable parameter sets which are in close prox-
imity to bistable parameter sets in the parameter space. This can be explained by occasional
jumps between the monostable and bistable regimes due to sufficiently large fluctuations in
the degradation rate. Hence a measure of the distance here is the difference in the magnitude
of d0 needed such that the system is deterministically bistable divided by the noise strength,
defined as Δd0 = |d0 − dc|/(D/τ ), where dc is the closest value of the mean degradation rate
to d0 expressing bistability. For example, the parameter set chosen in figure 4(A), although
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Figure 4. Comparison of the UCNA (black line) against the modified SSA (colored
dots) as the correlation time τ is increased at constant noise size D/τ . Note that the
y-axis shows P(n)/pmax, where P(n) is defined in equation (33) and pmax is equal to
the maximum value of P(n). (A) Shows the performance of increasing τ for a sys-
tem with parameters ru = 20, rb = 250, d0 = 1, su = 3 × 102, sb = 103 and Ω = 100.
Deterministically this system is monostable with an equilibrium point at n = 194.7,
however as τ is increased a shift toward a lower mode is observed. When τ is suffi-
ciently large, the UCNA predicts a negative probability. (B) Shows similar to (A) but
with parameters ru = 25, rb = 480, d0 = 1, su = 8 × 102, sb = 103 and Ω = 200. This
too is a deterministically monostable system with equilibrium point n = 406.0. As τ
increases, the breakdown of the UCNA is more apparent than for (A) with the predic-
tion of negative probability for small n more drastic. Both (A) and (B) show that unless
τ is large, while D/τ is small, the UCNA provides a very good approximation, even
where the colored noise induces bimodality in deterministically monomodal systems.
SSA data in each case comes from a single steady state trajectory of 9 × 105 s.

monostable, is very close to a parameter set that exhibits deterministic bistability (Δd0 = 2.12).
On the other hand, the parameter set of figure 4(B) is far from the bistable parameter regime
(Δd0 = 57.5)—and hence the bimodality shown is very limited as τ becomes large. The reason
for this noise induced bimodality then can be seen by the ability of a system, through fluctua-
tions in the rate parameters, to access parameter regimes which in fact do exhibit deterministic
bistability. Importantly, even when it seems bimodality is not induced (e.g., figures 3(A) or
4(B)), using the extremal equation of P(n) from [38], i.e., h̃(n) = g̃(n)g̃′(n), one can show that
the UCNA still predicts the presence of two modes. This explanation of the induced bimodal-
ity in cooperative autoregulation is further supported by the lack of noise induced bimodality
when colored noise is included on the degradation rate of the FPE describing non-cooperative
autoregulation; here the UCNA’s extremal equation only ever predicts the existence of one
mode for the probability distribution.

3.2. Fluctuating effective protein production rates

We now extend the analysis from section 3.1 to the effective protein production rates. Col-
ored noise on the effective production rates can be used to implicitly model multi-step protein
production, including multiple stages of mRNA processing before translation (see figure 2).
We add colored noise onto the effective protein production rates via, ru = r(0)

u (1 + η1(t)) and
rb = r(0)

b (1 + η2(t)), which upon substituting in the Langevin equation describing the feedback
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loop equation (11) we obtain the following set of SDEs:

dn
dt

=
r(0)

u L + r(0)
b (n/Ω)2

L + (n/Ω)2
− dn +

r(0)
u Lη1 + r(0)

b (n/Ω)2η2

L + (n/Ω)2
+

√
r(0)

u L + r(0)
b (n/Ω)2

L + (n/Ω)2
+ dn · Γ(t),

(34)

dη1

dt
= − 1

τ
η1 +

1
τ
θ1(t), (35)

dη2

dt
= − 1

τ
η2 +

1
τ
θ2(t), (36)

where θ1(t) and θ2(t) are Gaussian white noise terms with zero mean and correlators
〈θ1(t)θ1(t′)〉 = 2D1δ(t − t′) and 〈θ2(t)θ2(t′)〉 = 2D2δ(t − t′) respectively. Note that here we
have used a mean-field approximation for the terms under the square root, as was done in
section 3.1. In a similar style to equation (28) we now propose a new noise term η̃(t), which
couples η1(t) and η2(t), satisfying:

F(n)η̃(t) = f1(n)η1(t) + f2(n)η2(t), (37)

where f1(n) = r(0)
u L/(L + (n/Ω)2), f2(n) = r(0)

b (n/Ω)2/(L + (n/Ω)2) and η̃(t) is colored noise
with zero mean and correlator 〈η̃(t)η̃(t′)〉 = e−|t−t′|/τ/τ , satisfying the following equation:

dη̃
dt

= − 1
τ
η̃ +

1
τ
θ(t), (38)

where θ(t) is Gaussian white noise with correlator 〈θ(t)θ(t′)〉 = 2δ(t − t′). The correlators for
η1(t) and η2(t) are 〈η1(t)η1(t′)〉 = D1 e−|t−t′|/τ/τ and 〈η2(t)η2(t′)〉 = D2 e−|t−t′|/τ/τ , where we
have assumed that the colored noise on both production rates has the same correlation time but
a differing magnitude of noise strength. Using the properties of the correlators of η1, η2 and η̃
we then find:

F(n) =
√

f1(n)2D1 + f2(n)2D2. (39)

Sharing the notation adopted in section 3.1, we define the following:

h(n) =
r(0)

u L + r(0)
b (n/Ω)2

L + (n/Ω)2
− dn, (40)

g2(n) =

√
r(0)

u L + r(0)
b (n/Ω)2

L + (n/Ω)2
+ dn. (41)

This gives us the following SDE which is coupled to equation (38):

dn
dt

= h(n) + F(n)η̃ + g2(n)Γ(t). (42)

Then, following the same UCNA procedure as in equations (19)–(26), we obtain the following
approximate Langevin equation:
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ṅ ≈ h(n)
C(n, τ )

+
1

C(n, τ )
(F(n)θ(t) + g2(n)Γ(t)), (43)

where

C(n, τ ) = 1 + τ

(
F′(n)h(n)

F(n)
− h′(n)

)
. (44)

In this case it is interesting to note that unlike the case of a fluctuating degradation rate, here
C(n, τ ) does depend on both the correlation time τ and the strength of the colored noise D1, D2

(unless D1 = D2 in which case there is only dependence on τ ). To simplify equation (43)
further, we again propose:

g(n)Γ̃(t) = F(n)θ(t) + g2(n)Γ(t), (45)

where Γ̃(t)Γ̃(t′) = 2δ(t − t′), and find using the correlators that g(n) =
√

F(n)2 + g2(n)2/2.
This leads to the final approximate SDE:

ṅ =
h(n)

C(n, τ )
+

g(n)
C(n, τ )

Γ̃(t), (46)

which is identical in notation to equation (31) but where h(n), C(n, τ ) and g(n) are all defined
in this section. The equivalent FPE for this SDE is then:

∂P(n, t)
∂t

= − ∂

∂n

[(
h̃(n) + g̃(n)g̃′(n)

)
P(n, t)

]
+

∂2

∂n2

[
g̃(n)2P(n, t)

]
. (47)

Again our solution for the probability distribution will then be:

P(n) =
N

g̃(n)
exp

(∫ n h̃(z)
g̃(z)2

dz

)
, (48)

with h̃(n) = h(n)/C(n, τ ) and g̃(n) = g(n)/C(n, τ ).
We now describe the modified SSA that takes into account extrinsic noise on the effec-

tive protein production rates. This modification replaces the protein production reaction in
each gene state, i.e., Gk → Gk + P where Gk represents either G or G∗, by three new reac-
tions alongside the introduction of a ghost species Yk for each gene state. These new reactions

are ∅
r1�
r2

Yk and Gk + Yk
r3−→Gk + Yk + P. Utilising the LNA (assuming Yk to be abundant), as

was done for colored noise on the degradation rate in appendix A, one finds these rates to be
r1 = 1/(DkΩ), r2 = 1/τ and r3 = r(0)

k DkΩ/τ , which ensure matching to the colored noise SDE
given in equation (34), where r(0)

k represents r(0)
u or r(0)

b in G and G∗ respectively.
Figure 5 shows a good performance of the UCNA when compared to the modified SSA

described above. This performance is shown for each differing qualitative behavior expressed
by cooperative bimodality, i.e., (i) monostable positive feedback, (ii) bistable positive feed-
back, and (iii) monostable negative feedback. In all three plots shown the UCNA matches the
modified SSA well, and clearly performs better than if one were to approximate the colored
noise with white noise (i.e., τ = 0).

We find the same qualitative behavior of the creation and eventual destruction of bimodality
(see figures 6(A)(i)–(iii)) as the noise strengths, D1 and D2, become large for the colored noise
on the protein production rates as was found in figure 3 for colored noise on the degradation
rate. Note that for the chosen parameter set in figure 6(A) that the white noise approximation
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Figure 5. This figure shows the agreement of the UCNA on the protein production rates
to the modified SSA (detailed in section 3.2), also compared to the case of white extrinsic
noise (τ = 0). The plots show agreement of the UCNA over the three main qualitative
regimes of cooperative autoregulation at large molecule number, showing respectively:
(i) monostable positive feedback with parameters r(0)

u = 150, r(0)
b = 300, su = sb = 103,

d = 1, D1 = 0.25, D2 = 0.25, τ = 0.5, Ω = 100; (ii) bistable positive feedback with
parameters r(0)

u = 24, r(0)
b = 468, su = sb = 103, d = 1, D1 = 0.75, D2 = 0.1, τ = 1,

Ω = 200; (iii) monostable negative feedback with parameters r(0)
u = 470, r(0)

b = 20, su =
sb = 103, d = 1, D1 = 0.1, D2 = 0.1, τ = 1, Ω = 70. In the top right hand corner of
each plot is the value of ρ for the distribution, defined and discussed in section 3.4.3,
here showing that for good UCNA performance ρ should be small to satisfy condition
3. SSA data in each case comes from a single steady state trajectory of 9 × 105 s.

performs generally very well compared to the UCNA. For τ � 1, the white extrinsic noise
approximation can typically perform quite well compared to the modified SSA, but note that
this is not always the case (e.g., see figure 3).

3.3. Fluctuating binding/unbinding rates

Finally, we apply the UCNA to the case of colored noise added to the binding and unbinding
rates of the protein to the gene. This could be utilised to implicitly model the effect of multiple
gene states in the transition of G to G∗, as has been experimentally and theoretically investi-
gated [46–48], accounting for DNA looping via distal enhancers or chromatin conformational
states. For convenience we define sb = s(0)

b (1 + η1(t)), su = s(0)
u (1 + η2(t)) and

Lη = L0

(
1 + η1(t)
1 + η2(t)

)
, with L0 =

s(0)
u

s(0)
b

. (49)

Substituting equation (49) in the Langevin equation describing the feedback loop equation (11)
(and making a mean-field approximation for the terms under the square root) we obtain the
following set of SDEs:

dn
dt

=
Lηru + rb(n/Ω)2

Lη + (n/Ω)2
+

√
ruL0 + rb(n/Ω)2

L0 + (n/Ω)2
+ dn · Γ(t), (50)

dη1

dt
= − 1

τ
η1 +

1
τ
θ1(t), (51)

dη2

dt
= − 1

τ
η2 +

1
τ
θ2(t), (52)

where θ1(t) and θ2(t) are Gaussian white noise terms with zero mean and correlators
〈θ1(t)θ1(t′)〉 = 2D1δ(t − t′) and 〈θ2(t)θ2(t′)〉 = 2D2δ(t − t′) respectively. In order to proceed
using the UCNA we must linearise the drift term in equation (50) with respect to η1 and η2
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Figure 6. Plots showing the creation and eventual destruction of bimodality in the prob-
ability distributions for colored noise on the (A) protein production rates, (B) bind-
ing/unbinding rates (denoted on the figure by (un)binding rates), analogously to what
was observed in figure 3 for colored noise on the degradation rate. For (A) it is clear
that the UCNA performs well where the noise strength is both small in (A)(i) and
large in (A)(iii). For (B) we see that the low (B)(i) and intermediate (B)(ii) noise cases
are well predicted by the UCNA and white noise approximation, however where the
noise becomes large (B)(iii) the UCNA breaks down, whereas the white noise approx-
imation still performs well compared to the modified SSA prediction. Other than the
noise strengths given on the figure, the parameters for both (A) and (B) are r(0)

u = 24,
r(0)

b = 468, su = sb = 103, d = 1, τ = 1, Ω = 200 (i.e., the same parameters used in
figure 3 which express deterministic bistability). SSA data in each case comes from a
single steady state trajectory of 9 × 105 s.

through the small noise approximation η1, η2 	 1:

dn
dt

≈ ruL0 + rb(n/Ω)2

L0 + (n/Ω)2
− dn+

(
L0n2Ω2 (ru − rb)(

L0Ω
2 + n2

)2

)
(η1−η2) +

√
ruL0 + rb(n/Ω)2

L0 + (n/Ω)2
+dn · Γ(t).

(53)

For convenience we now define:

h(n) =
ruL0 + rb(n/Ω)2

L0 + (n/Ω)2
− dn, (54)

g1(n) =
L0n2Ω2 (ru − rb)(

L0Ω
2 + n2

)2 , (55)

g2(n) =

√
ruL0 + rb(n/Ω)2

L0 + (n/Ω)2
+ dn, (56)

F(n) = g1(n)
√

D1 + D2, (57)

g(n) =
√

F(n)2 + g2(n)2/2. (58)
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In terms of these new functions equation (53) becomes,

dn
dt

= h(n) + g1(n)(η1 − η2) + g2(n)Γ(t). (59)

Following section 3.2 we then arrive at the UCNA for colored noise on the binding rates where
η1, η2 	 1:

dn
dt

=
h(n)

C(n, τ )
+

1
C(n, τ )

(F(n)θ(t) + g2(n)Γ(t)) . (60)

Then, using the properties of the correlators of θ(t) and Γ(t) we arrive at:

dn
dt

=
h(n)

C(n, τ )
+

g(n)
C(n, τ )

Γ̃(t), (61)

where,

C(n, τ ) = 1 + τ

(
g′

1(n)h(n)
g1(n)

− h′(n)

)
, (62)

and Γ̃(t) is Gaussian white noise with mean zero and correlator 〈Γ̃(t)Γ̃(t′)〉 = 2δ(t − t′). Here,
as for the UCNA applied to the degradation rate, C(n, τ ) is again independent of the strengths
of the colored noise terms. This UCNA, as we shall see, should be a good approximation where
both D1 and D2 are small—by ‘small’ we explicitly mean that D1 and D2 should be smaller
than noise strengths used on the UCNA for protein production rates or the degradation rate.
The solution to equation (61) is given by:

P(n) =
N

g̃(n)
exp

(∫ n h̃(z)
g̃(z)2

dz

)
, (63)

with h̃(n) = h(n)/C(n, τ ) and g̃(n) = g(n)/C(n, τ ).
Now we evaluate the performance of the UCNA on the binding and unbinding rates,

and compare it with the modified SSA. In this case the modified SSA replaces the bind-

ing and unbinding reactions, G + 2P
sb�
su

G∗, by the following: ∅
r1�
r2

Y1, G + Y1 + 2P
r3−→Y1 +

G∗, ∅

r4�
r5

Y2, and G∗ + Y2
r6−→G + Y2 + 2P, where Y1 and Y2 are ghost species. The

rates of these reactions are determined via the LNA (assuming the ghost species to be
numerous) and are r1 = 1/(D1Ω), r2 = 1/τ , r3 = s(0)

b D1Ω/τ , r4 = 1/(D2Ω), r5 = 1/τ and
r6 = s(0)

u D2Ω/τ .
In figure 6(B) we test the UCNA on the binding and unbinding rates compared to the

modified SSA described above. Clearly, the same qualitative behavior of the creation and
destruction of bimodality, as noise strength is increased, is observed, as was also observed
for colored noise on the degradation rate (figure 3) and protein production rates (figure 6(A)).
The resultant expression of bimodality however, is clearly different than for these cases.
Notably, this UCNA does ascribe to an additional limitation compared to the UCNA of
degradation or production rates; a limitation due to the further small noise approximation
made in equation (53). This limitation is seen in figure 6(B)(iii), showing that the UCNA
applied to the binding and unbinding rates is much more sensitive to increased noise strength
than the other UCNA applications. One also observes that the white noise approximation
in figure 6(B) performs almost as well as the UCNA (figures 6(B)(i)–(ii)) or in some cases
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better than the UCNA (figure 6(B)(iii)); hence, the white noise approximation may be a
safer approximation than the UCNA for colored noise applied to the binding and unbinding
rates.

3.4. Breakdown conditions of the UCNA

Having now applied the UCNA to approximate distributions for colored noise on the (i) degra-
dation rate, (ii) protein production rates and (iii) the binding/unbinding rates, we now assess
the conditions which cause the UCNA to breakdown. The application of the UCNA to colored
noise on the protein production rates presents a somewhat more complex problem than the
application of the UCNA to colored noise on the degradation rate or the binding/unbinding
rates; hence, we more easily see that there are three main conditions for the breakdown of the
UCNA—conditions beside the large system size or large molecule number requirement needed
to approximate the discrete master equation by a one variable FPE, or even the need for τ to
be chosen small or large enough such that equations (22) and (23) are approximately satisfied.
Below we detail these three conditions, in each case explaining why the disagreement occurs.
Note that although the analysis of breakdown conditions below is done for the UCNA on the
protein production rates, the same arguments hold for the other applications of the UCNA
previously presented.

3.4.1. Condition 1. The first of these conditions concerns the positivity condition required on
C(n, τ ), that is C(n, τ ) > 0∀n. We refer to this as condition 1. Since we have already discussed
this condition in a previous section we will not repeat the discussion here, and refer the reader
to section 3.1. In figure 7(A)(i) we see a disagreement between the UCNA and the modified
SSA for a parameter set that exhibits bimodality, and in figure 7(A)(ii) it is verified that this
since C(n, τ ) < 0 where n ≈ 100. Note however, that if C(n, τ ) becomes negative outside of
the region containing most of the probability mass that the UCNA can still provide a good
approximation to the true modified SSA solution.

3.4.2. Condition 2. The second condition observed for the breakdown of the UCNA concerns
the violation of the characteristic ‘length’scale (the length here being a distance measure in the
n space), which we now discuss. In appendix B we show in more detail why the arguments we
present below hold. Based on the noise intensity of the noise term arising from the colored noise
in equation (43), we can introduce the characteristic length scale L over which fluctuations in
the colored noise term are damped:

L(n, τ ) =
F(n)

C(n, τ )
, (64)

noting that the requirement of condition 1 means that this length is always positive. Our approx-
imate one variable FPE in equation (47) will then be valid under the condition that the drift
term varies slowly with respect to L (following appendix B), meaning that one needs to satisfy

L
∣∣∣∂n

(
h̃(n) + g̃(n)g̃′(n)

)∣∣∣ 	 ∣∣∣h̃(n) + g̃(n)g̃′(n)
∣∣∣ (65)

in order for the UCNA to hold. More succinctly, this condition is:

C(n, τ ) � κ(n, τ ), (66)
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Figure 7. This figure shows the disagreement of the UCNA on the protein production
rates to the ground truth modified SSA predictions (detailed in section 3.2), also com-
pared to the case of white extrinsic noise (τ = 0). Each disagreement corresponds to a
single breakdown condition of the UCNA being violated. The legend in (A)(i) applies to
(A)(i), (B)(i) and (C)(i). Plots in (A) show the breakdown of the UCNA due to condition
1. (A)(i) shows the prediction of negative probability due to the negativity of C(n, τ )
in (A)(ii) around the same value of n. Parameters for (A) are r(0)

u = 20, r(0)
b = 470,

su = sb = 103, d = 1, D1 = 1, D2 = 0.1, τ = 10, Ω = 200. Plots in (B) show the
breakdown of the UCNA due to condition 2. (B)(ii) shows that κ(n, τ ) > C(n, τ ) over
a large range of n, corresponding to the poor UCNA prediction seen in (B)(i) over
this entire region. Parameters for (B) are r(0)

u = 50, r(0)
b = 450, su = sb = 103, d = 1,

D1 = 1, D2 = 1, τ = 1, Ω = 100. Plots in (C) show the breakdown of the UCNA due to
condition 3. (C)(ii) shows a relatively large value of γ(n) over most of the defined region
D, and also shows the pre-factors of the total UCNA noise g̃(n) and that arising only
from the colored noise F̃(n) = F(n)/C(n, τ ). Vertical orange lines in (C)(i) indicate the
limits of the region D. The value ρ in the top right-hand corner of (C)(i) can be compared
to the smaller values of ρ seen for other parameter sets in (A)(i) and (B)(i), indicating
that the breakdown observed is truly associated to condition 3. The parameters for
(C) are r(0)

u = 2300, r(0)
b = 120, su = sb = 104, d = 1, D1 = 0.002, D2 = 0.04, τ = 2,

Ω = 230. SSA data in each case comes from a single steady state trajectory of 9 × 105 s.

where we henceforth define the function

κ(n, τ ) = F(n)

∣∣∣∣∣∣
∂n

(
h̃(n) + g̃(n)g̃′(n)

)
h̃(n) + g̃(n)g̃′(n)

∣∣∣∣∣∣ . (67)

We refer to equation (66) as condition 2. In figure 7(B) we explore this breakdown for a parame-
ter set that breaks condition 2 over a large region of the parameter space, between 0 < n < 650.
Clearly the UCNA is provides a poor approximation in this regime; note however that, similar
to condition 1, if condition 2 is violated (i) outside of the domain where most of the probability
mass is contained, or (ii) over a small region of the domain containing most of the probability
mass, then the UCNA can still provide a good approximation.

3.4.3. Condition 3. The final condition resulting in the breakdown of the UCNA concerns the
underestimation of noise. We refer to this as unaccounted peak noise, and this forms our final
breakdown condition, condition 3. The explanation behind condition 3 is that the UCNA in
general will always underestimate the Poisson noise for a particular value of n, arising from
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Figure 8. Plots showing a good performance of the UCNA for τ = 100. (i) Shows the
probability distributions from the modified SSA, UCNA and white noise approxima-
tion. The vertical orange lines show the limits of the region D in this case. (ii) Shows
that in the region D that condition 1 is satisfied since C(n ∈ D) > 1, and condition 2 is
satisfied since C(n ∈ D, τ ) � κ(n ∈ D, τ ). (iii) Shows that condition 3 is satisfied in D,
i.e., γ(n) ≈ 0, since g̃(n) ≈ F̃(n), which is corroborated by the small value of ρ shown
in (i). Other parameters here are r(0)

u = 10, r(0)
b = 400, su = sb = 103, d = 1, D1 = 0.5,

D2 = 1, Ω = 70. SSA data in each case comes from a single steady state trajectory of
9 × 105 s.

the necessary neglection of Poisson noise terms in the derivation of the UCNA: (i) neglection
of the noise terms under the square root of the Poisson noise pre-factor in equation (34) (a
form of mean-field approximation), and (ii) neglection of Poisson noise term g2(n)Γ(t) and
its time derivative from the η̇ term in equations (19)–(21) via the use of another mean-field
approximation. However, the error on the UCNA caused by condition 3 will be small when
colored noise dominates the Poisson noise. To investigate the degree to which colored noise is
dominant, identifying F(n)/C(n, τ ) from equation (42) and g(n)/C|(n, τ ) from equation (46),
we define

γ(n) =

∣∣∣∣g(n)/C(n, τ )− F(n)/C(n, τ )
g(n)/C(n, τ )

∣∣∣∣ =
∣∣∣∣g(n) − F(n)

g(n)

∣∣∣∣ (68)

where, for some n, if γ(n) ≈ 1 then Poisson noise dominates, else if γ(n) ≈ 0 then colored noise
dominates. Intermediate values of γ(n) mean that both Poisson and colored noise is apparent in
the system. To investigate whether noise is underestimated generally over the region containing
most of the probability, defined as D = [nmin, nmax], we further define

ρ =
1
|D|

∫ nmax

nmin

γ(n)dn. (69)

Here, if ρ ≈ 1 then Poisson noise dominates over the entire region D, else if ρ ≈ 0 then col-
ored noise dominates over the entire region D. Figure 7(C) explores this disagreement, where
figure 7(C)(i) shows the clear underestimation of noise in the UCNA distribution when com-
pared to the modified SSA distribution. Sample values of nmin and nmax are also shown on
figure 7(C)(i). Figure 7(C)(ii) shows how the total UCNA noise g̃(n) varies with respect to the
contribution of colored noise F̃(n) = F(n)/C(n, τ ). Also shown on figure 7(C)(ii) is the varia-
tion of γ(n). Values of ρ are shown in the top right-hand corner for all probability distributions
in figure 5; unlike the other distributions shown in figures 5 and 7, in figure 7(C)(i) ρ �≈0 does
not hold, clarifying that the reason for the UCNA’s disagreement for this parameter set is due
to condition 3.

3.4.4. Large τ UCNA distributions. Having successfully identified the three main conditions
causing the breakdown of the UCNA, we are now able to determine where the UCNA will per-
form well, even in the large τ limit. In figure 8 we explore an example of the UCNA performing
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exceptionally well for τ = 102 (see figure 8(i)). Clearly the UCNA does not violate any of the
three conditions here: (1) C(n, τ ) is not negative in D (see figure 8(ii)); (2) C(n, τ ) � κ(n, τ ) in
D (again, see figure 8(ii)); (3) γ(n) is small for all n in D (see figure 8(iii)) as evidenced by the
small value of ρ = 0.001. As expected, the prediction of white noise on the protein production
rates is very poor in the regime where τ � 1.

4. Slow gene switching: the conditional UCNA

In the previous sections we have focused on fast gene switching, whereby a Hill function can
then be used to approximate the production of proteins from two different gene states, shown
in the reaction scheme of equation (1). We now consider the case where the switching rates su

and sb are very small; small enough that the system has two dominant modes of behavior, one
pertaining to each gene state. The approach followed here is very similar to the conditional LNA
studied in [49], but instead of approximating the distribution conditional on each gene state as
a Gaussian we instead utilise the UCNA in each gene state. We shall refer to this method as the
conditional UCNA (cUCNA). We begin by stating the law of total probability for the marginal
distribution of proteins that we are interested in approximating:

P(n, t) =
∑

G

P(Gi, t)P(n|Gi, t). (70)

Here G is the set of possible gene state (in our case G = {G, G∗}), P(Gi, t) is the marginal
distribution of being in gene state Gi at a time t and P(n|Gi, t) is the conditional probability of
having n proteins at a time t given that the system is in state Gi. Our task now is to find suitable
approximations for P(Gi, t) and P(n|Gi, t) that allow us then to construct an approximation of
the full steady state distribution in equation (70). In our case we have two different gene states,
G and G∗, and hence we can construct the reaction schemes conditional on each gene state.

The reaction scheme conditional on gene state G is (i) G
ru−→G + P, P

d−→∅, and the reaction

scheme conditional on gene state G∗ is (ii) G∗ rb−→G∗ + P, P
d−→∅. This then allows us to

approximately find the steady state mean number of proteins conditional on each gene state
when su and sb are very small (where the subscript a denotes approximate): 〈n|G〉a = ru/d
and 〈n|G∗〉a = rb/d. We can use these conditional means to find the marginal probabilities of
being in a specific gene state at steady state. Note that in this calculation we will ignore the
influence of noise on the rate parameters; the inherent assumption is that extrinsic noise does
not much influence the probability of being in each gene state. First we write an approximate
master equation for the transitions between differing gene states:

d
dt

P(G, t) ≈ suP(G∗, t) − sb〈n|G〉2
a

Ω2 P(G, t). (71)

We can then solve the above equation at steady state (denoted by the subscript s) by utilising
conservation of probability, Ps(G) = 1 − Ps(G∗), giving:

Ps(G∗) =

(
1 +

su

sb

(
d · Ω

ru

)2
)−1

, (72)

Ps(G) =

(
1 +

sb

su

( ru

d · Ω
)2
)−1

. (73)
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Figure 9. Comparison of the cUCNA with the modified SSA for increasing values of
the colored noise strength for both gene states, D. It is seen that the cUCNA (solid lines)
is a good approximation to the true distribution (dots, simulated using the modified SSA
described in appendix A), especially for small values of D. The noise strengths for each
plot are (i) D = 0.1, (ii) D = 0.2, (iii) D = 0.3, (iv) D = 0.4, (v) D = 0.5, and the shared
parameters are ru = 30, rb = 75, sb = 0.01, su = 0.001, d0 = 0.5 and τ = 1. Clearly as
D gets larger the bimodality exhibited by the slow switching between the gene states is
destroyed by the extrinsic noise added to the degradation rate.

Since now we have the Ps(Gi) needed for equation (70) we need to find the Ps(n|Gi) terms.
Here we show how to calculate these terms for noise on the degradation rate, although this
can be easily extended to the case where we have noise on the protein production rates. In

each gene state, the system we are concerned to study is Gi
ri−→Gi + P, P

di−→∅, where Gi,
di and ri represent either gene state G or G∗, the corresponding gene state dependent decay
rate, and production rate ru or rb respectively. Adding colored noise to the degradation rate
di = d0(1 + ηi), where di is the degradation rate in gene state Gi given colored noise ηi, we
then have the following set of SDEs in each gene state (here we have applied the mean-field
approximation to the terms in the square root):

dn
dt

= ri − d0 n − (d0 n)ηi +
√

ri + d0n · Γ(t), (74)

dηi

dt
= − 1

τi
ηi +

1
τi
θi(t), (75)

where Γ(t) and θi(t) are Gaussian white noise terms, each with zero mean and correlators
〈Γ(t)Γ(t′)〉 = δ(t − t′) and 〈θi(t)θi(t′)〉 = 2Diδ(t − t′) respectively. Processing the usual steps
of the UCNA method, detailed explicitly in section 3, we find the approximate steady state
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probability for each gene state:

Ps(n|Gi) ≈ N exp (u(n, ri)) n2riτi−1(ri + d0 n(2d0Din + 1))
− 1

2−
1

2d0Di
−riτi(n + riτi), (76)

where N is a normalisation constant and we have defined,

u(n, ri) =
(Di (4 − 6d0τi) ri + 1) tan−1

(
4d0Din+1√

8Diri−1

)
d0Di

√
8Diri − 1

. (77)

Hence, using equations (72), (73) and (76) we can now approximate equation (70) as:

P(n) ≈ Ps(G)Ps(n|G) + Ps(G∗)Ps(n|G∗). (78)

Figure 9 compares the cUCNA with the modified SSA—which is the same as the modified
SSA found in section 3.1. Figure 9(i) shows that for small switching rates, the cUCNA can cor-
rectly capture the bimodality exhibited where the colored noise on the degradation rate is small.
As the noise on the degradation rate gets larger the cUCNA still provides a decent approxima-
tion to the true distributions; it is also clear that the bimodality of the protein distribution is
destroyed as the size of this noise increases. One can contrast this to the cases observed in
figures 3 and 6 which showed that where the gene switching rates are fast, increased colored
noise strength can in fact induce bimodality. In summary, we find that extrinsic noise on the
degradation rate of a slow switching auto-regulatory system generally destroys bimodality, but
for fast switching it is common to observe the opposite phenomenon.

5. Applications

In this section we explicitly show, by means of two examples, how one can use the colored noise
formulation that was introduced earlier to describe intricate molecular details of cooperative
autoregulation. We first show this for multi-stage protein production with fast gene switching,
and then for multi-stage protein degradation with slow gene switching.

5.1. Multi-stage protein production

The first example of using colored noise as a form of model reduction is that of mapping mul-
tistage protein production onto a simpler system, where colored noise accounts for processes
not explicitly considered in the simpler model. Consider multi-stage protein production on the
cooperative auto-regulatory feedback loop:

G
ρu−−→G + M1, G∗ ρb−−→G∗ + M1,

Mi
Λi−−→Mi+1, i ∈ [1, N − 1], MN

ΛN−−→∅, MN
r1−→MN + P,

G + 2P
sb�
su

G∗, P
d−→∅,

(79)

where it is assumed the system contains only one gene copy, either in state G or in state G∗. The
simpler model that we will then map this system onto the cooperative auto-regulatory feedback
loop:

G
ru−→G + P, G∗ rb−→G∗ + P,

G + 2P
sb�
su

G∗, P
d−→∅,

(80)
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where ru = r(0)
u (1 + η1(t)) and rb = r(0)

b (1 + η2(t)), and assigning the properties of colored
noises η1(t) and η2(t) such that equation (79) can be mapped onto equation (80) is the task
we have assigned ourselves. One can think of the different Mi for i < N as the various stages
of nascent mRNA, before it is eventually fully transcribed in stage MN (mature mRNA) where
it can then begin translation [50, 51]. Utilising the slow scale LNA [19] one can show that
if Λi � max{ΛN , ρu, ρb} for i ∈ [1, N − 1] then the nascent mRNA M1, . . . , MN−1 are fast
species, and the reaction system in equation (79) is consistent with the following reaction
scheme describing fluctuations in the slow species G, G∗, MN and P:

G
ρu−−→G + MN , G∗ ρb−−→G∗ + MN ,

MN
ΛN−−→∅, MN

r1−→MN + P,

G + 2P
sb�
su

G∗, P
d−→∅.

(81)

We now apply the van Kampen ansatz to the number of mature mRNA, MN . In gene state G this
gives us n1(t) = Ωφ1 +Ω1/2ε1(t), and in gene state G∗ this gives us n2(t) = Ωφ2 +Ω1/2ε2(t),
where φ1 = ρu/(ΛNΩ) and φ2 = ρb/(ΛNΩ) are the steady state solutions to the rate equation
describing the mature mRNA in the gene states G and G∗ respectively, and ε1(t) and ε2(t)
describe small fluctuations about these means. Note the occurrence of 1/Ω in φ1 and φ2 follows
since the concentration of a single gene in a volume Ω is 1/Ω. Using these ansatzes allows us
to construct the effective protein production rates in gene states G and G∗ respectively:

ru = r1n1(t) =
r1ρu

ΛN

(
1 +Ω1/2ΛN

ρu
ε1(t)

)
, (82)

rb = r1n2(t) =
r1ρb

ΛN

(
1 +Ω1/2ΛN

ρb
ε2(t)

)
. (83)

One can then see that r(0)
u = r1ρu/ΛN , r(0)

b = r1ρb/ΛN and that the noise terms have the form:

η1(t) = Ω1/2ΛN

ρu
ε1(t), (84)

η2(t) = Ω1/2ΛN

ρb
ε2(t). (85)

In order to fully specify η1(t) and η2(t) we need to find the correlators 〈η1(t)η1(t′)〉 and
〈η2(t)η2(t′)〉, which can be done by application of the LNA [6]. Note that since we are already
restricted to the large system size, large molecule number regime following the FPE approxi-
mation to the CME (discussed in section 3.1), we can apply the LNA without further restricting
the validity of the final solution. The same can also be said for the use of the LNA in section 5.2.
Applying the LNA to n1(t) and n2(t), whose fluctuations are fully specified by the reactions

G
ρu−−→G + MN , G∗ ρb−−→G∗ + MN and MN

ΛN−−→∅, gives us the two following one variable
FPEs:

∂Π(ε1, t)
∂t

= ΛN
∂

∂ε1
(ε1Π(ε1, t)) +

1
2

(
2ρu

Ω

)
∂2Π(ε1, t)

∂ε2
1

, (86)

∂Π(ε2, t)
∂t

= ΛN
∂

∂ε2
(ε2Π(ε2, t)) +

1
2

(
2ρb

Ω

)
∂2Π(ε2, t)

∂ε2
2

, (87)
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where Π(εi, t) is the probability of having a fluctuation of size εi at a time t. These FPEs,
combined with equation (84) and (85), admit equivalent Langevin equations for η1(t) and η2(t),
given by:

dη1(t)
dt

= ΛN

(
−η1(t) +

√
2
ρu

β1(t)

)
, (88)

dη2(t)
dt

= ΛN

(
−η2(t) +

√
2
ρb

β2(t)

)
, (89)

where β1(t) and β2(t) are independent Gaussian white noises with zero mean and correlator
〈β1(t)β1(t′)〉 = 〈β2(t)β2(t′)〉 = δ(t − t′). From here one can find the correlators of η1(t) and
η2(t):

〈η1(t)η1(t′)〉 = ΛN

ρu
exp

(
−ΛN|t − t′|

)
, (90)

〈η2(t)η2(t′)〉 = ΛN

ρb
exp

(
−ΛN|t − t′|

)
. (91)

Comparing to the results of section 3.2 it is clear that η1(t) and η2(t) satisfy the definition
of colored noise, with noise strengths D1 = 1/ρu, D2 = 1/ρb and shared correlation time
τ = 1/ΛN . This completes the mapping between the full complex system in equation (79)
and our reduced process in equation (80). We can hence utilise our solution for the probabil-
ity distribution with colored noise on the effective protein production rates in equation (48).
Note that the colored noise in this case can model transcriptional bursting, namely the
production of proteins in bursts due to rapid translation from short lived mRNA [52,
53]; bursty expression has been previously modeled in the literature by an effective first-
order reaction with constant rate parameter but with the special property that when the
reaction fires, the number of proteins produced is sampled from a geometric distribution
[33, 54].

In figure 10(A) we show how effective the UCNA can be in approximating the protein distri-
bution from the full system described in equation (79), where we have for simplicity assumed
that there are three mRNA states: M1, M2 and M3 (i.e., N = 3). Figure 10(A)(i) shows the
approximation for a parameter set exhibiting bimodality: the red points represent the standard
SSA of the full system in equation (79); the black line represents the distribution predicted from
the UCNA (i.e., using equation (48) with D1 = 1/ρu, D2 = 1/ρb and τ = 1/ΛN); the blue dot-
ted line represents the distribution if one put white noise of the same magnitude on the protein
production rates (i.e., the UCNA at τ = 0); and the orange line with circles shows the distri-
bution if one was to neglect noise on the reaction rates entirely (i.e., ru = r(0)

u and rb = r(0)
b ).

Clearly, in figure 10(A)(i) the UCNA is the only distribution that fits the SSA prediction, show-
ing both the effectiveness of our model reduction as well as the need to properly account for
the correlation time of colored noise in model reduction. This makes sense, since one would
expect processes occurring in the full system to be correlated over short times, i.e., that noise
events in close temporal proximity are not independent, and one cannot simply neglect these
effects. Figure 10(A)(ii) instead shows the various approximations for a monomodal parameter
set. In this case, white noise is a poor approximation, and it is clear that one cannot neglect
the finite correlation time. However, it is interesting to note that properly accounting for the
correlation time using the UCNA returns the same distribution as if one had not added noise to
the production rates at all—this is due to the small magnitudes of D1/τ and D2/τ respectively.
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These two examples shows that where correlation time is finite, it is imperative that one models
it correctly.

5.2. Multi-stage protein degradation

Proteins in cells are often degraded via multi-step processes. For example, a major degradation
pathway in eukaryotic cells is the ubiquitin-proteasome degradation pathway [55], and more
recent experiments have shown that a subset of proteins in the mammalian proteome have
age-dependent degradation rates [56, 57]. From figure 2 in [56] we consider a system with
two different stages of protein with differing degradation rates combined with the cooperative
auto-regulatory feedback loop:

G
ru−→G + P1, G∗

1,2
rb−→G∗

1,2 + P1,

P1
κ−→P2, P1

d1−−→∅, P2
d2−−→∅,

G + 2P1
sb�
su

G∗
1, G + 2P2

sb�
su

G∗
2,

(92)

where G∗
1,2 indicates either the state G∗

1 or G∗
2. This reaction system models age dependent

protein states, since the protein P1 is always produced from the gene, and eventually undergoes
a transition to protein state P2, where P1 and P2 have differing degradation rates. We will show
how to map this system to the reduced system:

G + 2P
sb�
su

G∗, G
ru−→G + P, G∗ ru−→G∗ + P, P

d−→∅, (93)

where the total number of P is given as the sum of the number of P1 and P2, i.e., n = n1 + n2,
G∗ is simply the sum of G∗

1 and G∗
2, and d = d0(1 + η(t)), where η(t) is colored noise. Our task

is to find the properties of the noise η(t) such that one can map the full system in equation (92)
onto the reduced system in equation (93). Note that although we here look at two different
stages of protein, the analysis presented below can be easily extended for several different
stages of protein degradation.

One finds that the effective degradation rate of the sum of protein number P1 and P2 is:

d =
n1d1 + n2d2

n1 + n2
. (94)

In the following analysis we consider gene switching to be slow, which allows us to apply the
cUCNA from section 4. We first consider the probability of being in each gene state at steady
state Ps(Gk), where Gk represents either gene state G or G∗. Note that we assume both protein
stages P1 and P2 can bind and unbind to the gene at the same respective rates, and note that
〈n|G〉 = 〈n1|G〉+ 〈n2|G〉. Following the analysis from section 4 in equations (72) and (73) we
find:

Ps(G
∗) =

(
1 +

suΩ
2

sb

(
d2(κ+ d1)
ru(κ+ d2)

)2
)−1

, (95)

Ps(G) =

(
1 +

sb

suΩ
2

(
ru(κ+ d2)
d2(κ+ d1)

)2
)−1

. (96)
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We can now proceed to find the probability distribution conditional on each gene state
Ps(n1, n2). In gene state Gk the conditional reaction system is:

Gk
rk−→Gk + P1, P1

d1−−→∅, P1
κ−→P2, P2

d2−−→∅, (97)

where the protein is always produced in stage P1, and rk ≡ ru in gene state G, and rk ≡ rb

in gene state G∗. Now we employ the van Kampen ansatz [6] on n1 and n2 in gene state Gk,
i.e. n(k)

1 (t) = Ωφ∗(k)
1 +Ω1/2ε(k)

1 (t) and n(k)
2 (t) = Ωφ∗(k)

2 +Ω1/2ε(k)
2 (t), where φ∗(k)

1 and φ∗(k)
2 are the

deterministic steady state mean concentrations of P1 and P2 in gene state Gk respectively,
and ε(k)

1 (t) and ε(k)
2 (t) are fluctuations about these mean values. In the following we drop the

superscript (k) notation for aesthetic reasons, although one should keep in mind that the process
below must be individually conducted on each gene state. The purpose of using the van Kampen
ansatz can be seen upon its substitution into equation (94) which for a large system size, Ω,
gives:

d =
d1φ

∗
1 + d2φ

∗
2

φ∗
1 + φ∗

2

(
1 +Ω−1/2

(
ε1(t)

(
d1

d1φ∗
1 + d2φ∗

2

− 1
φ∗

1 + φ∗
2

)

+ ε2(t)

(
d2

d1φ∗
1 + d2φ∗

2

− 1
φ∗

1 + φ∗
2

)))
+O(Ω−1). (98)

By comparing to the effective degradation from the reduced model in gene state Gk, d = d0(1 +
ηk(t)), one can see that to match the two models we must have

d0 = (d1φ
∗
1 + d2φ

∗
2)/(φ∗

1 + φ∗
2), (99)

and

ηk(t) = Ω−1/2
(
ε1(t)y1(d1, d2,φ∗

1,φ∗
2) + ε2(t)y2(d1, d2,φ∗

1,φ∗
2)
)

, (100)

where we have defined the functions,

y1(d1, d2,φ∗
1,φ∗

2) =
d1

d1φ∗
1 + d2φ∗

2

− 1
φ∗

1 + φ∗
2

, (101)

y2(d1, d2,φ∗
1,φ∗

2) =
d2

d1φ∗
1 + d2φ∗

2

− 1
φ∗

1 + φ∗
2

. (102)

If the correlators 〈ε1(0)ε1(t)〉, 〈ε2(0)ε2(t)〉, 〈ε1(0)ε2(t)〉 and 〈ε2(0)ε1(t)〉 are known, then one can
also find the correlator of ηk(t), i.e., 〈ηk(0)ηk(t)〉, given by:

〈ηk(0)ηk(t)〉 = 1
Ω

(
y2

1〈ε1(0)ε1(t)〉+ y2
2〈ε2(0)ε2(t)〉+ y1y2(〈ε1(0)ε2(t)〉+ 〈ε2(0)ε1(t)〉)

)
. (103)

Note in equation (100) that if d1 = d2 = d, then the magnitude of ηk(t) is zero for all t since the

system P1
κ−→P2, P1

d−→∅, P2
d−→∅ is equivalent to P

d−→∅ where one is only interested
in the total number of proteins.

To proceed in finding ηk(t) in equation (100), we first need to find the steady state
concentrations φ∗

1 and φ∗
2 from the deterministic rate equations. These are,

dφ1

dt
=

rk

Ω
− (κ+ d1)φ1, (104)

dφ2

dt
= κφ1 − d2φ2, (105)
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Figure 10. (A) Shows distributions of the standard SSA of the reaction scheme in
equation (79) for multistage protein production in three intermediate species M1, M2
and M3, against (1) the UCNA, (2) white noise (i.e., τ = 0) and (3) no extrinsic colored
noise (i.e., the solution given by equation (10)). Each plot shows the colored noise param-
eters used for the UCNA solution from equation (48), which are determined from the
full multi-stage protein production process in equation (79). Note the legend in (A)(ii)
applies only to distributions in (A)(i)–(ii). Parameter values for the standard SSA in
(A)(i) are ρu = 2, ρb = 50, Λ1 = 1000, Λ2 = 1000, Λ3 = 0.1, r1 = 1, su = sb = 1000,
d = 1 and Ω = 230. Parameter values for the SSA in (A)(ii) are ρu = 20, ρb = 80,
Λ1 = 1000, Λ2 = 1000, Λ3 = 0.2, r1 = 1, su = sb = 1000, d = 1 and Ω = 100. (B)
Shows distributions of the standard SSA, with protein decay following the multi-step
process of equation (92), against the cUCNA. The colored noise parameters used for
the cUCNA solution of equation (118) are shown on each plot, with these values being
determined from the full model using equation (99), (116), (117). The insets show a
comparison of the approximate correlator (see equation (115)) and the full double expo-
nential correlator (see equation (114)) for gene state G∗. Note the legend in (B)(ii) applies
only to distributions in (B)(i)–(ii), and the legend on the inset of (B)(ii) applies also
to the inset in (B)(i). Parameter values for the SSA in (B)(i) are ru = 50, rb = 250,
sb = 2.5 × 10−3, su = 10−3, Ω = 200, d1 = 1, k = 1 and d2 = 0.1. Parameter values
for the SSA in (B)(ii) are ru = 100, rb = 400, sb = 10−3, su = 10−4, Ω = 200, d1 = 1,
k = 1 and d2 = 5. SSA data for (A)(i) and (A)(ii) come from a single steady state tra-
jectories of length 108 s and 9 × 105 s respectively. Note that (A)(i) presents a very
long relaxation to the steady state due to the systems inertia in staying in one of the two
modes of the distribution. SSA data for (B)(i) and (B)(ii) come from a single steady state
trajectory of 9 × 106 s.

where again the 1/Ω in equation (104) follows since the concentration of a single gene in a
volume Ω is 1/Ω. Enforcing the steady state condition allows us to find φ∗

1 and φ∗
2,

φ∗
1 =

rk

Ω(κ+ d1)
, φ∗

2 =
κrk

d2(κ+ d1)
.
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Note that the linear dependence of φ∗
1 and φ∗

2 on rk means that the effective degradation rate
d0 from equation (99) is independent of the gene state. Assuming that both P1 and P2 are
numerous, we now proceed to the LNA [6, 58] of the system in equation (97), which will
allow us to find the correlators 〈ε1(0)ε1(t)〉, 〈ε2(0)ε2(t)〉, 〈ε1(0)ε2(t)〉 and 〈ε2(0)ε1(t)〉. Where
S is the stoichiometric matrix, φ = (φ1,φ2) and f (φ) is the macroscopic rate vector one
can computationally find the required matrices needed to perform the LNA: (i) the steady
state Jacobian matrix Ai j = d(S · f (φ)) j/dφi|φ=φ∗ , and (ii) the steady state diffusion matrix

(B · BT)i j = S · Diag( f (φ)) · ST|φ=φ∗ . The Jacobian matrix then allows us to find the time evo-
lution of both 〈ε1(t)〉 and 〈ε2(t)〉 since ∂t〈ε〉 = A · 〈ε〉, where 〈ε〉 = (〈ε1(t)〉, 〈ε2(t))〉. Solving
these coupled first order ODEs gives us:

〈ε1(t)〉 = 〈ε1(0)〉e−(d1+κ)t, (106)

〈ε2(t)〉 = −κ〈ε1(0)〉e−(d1+κ)t + (κ〈ε1(0)〉+ (d1 − d2 + κ)〈ε2(0)〉)e−d2t

d1 − d2 + κ
, (107)

where −d2 and −(d1 + κ) are eigenvalues of A. Clearly, in the limit t →∞ the fluctuations
about the steady state concentrationsφ∗

1 andφ∗
2, 〈ε1(t)〉 and 〈ε2(t)〉, tend to zero as required. The

final step of the LNA then requires us to find the covariance matrix C at steady state, which has
the steady state variances 〈ε2

1〉 and 〈ε2
2〉 as diagonal components and covariance 〈ε1ε2〉 = 〈ε2ε1〉

in the off-diagonal components. C is then given by the Lyapunov equation [58]:

A · C + C · AT + B · BT = 0, (108)

whose solution is given by:

C =

⎛
⎝

rk

(d1 + κ)Ω
0

0
κrk

d2(d1 + κ)Ω

⎞
⎠ . (109)

From van Kampen [6] p 259 we assert that for some fluctuation εi, 〈εi(0)ε j(t)〉 = 〈εi(0)〈ε j(t)〉〉,
and that at t = 0 we have φ = φ∗ so that 〈εi(0)ε j(0)〉 = 〈εiε j〉. For example, for 〈ε1(0)ε1(t)〉
we have, using 〈ε1(t)〉 from equation (106) and 〈ε2

1〉 from equation (109), 〈ε1(0)ε1(t)〉 =
〈ε1(0)〈ε1(t)〉〉 = 〈ε2

1〉e−(d1+κ)t. Explicitly, one can then calculate all the correlators, which are
given by:

〈ε1(0)ε1(t)〉 = rk

(d1 + κ)Ω
e−(d1+κ)t, (110)

〈ε2(0)ε2(t)〉 = κrk

d2(d1 + κ)Ω
e−d2t, (111)

〈ε2(0)ε1(t)〉 = 0, (112)

〈ε1(0)ε2(t)〉 = κrk(e−d2t − e−(d1+κ)t)
(d1 + κ)(d1 − d2 + κ)Ω

. (113)

Now that these correlators have been determined, we can substitute them into equation (103)
giving us the following for the correlator of ηk(t):

〈ηk(0)ηk(t)〉 = (d1 − d2)2 κ
(
κ (d1 + κ) e−(d1+κ)t + (d1 − d2) d2e−d2t

)
(d1 + κ) (d1 − d2 + κ) (d2 + κ)2rk

, (114)
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noting the only dependence on the gene state Gk comes from the pre-factor 1/rk. Comparing
this equation to the colored noise seen in equation (12) in section 3.1 we see however that
we have two exponentials in the correlator. This sum of exponentials in equation (114) can be
approximated by a single exponential through a small t expansion. This gives us:

〈ηk(0)ηk(t)〉 ≈ 〈ηk(0)ηk(t)〉a =
D(k)

a

τa
e−t/τa , (115)

where D(k)
a and τ a are the approximate noise strength and correlation time given by:

D(k)
a =

(d1 − d2)2κ

(d1 + κ)
(
d1κ+ d2 (d2 + κ) + κ2

)
rk

, (116)

τa =
d2 + κ

d1κ+ d2 (d2 + κ) + κ2
. (117)

Clearly, the small t expansion allows us to roughly interpret the noise ηk(t), present in gene
state Gk, as colored noise with strength Da/τ a and correlation time τ a. Note that even when
both exponentials equally contribute to the correlator in equation (114), this is generally a
very good approximation for few protein stages. Knowing D(k)

a and τ a for ηk(t) we can now
substitute them into equations (76) and (77) in section 4, then using equations (95) and (96)
we find

P(n) ≈ Ps(G)Ps(n|G) + Ps(G∗)Ps(n|G∗). (118)

Figure 10(B) shows two different cases of the cUCNA predicting distributions for multi-
stage degradation and slow gene switching: in (B)(i) for the case of d1 > d2 (true for around
80% of proteins in [56]); in (B)(ii) for the case of d2 > d1 (true for around 20% of proteins in
[56]). On the main plots red dots show the standard SSA prediction of the full reaction scheme
in equation (92), and the black lines show the cUCNA from equation (118), which in both
cases is almost indistinguishable from the white noise (cUCNA with τ = 0) and no external
colored noise predictions (discussed further in the following paragraph). The insets show the
correlators in gene state G∗, where the red dashed line represents 〈ηG∗ (0)ηG∗(t)〉a and the black
line shows 〈ηG∗ (0)ηG∗(t)〉. Note that the correlators for gene state G are not shown because
they show very similar to what is seen for state G∗. Even given the complex model reduction
from two protein species to one effective protein species the cUCNA performs very well in
predicting distributions from the standard SSA of the full system in equation (92). Note that as
one considers more protein stages with differing degradation rates it becomes more different
to fit the correlator to a single exponential, which presents a limitation of this method for more
protein stages.

However, we find that since our analysis is restricted to the large protein number regime, and
the noise strength Da is inversely proportional to the production rate rk which is typically large,
that Da is typically very small in both gene states. This means that the cUCNA probability
distribution is almost identical to probability distributions that assume white noise (cUCNA
with τ = 0) or even no colored noise. However, what the analysis in this section provides is
the quantitative reasons why one could necessarily neglect the contribution of colored noise
in model reduction from the full system in equation (92) to the simpler system in equation
(93).
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6. Conclusion

In this paper we have explored the addition of colored noise onto the reaction rates for a coop-
erative auto-regulatory circuit. Starting from a reduced chemical Fokker–Planck description,
we used the UCNA to derive approximate expressions for the probability distribution of protein
numbers in the limits of fast and slow promoter switching. The approximation is valid provided
the colored noise on the reaction rates is small and the correlation time is short. By means
of stochastic simulations, we verified the accuracy of the approximate distributions; we also
verified the predictions of the UCNA, namely that under fast promoter switching conditions
the addition of colored noise can induce bimodality whereas under slow promoter switching
conditions, noise can destroy bimodality.

We also have shown how complex models of gene expression can be mapped onto sim-
pler models with noisy rates. In particular we have shown that: (i) an auto-regulatory feedback
loop with multi-stage protein production, including different stages of mRNA processing, can
be mapped onto an auto-regulatory feedback loop with a single protein production reaction
step having colored noised added to its reaction rate. (ii) A feedback loop with multi-stage
protein degradation can be mapped onto a feedback loop with a single protein degradation
reaction with a fluctuating rate. We have also verified that in many instances, one cannot sim-
ply approximate colored noise with white noise, or else neglect it entirely, since this does
not match behavior seen from the full underlying models of multi-stage protein production or
degradation.

While here we focused on a self-regulatory example, the UCNA and its conditional vari-
ant (cUCNA) provide an easily extendable analysis to model more complex gene regulatory
networks with fluctuating parameters such as those with cross-regulation [59–61]. Our anal-
ysis is the first to our knowledge, to analytically find steady state probability distributions
where colored noise is added to a non-linear reaction (the protein-gene binding reaction) in a
gene regulatory context; a previous study applied the UCNA to study the effects of extrinsic
noise in genetic circuits composed of purely linear reactions [28]. Given that our calcula-
tions show that the protein distributions for auto-regulatory circuits with extrinsic noise on
reaction parameters can be dramatically different than models assuming constant reaction
rates, an interesting future research direction would be to develop UCNA based methods that
can directly infer the properties of colored noise on reaction rates from protein expression
data.
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Appendix A. Stochastic simulations of autoregulation with extrinsic noise

In this paper extrinsic noise is accounted for in the SSA through the introduction of a
new ghost species Y and some new ghost reactions. For example, consider the case where
we want to model a fluctuating degradation rate d = d0(1 + η(t)), where 〈η(t)〉 = 0 and

〈η(t)η(t′)〉 = (D/τ ) exp
(
−|t − t′|/τ

)
. We will then replace the degradation reaction, P

d−→∅,
by the following set of reactions:

∅

1/(DΩ)−−⇀↽−−
1/τ

Y, P + Y
d0DΩ/τ−−−−−→Y. (119)
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We now show why this equivalence exists. The propensity for the degradation reaction
in equation (119) is (nPnYd0DΩ/τ )/Ω, meaning that the effective degradation rate is d =
(nYd0DΩ/τ )/Ω. Assuming there are large numbers of Y , we apply the van Kampen ansatz
that fluctuations in Y occur around its deterministic steady state mean [6]:

nY

Ω
=

τ

DΩ
+ Ω−1/2ε(t). (120)

Then, employing the system size expansion, and enforcing the LNA, we obtain a linear FPE
for the probability of having a fluctuation of size ε(t) at a time t, denoted Π(ε, t) [6, 58]:

∂Π(ε, t)
∂t

=
1
τ

∂

∂ε
(εΠ(ε, t)) +

1
2

2
DΩ

∂2Π(ε, t)
∂ε2

. (121)

This FPE then admits an equivalent Langevin equation given by:

dε(t)
dt

= − 1
τ
ε(t) +

√
2

DΩ
β(t), (122)

where β(t) is Gaussian white noise with zero mean and correlator 〈β(t)β(t′)〉 = δ(t − t′).
Hence, from equation (120) it follows that d goes as:

d = d0D
Ω

τ

nY

Ω
= d0(1 + η(t)), (123)

dη(t)
dt

= − 1
τ
η(t) +

√
2D
τ

β(t), (124)

where η(t) = Ω1/2Dε(t)/τ . Equations (123) and (124) are consistent with the definition of col-
ored noise described at the beginning of this section. This modified SSA requires that where τ
and D are both individually large, that τ � D such that slow switching is not enforced between
differing numbers of the ghost species.

Appendix B. Detailed explanation of condition 2

In order to explain the origin of condition 2—a condition on the length scale of colored noise
fluctuation compared to the rate of variation of the drift term in equation (47)—we will first
consider a more intuitive example. Consider a Brownian particle subject to a force F(x), whose
state is specified by both its position x, as well as its velocity v. The set of SDEs governing the
state of this particle is then [6]:

dx
dt

= v, (125)

dv
dt

=
F(x)

m
− γv +

kbTγ
m

Γ(t), (126)

where m is the mass of the particle, γ is the damping coefficient of the frictional force surround-
ing the particle (frictional force is −γmv), kbT is the thermal energy of the particle, and Γ(t)
is Gaussian white noise with zero mean and correlator 〈Γ(t)Γ(t′)〉 = δ(t − t′). The equivalent
multivariate FPE for this set of SDEs is [34]:

∂P(x, v; t)
∂t

= γ

[
∂(vP)
∂v

+
kbT
m

∂2P
∂v2

]
− v

∂P
∂x

− F(x)
m

∂P
∂v

. (127)
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Now following van Kampen p 216–218 [6], one can utilise singular perturbation theory assum-
ing that the damping coefficient γ is small (although the same procedure could be done for γ
large) in order to reduce the above FPE in two variables to an FPE in the position variable x
alone. The result after having done this procedure is:

∂P(x; t)
∂t

= − ∂

∂x

(
F(x)
mγ

P

)
+

kbT
mγ

∂2P
∂x2

. (128)

Aside from the requirement that γ must be small, there is another condition required of
equation (128) such that it reasonably approximates equation (127). This condition arises phys-
ically since we realise that if we are to approximate equation (127) by equation (128), then
the drift term F(x)/mγ must be approximately constant over the distance that the velocity is
damped. One finds that the associated ‘length scale’ L over which the velocity is damped is sim-
ply the pre-factor of diffusion term in equation (128), i.e., L = kbT

mγ
[62]. Enforcing the require-

ment that F(x) is slowly varying over this length scale we find the inequality L|F′(x)| 	 |F(x)|,
explicitly:

mγ

kbT
�

∣∣∣∣F′(x)
F(x)

∣∣∣∣ , (129)

which must be satisfied for our one variable FPE to be a good approximation.
We now return to our colored noise problem and recall the set of SDEs that define our

system:

dn
dt

= h(n) + F(n)η + g2(n)Γ(t), (130)

dη
dt

= − 1
τ
η +

1
τ
θ(t), (131)

where all functions of n and t are defined in section 3.2. This set of SDEs has an equivalent
bi-variate (Stratonovich) FPE given by:

∂P(n, η; t)
∂t

= − ∂

∂n

((
h(n) + F(n)η − 1

2
g2(n)g′

2(n)

)
P

)
+

1
τ

∂

∂η
(ηP)

+
1
2
∂2

∂n2

(
g2(n)2P

)
+

1
τ

∂2

∂η2
P. (132)

We now recall equation (47), i.e., our UCNA approximated one variable FPE, where η was
adiabatically eliminated:

∂P(n; t)
∂t

= − ∂

∂n

[(
h̃(n) + g̃(n)g̃′(n)

)
P(n, t)

]
+

∂2

∂n2

[
g̃(n)2P(n, t)

]
. (133)

Analogously to the case of the Brownian particle, this one variable FPE can only be approxi-
mately correct where the variation of the drift term with respect to the length scale of colored
noise fluctuations is small. From equation (43), we identify our length scale as the pre-factor
of the noise term whose origin is the adiabatic elimination of η, i.e.,

L =
F(n)

C(n, τ )
. (134)
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Hence, C(n, τ ) must satisfy the following length scale condition

C(n, τ ) � F(n)

∣∣∣∣∣∣
∂n

(
h̃(n) + g̃(n)g̃′(n)

)
h̃(n) + g̃(n)g̃′(n)

∣∣∣∣∣∣ (135)

if equation (133) is to be a good approximation of equation (132), as seen in equation (66)
from the main text. Note that one can also make the argument that the diffusion term g̃(n)2

should also slowly vary with respect to L. However, we generally find that this is satisfied if
equation (135) is satisfied, and hence we do not include this as an additional condition on the
validity of the UCNA.
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