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Contact-Implicit Trajectory Optimization using an Analytically Solvable
Contact Model for Locomotion on Variable Ground

Iordanis Chatzinikolaidis1, Yangwei You2, and Zhibin Li1

Abstract— This work presents a contact-implicit trajectory
optimization framework utilizing an analytically solvable con-
tact model to facilitate interactions with hard, soft, and slippery
environments. Specifically, we propose a novel contact mod-
eling that can be computed in closed-form, satisfies friction
cone constraints and can be embedded into direct trajectory
optimization frameworks without complementarity constraints.
The closed-form solution decouples the computation of the
contact forces from other actuation forces; this property is
used to formulate a minimal direct optimization problem ex-
pressed with configuration variables only. Our simulation study
demonstrates the characteristics and advantages over the rigid
contact model and a trajectory optimization approach based
on complementarity constraints. The proposed model enables
physics-based optimization in a wide range of interactions with
hard, slippery, and soft grounds in a unified manner, expressed
by two parameters only. By computing trotting and jumping
motions for a quadruped robot, the proposed optimization
demonstrates the versatility of multi-contact motion planning
on various surfaces with different physical properties.

I. INTRODUCTION

Physical interactions in humans, animals, and robots re-
quire models of the contact properties in the environment to
plan movements. The necessary contact forces are generated
due to intricate interactions between the contact media and
are in practice difficult to model. Therefore, proper modeling
of these interactions is important for a motion planning
framework that aims to produce contact-rich behaviors on
variable grounds, such as locomotion on soft floors.

Environments in our daily life exhibit many properties:
they can be hard, soft, slippery, or combinations thereof, as
shown in Fig. 1. In terms of modeling, some of these aspects
are usually missing in typical motion planning because most
contact interactions are assumed rigid. For example, two
usual approaches are using either spring-damper [1] or ad hoc
penalization schemes [2]. In this work, we present a novel
contact model in a principled formalism that can capture such
properties without the drawbacks of spring-damper models.

A common solution in complex multi-contact planning is
to split the original problem in a series of stages, obtaining
more tractable subproblems that are still able to solve the
original one. Examples are the work in [3] for general
contact plans or the work in [4] with a pre-specified contact
sequence. Their main benefit is fast computation since each
stage is usually designed to be efficiently solvable. However,

1Authors are with the Edinburgh Centre for Robotics and School of In-
formatics, The University of Edinburgh, Edinburgh, UK. Corresponding au-
thors’ emails: iordanis.cs@gmail.com, zhibin.li@ed.ac.uk.

2Author is with the Institute for Infocomm Research, Agency for Science,
Technology and Research (A*STAR), Singapore.

Slippery ground Soft ground

Fig. 1: Dynamic motions computed by the proposed frame-
work: trotting on slippery ground (left); jumping on soft
ground (right). (See slippery, soft ground effects in video).

it is challenging to properly design these stages to compute
general plans, without restricting the solution space or lead-
ing to infeasibilities for the subsequent stages. The focus
here is on approaches that avoid such decompositions and
can reason about the generated motion plans holistically.

Trajectory optimization (TO) has emerged as a powerful
framework to design locally optimal trajectories for highly
dynamical and underactuated systems [5], [6]. One of its
main benefits is that it allows the setting of high-level goals
expressed as a cost function while outputting a variety of
motions as solutions. This is especially important for legged
locomotion and multi-contact motion. Traditional approaches
struggle to generalize across different scenarios or non-
periodic motions, while TO methods are significantly more
versatile [7], [8]. Expressing complex multi-contact planning
through a TO lens enables us to address a wide range of
problems with minimum modifications.

A significant problem in TO with contacts is proper mod-
eling as planning requires discontinuous and combinatorial
reasoning. Thus, some approaches focus on embedding part
of the problem in the TO description. This is possible for
simple legged systems; for instance, one-leg hoppers [9]
and bipeds with a pre-defined periodic gait pattern like
running [10]. While this leads to problems with a very
specific structure that are usually easier to solve, adapting to
different legged configurations is difficult. This work focuses
on approaches that work for arbitrary legged systems. This is
possible for contact-implicit formulations that do not require
a priori specification of the contact sequence.

An alternative approach is to describe the problem in
a bilevel fashion: The outer level updates the state of the
model, while the inner level computes the contact informa-



tion [11], [12]. Bilevel methods are usually solved by formu-
lating the Karush–Kuhn–Tucker conditions of the inner level,
leading to a mathematical program with complementarity
constraints (MPCC) [13]. Contrary to bilevel approaches, our
work focuses on direct methods that formulate and solve the
problem in a single level, such that the optimizer can reason
about contacts by optimizing forces, with benefits for long-
term physical reasoning [14].

Enabling the optimizer to directly reason about contact
forces was proven very powerful for generating complicated
contact-implicit motion plans. One way is to allow contact
forces to act from a distance [15]; while this is important for
discovering contacts, penalizing these forces for physically
realistic motion can be challenging. A more principled for-
malism is introduced in [16], where the problem is elegantly
posed as an MPCC. This allows leveraging relaxations for
this class of problems already studied in the optimization
literature. Albeit these relaxations, a fundamental problem
lies in the complementarity constraints, which usually violate
constraint qualification tests [6]. Some of these constraints
are due to the contact model used.

Therefore, our principal motivation is to introduce a con-
tact model that does not require the specification of com-
plementarity constraints. Such an idea is discussed in [17],
where they propose a pair of convex optimization problems
that compute the contact forces for simulation purposes.
For direct TO, the previous work either focused on MPCC
formulations or used a spring-damper model [7], [18].

In this work, we present a TO formulation with a contact
model expressed as a pair of quadratic problems that can be
computed in closed form. Thus, complementarity constraints
are not required while problems associated with spring-
damper models such as energy injections, stiff differen-
tial equations, and difficulties imposing the friction cone
constraint, are avoided. Furthermore, our framework allows
deriving the equations of motions for physical interaction
with environments characterized by different stiffness, vis-
cosity, and friction. By using the proposed framework, a
variety of motion plans can be computed for hard, soft, and
slippery surfaces by setting a small number of parameters.
The contributions are summarized as follows:
• An analytically solvable contact model suitable for

direct contact-implicit TO, which can be utilized in for-
mulations without complementarity constraints, while
satisfying unilaterality and friction cone constraints.

• The proposed contact model is generic and can be used
to compute motion plans on hard, soft, and slippery
surfaces in a unified manner.

• A TO framework that integrates the new contact model
for generating contact-implicit motion plans for a high
degree of freedom robot, demonstrating the advantages
of the proposed method with extensive comparisons
performed against the rigid contact model and a TO
formulation with complementarity constraints.

The remaining sections are organized as follows. Sec. II
describes how contacts are resolved in a simulation setting
and introduces two contact models. In Sec. III, the proposed

contact model is derived and the overall direct TO formu-
lation is elaborated. Sec. IV presents the comparisons with
(i) a different contact model, (ii) an alternative direct TO
formulation based on complementarity constraints, followed
by a variety of computed quadrupedal motions using our
proposed TO framework on various terrains with different
properties. Lastly, we summarize and discuss future outlooks
in Sec. V.

II. BACKGROUND AND PRELIMINARIES

A. Dynamics with contacts

The equations of motion of a typical robot model are

M(q)q̈ +H(q, q̇) = Sτ +
∑
i

JTi (q)fi, (1)

where M is the mass matrix, H the vector of nonlin-
ear forces (Coriolis, centrifugal, and gravitational), S is
a selection matrix that maps actuated joint torques τ to
generalized coordinates, while Ji denotes the Jacobian of the
i-th contact and fi the corresponding force. We simplify the
notation by dropping explicit dependence on quantities and
write M instead of M(q), etc. Furthermore, we denote the
generalized velocity and acceleration as the time derivative of
the configuration, though this is not necessarily the case; for
example, if the floating base is represented using quaternions,
the angular velocity of the base is not equal to the rate of
change of the quaternions.

Next, we follow a similar treatment with time-stepping
approaches, e.g. [19], [20]. Equation (1) is discretized using
an Euler approximation to obtain the discrete version:

Mk (q̇k+1 − q̇k) = h(Sτk −Hk) + JTk λk, (2)

where h is the time step and λk corresponds to the con-
catenation of the contact impulses at time step k. Next, the
discrete equations of motions are projected in contact space

Jk (q̇k+1 − q̇k) = JkM
−1
k

[
h(Sτk −Hk) + JTk λk

]
. (3)

Alternatively, (3) can be expressed as

v+ = Aλ+ b(τ ) + v−, (4)

with v+ = Jkq̇k+1, v− = Jkq̇k, b = hJkM
−1
k (Sτk −Hk),

and A = JkM
−1
k JTk .

Based on (4), two cases are identified [19]: (i) The forward
contact dynamics case, where we want to compute (v+,λ)
given (A, b,v−); (ii) The inverse contact dynamics case,
where we want to compute (b,λ) given (A,v−,v+). The
forward contact dynamics is more relevant in simulation,
while the inverse is more relevant in a TO setting. In the
latter case, decomposing actuation from contact impulses for
an underactuated robot model is challenging, which is an
aspect addressed in this work.

Finally, the contact impulses should satisfy unilateral and
friction cone constraints, i.e. each impulse must satisfy

Fµi
=
{
λi | λn(i) ≥ 0, ‖λt(i)‖2 ≤ µ2

iλ
2
n(i)

}
, (5)

where λi =
[
λt(i) λn(i)

]T
are the tangential and normal

components. Equations (4) and (5) form the backbone of



impulse-based time-stepping methods [21]. The contact mod-
els discussed next will provide different approaches on how
to solve them.

B. Contact models

Nonlinear complementarity problem (NCP). This contact
model augments (4) and (5) with an additional constraint:
That either the contact normal distance or the normal contact
impulse at the next time instant is zero. This is usually de-
scribed succinctly as 0 ≤ λn ⊥ d+ ≥ 0, where d+ is the next
step normal gap distance required to be nonnegative to avoid
penetration. In a simulation, d+ is generally unknown, so this
condition is approximated by performing its Taylor expan-
sion and forming a complementarity constraint between the
gap velocity and normal contact impulse [20]. Apart from
the friction cone constraint, the tangential components of the
impulse are specified via the maximum dissipation principle
(MDP). It specifies that friction forces maximize the rate of
the kinetic energy dissipation. This principle was introduced
in [22] for a frictional contact at a single point.

Convex optimization formulation. The convex contact
model relaxes the complementarity condition by forming
a quadratic problem that penalizes movement in contact
space [19]. In the forward dynamics case, it is specified by
the quadratically constrained quadratic program [20]

min
λ

1

2
λT (A+R)λ+ λT (b+ v−)

s.t. λi ∈ Fµi , ∀i
(6)

that computes the contact impulses, where R is a positive
definite matrix that makes the solution unique, differentiable,
and invertible. Physically this makes the contact model soft;
for hard contacts, there can be an infinite number of contact
impulse combinations. The inverse dynamics case is well-
defined and the impulses are given by

min
λ

1

2
λTRλ+ λTv+.

s.t. λi ∈ Fµi
, ∀i.

(7)

For a diagonal R, the latter optimization problem splits into
independent problems, one for each contact.

III. TRAJECTORY OPTIMIZATION FORMULATION

A. Optimal control problem

The continuous optimal control problem (OCP) can be
expressed as

min
q(t),τ (t)

lf (qT ) +

∫ T

0

l(q) + c(τ )dt (8a)

s.t. M(q)q̈ +H(q, q̇) = Sτ + JT (q)f (8b)

f ∈

 argmin
f

k(q̇,f)

s.t. f ∈ Fµ
(8c)

g (q, τ ) ∈ Z (8d)

q(0) = q0

q̇(0) = q̇0
(8e)

t ∈ [0, T ], (8f)

where l(q) is an additive cost associated with the joint
trajectory, lf (qT ) is the final state cost, and c(τ ) is the
cost of the joint torques. These can be general sufficiently
smooth functions, but we focus on positive definite quadratic
forms. Equation (8b) specifies the dynamics of the system,
where J(q) and f are the concatenated Jacobians and contact
forces, respectively. The constraints (8d) specify general path
constraints imposed on the optimal trajectory, e.g. joint and
torque limits. Finally, (8e) and (8f) specifies the initial state
and the time.

The optimization problem in (8c) specifies the contact
forces via a mathematical program which makes (8) a
bilevel optimization problem. The first approach is to provide
gradients to the upper level via sensitivity analysis, but this
can make long-term physical reasoning hard [14]. The second
approach is to introduce the contact forces as variables,
and then describe (8c) via its first-order necessary (KKT)
conditions; that is, by imposing complementarity constraints.
For example, the NCP contact model requires constraints
for avoiding penetrations and the KKT conditions of the
MDP [23]. A third approach is to solve (8c) for the contact
forces, which are then not introduced as variables, and the as-
sociated complementarity constraints becomes unnecessary.
We will present such an approach next.

B. Contact model with analytical solution

First, the solution for the normal components is specified.
We call it the frictionless case. To obtain a unique solu-
tion, the strict non-penetration constraint is replaced with a
quadratic program, which has a unique solution and penalizes
penetrations and the magnitude of the normal forces, while
satisfying unilateral contact impulse constraints.

Given this solution, the tangential components are com-
puted for what we call the friction case. Instead of the MDP,
the velocities in contact space are minimized as in [19].
Since we focus on TO, the advantage of this approach is that
an invertible contact model for the tangential components
analogous to (7) can be formulated, and its unique minimum
can be analytically derived.

1) Frictionless case: The following quadratic problem
specifies each normal component as

min
λn(i)

1

2rn(i)
λ2n(i) + λn(i)d

+
i (q).

s.t. λn(i) ≥ 0.

(9)

The solution to this problem is given by

λn(i) = 2rn(i) max
{
−d+i (q), 0

}
. (10)

By examining the solution, penetration occurs when the con-
tact impulses are activated and become positive; otherwise,
they are zero. Furthermore, rn(i) expresses the trade-off
between the magnitude of the normal impulse and the pen-
etration depth. The larger rn(i), the smaller the penetration.

2) Friction case: The optimization problem that mini-
mizes the velocities in the contact frame for the inverse



dynamics case has the form

min
λt(i)

1

2
λTt(i)R

−1
t(i)λt(i) + λ

T
t(i)v

+
t(i)

s.t. ‖λt(i)‖2 ≤ µ2
iλ

2
n(i),

(11)

where Rt(i) = diag
{
rt(i), rt(i)

}
. Essentially, rt trades off

tangential velocity and force; the bigger its value, the more
tangential forces are penalized.

This is a projection to circle problem and two cases can
be identified. If the solution lies inside the cone, the problem
is an unconstrained quadratic one, and the solution is

λt(i) = −Rt(i)v+t(i). (12)

Otherwise, the solution lies on the boundary

λt(i) = −µiλn(i)v̂+t(i), (13)

where v̂+t(i) = v+
t(i)/‖v+

t(i)
‖.

For rt(i) � 0 the solution approaches the frictionless case,
while for rt(i) → 0 energy dissipation is increased. The
tangential components of the impulse are given by (12) if
rt(i)‖v+t(i)‖ ≤ µiλn(i); otherwise, they are given by (13).
Finally, the tangential force is opposite to the tangential
velocity; thus, the reaction force is dissipative.

3) Smoothing: For continuous optimization problems,
smoothness of the objective and the constraints for at least
the second derivative is required [24]. From the previous
analysis, it is clear that the computed impulses contain
switches that can cause problems for the optimizer. There-
fore, a procedure to remove the discontinuities is discussed
below. First, the solution for the friction case is expressed
using a max function,

λt(i) = v̂
+
t(i) max

{
−µiλn(i),−rt(i)‖v+t(i)‖

}
. (14)

As a result, a smooth approximation to the max function
is required, which is now present in the solutions for both
cases. Multiple definitions for a smooth max function exist,
and the selected softmax function is

smax(α, β; ε) =
α+ β +

√
(α− β)2 + ε2

2
, (15)

where for ε > 0→ 0 the approximation becomes stricter.

C. Direct transcription

According to the solutions (10) and (14), the contact
impulses are described as a function of joint configurations
and velocities, and the Jacobian can be used to map these
quantities to the contact velocity in (14). Afterwards, these
terms can be substituted in (8b), which becomes a function
of the joint positions, velocities, and accelerations only.

Note that (8) is an infinite-dimensional continuous prob-
lem that can be transcribed to a finite discrete one [6]. An
implicit Euler discretization is selected due to its numerical
properties, e.g. it is an A-stable method. Thus, problem (8)
can be expressed as

min
qk,q̇k,τk

lf (qN ) + h

N−1∑
k=1

lk(qk, q̇k) + ck(τk) (16a)

TABLE I: Parameters for the unactuated rigid body models

Model Position
[m]

Orientation
(MRP)

Body angular
vel. [rad/s]

Body linear
vel. [m/s]

Ball
[

0.1
−0.75
0.3

] [
−0.1617
0.566

−0.0809

] [
−0.372
1.208
−0.834

] [
−1.379
−1.386
−0.743

]
Brick

[
0.1

−0.75
1.7

] [
0
0
0

] [ −1
−0.2
0.126

] [
0
0
0

]

s.t. Mk+1(q̇k+1 − q̇k) = h (Sτk+1 −Hk+1

+JTk+1λ(qk+1, q̇k+1)
)

(16b)
hq̇k+1 = qk+1 − qk (16c)

g (qk, τk) ∈ Z (16d)

q0

q̇0

=

=

q0

q̇0
(16e)

k ∈ [0, N − 1]. (16f)

Since (16c) is linear to joint velocities, they can be
removed from the optimization problem by substituting the
right-hand side. Similarly, joint torques are split into actuated
τ and underactuated τu parts using (16b) [12]. Then τ
is given as a function of the joint configurations and can
be substituted directly on the objective (16a). Finally, the
underactuated dynamics should be zero, yielding the overall
trajectory optimization problem

min
qk

lf (qN ) + h

N−1∑
k=1

lk(qk) + ck(τ (qk, qk+1)) (17a)

s.t. Mu
k+1(qk+1 − 2qk + qk−1) = h2(JuTk+1λk+1

−Hu
k+1) (17b)

g (qk, τk) ∈ Z (17c)

q0

q−1

=

=

q0

q0 − hq̇0
(17d)

k ∈ [0, N − 1], (17e)

where (·)u denotes the unactuated part of the quantity. It is
worth noting that the Hessian and Jacobian remain sparse.

Finally, the modified Rodrigues parameters (MRP) are
selected [25] to represent the floating base. As any three-
parameter orientation parameterization, it possesses a singu-
larity. For the MRP representation, this singularity is located
after a full revolution. That places the singularity as far as
possible from the origin. The polynomial expression and lack
of unit norm constraints make this representation a suitable
candidate for nonlinear optimization.

IV. RESULTS AND VALIDATION

Next, simulations are conducted to quantitatively validate
the proposed formulation. For all the cases, the optimization
problems are formulated with CasADi [26] (for automatic
differentiation), and solved by IPOPT, a large scale interior-
point solver [27]. IPOPT allows the selection of a lin-
ear solver for computing the Newton steps; we used the
MA57 solver when performing comparisons and MA86 other-
wise [28]. The rigid body dynamics of the models are com-
puted using the RigidBodyDynamics.jl library [29].
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Fig. 2: By changing the value of the parameter rt, we can
obtain a family of solutions that range from the frictionless
to the dissipative friction case.

As in all nonlinear optimization problems, proper scaling
is important. Since configurations are the only variables,
scaling here is straightforward and only the position of the
floating joint requires special treatment. For the constraints
and objective function, we use the default gradient-based
scaling available in IPOPT.

First, the results for two basic models are studied before
proceeding to a complex robot model: A rigid ball model that
constitutes the simplest 3D floating model with one contact
point and a rigid brick with eight contact points. These
models are suitable for benchmarking and require minimum
parameter tuning; the small number of states and the unique
state solution provide a framework for direct comparisons.
For benchmarking, we avoided more complicated models
which can make the results less comparable due to the
high-dimensional representations and non-trivial choices of
parameters.

The initial state for all ball and brick simulations is
summarized in Table I, where the root body spatial velocity
is defined in the body frame, while we use ε = 0.001 for
smoothing. Regarding the simulated motions, the ball and the
brick were dropped on a flat ground. Parameter rn is selected
so that no bouncing occurs. Thus, for the frictionless case,
the ball slides on the surface, while it rolls when friction
is present. The dropped brick touches the plane with a line
contact. It slowly rotates until settling on a large side—where
four vertices are active contact points.

A. Comparison with a physics simulation

To evaluate the contact impulses computed by the pro-
posed approach, we performed a comparison with the rigid
contact model which is typically used in simulation engines.
The aim is to demonstrate that the model can represent differ-

TABLE II: Running time and iterations of the MPCC versus
our proposed formulations

Method MPCC Proposed
Wall time [s] Iter. Wall time [s] Iter. n

Ball
frictionless 0.773± 0.011 24 0.507±0.016 15 5

Ball friction 3.78± 0.047 104 2.374±0.023 64 5
Brick

frictionless 1340± 15.27 6034 508.83±0.56 1893 3

Brick
friction 1151± 20.18 3015 317.68±4.69 819 3

ent environmental interactions by an intuitive selection of its
parameters. Assuming that the frictionless case corresponds
to an extremely slippery interaction, our model can simu-
late very slippery conditions (numerically identical to the
frictionless one), up until minimally slippery (numerically
identical to the friction case).

For the primitive models, the optimization is equivalent
to a root-finding problem. We perform comparisons with the
nonlinear complementarity model with the Projected Gauss-
Seidel (PGS) solver described in [20]. This implementation
uses a semi-implicit Euler integration scheme for the dy-
namics (so that the problem remains linear) while we use an
implicit one. Furthermore, that trajectory is computed step
by step since the computation is done in a simulation setting,
whereas our TO formulation computes the whole trajectory
simultaneously.

Fig. 2 illustrates the position and orientation of the ball.
First, the PGS solver was executed with and without friction
and the resulting two solutions are plotted. Afterwards, rn =
100N/m is fixed for the normal component, and a parameter
sweep is performed for rt, with µ = 0.5. It is verified
that by changing the parameter rt, we obtain the friction
and frictionless solutions, as well as additional in-between
solutions; these correspond to slipping motions if rt is small,
while more dissipative as rt increases.

B. Comparison with an MPCC formulation

An approach most related with our proposed is the one
presented in [23], which is an extension of [16]. Therefore,
we perform numerical comparisons to understand their dif-
ferences. The results are analyzed in terms of the number of
iterations and solution time. Two comparisons are performed
for each model, one in a frictionless setting and one with
friction. The mean, standard deviation, and iterations are
shown in Table II, where each simulation is repeated n times.

For the comparison, the relaxation suitable for interior-
point methods is utilized [23]. The dynamics for both meth-
ods are enforced using the inverse dynamics approach in
Sec. III-C. Regarding the slack variables weighing in [23],
α = 1 is selected. The other aspects of the mathematical
program with complementarity constraints remain intact.

1) Ball model: For both methods, the friction coefficient
is µ = 0.5, and our model parameters were chosen as rn =
100N/m and rt = 1N/m/s in the friction case, to match the
response with the contact model used by the MPCC. We
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Fig. 3: Comparison of the normal impulses at the four contact
points (CP) of the brick with friction. The contact impulses at
the other four unactivated vertices are zero and not displayed.

initialize both methods with zero variables, while we select
a time step h = 0.1s and final time tf = 1s.

The root-mean-square error (RMSE) for the frictionless
case is 0.0218N (only normal force component), while for
the friction case is (0.0037, 0.007, 0.0218)N ; the ball’s mass
is 0.2kg. Note that tangential forces are generated only at the
knot after the contact event and are zero otherwise. Also, the
MPCC method uses a linearized friction cone, whereas we
use the full cone model. The linearized version does not
properly capture solutions that lie on the boundary.

2) Brick model: We select µ = 0.6, rn = 1000N/m and
rt = 10N/m/s for our model’s parameters. We initialize both
methods with zero variables, with a time step h = 0.05s for
a horizon of tf = 3.5s.

In the frictionless case, the number of variables for the
MPCC formulation is 1540, while our formulation has 420.
Both methods have the same number of equalities (420),
while MPCC additionally includes 2240 inequalities. It is
also very common to experience plateaus during the iter-
ations with the MPCC approach, while we avoid such a
problem by adapting parameter ε. These plateaus are the
main reason for the increased number of iterations in the
brick frictionless case.

Similarly, the number of variables of the MPCC problem
is 6580 for the case with friction, while for the proposed
method is again 420. The MPCC problem has 2660 equality
and 8960 inequality constraints, while ours has 420 equalities
and zero inequalities. The computed normal contact impulses
are shown in Fig. 3, where the results show only the four
activated contact points for clarity.

3) Overall remarks: Based on the comparison, there are
two characteristics that are advantageous:

• The size of the optimization problem is kept minimum
as we do not introduce extra variables (e.g. slack vari-
ables, Lagrange multipliers). This is important because
general-purpose nonlinear solvers usually demonstrate
higher than linear in time complexity since they do not
utilize block factorization for solving the problem. Also,
the optimizer’s search space is smaller.

Fig. 4: Trotting on hard ground snapshots (left to right).

• The parameters in our proposed method are few and
have direct physical meaning, which makes selection
intuitive.

For the same problem instantiation, our method generally
converges faster and requires a smaller number of steps. In
our experience, choosing parameters that produce similar
behaviors is not hard. For the MPCC method, there are
no parameters to select and the performance is fixed for a
specific problem instantiation.

Finally, our comparison did not include a cost function
for reasons explained before. This is favorable for the
MPCC formulation because selecting α in general can be
challenging. For actuated systems with multiple solutions,
α needs to be correctly tuned to drive the slack variables to
values that sufficiently minimize complementarity violations,
without affecting the optimized task. In our approach, there
are no such parameters. Once appropriate values for rn and
rt are selected to model the environment, they do not change
between different tasks.

C. Anymal trotting on hard and slippery surfaces

The proposed method is applied to the quadrupedal robot
Anymal. We use similar gains as in [7] to generate trotting
gaits. The torque limits of the system (40Nm) are set as
inequality constraints. Since the limits are provided, the
torque penalization term in the cost function is decreased
while the joint velocity penalization term is increased.

Furthermore, a step size of h = 0.08s and a horizon
of tf = 4s is selected, resulting in a problem with 900
variables. By selecting this step size, we aim to demonstrate a
positive aspect of our contact model: it is able to handle such
large step sizes while not suffering from numerical stiffness.
The step size is ×40 bigger than the one used in [7] and
might not capture the maximum impulse. Here, we aim to
compute a feasible motion plan which can be afterwards
interpolated to generate reference trajectories for commaning
such a motion on a robot. Since most robots have rubbers on
the feet, a certain level of shock absorption not captured by
the model is expected. Moreover, problems of short impulses
are mitigated in case of locomotion on soft ground.

We initialize the optimizer with a nominal standing config-
uration for the whole duration; the same configuration is set
as initial and desired final. This initialization is used only for
the simulation on hard ground. Using this solution, we ini-
tialize the same optimization problem on a slippery surface.
The purpose of this is to demonstrate the motion adaptations
due to different environmental properties. Snapshots of the
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Fig. 5: The joint position and torque (40Nm limit) trajecto-
ries of the left front leg (top) and left hind leg (bottom) for
the trotting motion on hard ground.

computed motions are shown in Fig. 4, while in Fig. 6 the
position in the x axis for both cases is shown.

1) Hard ground: For this case, we select parameters rn =
20N/m and rt = 20N/m/s. The diagonal legs step together as
expected in a trotting gait, while four steps are taken in total.
The duration of each step is different, as shown in Fig. 5; a
possible reason is due to the requirement of stopping at the
end of the motion. In this case, to start and finish the periodic
gait on time, a transient state of fast stepping is necessary.

2) Slippery ground: To simulate a slippery ground, we
select rt = 4N/m/s. Compared to the previous solution, there
are two notable differences. First, the ground clearance from
the moving legs is significantly smaller. Since the slipping
motions are abrupt, the optimizer tries to keep the contact
points closer to the surface for fast activation. Second, the
solution now relies more heavily on the hind legs to push
the body forward, while the front legs are mostly used for
stabilization. Similar results are reported in [2].

D. Anymal dynamic jumping

Next, we compute a jumping motion using the Anymal
model on a hard and a soft ground. We use a weight at
the middle of the trajectory for reaching a 0.8m height.
As in the previous case, we specify only the initial and
final state, and adapt the gains regarding torque and joint
velocity penalization, without a maximum torque inequality
constraint. This is because the specified motion is fast and
with the current torque limitations the optimizer would
struggle to find a solution that reaches the desired height.

We select a time horizon of tf = 4s and a step size of h =
0.06s, resulting in 900 variables. Again, we use the motion
computed on the hard ground to initialize the jumping on the
soft ground, aiming to demonstrate the motion adaptation.
Unless specified, we use the same contact model parameters
as in the trotting case. The position of the body in the z axis
for both cases is shown in Fig. 6.

1) Hard ground: The snapshots from the computed solu-
tion are shown in Fig. 8. We identify 6 phases: Lowering
the body to prepare for lift-off, the lift-off, reaching the

0.0 1.5 3.0

Time [s]

0.0

0.8

1.6

P
os

it
io

n
in

z
a
x
is

[m
]

Desired
configuration

Hard floor Slippery floor Soft floor

0 1 2 3 4

Time [s]

0.0

0.5

1.0

1.5

P
os

it
io

n
in

x
ax

is
[m

]

0 1.5 3

Time [s]

0.0

0.8

1.6

P
os

it
io

n
in

z
ax

is
[m

]

Fig. 6: Body position in the x axis during trotting on hard
and slippery ground and body position in the z axis during
jumping on hard and soft ground.
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Fig. 7: The foot height during jumping on hard and soft
ground for the left front (LF) and left hind (LH) legs.

desired height and configuration during falling, touch-down,
and transitioning to the desired final state. Changing the
torque penalization weight affects the apex height and time
instant that this is reached.

2) Soft ground: For simulating a soft ground, we select
rn = 2N/m. The penetration of the limb is shown in Fig. 7,
while the snapshots of the motion are shown in Fig. 9. The
salient aspects of the motion are the same; differences are
identified during the lift-off and touch-down phases. Specif-
ically, during the lift-off preparation, the body is lowered in
a similar manner, but the feet penetrate deeper into the soft
ground. Finally, a small oscillation occurrs after touch-down
due to the ground’s softness and is soon damped out.

V. DISCUSSION & CONCLUSION

This paper proposed a contact model suitable for direct
TO formulations, followed by simulation validations with
a wide range of models and settings: from simple objects
(ball, brick) to a complex multi-body robot model in various
locomotion modes (trotting, jumping) and ground conditions
(hard, soft, and slippery). It was demonstrated that the pro-
posed contact-implicit TO method can compute complicated
motion plans for multi-contact interactions. An important
feature in the new formulation is an improved, principled
contact model which is solved in closed-form and expressed
as a function of the state. Furthermore, this contact model
avoids complementarity constraints for its description and
automatically satisfies friction cone constraints, while not
suffering from problems of energy injections and small step
sizes. Moreover, it is described by two parameters which



Fig. 8: Optimized jumping motion on hard ground. Fig. 9: Optimized jumping motion on soft ground, where
the feet penetrate the ground surface.

have intuitive physical interpretation and can be straightfor-
wardly selected.

Nevertheless, there are several aspects worth of discussion
and future improvement. First, the parameters rn and rt need
to be tuned for different robot models or new conditions in
the environment’s characteristics. This is a common property
among the soft contact models. Second, the presented method
is suitable for solving contact-implicit planning problems in
an offline setting, since the computation can not be performed
in real-time yet. The computational time can be improved
by taking into account the stage-wise nature of the decision
problem. Lastly, a common feature of TO formulations is
that the cost function needs to be specified for each task
independently, i.e. the cost function is task-dependent.

The motion adaptations to various ground conditions
demonstrate the importance of integrating the environmental
properties into motion planning. Future work will focus
on systematic identification of parameters rn and rt and
hardware validations. Another extension of the framework
will focus on improving the numerical accuracy by using
higher-order integration methods, as in [30].
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