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The Virasoro vertex algebra and factorization algebras on

Riemann surfaces

Brian Williams
Northwestern University

February 17, 2017

1 Introduction

In this paper we study the sheaf of holomorphic vector fields in one complex dimension and local exten-
sions thereof. Using the formalism of factorization algebras developed in the book [CG16a] we provide a
construction of the Virasoro factorization algebra defined on any Riemann surface. Moreover, we compute
and recognize the factorization homology of the two dimensional factorization algebra as encoding the
conformal blocks of the Virasoro vertex algebra.

The Virasoro Lie algebra Vir arises as a central extension of the Lie algebra of vector fields on a circle
Vect(S1). In fact, it is the unique central extension as H2(Vect(S1)) is one-dimensional with generator given
by the Gelfand-Fuks cocycle [Fuc86] defined by

ωGF( f (t)∂t, g(t)∂t) 7→
1

12

∫

S1
f ′′′(t)g(t)dt.

The Virasoro Lie algebra, along with its related vertex algebra and category of representations, are interest-
ing and natural in their own right from a mathematical point of view [Fuc86, FF91, KW86, IK11].

The compelling motivation for studying of the Virasoro algebra derived from understanding the sym-
metries of two-dimensional conformal field theories. Classically, conformal symmetry consists of two
copies of the complexification of the Lie algebra of vector fields on the circle: a holomorphic and an anti-
holomorphic version. We will choose to focus on holomorphic, or chiral, conformal field theories and hence
only consider holomorphic vector fields on two-dimensional complex manifolds. The Weyl anomaly arises
when one tries to quantize the symmetry of holomorphic vector fields on such a conformal field theory. It
results in the one-dimensional central extension of holomorphic vector fields defined by the Gelfand-Fuks
cocycle. Moreover, the anomaly is characterized by how the central parameter acts on the quantum theory;
this is called the central charge of the theory.

We work with the Dolbeault resolution of holomorphic vector fields on C, which we denote by LC

throughout. The fact that we can restrict vector fields to open sets gives this the structure of a sheaf of Lie
algebras. Moreover, it has the structure of a local Lie algebra on C which will be central in our construction.
We define an explicit cocycle ω that defines a (−1)-shifted central extension of this local Lie algebra. There
is a factorization algebra associated to this local Lie algebra, denoted Vir. We show that the factorization
product encodes the product on the universal enveloping algebra associated to the ordinary Virasoro Lie
algebra, U(Vir).

We go further and use a bcharacterization of structured holomorphic factorization algebras on C from
the book [CG16a] to show that this factorization algebra has the structure of a vertex algebra and it is
equivalent to that of the Virasoro vertex algebra. In [CG16a], a functor Vert from the category of structured
holomorphic factorization algebras on C to the category of vertex algebras is defined. The main result from
the first part of this paper can be stated as follows.

Theorem 1.1. For any complex number c ∈ C there is a factorization algebra Virc on C (given by the enveloping fac-
torization algebra for the extension of LC by the cocycle cω) which determines a vertex algebra Vert(Virc). Moreover,
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there is an isomorphism of vertex algebras

Virc
∼=
// Vert(Virc)

where Virc denotes the Virasoro vertex algebra of charge c.

After spelling out the local structure, we study global sections, or the factorization homology, of Virc.
Some care must be taken when defining the cocycle determining the extension on the Dolbeault resolution
of vector fields on a general Riemann surface since the original cocycle for the local Lie algebra on C is coor-
dinate dependent. We show that a slightly modified version of the cocycle gives a coordinate independent
description and hence a universal version of the cocycle. That is, we show that the Virasoro factorization
algebra defines a factorization algebra on the site of Riemann surfaces. We calculate the cohomology of
global sections of the Virasoro factorization algebra and write down correlation functions.

This paper can be viewed in conjunction with a new direction of work that combines methods of renor-
malization, homological perturbation theory, and factorization algebras developed in Costello [Cos11] and
Costello-Gwilliam [CG16a, CG16b]. From the data of a classical field theory, defined in terms of an ac-
tion functional, one applies of homotopical renormalization to construct a quantization. Locality of the
theory and the quantization on the manifold in which the theory lives combine to give the structure of a
factorization algebra on the algebraic observables of the theory.

The last section of this paper exhibits how the usual physical idea of the Virasoro algebra encoding the
symmetries of a conformal field theory fits in to the model for QFT developed by Costello-Gwilliam. The
usual Virasoro symmetry in field theory is naturally encoded by map of factorization algebras from the
Virasoro factorization algebra (at a certain central charge) to the factorization algebra of observables. We
will focus on a particular example of a chiral conformal field theory, called the free βγ system, though the
methods we use work in a much larger context.

1.1 Notation and conventions

• If X is a complex manifold we have a decomposition of the tangent bundle T1,0X ⊕ T0,1X. Unless
otherwise noted we will write TX = T1,0X for the (1, 0) part of the tangent bundle. With respect to
this decomposition the de Rham differential

ddR : O(X)→ Ω1(X) = Ω1,0(X)⊕Ω0,1(X) := Γ
(
(T1,0X)∨

)
⊕ Γ

(
(T0,1X)∨

)

splits as ∂ + ∂.

• Let V be a graded vector space. We denote by Tens(V) the full tensor algebra of V, ⊗n≥0V. This is
again a graded vector space in the natural way. Define the symmetric algebra as

Sym(V) =
⊕

n≥0

Symn(V)

where Symn(V) = (V ⊗ · · · ⊗V)Σn
. We will also need the completed symmetric algebra

Ŝym(V) = ∏
n≥0

Symn(V).

• All graded vector spaces are cohomologically graded. For k ∈ Z we denote by V[k] the graded vector
space with graded components:

(V[k])i = Vi+k.

If W is an ordinary (ungraded) vector space, we will understand it as a graded vector space concen-
trated in degree zero. For instance, W[k] is concentrated in degree −k.

• Let g be a dg Lie algebra. That is, a Z-graded vector space together with a differential dg : g• → g
•+1

of degree +1 and a bracket [−,−] that is graded antisymmetric, satisfies the graded Jacobi identity,
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and for which dg is a graded derivation. We define Chevalley-Eilenberg chains for computing Lie
algebra homology as

C∗(g) := Sym (g[1]) =
⊕

n≥0

Symn(g[1])

with differential given by d = dg+dCE where dCE is the usual CE-differential determined by dCE(a∧

b) = [a, b] on Sym2. Similarly, Chevalley-Eilenberg cochains for computing Lie algebra cohomology
are defined by

C∗(g) := Ŝym
(
g
∨[−1]

)

with differential given by d = d∨g + d∨CE.

• We will need to consider a topology on the dg vector spaces we work with. Unless otherwise noted
our complexes will take values in the category of dg nuclear vector spaces. This is an especially
convenient category of topological vector spaces which are locally convex and Hausdorff. For more
on their properties see [Cos11] Given two dg nuclear vector spaces we denote by V⊗W the completed
tensor product. This tensor product makes the category of dg nuclear vector spaces a symmetric
monoidal category which we denote by dgNuc⊗.

1.2 Acknowledgements

I’d like to thank Owen Gwilliam and Ryan Grady for their shared interest in this project and generosity
in providing detailed comments and discussion pertaining to this work. I have also benifited from useful
comments from and discussions with Chris Elliott, Ben Knudsen, and Philsang Yoo. Finally, I’d like to
thank Kevin Costello for sparking my interest in this project.

2 Virasoro as a local Lie algebra on C

In this section we introduce a local version of the Virasoro Lie algebra on the complex plane. It appears as
an extension of the Lie algebra of holomorphic vector fields on C given by an explicit cocycle.

2.1 Dolbeault resolution of holomorphic vector fields

Let X be a complex manifold. We study the space of holomorphic sections of the holomorphic (1, 0) tangent
bundle Ohol(TX). We can use the decomposition of the tangent bundle above gives us a resolution for this

space. Indeed, the ∂ operator extends to define a complex

Ω0,0(X, TX)
∂
// Ω0,1(X, TX)

∂
// Ω0,2(X, TX)

∂
// · · · .

We will be concerned with the case that the complex manifold is a Riemann surface Σ. Indeed the

Dolbeaut complex above defines the dg Lie algebra LΣ := Ω0,∗(Σ, TΣ). The differential is ∂ and the Lie
bracket is given by extending the ordinary Lie bracket on Ω0,0(Σ, TΣ) to a graded Lie bracket.

We will consider LΣ as a sheaf of cochain complexes that assigns to an open U ⊂ Σ the complex

(Ω0,∗(U, TU), ∂).

Moreover, LΣ is a sheaf of dg Lie algebras. In fact it has even more structure, that of a local dg Lie algebra.
The following definition can be found in [CG16a].

Definition 2.1. A local dg Lie algebra on a manifold M is the following data:

(1) A graded vector bundle L on M, whose sheaf of smooth sections is denoted L.

(2) A differential operator d : L→ L of degree one and square 0.

3



(3) Antisymmetric multi-differential operators

d : L→ L , [−,−] : L⊗2 → L

of degree one and zero respectively, that give L the structure of a sheaf of L∞-algebras.

Since ∂ and the Lie bracket of vector fields are differential and bi-differential operators, respectively we
see that LΣ is a local L∞-algebra.

We will also be interested in the compactly supported version of LΣ; it assigns to an open the dg vector
space

(Ω0,∗
c (U, TU), ∂)

Analogously, this is a precosheaf of dg Lie algebras which we denote by LΣ
c .

2.2 Lie algebra extensions and the cocycle

We are interested in a one-dimensional central extension of LΣ. As the Lie algebra in question is local, we
ask for our extensions to be local as well. Before defining what we mean by this, we review extensions of
ordinary Lie and dg Lie algebras.

In the remainder of this section, as well Sections 3 and 4 we will be concerned with the case that the
Riemann surface is the complex line Σ = C.

2.2.1 Extensions

A central extension ĝ of an ordinary Lie algebra g is a Lie algebra that fits into an exact sequence

0→ C → ĝ→ g→ 0

such that [λ, x] = 0 for all λ ∈ C and x ∈ g. Isomorphism classes of central extensions of g are in bijective
correspondence with H2(g).

For a dg Lie algebra g and an integer k we can define a k-shifted central extension of g. It fits into and
exact sequence

0→ C[k]→ ĝ→ g→ 0 (1)

and satisfies [λ, x] = 0 as above.

Remark. The group H2+k(g) does not parametrize such extensions. It parametrizes a larger class of exten-
sions, namely shifted L∞-extensions of g. That is, exact sequences as in (1) except ĝ is allowed to be an
L∞-algebra, and the maps are of L∞-algebras.

Example 2.1. Consider the Lie algebra of vector fields on S1, Vect(S1). This is an ordinary Lie algebra that,
as usual, can be thought of as a dg Lie algebra concetrated in degree zero. The Gelfand-Fuks extension
mentioned in the introduction is a 2-cocycle, hence determines an element in H2

Lie(Vect(S1)). In fact, this
cohomology is one dimensional. See [Fuc86] for a proof of this.

Now, let L be a local dg Lie algebra on a manifold M. A local k-shifted central extension of L is a dg Lie
algebra structure on the precosheaf

L̂c = Lc ⊕ C[k]

such that for all opens U ⊂ M:

• (Central) For any λ ∈ C[k] and x ∈ L̂c(U) we have [x, λ] = 0 and the sequence

0→ C[k] → L̂c(U)→ Lc(U)→ 0

is exact.
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• (Local) The differential d
L̂

: Lc(U)→ C[k] and Lie bracket [−,−] : Lc(U)⊗Lc(U)→ C[k] both factor
through the k-shifted integration map

∫

U
: Densc(U)[−k]→ C[k].

Here, Densc denotes the cosheaf of compactly supported densities.

Remark. As in the ordinary case, there is a cohomology that parametrizes central extensions of this local
nature. Let L be a local Lie algebra on M. In [Cos11] local functionals are defined as

C∗loc,red(L) := DensM ⊗DM
C∗red (Jet(L)) .

Here, DM is the space of differential operators on M and Jet(L) is the infinite Jet-bundle of the vector
bundle L. The jet-bundle inherits a natural DM-module structure, and this induces one on cochains. There
is another interpretation of local cochains. They are precisely the graded multilinear functionals on L that
factor through the integration map. More precisely, integration along M induces a natural inclusion

C∗loc,red(L) →֒ C∗red(Lc(M))

that sends a local functional S to the functional ϕ 7→
∫

M S(ϕ).
Just as in the case of (non-local) dg Lie algebras, the degree 2 + k cocycles of C∗loc,red(L) parametrize

a larger class of extensions, namely local L∞-algebra extensions of L. For our situation, when L is the
Dolbeault resolution of holomorphic vector fields on U ⊂ C (or on a closed Riemann surface Σ) the non-
trivial degree one cocycles are all cohomologous to one of the form

Lc(U)⊗2 → C

and hence all (-1)-shifted extensions will be equivalent to a local dg Lie algebra.

2.2.2 A cocycle for LC

We now define the cocycle used to construct the central extension of LC we are interested in. Let U ⊂ C
and fix a coordinate. Consider the bilinear map

ω : LC
c (U)⊗LC

c (U)→ C

given by

(α⊗ ∂z, β⊗ ∂z) 7→
1

2π

1

12

∫

U

(
∂3

zα0β1 + ∂3
zα1β0

)
d2z

where α = α0 + α1dz and β = β0 + β1dz. One checks by direct calculation that this is a cocycle and is our
analog of the Gelfand-Fuchs cocycle.

This cocycle defines for us a local (−1)-shifted central extension L̂C of LC via the local extension con-
struction above. As a cosheaf of vector spaces it is

LC
c ⊕C · c[−1].

On an open U, the Lie bracket is defined by the rules

[α⊗ ∂z, β⊗ ∂z]L̂C
c

:= [α⊗ ∂z, β⊗ ∂z] +
1

2π

1

12

∫

U

(
∂3

zα0β1 + (∂3
zα1β0

)
d2z · c

and [α⊗ ∂z, c]
L̂

C
c
= 0.

The locality and cocycle properties imply that ω determines an element in H1
loc(L

C).
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2.3 Statements about cohomology

The following facts about the ∂-cohomology of subsets of C will be used throughout. Let U ⊂ C be open.
The following lemma is due to Serre [Ser53].

Lemma 2.1. The compactly supported Dolbeault cohomology of U is concentrated in degree 1 and there is a contin-
uous isomorphism

H1(Ω0,∗
c (U), ∂) ∼=

(
Ω1

hol(U)
)∨

.

Here, (−)∨ denotes the continuous linear dual of nuclear Fréchet spaces. Explicitly, we assign to a
(0, 1)-form α on U, the continuous linear functional

〈α,−〉 : Ω1
hol(U)→ C , β 7→

∫

U
αβ.

Next, we need the following fact about dg Lie algebras.

Lemma 2.2. Suppose L is a dg Lie algebra such that H∗(L) is concentrated in a single degree. Then L is formal (as a
dg Lie algebra).

Proof. Suppose the cohomology of L is concentrated in degree m. Define the subcomplex L′ →֒ L as follows:
for k < m set (L′)k := Lk, for k = 0 set (L′)0 = ker(dL : L0 → L1), for k > m set (L′)k := 0. There is a natural
zig-zag of dgla’s

L ←֓ L′ → H0L.

Both arrows are clearly weak equivalences.

Serre’s result implies that LC
c (U) = Ω

0,∗
c (U, TU) is formal for all opens U ⊂ C. In fact, there is a

quasi-isomorphism of dg Lie algebras

Ω0,∗
c (U, TU) ≃ H(Ω0,∗

c (U, TU), ∂) ∼=
(

Ω1
hol(U, TU)

)∨
.

This implies the following useful fact about the Lie algebra cohomology.

Proposition 2.3. Let U ⊂ C be open. Then,

HLie
∗ (LC

c (U)) := H∗
(

Sym(LC
c (U)[1]), ∂+ dCE

)
∼= Sym

(
Ω1

hol(U, TU)∨
)

concentrated in degree 0.

Here, we extend the differential ∂ on Lc(U) to the symmetric algebra in the obvious way.

Proof. This result follows from formality. Indeed,

HLie
∗ (LC

c (U)) ∼= HLie
∗ (H∗

∂
(LC

c (U)) = HLie
∗ (Ω1

hol(U, TU)∨).

Now, Ω1
hol(U, TU)∨ is an abelian dg Lie algebra concentrated in a single degree. Thus

H∗Lie(Ω
1
hol(U, TU)∨) = Sym

(
Ω1

hol(U, TU)∨
)

as desired.

This result also follows from considering the filtration spectral associated to symmetric tensor power

degree. The E1-page is Sym
(

H∗
∂
(LC

c (U))
)

and the spectral sequence degenerates at the E2-page as the ∂-

cohomology is concentrated in a single degree. In fact, the degeneration of this spectral sequence associated
to cochains on a dg Lie algebra g is closely related to the formality of g, for example see [Man13].

Remark. In the second part of the paper we consider closed Riemann surfaces. It is still true that on a closed
Riemann surface, the spectral sequence associated to the dg Lie algebra Ω0,∗(Σ, TΣ) degenerates. In fact,
this dg Lie algebra is also formal.
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2.4 Factorization algebras

Central to this work is the notion of a factorization algebra. We recall the relavent theory as in [CG16a].
Fix a topological space M. For the level of generality of most of this section we work in an arbitrary

symmetric monoidal category C⊗ closed under small colimits. For the purposes of this work we are mainly
concerned with C = dgNuc, the dg category of cochain complexes of nuclear vector spaces over C with
symmetric monoidal structure given by the completed tensor product over C.

2.4.1 Prefactorization

A prefactorization algebra F on M with values in C⊗ is an assignment of an object F(U) of C for each open
U ⊂ M together with the following data:

• For U ⊂ V, a morphism F(U)→ F(V).

• For any finite collection {Ui} of pairwise disjoint opens in an open V ⊂ M a morphism

⊗iF(Ui)→ F(V).

• Coherences between the above two sets of data.

For a better definition we need to define the following symmetric monoidal category Fact(M)⊔. Its
objects are topological spaces U together with a map U → M such that on each connected component of U
this map is an open embedding. A morphism from U → M to V → M is a commutative diagram

U
i

//

  
❆❆

❆❆
❆ V

~~⑥⑥
⑥⑥
⑥

M

with i an open embedding. Composition is done in the obvious way. The symmetric monoidal structure is
given by disjoint union.

A more precise definition of a prefactorization algebra is symmetric monoidal functor

F : Fact(M)⊔ → C⊗.

Example 2.2. The coherence of the data above can be read of immediately from this definition and encodes
the transitivity of opens. For instance, suppose U1, U2 ⊂ V ⊂ W are opens with Ui disjoint. Then F applied
to this composition says that

F(U1)⊗ F(U2) //

((◗
◗◗◗

◗◗◗
◗

F(V)

��

F(W)

commutes.

The structures we consider in the first part of this paper are completely encoded by a prefactorization
structure. In the last section, however; when we will be concerned with global sections on a general Rie-
mann surface, it is critical that our object satisfies a form of descent.

2.4.2 Factorization: gluing

A factorization algebra is a prefactorization algebra satisfying a descent axiom. Descent for ordinary sheaves
(or cosheaves) says that one can recover the value of the sheaf on large open sets by breaking it up into
smaller opens. That is, if U = {Ui} is a cover of U ⊂ M then a presheaf F of vector spaces is a sheaf iff

F(U)→
⊕

i F(Ui)
//
//⊕i,jF(Ui ∩Uj)

7



is an equalizer diagram for all opens U and covers U. It is convenient to introduce the Čech complex
associated to U. The pth space is

Čp(U,F) :=
⊕

i0,...,ip

F(Ui0 ∩ · · · ∩Uip).

The differential Čp → Čp+1 is induced from the natural inclusion maps Ui0 ∩ · · · ∩Uip →֒ Ui0 ∩ · · · ∩ Ûi j
∩

· · · ∩Uip. The sheaf condition is equivalent to saying that the natural map

F(U)→ H0(Č(U,F))

is an isomorphism. There is a similar construction for cosheaves, but the arrow goes in the opposite direc-
tion.

We are interested in descent for a different topology, that is, for only a special class of open covers. Call
an open cover U = {Ui} of U ⊂ M a Weiss cover if for any finite collection of points {x1, . . . , xk} in U, there
exists an open set Ui such that {x1, . . . , xk} ⊂ Ui. This is equivalent to providing a topology on the Ran
space.

A Weiss cover defines a Grothendieck topology on Op(M), the poset of opens in M. A factorization
algebra on M is a prefactorization algebra on M that is, in addition, a homotopy cosheaf for this Weiss
topology.

When C⊗ = dgVect we can be explicit about this homotopy gluing condition using a variant of the Čech
complex above. Let F be a cosheaf of dg vector spaces. For U = {Ui}i∈I let Čp(U,F) be the complex

⊕

i0,...,ip

F(Ui1 ∩ · · · ∩Uik
)[p− 1]

with differential inherite from F. Then Č(U,F) is a bigraded object. The differential is the total differential

obtained from combining the ordinary Čech differentials above plus the internal differential of F. The
cosheaf condition is that the natural map

Č(U,F)→ F(U)

is an equivalence for all Weiss covers U of U.

Remark. One might refer to this as a homotopy factorization algebra, reserving a strict factorization algebra
for one in which

Ȟ0(U,F)→ F(U)

is an equivalence. The Ȟ0 means we have only taken cohomology with respect to the Čech differentials. It
has a natural dg structure inherited from F.

2.5 (Twisted) Envelopes

One of the most useful ways of constructing factorization algebras is the “factorization envelope” of a local
Lie algebra. This is the analog of the unverisal enveloping algebra of a Lie algebra.

Let L be any local Lie algebra on a manifold M. Denote by Lc its associated cosheaf of compactly
supported sections. Define the prefactorization algebra UfactL as follows:

• For an open U ⊂ M we assign the complex C∗(Lc(U)) with it’s usual differential d = dL + dCE.

• Suppose ⊔iUi →֒ V is an inclusion of disjoint opens inside a bigger open. The structure maps of the
prefactorization algebra come from applying C∗(−) to the structure maps of the cosheaf

⊕iLc(Ui)→ Lc(V).

In fact, we will use the following fact to compute global sections, i.e. factorization homology.

8



Theorem 2.4 ([CG16a]). The prefactorization algebra UfactL satisfies descent, that is it is a factorization algebra.

Example 2.3. If g is an ordinary Lie algebra we can consider the local Lie algebra Ω∗R ⊗ g on R. The factor-

ization algebra Ufact(ΩR ⊗ g) is locally constant on R. Now, map that sends a factorization algebra on R to
its value on an interval is known to induce an equivalence of categories

{A∞−algebras} ≃ {E1−algebras} ≃ {locally constant factorization algebras on R}.

Under this equivalence the factorization algebra Ufact
g corresponds to the associative algebra Ug.

Now, suppose we have an element ω ∈ H1
loc(L) corresponding to a (−1)-shifted central extension L̂ of

a local Lie algebra L on a manifold M. We define the twisted factorization envelope Ufact
ω L as the factorization

algebra on M that sends an open U ⊂ M to the complex

(Sym (L(U)[1]⊕ C · C) , dL + dCE + ω)

where ω is made into an operator on Sym as follows. On Sym≤1 it is zero and on Sym2 it is

(α, β) 7→ C ·ω(α, β).

It is extended to the full symmetric algebra by demanding that it is a graded derivation. Note that Ufact
ω LC =

UfactL̂C
c so that the twisted envelope is just the envelope of the extended local Lie algebra.

2.5.1 The Virasoro factorization algebra

We will now specialize to factorization algebras valued in the symmetric monoidal category of dg nuclear
vector spaces dgNuc or slight variants thereof.

In the remainder of the paper we are interested in both the untwisted and twisted factorization en-
velopes of the local Lie algebra of holomorphic vector fields.

First, define the Virasoro factorization algebra at central charge zero by

Vir0 := UfactLC.

This is a factorization algebra valued in the category dgNuc (since the Dolbeault complexes belong to this
category).

Let ω ∈ H1
loc(L

C) denote the cocycle from Section 2.2.2. We define the Virasoro factorization algebra by

Vir := Ufact
ω LC.

The factorization algebra Vir is a factorization algebra in the category of C[c]-modules in dg nuclear vector
spaces. In particular, we can specialize a value of c to obtain a factorization algebra in dgNuc. We will
denote such a specialization by Virc and call it the Virasoro factorization algebra of central charge c.

3 Annuli: recovering the Virasoro

In this section we show how the Virasoro Lie algebra is encoded in the factorization algebras constructed
above.

First we recall the definition the Virasoro Lie algebra. Consider the ring of Laurent power series in
one variable C((t)). As a vector space the Lie algebra of derivations W×1 := Der (C((t))) is isomorphic to

C((t))∂t. The ring C((t)) is equal to functions on the holomorphic formal punctured disk D̂× and W×1 is the

Lie algebra of formal vector fields on the punctured disk. Let Vir be the central extension of W×1 determined
by the Gelfand-Fuks cocycle ωGF defined in the introduction. It fits into the exact sequence of Lie algebras

0→ C · C→ Vir→W×1 → 0.

9



Thus, as a vector space we have Vir = C((t))∂t ⊕C · C. Explicitly, the bracket in this Lie algebra is

[ f (t)∂t, g(t)∂t] = ( f (t)g′(t)− f ′(t)g(t))∂t +
1

12

∮
f ′′′(t)g(t)dt · C.

It is topologically generated by c and Ln = tn+1∂t and in terms of these generators, the commutator is

[Ln, Lm] = (n−m)Ln+m +
m3 −m

12
δn,−m · C.

Now, consider the universal enveloping algebra of the Virasoro Lie algebra U(Vir). Being an associative
algebra it determines a locally constant factoriztation algebra on R>0. Denote this factorization algebra by
AVir. Explicitly, AVir sends an interval I to U(Vir) (considered as a dg vector space concentrated in degree
zero) and the structure maps are induced by the usual associative multiplication on U(Vir).

Let ρ : C× → R>0 be the map z 7→ zz. We consider the push-forward factorization algebra ρ∗Vir. This
is a factorization algebra on R>0. The main result of this section can be stated as follows.

Proposition 3.1. There is a map of factorization algebras

Φ : AVir → H0(ρ∗Vir) (2)

that is a dense inclusion of topological vector spaces on evey open interval I ⊂ R>0.

Note that on an open interval I ⊂ R>0

(ρ∗Fω)(I) = Vir(ρ−1(I)).

So, we need to understand what Vir does to annuli.

Remark. This proposition says that every cohomology class in Vir applied to an annulus is arbitrarily close
to some element of the universal enveloping algebra of the Virasoro Lie algebra. Moreover, the structure
maps of the factorization algebra are the continuous extensions of the multiplication for UVir.

3.1 The case of zero central charge

Recall that we have the following identification for any open U ⊂ C:

H∗(Vir0(U)) ∼= Sym
(

H1(Ω0,∗
c (U, TU))

)
∼= Sym

(
Ω1

hol(U, TU)∨
)

concentrated in cohomological degree 0.
First, we describe the untwisted version of the map (2), denote it Φun : C((z))∂z → ρ∗(Vir0). Let

Ln = zn+1∂ ∈ C((z))∂z be the usual basis vectors for n ∈ Z. Pick an open interval I ⊂ R>0 and let
A = ρ−1(I). We will utilize a function f : C× → R for A that satisfies the following:

• f is only a function of r2 = zz.

•
∫

A f dzdz = 1.

• f (r2) ≥ 0 and f is supported on A.

We will refer to f as a bump function for A. Finally, we define

Φun(I) : Ln 7→
⌊

f (zz)zn+2dz∂z

⌋

where ⌊−⌋ denotes the cohomology class in compactly supported Dolbeault forms. Note that this map
is a dense inclusion of topological vector spaces by Serre’s resulted stated above. Therefore, we might
unambiguously confuse Ln with its image in H∗(Vir0(A)). Also, it will be convenient to use the notation
Ln(A) = f (zz)zn+2dz∂z for the lift of Ln to the factorization algebra. We make no reference to the bump
function chosen since this choice will not affect the cohomology class.
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Consider three nested disjoint annuli A1, A2, A3 where Ai has inner radius ri and outer radius Ri so that
R1 < r2 and R2 < r3. Suppose all three are contained in the big annuli A, i.e. r < r1 and R3 < R.

Let’s explain some notation for the factorization product of such nested annuli. The relavent factoriza-
tion maps are

• : Vir0(A2)⊗ Vir0(A1)→ Vir0(A)

• : Vir0(A3)⊗ Vir0(A2)→ Vir0(A).

Moving outward, radially, corresponds to multiplying from the right to left in this notation. This is known
as radial ordering. Using this notation, upon taking cohomology we want to show

Lm • Ln − Ln • Lm = (m− n)Ln+m.

Remark. This is a bit of abuse of notation, as we are using the same symbol Lm even though the two live in
different spaces. This is a superficial confusion since Φun is an embedding, but what the above expression
actually means is

Φun(ρ(A2))(Lm) •Φun(ρ(A1))(Ln)−Φun(ρ(A3))(Ln) •Φun(ρ(A2))(Lm) = (m− n)Φun(ρ(A))(Ln+m).

Let fi : C× → R be a bump function for Ai, i = 1, 2, 3. We use these to obtain lifts of Ln’s to the
factorization algebra. Explicitly, Lm(A1) ∈ Vir0(A1), Lm(A3) ∈ Vir0(A3) and Ln(A2) ∈ Vir0(A2).

Now, in cohomology

⌊Lm(A1)Ln(A2)− Ln(A2)Lm(A3)⌋ = Lm • Ln − Ln • Lm

and
(m− n)Lm+n = ⌊[Lm, Ln](A)⌋ =

⌊
f2(r

2)(m− n)zn+m+2dz⊗ ∂z

⌋
.

Consider the function

F(z, z) = zm+1
∫ zz

0
f1(s)− f3(s) ds.

We compute the ∂ operator acting on F(z, z) as

∂(F(z, z)) = zm+1 ∂

∂z

(∫ zz

0
f1(s)− f3(s) ds

)
dz

= zm+1 ∂(zz)

∂z

∂

∂(zz)

(∫ zz

0
f1(s)− f3(s) ds

)
dz

= zm+2 ( f1(zz)− f3(zz)) dz.

Similarly, we have the element F(z, z)∂z ∈ Ω0,∗(A, TA) and the formula above implies

∂(F(z, z)∂z) = Lm(A1)− Lm(A3).

Let d denote the differential in C∗(LC(A)). The above implies

d(F(z, z)∂z · Ln(A2)) = (Lm(A1)− Lm(A3))Ln(A2) + ⌊F(z, z)∂z, Ln(A2)⌋Vir0(A2)
.

We compute

⌊F(z, z)∂z, Ln(A2)⌋Vir0(A2)
= f2(r

2)dz
⌊

zm+1∂z, zn+2∂z

⌋
+ zm+n+3 ∂ f2(r

2)

∂z
dz∂z

= (m− n− 1)Lm+n(A2) + zm+n+3 ∂ f2(r
2)

∂z
dz∂z.

Combining, obtain

Lm • Ln − Ln • Lm − [Lm, Ln]− Lm+n +

⌊
zm+n+3 ∂ f2(r

2)

∂z
dz∂z

⌋
= 0 (3)
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where the bracket denotes the cohomology class. We consider the last term. Introduce the element zn+m+2z f2(r
2)∂z.

Applying the ∂-operator we get

∂(zn+m+2z f2(r
2)∂z) = zn+m+2 f2(r

2)dz∂z + zn+m+2z

(
∂ f2(r

2)

∂z

)
dz∂z

= Ln+m(A2) + zn+m+3 ∂ f (r2)

∂z
dz∂z

where in the last line we use the fact that ∂
∂z f2(r

2) = z f ′2(r
2) and ∂

∂zr f2(r
2) = z f ′2(r

2). Thus, in cohomology
we have ⌊

zn+m+3 ∂ f2

∂z
dz∂z

⌋
= Ln+m

so that (3) simplifies to
Lm • Ln − Ln • Lm − [Lm, Ln] = 0.

3.2 The case of nonzero central charge

We now describe the twisted case. As a vector space we have

Vir = C((z))∂z ⊕C · C

where c is the central parameter. We recall that the Lie bracket is

[Ln, Lm] = (m− n)Ln+m +
m3 −m

12
δn,−mc.

Again, let I ⊂ R>0 and write A = ρ−1(I). The map Φ is defined by Φ(I)|C((z))∂z
= Φun and it sends the

central parameter of Vir to the central parameter of LC
c (A)⊕C · C[−1].

The factorization algebra Vir assigns to the annulus A the dg vector space:

Vir(A) =
(

Sym(Ω0,∗(A, TA)[1]⊕C · C), ∂ + dCE

)
.

where ω ∈ C1(LC) is the central extension as above. We need to show

Lm • Ln − Ln • Lm = (m− n)Ln+m +
m3 −m

12
· c.

Let the notation be as above. We have

d(F(z, z)∂z · Ln(A2)) = (Lm(A1)− Lm(A3))Ln(A2) + [F(z, z)∂z, Ln(A2)]L̂(A2)

= (Lm(A1)− Lm(A3))Ln(A2)− (m− n− 1)Lm+n(A2) + zm+n+3 ∂ f2

∂z
dz∂z

−
1

2π

c

12

∫

A
F(z, z)

∂3

∂z3

(
f2(r

2)zn+2
)

dzdz.

Everything is the same as the zero central charge calculation except for the last line. Applying the same
trick as in the previous section to the second line, we see that d(F(z, z)∂z · Ln(A2)) is cohomologous to

(Lm(A1)− Lm(A3))Ln(A2) − (m− n)Lm+n(A2)

−
1

2π

c

12

∫

A

∂3

∂z3
(F(z, z)) f2(r

2)zn+2dzdz
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We compute

∫

A

∂3

∂z3
(F(z, z)) f2(r

2)zn+2dzdz =
∫

A
f2(r

2)zn+2∂3
z

(
zm+1

∫ zz

0
f1(s)− f3(s) ds

)
dzdz

= (m3 −m)
∫

A
f2(r

2)zn+mdzdz

= (m3 −m)

(∫ 2π

0
ei(n+m)θdθ

)(∫ r

0
f2(r

2)rn+mrdr

)

= 2π(m3 −m)δn,−m.

In the second line we used the fact that the function z 7→
∫ zz

0 f1 − f3 is constant on A2. Thus, d(F(z, z)∂z ·
Ln(A2)) is cohomologous to

(Lm(A1)− Lm(A3))Ln(A2)− (m− n)Lm+n(A2)−
m3 −m

12
δn,−m · c.

Wrapping everything up, in cohomology we have verified

0 = Lm • Ln − Ln • Lm − [Lm, Ln] +
m3 −m

12
δn,−m · c

as desired.
This completes the proof of Proposition 3.1.

4 The vertex algebra structure

We sketch the main points of Costello-Gwilliam’s treatment of extracting vertex algebras from structured
factorization algebras on C. We then use their characterization to show that the factorization algebra Vir
determines a vertex algebra and go further to identify it with the usual Virasoro vertex algebra using the
construction.

First, we need to review the definition of a vertex algebra. It consists of a vector space V over the field
C along with the following data:

• A vacuum vector |0〉 ∈ V.

• A linear map T : V → V (the translation operator).

• A linear map Y(−, z) : V → End(V)Jz±1K (the vertex operator). We write Y(v, z) = ∑n∈Z Av
nz−n

where Av
n ∈ End(V).

satisfying the following axioms:

• For all v, v′ ∈ V there exists an N ≫ 0 such that Av
nv′ = 0 for all n > N. (This says that Y(v, z) is a

field for all v).

• (vacuum axiom) Y(|0〉 , z) = idV and Y(v, z) |0〉 ∈ v + zVJzK for all v ∈ V.

• (translation) [T, Y(v, z)] = ∂zY(v, z) for all v ∈ V. Moreover T kills the vacuum.

• (locality) For all v, v′ ∈ V, there exists N ≫ 0 such that

(z− w)N[Y(v, z), Y(v′, w)] = 0

in End(V)Jz±1, w±1K.

We will utilize a reconstruction theorem for vertex algebras. It says that a vertex algebra is completely
and uniquely determined by a countable set of vectors, together with a set of fields of the same cardinality
and a translation operator subject to a list of axioms.
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Theorem 4.1 (Theorem 2.3.11 of [FBZ]). Let V be a complex vector space equipped with: an element |0〉 ∈ V, a
linear map T : V → V, a countable set of vectors {as}s∈S ⊂ V, and fields As(z) = ∑n∈Z As

nz−n−1 for each s ∈ S
such that:

• For all s ∈ S, As(z) |0〉 ∈ as + zVJzK;

• T |0〉 = 0 and [T, As(z)] = ∂z As(z);

• As(z) are mutually local;

• and V is spanned by {A
s1
j1
· · · Asm

jm
|0〉} as the j′is range over negative integers.

Then, the data (V, |0〉 , T, Y) defines a unique vertex algebra satisfying

Y(as, z) = As(z).

The main result of this section identifies two vertex algebras: the first comes from the factorization
algebra, the other one is the Virasoro vacuum vertex algebra defined in the next section. We prove these are
the same using the above reconstruction theorem.

4.1 The Virasoro vertex algebra

We recall the definition of the Virasoro vertex algebra. For us, it will be a vertex algebra over the polynomial
ring C[c]. For an arbitrary value of c this will specialize to the usual Virasoro vertex algebra associated to
that central charge. First, consider, as we did above, the associative algebra given by the universal envelope
of the Virasoro Lie algebra U = U(Vir). There is a subalgebra U+ ⊂ U(Vir) generated by elements of the
form zn+1∂z with n ≥ −1. Next, define

Vir = IndU
U+

Cc = U ⊗U+ Cc

where the Ln’s act trivially on Cc and the central parameter C acts by multiplication by c. The vacuum
vector is the natural image of the element 1⊗ 1 ∈ U ⊗ C in Virc. The fields are

L(z) := ∑
n∈Z

Lnz−n−2

and translation operator is T = L−1 = ∂z. These satisfy the axioms in the reconstruction theorem, and so
define a vertex algebra, simply denoted Vir. We will call this C[c]-linear vertex algebra the Virasoro vertex
algebra. Note that when we specialize to a particular complex number we obtain the C-linear vertex algebra
Vir|c=c0 = Virc0 called the Virasoro vertex algebra of central charge c.

4.2 From factorization to vertex

In the first part of this note we studied a particular two-dimensional factorization algebra and did not men-
tion a vertex algebra. This section is a bit of an aside and sketches the relationship between certain struc-
tured factorization algebras on C and vertex algebras. This relationship is made more precise in [CG16a],
but we try to sketch the main points. The main result is essentially a functor from a subcategory of factor-
ization algebras on C to vertex algebras, and we will use this result to read off the vertex algebra structure
from the factorization algebra Vir above.

The maps Y(−, z) encode the “multiplication” of the vertex algebra. We can view it has a multiplica-
tion parametrized by a complex coordinate z ∈ C. Consider the two points 0, z ∈ C with z 6= 0. This
multiplication has the form

Yz : V0 ⊗Vz → V((z))

Critical to the structure of a vertex algebra is holomorphicity. Indeed, the axioms imply that the Yz’s vary
holomorphically. Thus, the factorization algebra we start with must be translation invariant (so the vec-
tor space assigned does not depend on the open set up to translations) together with a holomorphicity
condition.

14



For the remainder of this section, let F be a prefactorization algebra on C in the appropriate category of
differentiable vector spaces. 1

We say that F is holomorphically translation invariant if

• F is translation invariant.

• There exists a degree −1 derivation η : F → F such that dη = ∂z as derivations of F.

Also important will be the notion of a smooth S1-equivariant structure on F. We will mention this shortly.
For now, we discuss how to read off the structure of a vertex algebra from a holomorphic translation in-
variant factorization algebra. The key is that such factorization algebra defines a coalgebra structure over a
certain (colored) cooperad.

Define the complex manifold

Discs(r1, . . . , rk) := {z1, . . . , zk ∈ C | D(z1, r1) ⊔ · · · ⊔ D(zk, rk) disjoint} ⊂ Ck.

The collection of these spaces form a R>0-colored operad in the category of complex manifolds, which we
denote Discs. Applying the functor Ω0,∗ we get a R>0-colored cooperad Ω0,∗(Discs) in the category of
differentiable vector spaces. The main technical fact that we use to read off the structure of a vertex algebra
is

Proposition 4.2 ([CG16a]). Let F be a holomorphically translation-invariant factorization algebra on C. Then, F
defines an algebra over the R>0-colored cooperad Ω0,∗(Discs).

This means that at the level of cohomology as we let p ∈ Discs(r1, . . . , rk) vary the factorization maps

m[p] : H∗F(D(0, r1))× · · · ×H∗F(D(0, rk))→ H∗F(C)

lift to a map

µ
r1,...,rk
z1,...,zk

: H∗F(D(z1, r1))× · · · ×H∗F(D(zk, rk))→ Hol (Discs(r1, . . . , rk), H∗F(C)) .

Translation invariance allows us to replace F(D(zi, ri)) ≃ F(D(0, ri)) which we denote by F(ri), so we can
write this map as

µ
r1,...,rk
z1,...,zk

: F(r1)× · · · × F(rk)→ Hol (Discs(r1, . . . , rk), H∗F(C)) .

Note that although the source space of this map does not depend on the centers of the discs, the map itself
does, hence the messy notation.

For r′ < r the maps µ
r1,...,rk
z1,...,zk

respect the natural inclusions

Discs(r1, . . . , rk) →֒ Discs(r′1, . . . , r′k)

and so the limit of the multiplication map as (r1, . . . , rk)→ (0, . . . , 0) makes sense and has the form

µz1,...,zk
:

(
lim
r→0

H∗(F(r))

)⊗k

→ lim
r→0

Hol (Discsk(r), H∗(F(r))) ∼= Hol (Confk(C), H∗F(C))

where Confk(C) is the ordered configuration space of k-distinct points in C.
The last piece of data we need corresponds to the “conformal decomposition” of a vetex algebra. For us,

this will come from an S1-action on F. The reader is encouraged to look at [CG16a] for a precise definition,
but we assume that we have a nice action of S1 on F and it is compatible with the translation invariance
discussed above.

We can now read off the data of the vertex algebra from F:

• Let F(l)(r) ⊂ F(r) be the lth eigenspace for the S1-action. The underlying vector space for the vertex
algebra is

V :=
⊕

l

H∗(F(l)(r)).

1Some care is needed to define this category correctly. We refer the interested reader to [CG16a]
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• The translation operator. The action of ∂z on F(l)(r) has the form

∂z : F(l)(r)→ F(l−1)(r).

We let T : V → V be the operator which is ∂z restricted to the l-th eigenspace.

• The fields. Consider the map

µz,0 :

(
lim
r→0

H∗(F(r))

)⊗2

→ Hol (Conf2(C), H∗(F(C)))

defined above. Certainly, we have a map V → limr→0 H∗(F(r)), so it makes sense to resctict µz,0 to a
map

V ⊗V → Hol (Conf2(C), H∗(F(C))) ≃ Hol
(
C×, H∗(F(C))

)
.

Post composing this with the projection maps H∗(F(∞))→ Vl combine to define the map

µz,0 : V ⊗V →∏
l

Hol(C×, Vl)

We can perform Laurent expansions to view this as

µz,0 : V ⊗V → VJz±1K.

We define Y(−, z) : V → End(V)Jz±1K by

Y(v, z)v′ := µz,0(v, v′).

One can show that this actually lies in V((z)) for all v, v′.

The above can be made much more precise and made into the following theorem.

Theorem 4.3 (Theorem 5.2.2.1 [CG16a]). Let F be a S1-equivariant holomorphically translation invariant factor-
ization algebra on C. Suppose

• The action of S1 on F(r) extends smoothly to an action of the algebra of distributions on S1.

• For r < r′ the map

F(l)(r)→ F(l)(r′)

is a quasi-isomorphism.

• The cohomology H∗(F(l)(r)) vanishes for l ≫ 0.

• For each l and r > 0 we require that H∗(F(l)(r)) is isomorphic to a countable sequential colimit of finite
dimensional vector spaces.

Then Vert(F) := ⊕lH
∗(F(l)(r)) (which is independent of r by assumption) has the structure of a vertex algebra.

Let PreFactC denote the category of prefactorization algebras on C. Let PreFacthol
C ⊂ PreFactC be the

full subcategory spanned by prefactorization algebras satisfying the conditions of the above theorem. This
result can be upgraded to provide a functor

Vert : PreFacthol
C → Vert

where Vert is the category of vertex algebras.
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4.3 Verifying the axioms

In this section we verify the Virasoro factorization algebra Vir indeed satisfies the conditions of Theorem
4.3 necessary to determine a vertex algebra stated in the last section.

Explicitly, we show the following:

(1) There is a S1-action on Vir covering the action of C× by rotations. Moreover, for all r > 0 (including
r = ∞) the S1-action on Vir(r) extends to an action of D(S1) the space of smooth distributions on the
circle.

(2) Then for all l and all r < r′ the natural map

Vir(l)(r)→ Vir(l)(r′)

is an equivalence.

(3) H∗(Vir(l)(r)) = 0 for l ≫ 0.

(4) The space H∗(Vir(l)(r)) is a colimit of finite dimensional vector spaces for all l, r.

The first condition is clear: the S1-action comes from its natural action on Ω
0,∗
c (C). We extend this to

distriutions ϕ ∈ D(S1) by the rule

(ϕ · α)(z) =
∫

t∈S1
ϕ(t)α(tz)

where α ∈ Ω
0,∗
c (C). This extends naturally to vector fields.

Let’s consider (2). For simplicity we work with the (untwisted) factorization algebra Vir0 = C∗(LC), the
twisted case is similar. Consider the filtration of Vir0 by symmetric tensor degree. Namely

FmVir0(r) = Sym≤m(L(D(0, r)[1]) =
⊕

j≤m

(
L(D(0, r))[1]⊗j

)
Σj

.

The associated graded of this filtration is

GrmVir0(r) =
(
L(D(0, r))[1]⊗m

)
Σm

and there is a spectral sequence
H∗(Gr∗Vir0(r))⇒ H∗(Vir0(r)).

The filtration respects the S1-action, so for each l we get a spectral sequence for the eigenspaces

H∗(Gr∗Vir
(l)
0 (r))⇒ H∗(Vir

(l)
0 (r)).

Thus, to verify that Vir
(l)
0 (r)→ Vir

(l)
0 (s) is an equivalence for r < s it it enough to show that it is at the level

of associated gradeds. That is, we need to show that the restriction of the map

Ω0,∗
c

(
D(0, r)m, TD(0, r)⊠m

)
→ Ω0,∗

c

(
D(0, s)m, TD(0, s)⊠m

)

to the l-eigenspaces is an equivalence. Again, we recall Serre’s result that for any open U ⊂ C

H∗
∂

(
Ω0,∗

c (U, TU)
)
∼=
(

Ω1
hol(U, TU)

)∨

concentrated in degree 0. When U = D(0, r) we have a coordinization

Ω1
hol(D(0, r)) = C[z]dz.

Now, zk has S1-weight k. Thus (zk)∨ has weight −k. The weight of (dz)∨ is −1 and the weight of ∂∨z is +1.
This shows that the weight spaces are independent of the radius chosen, so we have verified (2). Moreover,
the weight spaces are clearly finite dimensional and vanish for m ≥ 0, so we also get (3) and (4).

Finally, Theorem 4.3 implies the following.

Proposition 4.4. The C[c]-module V =
⊕

l H∗(Vir(l)(r)) has the structure of the vertex algebra (in C[c]-modules)

induced from the factorization structure on Vir. In particular, for each c ∈ C the vector space Vc =
⊕

l H∗(Vir
(l)
c (r))

has the structure of a vertex algebra.
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4.4 An isomorphism of vertex algebras

The map Φ : U(Vir)→ H∗(Vir(A(r, r′))) from Proposition 3.1 applied to the interval I = (r, r′) gives V the
structure of a U(Vir)-module. More precisely, let ǫ < r < R then we have a factorization map

Vir(D(0, ǫ))⊗ Vir(A(r, R))→ Vir(D(0, R)).

We have the following diagram

H∗Vir(D(0, ǫ))⊗H∗Vir(A(r, R)) // H∗Vir(D(0, R))

V ⊗H∗Vir(A(r, R))

OO

V

OO

V ⊗U(Vir)

1⊗Φc

OO
33

The top left arrow comes from the inclusion V →֒ H∗ (Vir(D(0, ǫ))). The dotted map exists since the image
of the factorization product on V, where we only see finite sums of S1-eigenvectors, still only contains finite
sums of S1-eigenvectors.

Our main result is:

Theorem 4.5. There is a C[c]-linear isomorphism of U(Vir)-modules Ψ : Vir → V which sends |0〉 ∈ Virc to
1 ∈ V. It extends to an isomorphism of vertex algebras

Ψ : Vir
∼=

// Vert(Vir)

over the ring C[c]. In particular, when we specialize to a c ∈ C we obtain an isomorphism of vertex algebras

Ψc : Virc
∼=

// Vert(Virc).

Proof. Recall that the vacuum vector is the image of 1 under the map

U(Vir)
id⊗1

// U(Vir)⊗ C // U(Vir)⊗U(Vir)+ Cc = Virc.

We define the map of U(Vir)-modules
U(Vir)⊗ C→ V

by sending 1⊗ 1 to 1 and extending by U(Vir)-linearity. We need to check that this descends to Virc. That
is, we verify that 1 ∈ V is killed by Ln for n ≥ −1. Recall Ln(A) = f (zz)zn+2dz∂ is a representative for
Ln on LC(A(r, R)) where f (zz) is a bump function as above. It suffices to show that Ln(A) is exact when
viewed as an element in LC(D(0, R)). Define h(z, z) :=

∫ ∞

zz f (s) ds and note that the chain rule implies

∂(h(z, z) zn+1) = f (zz)zn+2dz

Thus, Ln(A) is exact via the element h(z, z)zn+1∂. This shows that we get a well-defined map Virc → V
that sends |0〉 7→ 1.

We need to see that this map is an isomorphism of U(Vir)-modules. We take advantage of some filtra-
tions. Consider the natural filtration of the tensor algebra of Vir, namely

Fi(Tens(Vir)) := ⊗j≥iVir.

This descends to a filtration on U(Vir). Similarly, define the filtration of Vir by

FiVir(U) = Sym≤i(Ω0,∗
c (U, TU)[1]⊕ C · C)

with induced differential. It is clear that this is a subcomplex and hence descends to cohomology. Moreover
the map of modules defined above respects both of these filtrations.
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With respect to the above filtration we have the identification

Gr Vir ∼= Sym∗(z−1C[z−1]∂z ⊕C · C) = Sym∗(z−1C[z−1]∂z)[C].

Moreover, we have the identifications of associated gradeds

Gr U(Vir) = Sym(Vir) = Sym(C[z, z−1]∂z)[C] and Gr Vir(U) = Ŝym(Ω0,∗
c (U, TU)[1]⊕C · C).

Consider the map U(Vir) → V induced by the action of U(Vir) on the unit 1 ∈ V. We have the diagram of
associated gradeds

Gr U(Vir) // Gr V �

�

// H∗
(

Sym∗(Ω0,∗
c (D(0, r), TD(0, r))[1]⊕C · C)

)

Sym(C[z, z−1]∂z)[C]

66♠♠♠♠♠♠♠♠♠♠

The embedding on the right is the direct sum of S1-eigenspaces and is identified with z−1C[z−1][C]. Thus,
the map Gr U(Vir)→ Gr V is the map of commutative algebras

Sym(C[z, z−1]∂z)[C]→ Sym(z−1C[z−1]∂z)[C]

and is induced by natural map C[z, z−1]→ z−1C[z−1].
Concluding we see that the map Gr Vir → Gr V is an isomorphism, and since there are no extension

problems over C[c] we have the desired isomorphism of U(Vir)-modules.
Finally, we need to show that the OPE’s agree so that the module isomorphism extends to an isomor-

phism of vertex algebras. Namely, we will show

mz,0(L−2 · 1, v) = ∑
n∈Z

(Ln · v)z
−n−2.

Now, the residue pairing allows us to represent Ln(A(r, R)) by the linear map

Ω1
hol(A(r, R))→ C , h(z)dz 7→

(∮

S1
zn+1h(z)dz

)
.

Fix a point z0 ∈ A(r, R). By Cauchy’s theorem we have for some ǫ such that ǫ < |z0| − r and ǫ < s− |z0|:

2πih(z0) =
∮

|ζ|=R−ǫ

h(ζ)

ζ − z0
dζ −

∮

|ζ|=r+ǫ

h(ζ)

ζ − z0
dζ.

For the first integral we have |z0| < |ζ| and we can expand

1

ζ − z0
=

1

ζ
·

1

1− z0
ζ

=
1

ζ

∞

∑
j=0

(
z0

ζ

)j

=
∞

∑
j=0

z
j
0ζ−j−1.

Thus ∮

|ζ|=R−ǫ

h(ζ)

ζ − z0
dζ =

∞

∑
j=0

(∮

|ζ|=R−ǫ
h(ζ)ζ−j−1dζ

)
z

j
0.

Similarly the second integral can be written as

∮

|ζ|=r+ǫ

h(ζ)

ζ − z0
dζ = −

∞

∑
j=0

(∮

|ζ|=r+ǫ
h(ζ)ζ j

)
z
−j−1
0 .

Since h is holomorphic on A(r, R) we can combine these integrals by choosing a common contour and
reindexing to write

∞

∑
j=0

(∮

|ζ|=R−ǫ
h(ζ)ζ−j−1dζ

)
z

j
0 +

∞

∑
j=0

(∮

|ζ|=r+ǫ
h(ζ)ζ j

)
z
−j−1
0 = ∑

n∈Z

(∮
ζn+1h(ζ)dζ

)
z−n−2

0 .

This completes the proof.
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5 Universal factorization algebras and the Virasoro

It is a natural to extend the Virasoro factorization algebra to general one-dimensional complex manifolds.
Moreover, from the point of view of of conformal field theory, [Seg88] for instance, it is essential to consider
this a global version of the Virasoro algebra defined on general Riemann surfaces. Vertex algebras are of
course local in nature, from above they correspond to factorization on C. In this section we transition to
studying a version of the Virasoro factorization algebra defined on a general one-dimensional complex
manifold.

One approach would be to construct a factorization algebra on each manifold independently. It is con-
venient for us, however, to consider the site of complex manifolds. Define the category Hol1 whose objects
are one-dimensional complex manifolds and whose maps are holomorphic embeddings. This is a symmet-
ric monoidal category with respect to disjoint union ⊔. Just as in the case of a fixed manifold, Weiss covers
define a Grothendieck topology on Hol1.

Definition 5.1. A universal holomorphic prefactorization algebra (valued in the category dgNuc⊗) is a sym-
metric monoidal functor

Hol⊔1 → dgNuc⊗.

A universal holomorphic factorization algebra is a universal holomorphic prefactorization algebra satisfying
descent for Weiss covers.

Remark. The term universal has appeared in the literature of vertex algebras and their close relatives, chi-
ral algebras and we’d like to point out how our terminology is different. In Section 3.4.14 of [BD04] the
term universal chiral algebra is used to refer to chiral algebras that are valued in the category of modules

for the Harish-Chandra pair (Aut(D̂), W1) of formal automorphisms and formal derivations of the holo-
morphic disk. In Section 6.3 of [FBZ] such a structure in the category of vertex algebras is referred to as
a quasi-conformal vertex algebra. We stress that this is different than the notion of universal considered in
Definition 5.1. One can also realize the analog of a quasi-conformal structure in the setting of holomorphic

factorization algebras by factorization algebras valued in the category of (Aut(D̂), W1) modules.

We can produce such universal holomorphic factorization algebras from sheaves of Lie algebras on the
site Hol1. Indeed, given a sheaf of Lie algebras G we can apply the Chevalley-Eilenberg chains functor
applied to compactly supported sections C∗(Gc) to get a universal factorization algebra. Moreover, this
functor satisfies descent so that it defines a universal holomorphic factorization algebra. We will denote
this universal factorization algebra by U f actG.

Example 5.1. Let us consider a fundamental example of a universal holomorphic factorization algebra. Fix
an ordinary Lie algebra g and define the sheaf of Lie algebras on Hol1 by sending the complex one-manifold

Σ to the dg Lie algebra g
Σ := Ω0,∗(Σ; g). The differential is given by ∂⊗ 1g and the Lie bracket extends that

of g. In doing so, one obtains the universal factorization algebra U f act
g
(−) that sends Σ 7→ C∗(gΣ). If g has

a invariant pairing 〈−,−〉
g

one can use the cocycle on g
Σ defined by

(α, β) 7→
∫

Σ
〈α ∧ ∂β〉

g

to define a central extension ĝ
Σ. One obtains a universal factorization algebra via

U f act
ĝ : Σ 7→ C∗(ĝ

Σ).

This is the unverisal factorization algebra representing the Kac-Moody vertex algebra, see Chapter 5 of
[CG16a].

We will produce the universal Virasoro factorization algebra in the same manner. Indeed, for each Σ in
Hol1 we have the dg Lie algebra

LΣ = Ω0,∗(Σ, TΣ)

with differential given by ∂ and bracket given by extending the usual Lie bracket of holomorphic vector
fields. The assignment L : Σ 7→ LΣ defines a symmetric monoidal functor from the category Hol1 to

20



the category of dg Lie algebras with symmetric monoidal structure given by direct sum (of underlying
graded vector spaces). As the functor of Chevalley-Eilenberg chains C∗(−) is symmetric monoidal we get
a symmetric monoial functor given by the universal envelope of L

U f actL : Hol1 → dgNuc⊗ , Σ 7→ C∗(L
Σ
c ).

Applied to Σ = C, of course we are in the situation of the previous portion of the paper.
The interesting part from the point of view of conformal field theory and representation theory is the

envelope of a central extension of the sheaf of dg Lie alegbras L. There is a potential problem defining this
central extension based on our formula given in Section 2. Indeed, the cocycle on LC

ω(α⊗ ∂z, β⊗ ∂z) =
1

2π

1

12

∫

U

(
∂3

zα0β1 + ∂3
zα1β0

)
d2z

clearly depends on the choice of a coordinate (its failure to be coordinate independent is precisely measured
by the Schwarzian). Thus, there is no obvious way of constructing a universal twisted envelope on all
holomorphic one-manifolds simultaneously.

5.1 First fix: uniformization

A Riemann surface is a complex manifold of dimension one. Therefore, it is given by a covering {Ui}
such that all transition functions are holomorphic diffeomorphisms. The cocycle ω is not invariant under
arbitrary diffeomorphisms: if w = f (z) it is not necessarily true that f ∗(ωz) = ωw.

One way of formulating the uniformization theorem for Riemann surfaces is that one can always find a
subordinate cover to {Ui} such that the transition functions have the form

w = f (z) =
az + b

cz + d

with ad− bc 6= 0. I.e., we can reduce to the projective linear structure group. Let Hol
proj
1 ⊂ Hol1 denote

the full subcategory of covers where the transition functions are projective. The above says that there is a

section unif : Hol1 → Hol
proj
1 of the inclusion

Hol1 →֒ Hol
proj
1 .

Lemma 5.1. The cocycle ω is invariant under projective changes of coordinate. That is, for f a projective diffeomor-
phism one has f ∗ω = ω.

Thus, we can form a factorization algebra FVir
ω on Hol

proj
1 . Using the uniformization construction this

pulls back to a factorization algebra on Riemann surfaces via

Hol1
unif

// Hol
proj
1

FVir
ω

// dgNuc.

The problem with this construction is that the induced extension cocycle is not so obvious to write down.
There is a more explicit way of doing this.

5.2 Second fix: projective connections

We recall Atiayh’s [Ati57] formulation of connections on holomorphic vector bundles. Let E be a holomor-

phic vector bundle on a complex manifold X. Denote by Diff≤1(E) ⊂ Diff(E) the subspace of order one
differential operators on E. There is a short exact sequence of vector bundles

0→ End(E)→ Diff≤1(E)→ T1,0
X ⊗ End(E)→ 0
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where the last map is the symbol map of an order one differential operator. Form the pull-back along the

inclusion of T1,0
X →֒ T1,0

X ⊗ End(E) via x 7→ x⊗ id. The resulting bundle is the Atiyah-bundle

0→ End(E)→ At(E)→ T1,0
X → 0.

Atiyah showed that splittings of this sequence are precisely holomorphic connections.
Consider the inclusion OX →֒ End(E) by viewing s 7→ f · s for f ∈ OX . One gets the induces sequence

0→ End(E)/OX → At(E)/OX → T1,0
X → 0.

By definition, projective connections are splittings of the above sequence.

• Non-trivial holomorphic connections on TΣ exist only in genus 1, this is a consequence of Riemann-
Roch.

• Projective connections on TΣ exist for all Riemann surfaces and form a torsor over quadratic holomor-
phic differentials Ω1

hol(Σ)
⊗2.

Let Hol∇1 denote the category of pairs (Σ,∇) where ∇ is a projective connection for the holomorphic

tangent bundle T1,0
Σ . There is a forgetful functor

π : Hol∇1 → Hol1

that we should think of as a (Ω1
hol)
⊗2-torsor.

Fix a projective connection ∇ on Σ. Locally, on Σ consider the bilinear on Lc(Uz)

ω∇,z(X, Y) = ωz(X, Y) +∇z · [X, Y].

Proposition 5.2. • ω∇ defines a cocycle on Lc(Uz) and is invariant under holomorphic changes of coordinate.

• If∇′ is another projective connection we have ω∇ ∼ ω∇′ .

Proof. Coordinate invariance In writing down ω∇,z = ωz we have used a coordinate. We check coordinate
invariance, so that it defines a section over Σ. It suffices to understand the case Uz = Cz. Suppose f : Cw →

Cz is a change of coordinates. Let u : LC ⊗LC → Ω
1,1
C denote the bilinear map

(α∂z, β∂z) 7→
(

∂3
zα0β1 − α0∂3

z β1) + (∂3
zα1β0 − α1∂3

z β0)
)

dzdz.

We compute the difference

f ∗u(α∂z, β∂z)− u ( f ∗(α∂z), f ∗(β∂z)) = 2 [(α0∂wβ1 − ∂wα0β1) + (α1∂wβ0 − ∂wα1β0)] S( f )

(
∂ f

∂w

)
dwdw

where S( f ) is the holomorphic function called the Schwarzian. Explicitly it is given in terms of first, second,
and third holomorphic derivatives of f :

S( f )(z) =
∂

∂z

(
∂2 f /∂z2

∂ f /∂z

)
−

1

2

(
∂2 f /∂z2

∂ f /∂z

)2

.

So the failure of the cocycle u to be independent of a choice of coordinate is measured by the Schwarzian.
Let P : LC ⊗LC → Ω1,1(C) be the bilinear

(α∂z, β∂z) 7→ ρz · ((α0∂zβ1 − ∂zα0β1) + (α1∂zβ0 − ∂zα1β0))dzdz.

We compute the difference

f ∗P(α∂z, β∂z)− P ( f ∗(α∂z), f ∗(β∂z)) = ((α0∂zβ1 − ∂zα0β1) + (α1∂zβ0 − ∂zα1β0)) S( f )

(
∂ f

∂w

)
dwdw.
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This shows that the bilinear u + 2P is independent of choice of coordinates. Finally, note that

ωC =
∫

C
◦ (u + 2P)

is the desired cocycle defining the extension of LC, so we are done.
Cocycle condition We need to show that ωU is a cocycle for the Lie algebra LΣ(U) for all U. We suppose

U ≃ C and we check ωC is a cocycle. For simplicity write elements α∂ ∈ LC(C) as α. In terms of the
bilinears u, P above we have

ωC([α, β], γ) + ωC([β, γ], α) + ωC([γ, α], β) =
∫

C
[(u([α, β], γ) + u([β, γ], α) + u([γ, α], β))

+ 2 (P([α, β], γ) + P([β, γ], α) + P([γ, α], β))]

It follows from Jacobi that P-terms vanish. So, it suffices to show that

∫

C
(u([α, β], γ) + u([β, γ], α) + u([γ, α], β)) = 0.

This is a straightforward calculation.
Now, we show independence of ω∇,z on a projective connection. Again, this is a local calculation.

Suppose∇,∇′ are two projective connections, and let ω, ω′ and P, P′ denote induced the bilinears as above,
respectfully. We need to show that ω − ω′ is a coboundary when viewed as a cocycle in C∗red(L

C). As
mentioned above, the difference of two ordinary projective connections is simply a quadratic differential.

It follows that we may view the difference ∇ −∇′ as an element in Ω0,∗(Σ, K⊗2
Σ ). Then, we see that for

X ∈ LΣ

(∇−∇′) · X =
〈
∇−∇′, X

〉

where 〈−,−〉 denotes the natural pairing

Ω0,∗(Σ, K⊗2
Σ )⊗Ω0,∗(Σ, TΣ)→ Ω0,∗(Σ, KΣ) ≃ Ω1,∗(Σ).

Denote by Φ =
∫
◦ 〈∇−∇′,−〉(1,1) : LC → C. Note that Φ is linear of degree −1, so that it is a 0-cocycle

for LC. We have
(ω −ω′)(α, β) = Φ([α, β]).

This is what we wanted to show.

We take away two main observations: (1) there is a local cocycle ω ∈ H1
loc(L

Σ) for each Σ and hence

an associated factorization algebra Ṽir on Hol∇1 and (2) that we can descend along π to get a factorization
algebra Vir : Hol1 → dgNuc as desired. When restricted to the over category of open sets U ⊂ C we
produce the factorization algebra from the first part of the paper, hence the repetition of notation.

The prefactorization algebra Vir can be described explicitly as follows. To a pair (Σ,∇) of a Riemann
surface together with a projective connection we define

Ṽir(Σ,∇) = U f actL̂Σ = U
f act
ω∆

LΣ

where L̂Σ is the dg Lie algebra that is the extension of LΣ determined by the cocycle ω∇.
Thus, the factorization algebra Vir on Hol1 has the following interpretation. Given a Riemann surface Σ

choose any projective connection ∇. Form the twisted envelope as above. By the proposition this extension
is independent of the projective connection chosen.

5.3 Fixed Riemann surface

For each Riemann surface Σ we can restrict our factorization algebra Vir to the overcategory Hol1/Σ to get

a factorization algebra on Σ which we denote VirΣ. The construction depends on the 2-cocycle ω, but on a
fixed Riemann surface the choice is up to a scaling.
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Proposition 5.3. Let Σ be any Riemann surface. Then, we have

H1
(

C∗loc(L
Σ)
)
∼= C.

Proof. Consider Σ = C. Then

C∗loc(LC) = Ω∗C ⊗DC
C∗red

(
JetLC

)
∼= Ω∗

(
C; C∗red(JetLC

)
)
[2]

Now, JetLC
corresponds to the dg Lie algebra CJz, z, dzK∂z with differential given by ∂. This is quasi-

isomorphic to the Lie algebra of formal holomorphic vector fields W1 := CJzK∂ (with zero differential).
So, we see C∗loc(LC) ≃ C∗(W1)[2]. A calculation of Gelfand-Fuchs [Fuc86] implies that

H∗red(W1) = C[−3]

concentrated in degree 3. The generator is of the form ∂∨z · (z∂z)∨ · (z2∂z)∨.
We’d like to bootstrap this to the global case. Consider the filtration of Ω∗

(
Σ, C∗red(Jet

LΣ)
)

by form
degree. This spectral sequence has E2-page

E2 = Ω∗ (Σ, H∗ (C∗red(Jet
LΣ)) .

Here, H means the cohomology D-module. We have computed the cohomology of the fibers of H∗
(
C∗red(Jet

LΣ)
)
,

and they are concentrated in a single degree. Choosing a formal coordinate at a point in Σ trivializes the
fiber of this point to C

〈
∂∨z · (z∂z)∨ · (z2∂z)∨

〉
. This trivialization is independent of coordinate choice and

compatible with the flat connection. Thus

H∗(C∗red(Jet
LΣ) ≃ C∞

Σ [−3]

with its usual flat connection. This completes the proof.

5.4 Symmetries by vector fields

The primary appearance of the Virasoro vertex algebra in physics is as a symmetry of two dimensional
conformal field theories. That is, the Virasoro vertex algebra acts on conformal field theories with a spec-
ified central charge. Later on we will see an example of how the Virasoro factorization algebra appears
as a symmetry of certain holomorphic quantum field theories using the BV formalism as developed in
[CG16a], [CG16b]. For now, we would like to discuss the meaning of such a Virasoro symmetry on general
holomorphic factorization algebras.

A vertex algebra is conformal of central charge c if there is an element vc ∈ V such that the Fourier
coefficients LV

n of the vertex operator Y(vc, z) = ∑n LV
n z−n−2 span a Lie algebra that is isomorphic to Virc.

Moreover, one requires that LV
−1 = T the translation operator, and LV

0 |Vn = n · IdVn . This can be wrapped
up by saying we have a map of vertex algebras Virc → V sending L−2 · 1 to vc.

Motivated by this, we introduce the following terminology for holomorphic factorization algebras. We
say a Virasoro symmetry of central charge c of a holomorphic factorization algebra F is a map of holomor-
phic factorization algebras

Φ : Virc → F. (4)

Remark. A holomorphic factorization algebra is a symmetric monoidal functor

F : Hol1 → dgNuc

A map of holomorphic factorization algebras is a natural transformation between symmetric monoidal
functors of the above form. In particular, in the definition above we require the existence of maps

Φ(Σ) : Virc(Σ)→ F(Σ)

for each one-dimensional complex manifold Σ. Moreover, these maps must be natural with respect to
holomorphic embeddings.
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In the next section we will show an example using BV quantization to implement a map of factorization
algebras Virc → F where F is the quantum observables of the βγ system. In the remainder of this section
we’d like to extract one consequence of having a Virasoro symmetry of charge c. We see that in the case of
factorization algebras on C we recover the usual notion of a conformal vertex algebra.

Indeed, suppose that F is a holomorphic factorization algebra on C satisfying the conditions of Theorem
4.3. Then a Virasoro symmetry of central charge c from (4) induces the structure of a conformal vertex
algebra on Vert(F) of charge c. As the construction Vert(F) is functorial we obtain a map of vertex algebra

Vert(Φ) : Virc → Vert(F).

Explicitly, the conformal vector is given by Vert(Φ)(L−21Vir) ∈ Vert(F).
A fundamental object in conformal field theory is the so-called bundle of conformal blocks on the moduli

space of curves. Given a vertex algebra describing a holomorphic conformal field theory the action of the
Virasoro Lie aglebra is necessary for the construction of bundle equipped with a projectively flat connection
through a process called “Virasoro uniformization”, see Chapter 17 of [FBZ], for instance. This is a version
of Gelfand-Kazhdan descent (sometimes referred to as Harish-Chandra localization) along a certain bundle
of coordinates over the pointed moduli of curves Mg,1 which we briefly summarize. The moduli space Mg,1

consists of pairs (Σ, x) where Σ is a curve and x ∈ Σ. There exists a canonically defined Vir0-torsor M̂g,1

over Mg,1 consisting of triples (Σ, x, ϕ) where ϕ is a formal coordinate near x. One then considers modules

for the pair (Aut(D̂), Vir0) where Aut(D̂) is the group automorphisms of the formal disk. These objects are

simultaneously modules for Vir0 and the group Aut(D̂) that are compatible with the natural inclusion of

Lie aglebras Lie(Aut(D̂)) →֒ Vir0. In practice, and in all of the examples we care about, Vir0-modules can
be exponentiated to modules for the pair.

If one starts with a module V for the pair (Aut(D̂), Vir0) Virasoro uniformization can be viewed as a two-
step process. First, one forms the associated bundle over Mg,1 using the action of formal automorphisms.
The residual action of Vir0 defines the data of a flat connection. In the case that one has an action of Virc, for
some nonzero charge c, one gets a projectively flat connection. The resulting object is no longer a D-module
on the moduli of curves, but rather a module for a sheaf of twisted differential operators. In the case that
V is a conformal vertex algebra, the resulting bundle is the bundle of conformal blocks equipped with its
projectively flat connection. For instance, in the case of the Virasoro vertex algebra of central c, one finds a
sheaf of twisted differential operators on Mg,1 (see [BlS88], for instance).

One can attempt a similar construction at the level of factorization algebras. Indeed, let F be a holomor-
phic factorization algebra on C that is equipped with a map of factorization algebras

Φ : Virc → F

as in (4). In the case that F is holomorphic we see that F(D) is a module for the Lie algebra of annular
observables. Indeed, we have a factorization map

µ : F(A)⊗ F(D)→ F(Dbig)

where Dbig is a disk centered at zero containing the annulus A. We have already seen that the structure

maps coming from nested annuli give F(A) the structure of a Lie algebra. Suppose that for any inclusions
of disks centered at zero D(0, r) →֒ D(0, R) the induced map

F(D(0, r))
≃
−→ F(D(0, R))

is a quasi-isomorphism. Then, the structure map µ together with the map H∗Φ(A) : Virc ≃ H∗(Virc(A))→
F(A) give H∗(F) the structure of a module over the Lie algebra Virc. Thus, we can descend the space F(D)
to get a sheaf equipped with a projective flat connection on Mg,1. One expects that the fiber of this bundle

over a fixed curve Σ coincides with the global sections, or factorization homology
∫

Σ
F defined in the next

section.
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6 Factorization homology and correlation functions

6.1 Global sections

In this section we compute the cohomology of the global sections of the factorization algebra VirΣ. This is
known as the factorization homology of VirΣ and is denoted by

∫

Σ
VirΣ = H∗(VirΣ(Σ)).

In the language of chiral algebras the cohomology of global sections is often referred to as the “chiral ho-
mology” in the literature [FG12, BD04] and is dual to the space of “conformal blocks”. We will discuss
conformal blocks for the Virasoro in more detail shortly.

Remark. As noted above BLΣ describes the formal completion at Σ inside of Mg, the moduli of Riemann

surfaces of genus g. We have already remarked that
∫

Σ
VirΣ is the ∞-jet at Σ of a certain sheaf on the moduli

of curves Mg; namely the sheaf of twisted differential operators. An independent definition of this sheaf on
the moduli of curves from the point of view of factorization algebras is non-trivial, and we defer making
any precise relationships at the moment.

Now, we compute the factorization homology. We will need the following fact about the Dolbeault
resolution of holomorphic vector fields.

Proposition 6.1. The dg Lie algebra (Ω0,∗(Σ, TΣ), ∂) is formal.

That is, the dg Lie algebras Ω0,∗(Σ, TΣ) and H∗
∂
(Ω0,∗(Σ, TΣ)) are quasi-isomorphic. It follows that

H∗(VirΣ(Σ)) is equal to the cohomology of the complex

(Sym(H∗(Σ, TΣ)⊕ C · C), dCE)

since ∂ kills the central term C.
The full differential on VirΣ is ∂ + dLie + ω where dLie is the Chevalley-Eilenberg differential for the Lie

algebra Ω0,∗(Σ, TΣ) and ω is the cocycle of Section 5.3.
The case g = 0

We have H∗(Σ0, TΣ0
) ∼= sℓ2(C) generated by the vector fields ∂z, z∂z, and z2∂z. For degree reasons the

central extension does not contribute to the Lie differential. Thus
∫

Σ0

VirΣ0 ∼= HLie
∗ (sℓ2(C))[c] ∼= C[y, C]

with deg(y) = 3 and deg(C) = 0.

The case g = 1
In this case we know that the dg Lie algebra H∗(Σ1, TΣ1

) = C⊕ C[−1] with zero Lie bracket and zero

differential. Moreover, H0 is generated by the constant vector field ∂z. The bilinear form defining the central
extension vanishes on constant vector fields so doesn’t contribute to the Lie differential. Thus

∫

Σ1

VirΣ1 ∼= Sym(C[1]⊕C⊕C · C) ∼= C[x, y, C]

with deg(x) = −1 and deg(y) = deg(C) = 0.

The case g > 1
The dg Lie algebra is H∗(Σg, TΣg) = C3g−3[−1]. For degree reasons this algebra is abelian and does not

interact with the central extension. Thus
∫

Σg

VirΣg ∼= Sym(C3g−3⊕ C · C) ∼= C[y1, . . . , y3g−3, C]

with deg(y1) = · · · = deg(y3g−3) = deg(c) = 0.
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6.2 Correlation functions

In this section we compute the correlation functions associted to the Virasoro factorization algebra. These
calculations are reminiscent for those of the conformal blocks of a conformal vertex algebra and exhibits
the utility of our approach to factorization in CFT.

Fix a Riemann surface Σ and consider a collection of disjoint opens U1, . . . , Un ⊂ Σ. The n-point corre-
lation function for associated to these open sets is the factorization structure map

ΦU1 ,...,UN
: VirΣ(U1)⊗ · · · ⊗ VirΣ(Un)→ VirΣ(Σ).

Consider the case of Σ = C and suppose that each of the opens Ui is a biholomorphic to a disk of a
certain fixed radius r. Suppose, moreover, that F is a holomorphically translation-invariant factorization
algebra on C. Then it is an algebra over the co-operad Ω0,∗(Disks). In particular, for each nt we can think
of the n-point correlator as a holomorphic function on the space

Disksn(r) ≃ Confn(C).

We now describe an explicit way of calculating these n-point correlation functions that bears some resem-
blance to the standard method of computing correlation functions in conformal field theory.

First, we fix a partial inverse ∂
−1

for the Dolbeault operator ∂ for the holomorphic tangent bundle TΣ.

This operator vanishes on harmonic functions and 1-forms and is inverse to ∂ on the complement to the
space of harmonic functions and 1-forms. We can construct it as follows. Let G be a Green’s function for

the ∂ operator. It satisfies the equation

∂G = ωdiag

where ωdiag is the (1, 1)-form on Σ× Σ that is the volume element along the diagonal and zero elsewhere.

Given G we define the operator ∂
−1

via the formula

(∂
−1

ϕ)(z) =
∫

w
G(z, w)ϕ(w).

Let a1, . . . , an ∈ Ω0,∗(Σ, TΣ) be ∂ closed. We will write down a general formula for the cohomology
class of the factorization product a1 · · · an. Moreover, suppose that a1 is in the orthogonal complement to
harmonic (0, ∗) forms. Then consider the expression

(∂ + dLie + ω)
(
(∂
−1

a1)a2 · · · an

)
= (∂∂

−1
a1)a2 · · · an +

n

∑
j=2

(−1)j+1[∂
−1

a1, aj]a2 · · · âj · · · an

+
n

∑
j=2

(−1)j+1ω(∂
−1

a1, aj)a2 · · · âj · · · an.

The first line follows from the fact that the only non trivial Lie bracket involving the elements a1, . . . , an is
between a1 and aj for j 6= 1. The second line follows from the fact that the cocycle ω is cohomologically
degree one.

Since the term on the left hand side is exact in the cochain complex VirΣ(Σ) we have at the level of
cohomology

⌊a1 · · · an⌋ =
n

∑
j=2

(−1)j
⌊
[∂
−1

a1, aj]a2 · · · âj · · · an

⌋
+

n

∑
j=2

(−1)jω(∂
−1

a1, aj)
⌊

a2 · · · âj · · · an
⌋

. (5)

In particular, we see that ⌊a⌋ = 0 for any a.

6.2.1 Genus zero

We can use this formula to recover well-known relations involving the genus zero correlation functions.
Fix a collection of points (x1, . . . , xn) ∈ Confn(CP1) and suppose ǫ > 0 is such that the collection of disks
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{D(xi, ǫ)} are pairwise disjoint. Fix radial bump functions fxi
(z, z) = f (r2) for the disks D(xi, ǫ) and

consider the (0, 1)-forms fxi
(z, z)dz ∈ Ω0,1(D(xi, ǫ)) which define the holomorphic vector field valued

forms
axi

(z, z) := fxi
(z, z)dz∂z ∈ Ω0,1

(
D(xi, ǫ), TCP1|D(xi,ǫ)

)
⊂ Vir(D(xi, ǫ))

on D(xi, ǫ). On should think of axi
as a mollified version of a point-like observable supported at xi.

We will compute the resulting n-point correlation functions

⌊ax1 · · · axn⌋ ∈ H0
∫

CP1
Vir ∼= C · C.

Here, we note that each axi
is a (linear) degree zero element in the factorization algebra Vir so the resulting

element in factorization homology is also degree zero. We have already computed that H0 of the factoriza-
tion homology on CP1 is one-dimensional spanned by the central element C.

Using the explicit form of the operator ∂
−1

on CP1 we find

∂
−1

(axi
(z, z)) =

1

z− x1
∂z.

For ai = axi
, the recursive equation for the n-point function Equation (5) becomes

⌊ax1 · · · axn⌋ =
n

∑
j=2

(−1)j

⌊[
1

z− x1
∂z, ax j

(z, z)

]
ax2 · · · âj · · · axn

⌋

+ c
n

∑
j=2

(−1)jω

(
1

z− x1
∂z, f j(z, z)dz∂z

) ⌊
ax2 · · · âx j

· · · axn

⌋
.

Let us use this formula to compute the n-point function for small n. We have already remarked that ⌊ax1⌋ =
0. Now, suppose x1 6= x2, then the recursive formula implies

⌊ax1 ax2⌋ = cω
(

∂
−1

ax1 , ax2

)
.

By definition of the cocycle ω, the right-hand side is equal to

c ·
1

12

∫

z

1

z− x1
∂3

z( fx2(z, z))dzdz.

Iterative application of integration by parts together with the fact that
∫

ϕ(z) fx2(z, z)dzdz = ϕ(x2) yields

⌊ax1 ax2⌋ =
c

2

1

(x1 − x2)4
.

We can compute ⌊ax1 ax2 ax3⌋ in a similar way. Since ⌊axi
⌋ = 0 the recursive formula implies

⌊ax1 ax2 ax3⌋ =

⌊[
1

z− x1
∂z, ax2(z, z)

]
· ax3

⌋
−

⌊[
1

z− x1
∂z, ax3(z, z)

]
· ax2

⌋
. (6)

Consider the first term above. We compute the Lie bracket

[
1

z− x1
∂z, ax2

]
=

1

z− x1
∂z( fx2(z, z))dz∂z +

1

(z− x1)2
fx2(z, z)dz∂z.

Applying ∂
−1

to this expression yields the vector field

(
−

1

(z− x2)2(x2 − x1)
+

2

(z− x2)(x2 − x1)2

)
∂z.
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This calculation, combined with the fact that ⌊a · b⌋ = cω(∂
−1

a, b) yields
⌊[

1

z− x1
∂z, ax2(z, z)

]
· ax3

⌋
= −cω

(
1

(z− x2)2(x2 − x1)
∂z, ax3(z, z)

)
+ 2cω

(
1

(z− x2)(x2 − x1)2
∂z, ax3(z, z)

)

= −
c

12

∫

z

1

(z− x2)2(x2 − x1)
∂3

z( fx3(z, z))dzdz +
c

6

∫

z

1

(z− x2)(x2 − x1)2
∂3

z( fx3(z, z))dzdz

=
c

(x3 − x2)4(x2 − x1)

(
−

2

x3 − x2
+

1

x2 − x1

)

The second term in (6) is obtained by sending x2 ↔ x3 in the above formula. In total, the sum is thus

c

(x3 − x2)4(x2 − x− 1)(x3 − x1)

(
−2

x3 − x2

x3 − x2
+

x3 − x1

x2 − x1
+ 2

x2 − x1

x3 − x2
+

x2 − x1

x3 − x1

)
.

This simplifies to the following expression for the 3-point correlator

⌊ax1 ax2 ax3⌋ =
c

(x1 − x2)2(x1 − x3)2(x2 − x3)2
.

For general n, the recursive formula implies that can write the n-point function as

⌊ax1 · · · axn⌋ =
n

∑
j=2

(
1

xj − x1
∂x j

+
1

(xj − x1)2

)
⌊ax2 · · · axn⌋

+
c

2

n

∑
j=2

(−1)j 1

(xj − x1)4

⌊
ax2 · · · âx j

· · · axn

⌋
.

This shows, in particular, that as a function on the space Confn(CP1) the correlation function is not only
holomorphic, it is rational. One can find this expression for the correlation functions in the vertex algebra
literature, see for instance Section 2 of [Zhu96].

7 Application: Virasoro symmetry for holomorphic factorization alge-

bras

7.1 Example: the βγ system

In this section we’d like to explain an example of a family of holomorphic field theories parametrized by
an integer n whose factorization algebra of observables has the structure of a holomorphic factorization

algebra that we denote Obs
q
n with a Virasoro symmetry. We produce a map of factorization algebras on C

from the Virasoro factorization algebra (at a certain central charge) to Obs
q
n. As a corollary we show that

we recover the usual Virasoro vector of the βγ vertex algebra.

First we need to define the factorization algebra Obs
q
n. First, we define a precosheaf of dg Lie algebras.

To a one-dimensional Riemannian manifold U we define the dg Lie algebra

Hn(U) := Ω1,∗
c (U)⊕n⊕Ω0,∗

c (U)⊕n⊕C[−1]

with bracket given by

[ϕ, ψ] :=
n

∑
i=1

∫

U
ϕi ∧ ψi.

Here we write each element in components as ϕ = (ϕ1, . . . , ϕn) ∈ Ω
∗,∗
c (U)⊕n so that ϕi ∈ Ω

∗,∗
c (U). The

factorization algebra is obtained in a similar way to the envelope of a local Lie algebra. To an open set U

we define Obs
q
n(U) := CLie

∗ (Hn(U)). Explicitly

Obs
q
n(U) :=

(
Sym

(
Ω1,∗

c (U)⊕n[1]⊕Ω0,∗
c (U)⊕n[1]

)
, ∂ + ∆

)
(7)
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where ∆ is the Chevalley-Eilenberg differential coming from the Lie bracket. We restrict ourselves to fac-
torization algebras on the Riemann surface C.

It is shown in [CG16a], that Obs
q
1 is a holomorphic factorization algebra whose associated vertex algebra

is isomorphic, to the one-dimensional βγ vertex algebra. Similarly, one has the following

Theorem 7.1 ([CG16a] Theorem 5.3.3.2). The vertex algebra Vert(Obs
q
n) is isomorphic to the n-dimensional βγ

vertex algebra Vn. The vertex algebra Vn has state space spanned by vectors {bi
l , c

j
m} where l < 0, m ≤ 0 and

1 ≤ i, j ≤ n with vertex operators

Y(bi
−1, z) = ∑

l<0

bi
mz−1−n + ∑

l≥0

∂

∂ci
−l

z−1−n

Y(c
j
0, z) = ∑

m≤0

c
j
mz−m − ∑

m>0

∂

∂b
j
−m

z−m.

Proposition 7.2. There is a map of factorization algebras on C

Φ : VirC
c=n → Obs

q
n

commuting with the S1 action. This map quantizes the map of factorization algebras

Φcl : VirC
c=0 → Obscl

n .

In particular, the map of factorization algebras produces a map of vertex algebras

Vert(Φ) : Vert(VirC
c=n)→ Vert(Obs

q
n).

Concluding the proof of the proposition we will see explicitly that the map of vertex algebras produced by
the above proposition recovers the usual conformal vector of the βγ vertex algebra.

7.2 Proof of Proposition

The proof is based on an explicit calculation in terms of Feynman diagrams in a version of renormalization
developed in [Cos11] and [CG16b].

To describe the map in Proposition 7.2 It is necessary to describe the factorization algebra Obs
q
n in terms

of an effective family of factorization algebras and functionals as in [CG16b]. The general formalism starts
with a classical field theory defined by a symplectic form of cohomological degree −1 and produces from
an effective quantization, as in [Cos11], a factorization algebra of quantum observables.

The fields of the theory are

En := Ω0,∗(C)⊕n ⊕Ω1,∗(C)⊕n.

We write the fields as (γ, β) (hence the name), and the components as γ = (γ1, . . . , γn), β = (β1, . . . , βn).
The symplectic pairing is

〈γ, β〉 =
n

∑
i=1

∫

C
γiβi

which is easily seen to have cohomological degeee −1. With this pairing, we can express En as Ω0,∗(C)⊗
V ⊕ Ω1,∗(C) ⊗ V∗ where V is a complex n-dimensional vector space. The pairing comes from the dual
pairing on V.

The classical observables supported on Σ are simply the space of algebraic functions on the space of
fields. Keeping track of the right notion of duals, for any open U ⊂ C we define

Obs
cl
n (C) = Sym

(
Ω

1,∗
c (C)⊕n ⊕Ω

0,∗
c (C)⊕n

)
.

One checks immediately that this construction defines a factorization algebra on C.
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The classical action of holomorphic vector fields is a very natural one. Given any element α ∈ Ω∗,∗(U)
and any section of the holomorphic tangent bundle X ∈ Γ(U, T1,0U) we define

X · α = LXα

where LXα denotes the Lie derivative of α by X. This definition naturally extends to elements X ∈ LC(U) =

Ω0,∗(U, T1,0U). This action of LC on forms leads to an action of the factorization algebra Obs
cl
n as follows.

For X ∈ LC define the holomorphically translation invariant local functional ILX ∈ Oloc(En) by

ILX (γ, β) =
∫

β ∧ (X · γ).

Note that this local functional is of cohomological degree −1 and so we have described a map

IL : LC → Oloc(En)[−1].

The space of local functionals shifted up by one Oloc(En)[−1] is itself a dg Lie algebra with Lie bracket
given by the Poisson bracket {−,−} induced from the pairing 〈−,−〉. It is immediate to check that IL

is compatible with this bracket and hence defines a map of local Lie algebras on C. This implies that IL

determines a Maurer-Cartan element of C∗loc(L
C;Oloc(En))[−1]) which we think of as encoding the action

of holomorphic vector fields on the classical field theory.
A translation invariant local functional determines a classical observable supported on any open set in

C. For each U ⊂ C we then extend IL to a map of commutative dg algebras Φcl(U) : Sym(Lc(U)[1]) →

Obs
cl
(U). These combine to give a map of factorization algebras

Φcl : Vir0 → Obs
cl

.

The naive BV-Laplacian ∆0 defined by contraction with the integral kernel K0 of the symplectic form

〈−,−〉 is ill-defined on Obs
cl
n as it involves pairing distributional sections. This was solved in the above

description by working with a smaller class of observabels: one defines

Obscl
n (C) ⊂ Obs

cl
n (C)

to be the subspace of non-distributional sections of the appropriate vector bundles. Then, on Obscl
n the

operator ∆0 is well-defined. Note that when we equip Obscl
n (C) with the differential ∂ + ∆0 we obtain Obs

q
n

as defined in (7). It is immediate that the factorization structures coincide.
There is another solution that is necessary to describe the map in Proposition 7.2 that involves mollifying

the operator ∆0 to a family of operators ∆L for each L > 0. This approach is outlined in wide generality in

Chapter 9 of [CG16b]. In this example there is an obvious choice on how to mollify ∆0. Let ∂
∗

be the Hodge

dual operator to ∂ with respect to the Euclidean metric on C. Then the commutator [∂, ∂
∗
] is the Hodge

laplacian. We let KL,n be the integral kernel for the operator e−L[∂,∂
∗
]. It is the unique graded symmetric

element KL,n ∈ En ⊗ En, for L > 0, satisfying

〈KL,n(z, w), ϕ(w)〉w = (e−L[∂,∂
∗
]ϕ)(z)

for all ϕ ∈ En. Explicitly, one has KL,n = KL ⊗ (IdV + IdV∗) where

KL(z, w) =
1

4πL
e−|z−w|2/4L(dz⊗ 1− 1⊗ dw).

The mollified BV Laplacian is the operator ∆L defined by contraction with KL. Note that this operator is

well-defined on Obscl
n . The propagator of the theory is PL

ǫ (z, w)⊗ (IdV + IdV∗) where

PL
ǫ (z, w) =

∫ L

t=ǫ

1

16πt
e−|z−w|/4tdt.
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The space of global quantum observables at scale L is the complex

Obs
q
n(C)[L] :=

(
Sym

(
Ω

1,∗
c (C)⊕n ⊕Ω

0,∗
c (C)⊕n

)
, ∂ + ∆L

)
.

To get a factorization algebra structure we need to provide the space of quantum observables supported
on an arbitrary open U ⊂ C. This is more subtle than in the classical case since the operator ∆L has
support everywhere on the complex line. In fact, to have a reasonable definition we need to consider the
BV Laplcian for a more general class of parameterices. This is developed fully in Chapter 8 of [CG16b]. We
will not provide details here, as the exact definition of the factorization structure will not be used. The main
result we will need is the following.

Proposition 7.3. There is a quasi-isomorphism of factorization algebras on C

Obs
q
n
≃
−→ Obs

q
n

where on the right hand side we use the effective BV quantization provided by the regularized BV operator.

We are given a Maurer-Cartan element IL that encodes the action of holomorphic vector fields on the
classical factorization algebra. Since the field theory underlying the factorization algebra is free, the action
lifts to an action of a shifted central extension of holomorphic vector fields. This implies that we have a
map of factorization algebras

Φ : UαL→ Obs
q
n (8)

for some cocycle α ∈ C∗loc(L) parameterizing the shifted central extension. In the language of effective
quantization of BV theories the cocycle α is the L→ 0 limit of the obstruction α[L] of the one-loop quantum
interaction

IL[L] = ∑
Γ∈Graphs of genus≤1

1

|Aut(Γ)|
WΓ(PL

0 ⊗ (IdV + IdV∗) ; IL)

to satisfy the quantum master equation:

∂IL[L]dL IL[L] +
1

2
{IL[L], IL[L]}L + h̄∆L IL[L] = α[L].

Here, IL[L] ∈ C∗Lie(L;O(En)) is defined by homotopy RG-flow using the weight expansion in terms of con-

nected graphs of genus less than or equal to one. There is a subtle point, the propogator PL
0 is distributional

by nature so a priori the expression for IL[L] may not exist. The fact that IL[L] is well-defined is a hallmark
of holomorphic theories having no counter terms when one uses the so-called “chiral gauge”.

With a calculation similar to that of Corollary 16.0.5 in [Cos] we have the following description of the
effective obstruction cocycle α[L].

Lemma 7.4. ([Cos] Corollary 16.0.5))The obstruction α[L] is computed by the weight

lim
ǫ→0

WΓ(PL
ǫ ⊗ (IdV + IdV∗) , Kǫ ⊗ (IdV + IdV∗) ; IL)

where Γ is the one-loop connected wheel with two vertices. We attach the propagator PL
ǫ to one inner edge and KL to

the other inner edge.

With this lemma in hand we directly compute α[L]. For X = f (z, z)∂z and g(z, z)dz∂z in Lc(C) we have

α[L]( f ∂z, gdz∂z) = n lim
ǫ→0

∫

Cz×Cw

f (z, z)
(

∂zPL
ǫ (z, w)

)
g(z, z)dz (∂wKǫ(z, w)) .

The factor n comes from the contraction of the tensors depending on V. Next, we compute

∂wKǫ(z, w) =
1

4πǫ

z− w

4ǫ
e−|z−w|2/4ǫ.
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Similarly,

∂zPL
ǫ (z, w) =

∫ L

t=ǫ

1

4πt

(z− w)2

(4t)2
e−|z−w|2/4tdt.

After making the change of coordinates (y = z− w, w), and plugging in the expressions above we obtain
an expression for the integral inside the ǫ→ 0 limit

1

16π2

∫

Cy×Cw

f gd2yd2w
∫ L

t=ǫ

1

ǫt

1

(4ǫ)(4t)2
y3 exp

(
−

1

4

(
1

t
+

1

ǫ

)
|y|2

)
. (9)

If ϕ is any compactly supported function then integration by parts yields the relation

∫

y
ϕ(y)yke−a|y|2d2y =

1

ak

∫

y

(
∂3

y ϕ
)
(y)e−a|y|2d2y.

Applying this to the integral in (9) we obtain

α[L]( f ∂z, gdw∂w) = n lim
ǫ→0

1

16π2

∫

Cy×Cw

∂3
y( f g)(y, w)

∫ L

t=ǫ

ǫ

(ǫ + t)3
exp

(
−

1

4

(
1

t
+

1

ǫ

))
.

Finally, performing integration in the y-direction using Wick’s formula, the right-hand side becomes

n
1

2π

(∫

Cw

∂3
w f gd2w

)
lim
ǫ→0

∫ L

t=ǫ

ǫ2t

(ǫ + t)4
dt.

The t-integral converges and in the ǫ→ 0 limit

∫ L

t=ǫ

ǫ2t

(ǫ + t)4

ǫ→0
−−→

1

12
.

Note that there is no longer a dependence on the L > 0 parameter. This means that for any L the functional
α = α[L] is already a local functional representing the shifted central extension. In conclusion we have
calculated

α( f ∂z, gdz∂z) =
1

2π

n

12

∫

Cz

∂3
z f gd2z.

This is precisely the defining cocycle for the Virasoro factorization algebra of charge c = n. In conclusion
we see that the map of factorization algebras (8) becomes

Φ : Virc=n → Obs
q
n

as desired.
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