-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Behavioral Repertoire via Generative Adversarial Policy
Networks

Citation for published version:

Jegorova, M, Doncieux, S & Hospedales, TM 2020, 'Behavioral Repertoire via Generative Adversarial
Policy Networks', IEEE Transactions on Cognitive and Developmental Systems.
https://doi.org/10.1109/TCDS.2020.3008574

Digital Object Identifier (DOI):
10.1109/TCDS.2020.3008574

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
IEEE Transactions on Cognitive and Developmental Systems

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 22. Sep. 2020

https://core.ac.uk/display/334414898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/TCDS.2020.3008574
https://doi.org/10.1109/TCDS.2020.3008574
https://www.research.ed.ac.uk/portal/en/publications/behavioral-repertoire-via-generative-adversarial-policy-networks(34f83e43-1eff-4d3f-ad77-0844203728fb).html

Behavioral Repertoire via Generative Adversarial Policy Networks

Marija Jegorova!, Stéphane Doncieux?, and Timothy M. Hospedales!

Abstract—Learning algorithms are enabling robots to solve
increasingly challenging real-world tasks. These approaches often
rely on demonstrations and reproduce the behavior shown.
Unexpected changes in the environment or in robot morphology
may require using different behaviors to achieve the same effect,
for instance to reach and grasp an object in changing clutter. An
emerging paradigm addressing this robustness issue is to learn a
diverse set of successful behaviors for a given task, from which a
robot can select the most suitable policy when faced with a new
environment. In this paper, we explore a novel realization of this
vision by learning a generative model over policies. Rather than
learning a single policy, or a small fixed repertoire, our generative
model for policies compactly encodes an unbounded number
of policies and allows novel controller variants to be sampled.
Leveraging our generative policy network, a robot can sample
novel behaviors until it finds one that works for a new scenario.
We demonstrate this idea with an application of robust ball-
throwing in the presence of obstacles, as well as joint-damage-
robust throwing. We show that this approach achieves a greater
diversity of behaviors than an existing evolutionary approach,
while maintaining good efficacy of sampled behaviors, allowing
a Baxter robot to hit targets more often when ball throwing in
the presence of varying obstacles or joint impediments.

I. INTRODUCTION

Robots are increasingly able to solve challenging tasks by
learning controllers. While reinforcement or imitation learning
approaches can be effective, they typically learn a single
ideal solution to a given control problem, and the robust-
ness of that solution to challenging situational variants (e.g.,
changing/complex obstacles, such as in Fig. 1, or damage
to the robot) is hard to guarantee. If a control policy fails
due such an unexpected environmental change, robots can try
to adapt their control policy to a new situation through re-
planning [1] or adapting a learned policy [2], [3]. Beyond such
adaptation, when animals face a challenging environment in
which a previously learned behavior fails, they also draw on
an additional capability: leveraging a suite of other known
behaviors that are expected to solve the task at hand [4].
Exploration within a set of diverse historical behaviors that
solved a task can quickly lead to a solution that succeeds
in a new environment [4]. Such behavioral repertoire-based
approaches are emerging as promising techniques for robustly
solving tasks [4], [5], [6].

Existing realizations of this robustness-through-diversity
vision are often based on evolutionary algorithms that train
a diverse set (population) of controllers that solve a given
task [5], [6]. However this approach has several drawbacks:
storing a large database of controllers is not compact, and there
is only as much diversity as is contained in the population

I School of Informatics, University —of Edinburgh, UK.
{m.jegorova@sms., t.hospedales@}ed.ac.uk. 2 Sorbonne
Université, CNRS, ISIR, Paris, France. stephane.doncieux@upmc. fr.

Fig. 1. An example obstacle-occluded environment, for which the GPN-
generated policy repertoire can offer solutions.

of controllers. We argue that a preferable instantiation of
this vision is to learn a generative model over controllers.
Firstly, it is compact — only the parameters of the generative
model rather than a large list of controllers need to be stored.
Secondly, the available diversity is not limited to the instances
in a fixed length list. By sampling a generative model over
controllers, an unlimited number of distinct controllers can be
obtained. And with a sufficiently flexible generative model,
sampled controllers need not be simple interpolations between
controllers used to train the generative model. Samples could
encode novel solutions to the problem by drawing diverse
aspects of multiple training policies.

This approach is coherent with the exploratory behavior
of infants (and other animals) — specifically their ability to
perform a behavior in high variation so there is a distribution of
actions associated with each behavior [7]. Our method models
this distribution. Following the example of other progressive
sequential architectures — [8], [9], we propose a simple two-
staged developmental framework where one first builds up the
initial repertoire of actions (using methods such as quality-
diversity search [10]), and then generalizes beyond this reper-
toire via our proposed generative model. Our progression
from a library-based approach to a generative-model can also
be considered a representational re-description [11], between
developmental waves [7].

While conceptually appealing, training generative models
over policies is non-trivial. The space of reasonable policies
likely to solve a given task is a complicated manifold within
the space of all policies, considering actuator redundancy,
non-linearities and so on. We therefore propose to apply
generative adversarial networks (GANs) [12] to model the
distribution over policies that solve a given task using a
neural network, thus defining a generative policy network
(GPN). In our framework the GPN models the distribution over
policy parameters, so that each sample from the GPN defines
a specific robot controller. Multiple samples from the GPN
therefore correspond to different solutions to the task that the

GPN is trained on. To generate training data for the GPN we
exploit quality-diversity (QD) search evolutionary algorithms
[10] to find a diverse set of policies that solve a task in various
contexts. The GPN network is built with a (i) target-conditional
DCGAN [13] for learning a contextual policy repertoire,
upgraded with (ii) an outcome prediction regularisation for
improved accuracy. Compared to a conventional GAN, we
find it beneficial to regularize GPN-training by requiring it to
generate not only a controller but the outcome of running that
controller (i.e. to simulate the forward model, or reconstruct
the input goal state), and this is also useful as a way to pick
promising policies (e.g., sample the GPN until a policy is
drawn which is expected to work in the current environment).
Once trained, a GPN then provides a compact source of diverse
and novel policies likely to solve variants of the task.

We demonstrate our approach through the specific appli-
cation of target-conditional ball-throwing [14], [15] in the
presence of confounding obstacles or joints impediments.
Throwing is often formalized as a contextual policy problem
where a movement primitive for throwing is synthesized
conditionally on the desired target position [14], [15]. In the
presence of obstacles however, the most "natural’ way to throw
to a given target may be blocked. Nevertheless, there are
multiple throwing movements that hit a given target. We show
that the ability to model — and sample from a distribution of
controllers allows the robot to find throwing controllers that
can avoid any given motion constraint. A preliminary version
of this work appeared in [16].

II. RELATED WORK

Learning Robot Control Typical approaches to learning
robot control include learning by demonstration [17], rein-
forcement learning to maximize some extrinsic reward [14], or
demonstration-based initialization followed by policy search-
based reinforcement learning to fine-tune the demonstrated
policy. Those policy search algorithms in turn can often be
categorized into gradient-based [18], [19] and gradient-free
methods such as Bayesian optimization [20] and evolutionary
search [21]. An advantage of evolutionary methods is that they
often provide a population of policies as a byproduct, rather
than a single best controller.

Where obstacles can impede behavior, a standard robotics
approach is to localise the obstacle and plan a movement
that avoids it [22]. However this requires both (i) accurate
3D obstacle localisation and (ii) appropriate adaptive planning
capabilities. One or other of these sensing and reasoning
capabilities may not be available at the required efficacy level
at a given developmental stage in an animal or robot. In
contrast generating diverse behaviors and exploring them until
one works has lower prerequisites and hence is suitable for
earlier developmental stages.

Behavioral Diversity in Robot Control For a robot to be
able to deal rapidly with new and unanticipated situations,
a recently proposed approach consists of building a large
repertoire of behaviors in which it should be possible to
find one adapted to a newly arising situation or environment.
The repertoire creation step can be done in a preliminary

phase and a learned repertoire subsequently used to accelerate
the adaptation to an unanticipated situation by relying on
a selection process instead of a full learning process [4].
Promoting behavioral diversity is a key feature of a repertoire
creation process. Driven by research on novelty search [23],
evolutionary approaches have been adapted to generate a
behaviorally diverse set of solutions instead of converging
to a single solution optimizing a given fitness function [5].
These algorithms are called Quality Diversity algorithms [24],
[25] and are used here to bootstrap the proposed method. Our
proposed GPN builds on QD-search by leveraging its results
as training data. However, in contrast to the selection-from-
repertoire paradigm of QD, it has several interrelated benefits:
(i) We can more compactly store a large repertoire by storing
instead the parameters of a generative model that represents
that repertoire of behaviors. (ii) Rather than a fixed size
database of behaviors, the generative model can continue to
sample unlimited new behaviors until a suitable one is found.
(iii) Samples drawn from the generative model of behaviors
can discover novelty beyond the initial training repertoire,
by combining aspects from different training behaviors. (iv)
Importantly the GPN approach is better suited for contextual
policies. To solve a contextual policy task like diverse throwing
to different targets, a library-based approach increases the re-
quired data collection and repertoire storage size dramatically
because it would need to keep samples of many different
throwing targets, and for each of those targets, samples of
many different ways to throw there. In contrast, given a
few samples of different throwing targets, a contextual policy
GPN can extrapolate and draw many different controllers for
throwing to any given target.

Generating Diverse Policies Another somewhat related
work [26] covers diverse policy generation in a model-based
framework. DIAYN [26] learns diverse skills (policies), assess-
ing the diversity by the variety of states they visit in the process
of RL-style unsupervised exploration. The main difference is
that DIYAN tries to learn a small set of very distinct skills.
While our GPN focuses on one skill type, but learns an infinite
smoothly-varying manifold of controllers covering both all the
potential goals (e.g., movement targets) and ways to achieve
those goals. DIYAN also focuses more on initial exploration
(and is thus analogous to QD-search in our pipeline), while
we focus on compactly representing and exploiting the results
of such an exploration process.

Generative Adversarial Networks Generative Adversarial
Networks were proposed [12] to address the challenge of
learning a neural network-based generative model for complex
high-dimensional data. The key idea being that generator
training is enabled by a second discriminator network that is
simultaneously adversarially trained to distinguish true training
data and the generator’s synthetic examples. To improve its
ability to fool the discriminator the generator must generate
increasingly realistic synthetic samples. There have since been
numerous extensions including convolutional GANs [13], con-
ditional GANs [27], [28], disentanglement and interpretable
latent codes [29], and improvements of GAN training stability
with regards to challenges such as non-convergence and mode-

collapse [30], [31].

Generative Adversarial Network Applications The vast ma-
jority of GAN applications are in image generation tasks [12],
[13], [32], [30], [28]. In robotics, GANs have been applied
in robot haptic recognition [33]. Autoencoding VAE-GAN
has been used for visual representation learning to process
visual input in support of vision-based actuation in control
[34]. The most related application of GANs has been in an
imitation or inverse reinforcement learning context by GAIL
and InfoGAIL, [35], [36]. GAIL trains a single policy by
imitation learning by matching generated and demonstrated
state-action pairs distribution. In contrast, GPN trains a distri-
bution over policies by matching generated and demonstrated
policy distribution. Furthermore, all GPN distribution gener-
ation is target-conditional, while GAIL has no conditioning.
InfoGAIL extends GAIL to a multiple expert setting, training
a small discrete set of policies by matching a generated
policy distribution conditioned on a discrete latent variable,
and a demonstrated set of policies. In contrast GPN trains a
continuous distribution over policies by distribution matching.
GPN enables conditioning on a continuous variable such as
target, while InfoGAIL conditions by selecting a discrete
policy. To our knowledge neural network generators have
not previously been applied to sample diverse continuously
distributed control policies, or to the generation of diverse
robot behaviors, as we explore here.

III. METHOD
A. Background: Generative Adversarial Networks

Generative adversarial networks are neural network gen-
erative models for complex high-dimensional data. In this
framework, a generator G is trained to produce samples
representative of a training data distribution py.,(x). G takes
as input a random noise vector z, and for a given noise
distribution p(z), samples x = G(z), z ~ p(z) should follow
the same distribution as the observed data X ~ pgae(X). Such
generative neural networks are challenging to train, but [12]
showed that they can be trained via a min-max game between
the generator and an adversary (the discriminator) D:

Y (G.D) = By 0 DY)

+E;pzlog(1 = D(G(2)))]

where x stands for a data example, z a random noise vector,
D(x) represents the discriminator’s estimate of the probability
that x came from real data rather than the generator. and
D(G(z)) - a probability that data came from a generator.
GANs can also be extended to model the distribution of
data conditional on some observed context vector [13], in
which case both the generator and the discriminator also take
the conditioning data ¢ as input. GANs are most commonly
applied to generate images (e.g., X is a person image and ¢ is
the gender of that person). In the following we adapt them to
generate policies X conditional on goals c.

B. Generative Policy Networks

Unconditional Policies Robot behaviors are defined by a
control policy 7 operating in some state space ¥ and action

space /. Thus while generative models are conventionally
used to define a distribution p(x) over data instances x, our
GPN defines a distribution p(7) over policies 7, which are
themselves functions 7 : . — /. Given a set of training
policies Dyygin = {m;}, we train our GPN to estimate the
distribution over observed policies.

Assuming the policies in question lie in some parametric
family, then each is identified by some parameter vector (e.g.,
weights in a neural network [3], radial basis function (RBF)
kernels in a dynamic movement primitive (DMP) [17], [15]).
By training a generator G to generate such parameters, samples
from the generator are interpretable as controllers. In this
case the discriminator enables the training of the generator
by learning to distinguish between real policies in D;4, and
generator synthesized policies © = G(z). Once the generator
learns to fool the discriminator, and assuming it does not mode
collapse, then samples from the generator represent diverse
control policies that are novel yet statistically indistinguishable
from the training policies. We denote sampling policies from
the distribution implied by the generator G(z) under a given
noise distribution p(z) as @ ~ pg(7).

Contextual Policies We aim to go beyond simple fixed be-
haviors to work with contextual policies that are parameterized
by a goal condition to achieve [14], [17]. For a goal directed
policy such as our intended application of robot throwing, we
need not just a controller (e.g., a throwing movement), but a
conditioning mechanism [27], [29] that generates a controller
that achieves the right goal (e.g., a throwing movement that
hits a specific target). As described above, if the training set
Dyyqin consists of controllers throwing to multiple different
locations, then sampled policies @ ~ pg(mw) will throw to
new locations within the distribution of training targets. If the
training set Diqi consists of multiple controllers that throw
in different ways to the same location, then 7 ~ pg(m) will
sample novel policies that throw to that same location. In
the contextual policy case we want a policy that achieves
a specifiable goal. Thus we define a conditional generator
T = G(z,¢), T ~ pg(e)(T) to sample policies 7 that target a
specific landing point ¢. Thus we can both throw at a specified
target (set the generator condition), and also find multiple ways
to throw there (sample the generator).

C. Application to Throwing

For application to throwing, we assume a set of training
policies, and denote sampling these as & ~ p;q(7) and 7, ¢ ~
Pdata(T,¢). We then train a conditional generator network
G(z,c) as below. The third term is an added regularizer that
requires the generator to reconstruct the landing point of the
policy that it just sampled. Here G(z,c¢)r means sample the
policy and its target point and take only the target point term,
and G(z,c¢)-r means the opposite.

mGin mng(G,D) = Ez e pyua(n.0) 102 D(TT, €)]
+EZNP<Z)scNPdata (c> [log(l - D(G(Z7 c)ﬁT))] (2)
+1G(z,¢)r —cl;

Policy Representation ~ We have applied our framework suc-

cessfully to many different policy representations including
sampling the RBF parameters of the forcing term of a DMP,
but we found the following simple representation effective and
easy to tune. For our Baxter robot arm, we represent the 7 as a
15D vector defining a high-level open-loop controller in terms
of the ball release time, and effector position and velocity at
release. Specifically © = [G,T,OtT,tT], where 0,, and O,T are
7D robot arm joint angles and joint velocities at launch time,
and ¢7 is the launch time.

The goal condition ¢ is a 2-dimensional Cartesian coor-
dinate of the ball landing point. There are multiple launch
configurations as described above, that result in the same
landing point ¢, and the trained GPN will sample this space
of configurations.

Policy Execution ~ With the policy definition above, samples
from our GPN constitute a high-level action plan of how to
launch the ball. To actually actuate this we map the high-level
action into an open loop controller for low-level actuation via
the following third-order polynomial function of time:

t\°> t\? 1
0, — () o () +a <’>+a1 3)
tr ir ir

. ; de;. P de;.
with 6, = dt:’ and 0, = dt:’, and parameters:

1 t\? t
v, =—1|304 <l> +203 (l) +o |, a1 =60,,
tr tr tr

o) = etotT» (04 :30,T —9,#7‘—2052—3051,

=06, —o— 00— 05,
where 6,,,0,,,0,, are the positions, velocities and accelerations
of joints at time #; 6, and 6,0 are initial positions and
velocities at time fy and 77 is the time of launch. We assume
the starting robot arm configuration is the same for each trial.
Baxter is then actuated by sending the above joint position,
velocity and acceleration plan to a ROS control node.

D. Data Collection with QD Search

We describe the collection of data used to train our GPN.
Please note that, our main contribution of GPN is agnostic to
the specific method used to collect training data. In our experi-
ments we use data collected by archive-based Quality Diversity
(QD) search [37], following the principles of Novelty Search
with Local Competition (NSLC) [10], throughout, although
other data sources could be used. Specifically, we use the
evolutionary QD search method [10] to find a set of genotypes
(high level policies) that have diverse behavior-space effects
(e.g., arm trajectories and landing positions) when actuated,
while being of high quality (low torque during the entire
actuation). Specifically behaviour-space effect is measured by
describing each motion in terms of an 11D phenotype feature
consisting of landing point of the ball, and 3 sets of 3D arm
position descriptors recorded during the throwing. Diversity is
then measured via the negative exponential distance between
a behaviour and the dataset so far. QD search then optimizes
for a high quality an diverse dataset. Please see [38] for full
details on QD data generation for throwing. Overall, we use
use a realistic Baxter simulation (Gazebo) to obtain around
15,000 throwing episodes. Each training episode records the

arm trajectory, ball trajectory, and ball landing point. Since
landing points are continuous variables, there is only one
trajectory per landing point.

E. Baselines for Comparison

Evolutionary Repertoire Baseline ~ We use QD search to
generate training data for our GPN as described above, and
will exploit our trained GPN to solve a robust throwing task
later. For quantitative comparison, we consider an alternative
evolutionary-style approach to exploiting this data. Such a
repertoire-based approach to robust throwing would treat the
dataset as a large library (repertoire), and then solve a new
task by selection from the repertoire [4], [5], [6]. To throw to a
specific target, the closest memorized landing point is recalled,
and the associated policy is executed. If an environmental
change (e.g., an obstacle) causes that known solution to fail, a
lookup can be performed to find and execute some other policy
with approximately the same landing point, but potentially
different arm/ball trajectory. The problem is that this scales
badly: although a large number of throwing episodes (15,000)
covers the space of landing points reasonably well, it is not
enough to cover many diverse ways to throw to each individual
landing point. So the lookup-based approach may fail to
effectively find diverse ways to throw to a specific point.

Other Alternatives Besides QD, we also compare two gen-
eral purpose alternatives to GPN for robust throwing. KDE: As
a non-parametric alternative to our GPN, we define a target-
conditional Kernel Density Estimation [39] model over the
same QD-based training set used by our GPN, so p(x|c) is
a Gaussian mixture model. We can then sample this mixture
instead of our GPN. BayesOpt: Bayesian Optimization [40] is
an established approach to adaptive behaviors in robotics [20].
We use the the best QD-trajectory for the given targets as the
starting condition, and then perform Bayesian optimization for
10 trials for direct comparison to the diversity-based models.

IV. EXPERIMENTS
A. Training data and settings

We apply our GPN to enable a Baxter robot to robustly
throw a ball in different environmental obstacle conditions,
as well as within various joint impediment scenarios. Since
the Baxter arm has 7 joints, there are 15 parameters for any
policy (Eq. 3) — position and velocity for each joint and the
launch time. The training data is illustrated in Figure 2 in
terms of a heat map of ball landings at different positions on
the floor around the robot (left), and some example training
episodes represented by their arm trajectories, ball trajectories
and landing points (right).

Settings Our GPN is built upon DCGAN framework [13],
and has a 4-layer RELU-activated convolutional architec-
ture that maps a 100-dimensional noise vector z to a 15-
dimensional output vector representing 7. It is trained using
15000 episodes of data using learning rate 0.0002 and 1000
epochs with batch size 250. We used 20 generator updates for
each discriminator update. Both QD and GPN use the same
policy representation 7, and underlying actuation strategy.

Lar&dmg Frequencies, 50x50 bins

-2
I-_I

2

—— Arm trajectories
Object trajectories

20 Training Data | | g points

Fig. 2. Training data for throwing. Baxter robot is located at (0,0). Left:
Frequency of ball landing points at different floor positions (50 x 50 bins).
Right: Example trajectories where red line is the end-effector, blue lines are
the ball in flight, and magenta points are the landing points on the floor.

Evaluation Metrics We evaluate the methods with two sets
of metrics. For evaluating simple throwing, we compute:
RMSE between the target and actual landing point for all
the trials; Diversity of the trials by taking the ball trajectory,
computing equidistant waypoints along it, and then using these
to compute a standard deviation of all trajectories towards
a given target; Harmonic Mean aggregates the other two
metrics - accuracy (1 —RMSE) and diversity (standard de-
viation) in order to provide a single quantitative measure of
performance. Note that harmonic mean aggressively penalizes
failure in either metric.

When evaluating the ability of repertoires to perform robust
throwing in the presence of obstacles, or with broken joints, we
consider a trial as a success if the ball lands within radius 7 of
the intended target. Our metric is SuccessesProportion(k,T):
How many of the target coordinates does the ball hit suc-
cessfully (within 7 radius), at least k out of 10 times, when
sampling from the repertoire? The idea is that even if obstacles
block some particular throws, or a physical malfunction causes
it to fail, a model that can generate multiple diverse behaviors
that all solve the task (i.e., throwing trajectories that hit the
same target) should be able to find at least some (i.e., k)
successful solutions.

B. Experiment 1: Target-conditional throwing

Setup ~ We aim to achieve robust throwing by learning to hit a
target in diverse ways. We therefore first evaluate the ability of
our GPN and QD alternative to: (i) accurately throw to a given
position, and simultaneously (ii) find diverse ways of throwing
to each position around the robot. For this purpose we grid
the floor space around the robot into a 5x5 grid (25 target
landing points). We experiment both in simulation (Gazebo
Baxter) where we attempt to throw to each of those points 10
times, and then corroborate those results on the real Baxter
where we throw to each coordinate 3 times, tracking the ball
using an OptiTrack system. We compare results from our
GPN with the standard evolutionary strategy that treats the
GPN-training set as a repertoire library (Sec. IV-A).

Results The results in Figure 3 plot the landing error and
diversity metrics at each grid point on the floor around the
robot. The first two columns compare QD/Library-based ap-
proach with our GPN in simulation; the third column evaluates
our GPN results on the real Baxter robot. From the results of
this experiment we make the following observations: (i) In
general QD search has higher accuracy. This is expected as

GPN (Baxter)

2QD Search (Gazebo) 2 GPN (Gazebo)

Iy
g EEE |55
2 B 0.682
< ||
N
g) [[|
2 2
2
5 u
g 0.607
2
2 0213
-2 0.000
-2 2
2
§ [|
s 0.664
£ [| |
E B B o2o7
-2 0.000
-2 2

Fig. 3. Throwing to a 5x5 grid of points on the floor around the robot
located at (0,0) and facing right. Local throwing accuracy (top), diversity
(middle), and their harmonic mean (bottom) when throwing by QD trajectories
in simulation, GPN sampled controllers in simulation, GPN controllers on
a real Baxter robot. GPN generally has higher diversity, and better overall
performance (harmonic mean).

Experiment 1: Conditional Throwing. Average Local Metrics
1.00 i

EEE QD (Gazebo)
EEm CDCGAN (Gazebo)
BN GPN (Gazebo)
BN GPN (real Baxter)

080 -
Qo

& 0.60
Q
&,0.40
o
9 0.20
<

Accuracy Std.
Local Metrics

Harmonic Mean of Accuracy and Std.

QD performance as a function of added noise

o
o

N
~

— QD
—— GPN

Harmonic Mean
o
N

o
o

1 0.5 0.1 0.01
Std. of the Gaussian noise

0.001 0.0001

Fig. 4. Top: Summary statistics of throwing to all points on a 5 x5 floor
grid. The difference between harmonic means of the simulated data for QD
and GPN is statistically significant according to unequal variances t-test with
significance level & =0.01 (pyaue < 2.78-10712) 2. Bottom: Comparison to
QD with varying levels of added noise.

it is simply recalling previously memorized movements and
replaying them exactly, which unsurprisingly leads to very
similar outcomes, and hence high accuracy. In contrast our
GPN is a predictive model that must infer the right policy
to throw to any given target point, so its slightly lower
accuracy is understandable. (ii) However, GPN has much
higher diversity. It models the distribution of policies that
throw to a conditioning target, and samples that distribution for
each trial. (iii) Aggregating these metrics via harmonic mean,
we see that our GPN performs favorably compared to QD. (iv)
When executing our GPN-sampled controllers on the physical
Baxter robot, the results are comparable to the simulated case
(third vs second column). Note that the grey areas to the left
of the map on the results of the real robot are because of
walls in the physical Baxter environment preventing the data
collection in these regions.

These results are summarized over all the spatial coordinates
in Figure 4 (top), where GPN significantly outperforms QD in
terms of harmonic mean. To be as fair as possible to the QD
search alternative, we also considered boosting its diversity by
adding Gaussian noise to the executed policies at each trial.
The result in Figure 4 (bottom) shows that noise can improve
QD performance. However it must be carefully tuned as too
much noise quickly degrades QD’s accuracy. Overall this
result is understandable as uniformly adding noise to known
throwing behaviors can quickly move off the manifold of
good throwing policies. In contrast GPN learns the distribution
over good throwing policies so it can sample novel throwing
controllers from within that distribution. Finally we mention
that, as per common safety practice, all our movement plans
are checked for self-collision before execution. We also note
that despite lacking a model of robot kinematics, the vast
majority (98.4%) of the diverse plans generated by GPN are
collision free. This indicates that GPN has also learned about
the manifold of reasonable controllers in the sense of non-
colliding as well as ability to hit a target.

C. Experiment 2.1: Target-conditional throwing with obsta-
cles: GPN vs QD

Setup ~ Our motivating scenario was to use the learned
conditional distribution over controllers to achieve robust
throwing in the presence of obstacles. In this experiment, we
evaluate this quantitatively using Gazebo Baxter simulator.
Specifically, we consider a 5 x 5 grid of floor targets as
before, and we throw to each of these targets with 10 diverse
sampled controllers as before. For each of those throws,
we simulate obstacles and calculate whether an attempted
throwing trajectory fails due to robot or ball collision with
the obstacle. To systematically explore these issues we run
the simulation for k =1...9, 7 =0,0.1,...,1.0, and repeat
for different occlusion rates = 1%,...,8% when calculating
SuccessesProportion(k,t). For simplicity we model occlu-
sions as a randomly selected set of inaccessible floor areas,
where the total proportion of blocked floor area is the specified
occlusion rate. We compute results averaging over a 5 X 5
target grid, 10 throws per target, and 1000 maps with random
obstacle scenarios.

Results Figure 5 (right) shows the Gazebo simulation of
Baxter attempting to throw to a specific target in the presence
of randomly generated obstacles. Figure 5 (left) shows heat-
maps of SuccessesProportion(k,T=0.2) for various occlusion
rates and minimum hit requirements k. From these we can
make the following observations: (i) Both QD and GPN
methods have higher success rate in the easier bottom left (low
occlusion, low hit ratio required for success), and vice-versa in
the harder top right. (ii) The GPN result is much higher than
that of QD for low k values (e.g., k = 1). This means that the
GPN can often find at least one way to hit the target, for this

2Symbolic representations of significance levels in this paper are as follows:
"+’ stands for the method or parameter against which the rest are compared
(usually GPN for methods or the parameter we are using for the parameter
sensitivity assessment), ‘*” stands for significance level @ = 0.05, and “**’ -
for @ = 0.01. Grey bars in all the bar-plots represent the standard deviation.

whole range of occlusion rates. (iii) At very high minimum
hit (e.g., k =9) QD performance is slightly better than GPN.
This is because GPNs slightly lower accuracy means that it’s
rarely the case that as many as 9 out of 10 attempts hit the
target. However, at this stringent hit rate requirement, we note
that the success rate of QD in absolute terms is also very low
(around 10%). Finally, Figure 5 (middle) shows the success
rate averaged over occlusion rates as a function of different
hit-radius requirements. We see that for a stringent accuracy
requirement (7 < 0.1), neither method succeeds. While for
all larger values of 7, GPN consistently outperforms QD in
success rate. Overall the results validate our goal: GPN can
throw accurately enough that it often hits the target, but it does
so in diverse enough ways that at least one way can usually
be found to dodge any given obstacle configuration.

D. Experiment 2.2: Target-conditional throwing with obsta-
cles: Baseline Comparisons

Setup In this experiment, we compare two further alterna-
tive approaches to obstacle-robust throwing: KDE [39] and
BayesOpt [40] (Section III-E). We use a simulated setup
where there is a wall randomly placed between Baxter and
the target (see supplementary video and Section IV-E).

Results The results in Figure 6 average over four random
goal/wall positions and compare the different methods in terms
of error, diversity, collision rate and SuccessesProportion(k =
3,7=0.2). We see that while GPN is not the most accurate
model, its success rate is best overall. This is because (i)
it has good diversity enabling it to dodge obstacles more
often, (ii) it has learned the manifold of reasonable policies,
so it usually also avoids self-colliding or unsafe movements.
In contrast, KDE and BayesOpt often generate self-colliding
movements or hit the obstacle. Kernel Density Estimation
suffers from being an inefficient/inaccurate model of relatively
high-dimensional (15D) policies. Bayesian Optimization pur-
posefully adapts the actuator movement to avoid the obstacle,
but cannot succeed in the relatively small number (10) of
available trials.

E. Experiment 2.3: Physical Baxter robust conditional throw-
ing with obstacles

To test our method, we sample the conditional GPN ten
times to generate ten diverse controllers that should throw to
the required point. We simulate them to check for collisions
with the obstacle, and found three of these avoided collision
and landed into the basket in simulation. This validates that
the GPN has indeed learned to generalize and samples novel
behaviors. Figure 7 shows the successful execution of two of
these controllers. We can see that the ability to generate diverse
trajectories enables the robot to successfully hit the required
target with the ball while dodging the given obstacle.?

3For a video of this experiment please refer to the supplementary material:
https://youtu.be/2LCnaa89erM

QD for 7 = 0.2 GPN for 7 = 0.2

8% 8% 8%
0 7% 7% 7%
© 6% 6%‘ 6%
c 5% 5% 5%
4% 4%= 4%
33% 3%.[| 3%
3 2% 2% 2%
O oy ||)
1% 1% 1%
HEN
123456789 123456789 123456789
= k throws = k throws = k throws

GPN - QD for T = 0.2

Pr(=k / 10 throws landing within 1)

Io.56

j
2
e
n
w
0.00 4]
=
o
3
%]

I -0.56

Fig. 5. Robustness of target-conditional throwing in obstacle-occluded environments. Left: Heat maps illustrate the probability of at least k of 10 throws
landing within 7 = 0.2 of the target for different levels of occlusion. QD lookup method. Our GPN method. Difference between GPN and QD result. Middle:
Success rate for varying accuracy requirements 7. Right: Example of the random obstacle environment.

Experiment 3: Throwing with Obstacles. Average Local Metrics

.

SuccessProportion(k =3, T=0.2)

0.60 mmm Bayes Optimisation

N QD

Bl Kernel Density Estimator
GPN

I
IS
S

Average per bin
o
3

0

Error % Collisions
Local Metrics

Fig. 6. Target-conditional throwing robust to obstacles. Comparison of GPN,
QD, Bayesian Optimisation, and Kernel Density Estimation approaches. GPN
is not the most accurate model, however is very low on collisions due
to the diversity of its policies. Its greater diversity translates into higher
SuccessProportion due to better dodging of random obstacles compared to
other methods. 2

F. Experiment 3: Throwing with damaged joints

Setup ~ Another potential motivation for modeling be-
havioural diversity is to enable a robot to adapt its behaviour
in response to physical damage [4]. In this experiment we
explore this idea by evaluating the ability of GPN to find a
behaviour that enables Baxter robot to complete its throwing
task despite a hardware failure in one or more joints. There are
various ways in which a joint can be damaged, for example:
being jammed in a fixed position (unlikely in practice), full
or partial joint sensor or actuator failure causing complete
or semi-random motion. We are focusing on the latter. To
simulate hardware sensor failure for a selected joint, random
uniform noise is inserted to replace the planned velocity while
performing a movement. This event would cause many (but
perhaps not all) potential throwing plans to fail. So the aim is
to show that GPN can generate diverse enough behaviours
that at least some attempts succeed despite the hardware
malfunction.

As before, the quantitative assessment has been run using
Gazebo Baxter simulator. In this experiment Baxter is operat-
ing on a fixed subset of 5 targets from a 5 x 5 grid of floor
targets as described in subsection IV-D. The controllers are
sampled by the GPN from the target-conditional distribution
learned from the training data. Baxter throws to each of the
floor targets with 10 different controllers sampled by the GPN.
For comparison we conduct the same set of experiments using
the behavioural library assembled with the QD-search. The
assessment metrics are near-identical to the subsection IV-C.

We assess the SuccessesProportion(k,t =0.2) in terms of
how many throws can be land within 7 distance of the desired
target. The value of 7 for the first set of results is selected
arbitrarily and there are the further results are provided,

Fig. 7. Two examples of obstacle robust throwing behaviors obtained by
sampling our learned distribution over policies. The GPN is conditioned
on the target location, and samples controllers for throwing there until
samples are drawn that generate neither robot nor ball collisions. For
a video of this experiment please refer to the supplementary material:
https://youtu.be/2LCnaa89%erM

demonstrating how the SuccessesProportion(k,t) changes
with respect to 7. In this experiment the SuccessesProportion
is expressed in terms of the of the number of successful throws
for each individual damaged joint scenario. The Baxter robot
has 7 joints, (denoted 1 to 7, where 1 is the closest to the
body and 7 the closest to the end-effector, Figure 8, left). We
repeat this experiment, simulating each joint being broken in
turn, as well as some combinations of broken joints.

Results: Joint-wise Results are presented in Figures 8 and
9. First of all, similar to Figure 5 for the obstacle occlusion
experiments we compare QD and GPN’s ability to deal with
impediments, in this case individual damaged joints. Evidently
from Figure 8 heat-maps of SuccessesProportion(k,t=0.07),
there is some variability in how well each model deals with
individual broken joints, e.g., QD is relatively weaker for joint

QD for T=0.07

of the disabled joint
Now oA oo~

-

1 2 3 4 5 6 7 8 9
= k throws

-
s . 06

y

GPN for 7 =0.07 10 (GPN - QD) for 7 = 0.07 -

.- 2 N

1 2 3 4 5 6 7 8 9 00 1 2 3 4 5 6 7 8 9
= k throws = k throws

Fig. 8. Robustness of target-conditional throwing broken down by damaged joint. Left: the numbering of Baxter actuator joints. Here and in all the previous
experiments Baxter only uses its right arm for throwing. Since it is symmetric, results should be the same for either side. Right: Heat maps illustrate the
probability of at least k out of 10 throws landing within 7= 0.07 of the target for different individual joints impeded. The first heat-map corresponds to the
QD library lookup method, the second - to our GPN method, third shows the difference between the GPN and QD results. Our GPN sampling is equal or
better than QD lookup for the majority of the scenarios, with the exception of larger k values for joints 1, 3, and 6. (Picture of Baxter (left) comes from [41].)

Pr(= k /10 throws landing within T) per unknown damaged joint

1.0 —
® 0.8
P SE —
g
0.6
% —— GPN: 21/10
O — .
8 04 QD: =1/10
5 - GPN: 23/10
u’)02 ——. QD: =3/10
: ——— GPN: 25/10
==: QD: 25/10
0.0 Q
0 0.05 0.1 0.15 0.2 0.25 0.3
T

Pr(=5/10 throws landing within T) per a specific damaged joint

10 o GPN: damaged 2

==+ QD: damaged 2
08 GPN: damaged 4

2 I
© == QD: damaged 4 I
. 06 !
a 1
8 /
o4 e
>
n
0.2 B e
0.0
0 0.05 0.1 0.15 0.2 0.25 30
T

Fig. 9. Left: Throwing success rate with respect to the allowed distance from target 7, where ’success’ counts as at least kK = 1,3,5 minimum number of
hits (out of 10) within radius 7. Average result across all single joint failures. Right: the success rates of half of the throw landing within 7 of the target, for

example damaged joints 2 and 4.

Pr(=1/10 throws landing within T) for a set of damaged joints

e e~
Y
)
e
© 06
%)
7]
804
S —— GPN: damaged 6 and 7
D g, ~=: QD: damaged 6 and 7
—— GPN: damaged 5, 6, and 7
== QD: damaged 5, 6, and 7
00 Ctdammmaeaa Q 9
0 0.05 0.1 0.15 0.2 0.25 0.3
T

Pr(=1/10 throws landing within T) for a set of damaged joints

R GPN: damaged 1 and 2
==+ QD: damaged 1 and 2
I 08 GPN: damaged 1, 2, and 3 B
@ ==+ QD: damaged 1, 2, and 3 H ,’
o 06 - g
(%] (]
g N,
o 04 i
=} I
0 1
0.2 £= 0
I
I
0.0 -————
0 0.05 0.1 0.15 0.2 0.25 0.3
T

Fig. 10. Robust target-conditional throwing with multiple actuator joints disabled. Left: damaging 3 last actuator joints, one after the other, starting with the
one closest to the end-effector. There is not much difference between the compared methods in this case: For very small values of 7, i.e. for a very precise
throwing requirement our GPN is slightly better. However, for the less precise throwing requirement, QD is slightly better. Right: "damaging” three first
actuator joints, starting with the closest one to the body. The data suggests that the GPN-sampled policies usually outperform the QD ones.

2 and 7; GPN is weaker for joint 1. Neveretheless, in aggregate
the GPN-sampled controllers are more often successful than
QD ones, especially for the lower values of required minimum
successful hits. The QD policies, however precise in the initial
environment, provide no diversity of execution per fixed target.
The diversity of the GPN policies translates into a higher
chance of at least one out of ten of its policies overcoming
the difficulty presented by an impaired joint.

Further, the following observations can be made: (i) the
QD library is very evenly successful (or otherwise) over k for
each damaged joint. This can be attributed to its high precision
and low diversity - if the chosen trajectory happens to not be
affected by the damaged joint very much and hits the target, it
is likely to hit it for all 10 attempts. Unlike the averaging over
the obstacle occlusion scenarios the stochasticity of the broken
joints appears to represent a much more uniform constraint for
the QD library. Thus, leading to performance less dependent

Baseline comparisons: QD and KDE vs GPN

N GPN +
QD
mm KDE

EEes |

Error

o o 9
N B D
o o ©

*

e I
% Self-Collisions
Average Local Metrics

Average per target
o

SuccessProportion(k =3, T=0.1)

Fig. 11. Baseline Comparison.2 Comparison of GPN, to QD and KDE,
averaged across the multiple targets and damaged joints cases. All three have
comparable Error rates, however the ratio of self-collisions is noticeably higher
for KDE. The better success-rate of the GPN comes from the higher diversity
of its controllers, overcoming the joints impediments.

on the minimal number of throws required. (ii) In contrast,
the GPN offers a set of diverse solutions - so one of them
being successful does not guarantee the success of the other
ones - leading to relatively weaker performance at high k. (iii)
Despite a small subset of scenarios where the QD library is

more efficient, GPN shows comparable or better performance
in the majority of cases, especially for the smaller amount
of the minimal successful hits required (Figures 8, right). In
principle, if one is not limited in the number of attempts, the
GPN can be thus sampled until success is achieved.

The previous results are for an arbitrarily chosen accuracy
threshold, 7. We next present a different view of the results by
fixing the required hits k£ and varying the required accuracy 7.
The plots in Figure 9 (right) show the probability of at least
half of the executed throws landing in the basket, for a few
example joints.

Results: Aggregate Finally, we present aggregate results
averaged over all the potential damage points. Figure 9 (left)
shows success rate as a function of accuracy threshold 7 for
some hit-rate requirements k = 1, 3,5, when averaged across all
the affected joint cases. Across all accuracy thresholds 7, the
GPN policies are overall equally or more successful than QD
at functioning successfully despite broken joints. In summary,
the results confirm that a GPN-based diversity strategy can
successfully overcome joint failures for most of the scenarios
considered. This in turn demonstrates the generalisation of
GPN beyond the QD library upon which it was trained.

Baseline comparisons As in the experiments with the
obstacle-occluded environment, we compare our GPN to
alternative approaches in terms of aggregate statistics. Be-
sides the library-based QD, we also consider sampling the
Kernel Density Estimate defined over the same QD-based
training set used by our GPN. The results presented next
come from the same experiment above, averaging across the
variety of damaged joint situations. As before we assess the
methods in terms of the of error, diversity, collision rate
and SuccessesProportion(k = 3,7 = 0.1). We conduct this
experiment for one damaged joint at a time, performing 10
throws each to a selection of target points. Finally we compute
the average of each metric over all the target points and
damaged joints.

The results in Figure 11 suggest that for throwing with
an impeded joint, the average accuracy of the models is
very similar. KDE exhibits a slightly higher self-collision rate
compared to the other two. And our GPN has the better
Success Rate, facilitated by the higher diversity of its policies.

Multiple Damaged Joints A more challenging scenario is
one in which multiple joints are simultaneously affected. We
evaluate two settings. First is “damaging” the joints from the
wrist joint 7 (in practice the most frequent to get damaged) up
to the joint 5. Figure 10 (left) suggests that there is no clear
difference between the compared methods. The second setting,
is “damaging” joints starting with the joint 1 and going up to
the joint 3. The results presented in Figure 10 (right) show
that the GPN is usually equally or more successful than the
QD in overcoming the multi-joint failures for the joints closer
to the body.

G. Further Analysis

We finally evaluate the sensitivity of GPN to various hyper-
parameters. Unless stated otherwise, the results in this section
are averaged across test runs of 250 trajectories - 10 throws

to 25 different targets, where targets remain the same for all

the models to ensure the fair comparison®.

Noise Parameters GAN-type models such as our GPN
uniquely exploit a noise source to generate their diversity. We
evaluate the impact of two parameters: the dimensionality and
distribution of our latent noise source. Our experiments thus
far were carried out with a 100D noise vector. Figure 12 (left)
shows the results obtained from the same GPN configuration,
but trained with noise inputs of various sizes. The results show
that our 100D noise vector model exhibits the highest diversity,
while maintaining one of the lowest error- and collision-rates.
The larger 200D candidate also works well, implying that our
model is not very sensitive to the size of the noise vector
once it is above a minimum threshold. We also compared
spherical versus uniformly distributed noise, but detected no
clear difference in performance.

Training Epochs and Dataset Size Another factor to consider
is the number of training epochs. The results in Figure 12
(right) show that performance generally improves with more
epochs, suggesting that our GPN is converging to a good so-
lution without overfitting or diverging. Notably, a sufficiently
well-trained model produces nearly zero self-collisions.

Finally, we ask the question of how much data is necessary
to train our model? The effect of training dataset size on
the performance metrics is shown in Figure 13. The sizes
compared are 1000, 5000, 10000, and 15000 (the total number
of the training data available). Performance is best with the
largest 15000 sample dataset. However, we can see that it
degrades relatively slowly with the decreasing amount of data,
suggesting that the large scale training data is not crucial for
our framework?”.

V. DISCUSSION
A. Summary

To summarise, the GPN deployment consists of (i) acquiring
the initial behavioural repertoire, in our examples QD library,
but can be acquired in other ways, (ii) target-conditional DC-
GAN for the generalisation of a contextual policy repertoire,
(iii) upgraded with a regularisation on the predicted outcome.

The results show that the GPN is capable of generating
significantly more diverse conditional throwing policies com-
pared to the initial training data at a small cost of accuracy
(Experiment 1). This enables the GPN to successfully perform
in two major applications - obstacle avoidance robust throwing
(Experiment 2) and robust throwing in unknown broken joints
setting (Experiment 3).

In case of the obstacle avoidance, we declare a success if
at least /10 trials results in a hit. Here the GPN approach
is clearly better when a smaller amount of successful hits
is acceptable. The lookup-table of QD data outperforms it
when at least 80% success level required (Figure 5), because it
will just repeat the same looked-up trajectory 10 times, hence
~ 80—90% success, if that trajectory happens to be successful

“4Please note that unlike in the rest of the paper these results are based on
training the GPN for 100 training epochs (for speed sake). This is justifiable
as there is no statistically significant difference between 100 and 1000 training
epochs according to Fig. 12, right.

Sensitivity to the size of the noise vector

Sensitivity to the noise vector distribution

Sensitivity to the training epochs

o
o
t=1

—— 060 mmm Spherical 0=0.33 B 20 epochs
5 0.60 pumm 215 T I random uniform (0.6) @ Hmm 50 epochs
= . 230 + = randofn uniform (1.0) + 2 s 100 epochs
5} S o
= 2100 i < 0.40 G el 040 1000 epochs o u
g 0.40 2200 o Q 2 -
[] 3
=) > ?
© bt ©0.20 ©0.20
$0.20 o 8 i
< + < . Z
| 0 ——, M
0 0

% Self-Collisions
Average Local Metrics

Error Diversity Error

Average Local Metrics

% Self-Collisions % Self-Collisions

Average Local Metrics

Diversity Error Diversity

Fig. 12. Parameter sensitivity.> Left-to-right: 1. Sensitivity of the GPN to the size of the generator noise vector in terms of the average local metrics (average
error, ratio of self-collisions, and diversity of the trajectories). The GPN with 100D noise vector has been used for the rest of the results in this work, due
to high diversity and low error. 2. Sensitivity to distribution of the noise GPN noise vector. Both spherical and uniform random noise perform similarly, so
we stick with the random uniform noise. 3. GPN performance after various training epochs. The results confirm, that once trained sufficiently GPN produces

next to no self-collisions.

Sensitivity to the size of the training set

S -k - ¥
£ 0.40 . 5k =
g - + . 10k
0.20
% 15k
<

% Self-Collisions
Average Local Metrics

Error Diversity

Fig. 13. Dataset Size.” Comparative performance of the same GPN config-
uration trained with datasets of different sizes. Despite the difference in the
sizes of the training datasets, the performance is very comparable.*

in a particular obstacle setting. But in absolute terms both
methods perform badly against this stringent requirement.
These results are valid assuming no feedback is available about
the result (hit or miss). If such feedback is available, the GPN
could repeat its first successful trajectory in each setting, which
will would further improve its success rates.

In the broken joints application, GPN similarly improves on
QD when a smaller numbers of successful hits are required
(Figure 8). It seems like QD policies are relatively more robust
to certain joint failures (1, 3, and 6). However overall there
is still an obvious benefit to using GPN in the settings of 1-3
unknown broken joints (Figures 8-12).

B. Significance

Overall our contribution fits in with and extends the suc-
cessful existing line of work on learning repertoire-based
robust behaviours [4], [5], [6], [38]. Rather than learning a
fixed repertoire, where available diversity is set after training;
we learn a conditional generative model for behaviours that
can sample additional diversity online at run-time, and do so
conditionally on a specified goal. This both allows increased
robustness through greater available diversity, and potentially
better scalability to very large repertoires due to carrying
a parametric behaviour generator in place of an exhaustive
behaviour library. Although we evaluated our technique on
throwing, the methodology is generic and could be applied
to any setting addressable by open-loop controller. Thus this
provides a valuable tool that could help realise the vision of
achieving robot robustness through behavioural diversity.

C. Future Work

In future, we intend to explore applying the proposed
generative policy network framework for generating low-

dimensional closed-loop controllers such as dynamic move-
ment primitives [17] rather than our current open-loop con-
trollers, and application to different kinds of tasks besides
throwing [38]. Rather than relying on a fixed training set, we
would also like to close the loop between generator learning
and training set collection, and gather data more efficiently by
leveraging the GPN’s ability to condition on a desired target.

VI. CONCLUSION

We introduced the idea of generative policy networks, for
defining a generative model over policies. We showed that
our generative policy network provides a way to compactly
encode a large set of known behaviors, and that sampling
the GPN provides a way to draw unlimited novel controllers
that are related-to but different-from known training behav-
iors. We showed how to apply this novel idea to provide
an effective repertoire-based solution to challenging tasks
including obstacle-robust throwing and joint-damage-robust
throwing. This adds to the existing promising line of research
on behavioural diversity and brings us one step closer to
achieving robust behaviour through behavioural repertoire.

ACKNOWLEDGEMENT

This work is supported by the DREAM project through the
European Unions Horizon 2020 research and innovation under
grant agreement No 640891, EPSRC grant EP/R026173/1, and
NVIDIA Corporation GPU donation. We would also like to
express our gratitude to Joshua Smith for the constant technical
support provided throughout the project.

REFERENCES

[1] G. Fagogenis, V. D. Carolis, and D. M. Lane, “Online fault detection
and model adaptation for Underwater Vehicles in the case of thruster
failures,” in ICRA, 2016.

[2] K. Fang, Y. Bai, S. Hinterstoisser, S. Savarese, and M. Kalakrishnan,
“Multi-Task Domain Adaptation for Deep Learning of Instance Grasping
from Simulation,” in /CRA, 2018.

[3] C. Zhao, T. M. Hospedales, F. Stulp, and O. Sigaud, “Knowledge
Transfer Across Skill Categories for Robot Control,” IJCAI 2017.

[4] A. Cully, J. Clune, D. Tarapore, and J. B. Mouret, “Robots that can
adapt like animals,” Nature, vol. 521, pp. 503-507, 2015.

[5] A. Cully and J. B. Mouret, “Evolving a behavioral repertoire for a
walking robot,” Evolutionary Computation, vol. 24, pp. 59-88, 2016.

[6] M. Duarte, J. Gomes, S. M. Oliveira, and A. L. Christensen, “Evolution
of Repertoire-Based Control for Robots With Complex Locomotor
Systems,” IEEE Transactions on Evolutionary Computation, vol. 22,
pp- 314-328, 2018.

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
(28]
[29]
(30]
[31]
(32]

[33]

[34]

F. Guerin, N. Kruger, and D. Kraft, “A survey of the ontogeny of tool
use: From sensorimotor experience to planning,” IEEE Transactions on
Autonomous Mental Development, vol. 5, no. 1, pp. 1845, 2013.

E. Ugur, Y. Nagai, E. Sahin, and E. Oztop, “Staged development of
robot skills: Behavior formation, affordance learning and imitation with
motionese,” IEEE Transactions on Autonomous Mental Development,
vol. 7, no. 2, pp. 119-139, June 2015.

D. Kraft, R. Detry, N. Pugeault, E. Baseski, F. Guerin, J. H. Piater, and
N. Kruger, “Development of object and grasping knowledge by robot
exploration,” IEEE Transactions on Autonomous Mental Development,
vol. 2, no. 4, pp. 368-383, Dec 2010.

J. Lehman and K. O. Stanley, “Evolving a diversity of virtual creatures
through novelty search and local competition,” GECCO, 2011.

A. Clark and A. Karmiloff-Smith, “The cognizer’s innards: A psycho-
logical and philosophical perspective on the development of thought,”
Mind & Language, vol. 8, no. 4, pp. 487-519, 1993.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
NIPS, pp. 2672-2680, 2014.

A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks,”
ICLR, 2016.

A. G. Kupcsik, M. P. Deisenroth, J. Peters, and G. Neumann, “Data-
efficient Generalization of Robot Skills with Contextual Policy Search,”
in AAAI, 2013.

J. Kober, E. Oztop, and J. Peters, “Reinforcement Learning to adjust
Robot Movements to New Situations,” in RSS, 2010.

M. Jegorova, S. Doncieux, and T. Hospedales, “Generative adversarial
policy networks for behavioural repertoire,” in /CDL, 2019.

F. Stulp, G. Raiola, A. Hoarau, S. Ivaldi, and O. Sigaud, “Learning
compact parameterized skills with a single regression,” in IEEE-RAS
International Conference on Humanoid Robots (Humanoids), 2013.

R. J. Williams, “Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning,” Machine Learning, 1992.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, “Continuous Control with Deep Reinforcement
Learning,” in ICLR, 2016.

T. Lopez-Guevara, N. K. Taylor, M. U. Gutmann, S. Ramamoorthy, and
K. Subr, “Adaptable Pouring: Teaching Robots Not to Spill using Fast
but Approximate Fluid Simulation,” in CORL, 2017.

F. P. Such, V. Madhavan, E. Conti, J. Lehman, J. Clune, and K. O.
Stanley, “Deep Neuroevolution: Genetic Algorithms are a Competitive
Alternative for Training Deep Neural Networks for Reinforcement
Learning,” in arXiv:1712.06567, 2018.

F. Stulp, E. Oztop, P. Pastor, M. Beetz, and S. Schaal, “Compact models
of motor primitive variations for predictable reaching and obstacle avoid-
ance,” in IEEE-RAS International Conference on Humanoid Robots,
2009.

J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution through
the search for novelty alone,” Evolutionary Computation, vol. 19, pp.
189-222, 2011.

A. Cully and Y. Demiris, “Quality and Diversity Optimization: A
Unifying Modular Framework,” IEEE Transactions on Evolutionary
Computation, vol. 22, no. 2, pp. 245-259, 2018.

J. K. Pugh, L. B. Soros, and K. O. Stanley, “Quality Diversity: A New
Frontier for Evolutionary Computation,” Frontiers in Robotics and Al,
vol. 3, p. 40, 2016.

B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is all you
need: Learning skillswithout a reward function,” ICLR, 2019.

M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,”
arXiv, 2014.

S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee,
“Generative Adversarial Text to Image Synthesis,” ICML, 2016.

X. Chen, Y. Duan, R. H. nad John Schulman, I. Sutskever, and
P. Abbeel, “Infogan: Interpretable representation learning by information
maximizing generative adversarial nets,” in NIPS, 2016.

L. Arjovsky, M.; Chintala S.; Bottou, “Wasserstein GAN,” ICML, 2017.
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved Techniques for Training GANs,” NIPS, 2016.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved Training of Wasserstein GANs,” NIPS, 2017.

Z. Erickson, S. Chernova, and C. C. Kemp, “Semi-Supervised Haptic
Material Recognition for Robots using Generative Adversarial Net-
works,” CORL, 2017.

R. Rahmatizadeh, P. Abolghasemi, L. B6loni, and S. Levine, “Vision-
Based Multi-Task Manipulation for Inexpensive Robots Using End-To-
End Learning from Demonstration,” in ICRA, 2018.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

J. Ho and S. Ermon, “Generative Adversarial Imitation Learning,” in
NIPS, 2016.

Y. Li, J. Song, and S. Ermon, “Infogail: Interpretable imitation learning
from visual demonstrations,” in Advances in Neural Information Pro-
cessing Systems 30, 1. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., 2017.

A. Cully and Y. Demiris, “Quality and diversity optimization: A unifying
modular framework,” IEEE Transactions on Evolutionary Computation,
vol. 22, no. 2, pp. 245-259, 2018.

S. Kim, A. Coninx, and S. Doncieux, “From exploration to control:
learning object manipulation skills through novelty search and local
adaptation,” arXiv preprint arXiv:1901.00811, 2019.

M. Rosenblatt, “Remarks on Some Nonparametric Estimates of a
Density Function,” Ann. Math. Statist., vol. 27, no. 3, 1956.

D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient Global Opti-
mization of Expensive Black-Box Functions,” J. of Global Optimization,
vol. 13, no. 4, pp. 455-492, dec 1998.

N. Jaquier, “Improving the drawing skills of a humanoid robot with
visual feedback,” Master’s Thesis, Ecole Polytechnique Fédérale de
Lausanne, 2016.

Marija Jegorova is a post-doctoral Re-
search Associate at School of Engineer-
ing at the University of Edinburgh. As a
part of the DREAM FET H2020 project
(2014 - 2018), her research has been fo-
cused around realistic artificial data syn-
thesis for machine learning applications to
robotics and automation. Current research
interests extend to privacy in machine
learning, specifically membership attacks

for generative models in differential privacy setting.

Stephane Doncieux is Professor in
Computer Science at ISIR (Institute of
Intelligent Systems and Robotics), Sor-
bonne University, CNRS, in Paris, France.
He is deputy director of the ISIR, a mul-
tidisciplinary robotics laboratory with re-
searchers in mechatronics, signal process-
ing computer science and neuroscience.
Until that date, he was in charge of the
AMAC multidisciplinary research team

(Architectures and Models of Adaptation and Cognition). He
was coordinator of the DREAM FET H2020 project from
2015 to 2018 (http://robotsthatdream.eu/). His research is in
cognitive robotics, with a focus on learning and adaptation
with a developmental approach.

Timothy Hospedales is a Professor at
the University of Edinburgh. He is As-
sociate Editor of TPAMI, and has served
as Area Chair of several major events
(ICCV, ECCYV, CVPR, AAAI, IJCAI) and
Program Chair of BMVC 2018. His work
has been funded by UK EPSRC and the
European Commission, and has led to
over 75 publications in major venues, as
well as best paper awards or nominations

at ICML, ICPR and BMVC. His research interests include
data efficient and robust machine learning with applications
in computer vision, language, robot control and beyond.

