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Abstract Migrating cells need to coordinate distinct leading and trailing edge dynamics but the

underlying mechanisms are unclear. Here, we combine experiments and mathematical modeling to

elaborate the minimal autonomous biochemical machinery necessary and sufficient for this dynamic

coordination and cell movement. RhoA activates Rac1 via DIA and inhibits Rac1 via ROCK, while

Rac1 inhibits RhoA through PAK. Our data suggest that in motile, polarized cells, RhoA–ROCK

interactions prevail at the rear, whereas RhoA-DIA interactions dominate at the front where Rac1/

Rho oscillations drive protrusions and retractions. At the rear, high RhoA and low Rac1 activities are

maintained until a wave of oscillatory GTPase activities from the cell front reaches the rear,

inducing transient GTPase oscillations and RhoA activity spikes. After the rear retracts, the initial

GTPase pattern resumes. Our findings show how periodic, propagating GTPase waves coordinate

distinct GTPase patterns at the leading and trailing edge dynamics in moving cells.

Introduction
Cell migration relies on the coordination of actin dynamics at the leading and the trailing edges

(Ridley et al., 2003). During the mesenchymal type of migration, protrusive filamentous actin (F-

actin) is cyclically polymerized/depolymerized at the cell’s leading edge, whereas the contractile,

actomyosin-enriched trailing edge forms the rear. The leading edge protrudes and retracts multiple

times, until the protrusions, known as lamellipodia, are stabilized by adhering to the extracellular

matrix (Ridley, 2001). Subsequently, the cell rear detaches and contracts allowing the cell body to

be pulled toward the front. Core biochemical mechanisms of this dynamic cycle are governed by the

Rho family of small GTPases (Jaffe and Hall, 2005). Two members of this family, Ras homolog family

member A (RhoA) and Ras-related C3 botulinum toxin substrate 1 (Rac1), control protrusions and

retractions at the leading edge as well as the contractility at the rear (Felmet et al., 2005;

Heasman and Ridley, 2008; Machacek et al., 2009). RhoGTPases cycle between an active, GTP-

loaded ‘on’ state and an inactive, GDP-loaded ‘off’ state. Switches between on and off states are

tightly regulated by (i) guanine nucleotide exchange factors (GEFs) that facilitate GDP/GTP
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exchange thereby activating GTPases and (ii) GTPase activating proteins (GAPs) that stimulate GTP

hydrolysis and transition to a GDP-bound state.

A canonic description of mesenchymal cell migration portrays mutually separated zones of Rac1-

GTP and RhoA-GTP in polarized cells where Rac1-GTP dominates at the leading edge and RhoA-

GTP dominates at the contracted cell rear (Holmes and Edelstein-Keshet, 2016; Holmes et al.,

2017; Kunida et al., 2012; Kurokawa and Matsuda, 2005; Pertz et al., 2006; Wang et al., 2013;

Zmurchok and Holmes, 2020). This distinct distribution of RhoA and Rac1 activities along polarized

cells is explained by a mutual antagonism of RhoA and Rac1 (Edelstein-Keshet et al., 2013;

Mori et al., 2008) mediated by downstream effectors of these GTPases (Byrne et al., 2016;

Guilluy et al., 2011a; Pertz, 2010). The Rac1 effector, p21 associated kinase (PAK), phosphorylates

and inhibits multiple RhoA-specific GEFs, including p115-RhoGEF, GEF-H1 and Net1 (Alberts et al.,

2005; Guilluy et al., 2011a; Rosenfeldt et al., 2006). In addition, active Rac1 binds and activates

p190RhoGAP, which decreases RhoA activity (Guilluy et al., 2011a). In turn, RhoA-GTP recruits the

Rho-associated kinase (ROCK), which phosphorylates and activates Rac-specific GAPs, such as Fil-

GAP and ArhGAP22, thereby inhibiting Rac1 (Guilluy et al., 2011a; Ohta et al., 2006; Sanz-

Moreno et al., 2008). This mutual inhibition of RhoA and Rac1 may lead to a bistable behavior

where a system can switch between two stable steady states, in which GTPase activities alternate

between high and low values (Kholodenko, 2006; Mori et al., 2008). The existence of bistable

switches is supported by experiments, where inhibition of the Rac1 effector PAK maintains both high

RhoA and low Rac1 activities and associated morphological changes even after the inhibition is

released (Byrne et al., 2016).

At the same time, RhoA and Rac1 do not behave antagonistically at the leading edge of migrat-

ing cells. Here, RhoA activation is rapidly followed by Rac1 activation, tracking a protrusion-retrac-

tion cycle (Machacek et al., 2009). This Rac1 activation at the leading edge is mediated by the

downstream RhoA effector, Diaphanous related formin-1 (DIA), that was shown to localize to the

membrane ruffles of motile cells (Tkachenko et al., 2011; Watanabe et al., 1997). Thus, in contrast

to the RhoA effector ROCK, which inhibits Rac1 in the other cell segments, the RhoA effector DIA

can stimulate Rac1 activity at the leading edge.

If at the leading edge RhoA activates Rac1 but Rac1 inhibits RhoA, this intertwined network cir-

cuitry of positive and negative loops will force the network to periodically change RhoA and Rac1

activities, giving rise to self-perpetuating oscillations with a constant amplitude and frequency (Kho-

lodenko, 2006; Tsyganov et al., 2012). By contrast, at the trailing edge and cell body, the mutual

RhoA and Rac1 inhibition results in the maintenance of a (quasi)steady state with high RhoA activity

and low Rac1 activity. But, how can these different dynamics coexist? More importantly, how are

these dynamics coordinated within the cell? Despite decades of research that have painstakingly

characterized dynamic Rho and Rac behaviors in cell motility (Holmes and Edelstein-Keshet, 2012),

we do not know what dynamic features are necessary and sufficient to achieve the biological effect

of cell motility, and how different dynamics at the front and rear are coordinated.

Here, we first elucidated the spatial profiles of RhoA-Rac1 interactions in motile MDA-MB-231

breast cancer cells. Using proximity ligation assays (PLA), we show that the concentration of com-

plexes formed by RhoA and its downstream effectors DIA and ROCK depends on the spatial location

along the longitudinal axis of polarized cells. RhoA primarily interacts with DIA at the cell leading

edge, whereas RhoA - ROCK interactions are the strongest at the cell rear. Based on these findings,

we built a mathematical model to analyze RhoA-Rac1 signaling in space and time. The model pre-

dicts and the experiments corroborate that at the cell front the GTPase network exhibits oscillatory

behavior with high average Rac1-GTP, whereas at the cell rear there is a (quasi)steady state with

high RhoA-GTP and low Rac. The front and rear are connected by periodic, propagating GTPase

waves. When the wave reaches the rear, RhoA-GTP transiently oscillates and then, following the rear

retraction, the GTPase network dynamic pattern returns to the original state. Our model and experi-

mental results show how different GTPase dynamics at the leading edge and the trailing edge can

govern distinct cytoskeleton processes and how moving cells reconcile these different dynamics. The

RhoA-Rac1 interaction network model defines minimal, autonomous biochemical machinery that is

necessary and sufficient for biologically observed modes of cell movement.
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Results

Spatially variable topology of the RhoA-Rac1 interaction network
The Rac1 effector PAK inhibits RhoA, and the RhoA effector ROCK inhibits Rac1 (Guilluy et al.,

2011a). Here, we tested how the other RhoA effector, DIA, influences the Rac1 and RhoA activities.

We first downregulated DIA using small interfering RNA (siRNA) and measured the resulting changes

in the Rac1-GTP and RhoA-GTP levels. Downregulation of DIA increased the RhoA abundance and

decreased Rac1 abundance, while decreasing relative activities of both RhoA and Rac1 (Figure 1—

figure supplement 1, panels A and B). The decrease of relative Rac1 and RhoA activities induced by

DIA knockdown shows that DIA activates Rac1 and also supports the existence of a positive feed-

back loop between DIA and RhoA described earlier (Kitzing et al., 2007). In addition, the GTPase

network features another positive feedback from PAK to Rac1 through several molecular mecha-

nisms (Baird et al., 2005; DerMardirossian et al., 2004; Feng et al., 2002; Obermeier et al.,

1998). Summing up the interactions between RhoA and Rac1 mediated by their effectors ROCK and

PAK (Byrne et al., 2016) and RhoA - Rac1 interactions through DIA, we arrive at the intertwined

negative and positive feedback circuitry of the RhoA-Rac1 network shown in Figure 1—figure sup-

plement 1, panel C.

To explain the distinct GTPase activities at the leading and trailing edges, we hypothesized that

these diverse feedforward and feedback mechanisms may be spatially controlled. Therefore, we

explored how the interactions of active RhoA with its effectors vary spatially in polarized MDA-MB-

231 cells. Using a proximity ligation assay (PLA), which visualizes protein interactions in situ

(Gustafsdottir et al., 2005; Söderberg et al., 2006), we measured RhoA-DIA and RhoA-ROCK

complexes (Figure 1A and B). Based on the commonly considered morphology of the long, narrow

cell rear and the wide leading edge (Caswell and Zech, 2018), we segmented each polarized cell

into three parts: the rear (about 20% of the cell length), intermediate region (next 70% of the cell

length), and front (the rest 10% of the length). The density of the RhoA-effector complexes was

quantified by dividing the number of PLA reactions by the area of the corresponding compartment.

The results show that the RhoA-DIA complexes are predominantly localized at the cell front,

whereas their density is markedly decreased at the rear (Figure 1A). In contrast, the density of the

RhoA-ROCK complexes increases toward the cell rear and decreases at the leading edge

(Figure 1B). These results are in line with protein staining data in polarized cells, which suggest that

DIA is mainly localized at the leading edge (Figure 1C), whereas ROCK is abundant at the rear and

cell body (Figure 1D; Brandt et al., 2007; Goulimari et al., 2005; Newell-Litwa et al., 2015;

Watanabe et al., 1997; Wheeler and Ridley, 2004). For MDA-MB-231 cells, our quantitative prote-

omics data showed that the RhoA abundance is at least 10-fold larger than the abundance of DIA

and ROCK isoforms combined (Byrne et al., 2016). Thus, as shown in the Modeling section of

Materials and methods, the RhoA-effector concentrations depend approximately linearly on the DIA

and ROCK abundances. Taken together, these results suggest a protein interaction circuitry of the

GTPase network, where competing effector interactions are spatially controlled (Figure 1E). In order

to analyze how this differential spatial arrangement of GTPase-effector interactions can accomplish

the dynamic coordination between the leading and trailing edges, we constructed a mechanistic

mathematical model and populated it by quantitative mass spectrometry data on protein abundan-

ces (Supplementary file 1).

Analyzing the dynamics of the RhoA-Rac1 interaction network
The changes in ROCK and DIA abundances along the longitudinal axis of polarized cells (Figure 1C

and D) could plausibly encode the distinct RhoA-Rac1 temporal behaviors in different cellular seg-

ments. Therefore, we explored these possible dynamics of the GTPase network for different DIA

and ROCK abundances prevailing at different spatial positions along the cell length. We first used a

spatially localized, compartmentalized model where different DIA and ROCK abundances corre-

sponded to distinct spatial locations (see Modeling section of Materials and methods for a detailed

description of this model).

Using the model, we partitioned a plane of the ROCK and DIA abundances into the areas of dif-

ferent temporal dynamics of RhoA and Rac1 activities (Figure 2A). This partitioning is a two-parame-

ter bifurcation diagram where the regions of distinct GTPase dynamics are separated by bifurcation
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Figure 1. Differential localization of the RhoA-DIA and RhoA-ROCK1 protein complexes determine spatially resolved signaling topology. (A, B)

Representative PLA images. Each red spot within a cell represents a fluorescent signal from a single RhoA-DIA1 (A) or RhoA-ROCK1 (B) complex.

Yellow lines indicate bounds for the leading edge, intermediate region and rear. Bar graphs at the right show the average density of these complexes

in different cell regions (the rear, middle and leading edge)± S.E.M. of four independent experiments with 25 cells analyzed per experiment. The

Figure 1 continued on next page
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boundaries at which abrupt, dramatic changes in the dynamic behavior occur (Holmes and Edel-

stein-Keshet, 2016). The blue region 1 in Figure 2A corresponds to the self-perpetuating oscilla-

tions of the RhoA and Rac1 activities at the leading edge. The ROCK abundance is markedly lower

and the DIA abundance is higher at the leading edge than in the cell body (Figure 1C and D). Thus,

a combination of Rac1 activation by RhoA via DIA and RhoA inhibition by Rac1 via PAK (Figure 2B)

results in sustained oscillations of RhoA and Rac1 activities at the leading edge (Figure 2D). This

periodic Rac1 activation drives actin polymerization at the leading edge pushing protrusion-retrac-

tion cycles (Machacek et al., 2009; Martin et al., 2016; Pertz, 2010; Tkachenko et al., 2011).

The green region 2 in Figure 2A is an area of stable high RhoA and low Rac1 activities at the rear

and intermediate cell regions. Within this region, RhoA inhibits Rac1 via ROCK, and Rac1 inhibits

RhoA via PAK (Figure 2C). After perturbations, the GTPase network converges to steady-state levels

of high RhoA-GTP and particularly low Rac1-GTP (Figure 2E). Unlike other dynamical regimes with

only a single stable steady state, region 2 corresponds to an excitable an medium, which cannot

generate pulses itself, but supports the propagation of excitable activity pulses (see

Materials and methods section).

The red region 3 corresponds to the coexistence of GTPase oscillations and a stable steady state

with high RhoA and low Rac1 activities. Depending on the initial state, the GTPase network evolves

to different dynamic regimes. If the initial state has high RhoA-GTP and low Rac1-GTP, the GTPase

network progresses to a stable steady state, but if the initial state has low RhoA-GTP and high Rac1-

GTP, the network will develop sustained oscillations (Figure 2F). This region 3 is termed a BiDR (Bi-

Dynamic-Regimes) by analogy with a bi-stable region where two stable steady states coexist and the

system can evolve to any of these states depending on the initial state (Kholodenko, 2006). How-

ever, in contrast with bistable regimes only one of two stable regimes is a stable steady state in the

BiDR region, whereas the other dynamic regime is a limit cycle that generates stable oscillations.

In addition to these dynamic regimes, the spatially localized model predicts other emergent non-

linear dynamic behaviors (Figure 2A, Figure 2—figure supplement 1, panels A-D, and Figure 2—

figure supplement 2), which the GTPase network may execute under large perturbations of the

RhoA and Rac1 effector abundances to coordinate GTPase signaling at the leading and trailing

edges (see Modeling section of Materials and methods for a detail description of these regimes).

Therefore, we next analyzed how the leading and trailing edge GTPase dynamics are coupled.

Spatiotemporal dynamics of the RhoA-Rac1 network reconciles the
distinct temporal behaviors at the cell front and rear
Different active GTPase concentrations in the cell rear and the leading edge induce diffusion

fluxes (Das et al., 2015), which in turn influence the emerging behavior of these GTPases and coor-

dinate their dynamics in distinct cellular segments. As a multitude of dynamic behaviors is possible,

we systematically explored the behavior of the RhoA-Rac1 network in space and time using a spatio-

temporal model of the GTPase network interactions (referred to as a reaction-diffusion model, see

Materials and methods). Starting from experimental observations to rationalize which behaviors are

likely with physiological boundaries, we digitized 2D images of polarized cells and incorporated the

DIA and ROCK abundances as functions of the spatial coordinate along the cell length, based on the

quantitative imaging data (Figure 3A–C).

The model predicts autonomous, repeating cycles of the spatiotemporal GTPase dynamics

(Figure 3D–G and Video 1). For a substantial part of a dynamic cycle, high RhoA-GTP and low

Rac1-GTP persist at the cell rear and maintain the rear contraction, whereas active RhoA and Rac1

Figure 1 continued

asterisk * indicates that p<0.05 calculated using unpaired t-test. (C, D) Representative images of DIA1 and ROCK1 immunostaining. Bar graphs at the

right show quantified immunostaining density signals for different cellular compartments ± S.E.M. of four independent experiments with one cell

analyzed per experiment. The asterisk * indicates that p<0.05 calculated using unpaired t-test. (E) A schematic wiring diagram of the RhoA-Rac1

network, showing positive (blue) and negative (magenta) feedback loops. Spatially varying RhoA interactions with its effectors DIA and ROCK are shown

by dashed lines.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Elucidation of the topology of the RhoA GTPase network: DIA knockdown influence on the GTPase activities.
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Figure 2. A mathematical model of the RhoA-Rac1 network predicts dramatically distinct dynamic regimes for

different DIA and ROCK abundances. (A) Distinct dynamic regimes of the RhoA-Rac1 network dynamics for

different DIA and ROCK abundances. Oscillations of RhoA and Rac1 activity exist within area 1 (regime 1). In area

3, sustained GTPase oscillations and a stable steady state with high RhoA and low Rac1 activities coexist. Regimes

0, 2, 5 and 6 have only one stable steady state. Notably, regime 2 is excitable. Steady state solutions with high

RhoA activity exist in areas 2–4, and 6–8. Stable steady state solutions with high Rac1 activity exist in areas 0 and

5–8. Regimes 4, 7 and 8 are bistable with two stable steady states. (B, C) Wiring diagrams of the RhoA-Rac1

network for the cell leading edge (B) and the cell body and rear (C). Dashed blue lines indicate weak activating

connections. (D–F) Typical time courses of RhoA and Rac1 activity in regimes 1 (D), and 2 (E). (F) In area 3,

Figure 2 continued on next page
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oscillate at the leading edge, resulting in actin (de)polarization cycles and protrusion-retraction

cycles (Figure 3D and F; Wang et al., 2013). At the same time, a wave of oscillating Rac1 and RhoA

activities slowly propagates from the leading edge toward the cell rear (Figure 3E and G). Between

the oscillatory RhoA-GTP zone and the areas of high RhoA activity, a zone of low RhoA activity

emerges (Figure 3F). As time progresses, the wave of oscillating GTPase activities and the area of

low RhoA activity spread to the rear (Figure 3—figure supplement 1, panels A and B), leading to

re-arrangement of the cytoskeleton (Warner et al., 2019). Because of the oscillations, zones of low

Rac1 activities emerge, which give rise to high RhoA-GTP that interacts with ROCK and leads to the

rear retraction (Video 1). Subsequently, RhoA returns to its initial high stable activity, and the

dynamic pattern of RhoA-GTP and Rac1-GTP over the entire cell returns to its initial state. These

model simulations could plausibly explain how the different GTPase dynamics at the cell front and

rear are coordinated to enable successful cell migration.

Therefore, it was important to test the prediction arising from the model simulations in biological

experiments. For this, we used cells stably expressing the mTFP-YFP RhoA-GTP FRET-probe

(Kim et al., 2015) allowing us to determine the RhoA-GTP dynamics using ratiometric, live-cell spin-

ning disk microscopy. We imaged the cells with a frequency of one image every 5 s and constrained

the measurement time to 10 min to limit phototoxic effects. Due to this time limitation, a full cycle

of cellular movement (around 45 min on average, Video 2) could not be followed in an individual

cell, and the full spatiotemporal RhoA activity cycle during a cell movement was compiled from sev-

eral cells observed in different phases of cellular movement. In the initial phase of the cell movement

cycle, the spatiotemporal RhoA activity showed three different zones: (i) oscillations at the leading

edge, (ii) dark zone of low activity and (iii) light zone of high activity (Figure 3H and Figure 3—fig-

ure supplement 1, panel C) in the cell body and rear, matching the model prediction (Figsure 3F

and Figure 3—figure supplement 1, panel C). As time progressed, the GTPase activity wave propa-

gated further into the cell (Figure 3I), forming zones of high and low RhoA activities. In the space-

time coordinates, the slope of the boundaries of these zones suggests that they travel from the lead-

ing edge to the cell rear, confirming the model predictions (Video 1 and Figure 3I). When the wave

of oscillatory GTPase activities finally reaches the cell rear, it induces several RhoA-GTP spikes

(Figure 3G and I), periods of low RhoA activity (Figure 3—figure supplement 1, panels A-B and D),

and subsequent return to the original, high RhoA-GTP at the rear and part of the cell body

(Figure 3F and H). Figure 3—figure supplement 1, panel D experimentally captures this transition

from a low RhoA activity to the original high activity as the final step of the cell movement cycle pre-

dicted by the model.

The model predicts that during a single cellular movement cycle, multiple bursts of RhoA activity

appear at the leading edge, whereas at the cell rear, RhoA activity bursts occur only after the RhoA-

Rac1 wave has spread through the cell (Video 1). Measuring the number of RhoA bursts at the lead-

ing edge and cell rear during observation time (10 min) corroborated model predictions, showing a

ca. fivefold larger number of bursts at the leading edge than at the cell rear (Figure 3J). On average,

at the leading edge a burst of RhoA activity happens every minute, while at the cell rear only 1 or 2

bursts happen during 10 min (Figure 3J).

Although spatially resolved Rac1 activity can be determined using exogenous probes, they dra-

matically change the cell shape when expressed (Pertz, 2010). However, endogenous Rac1-GTP can

be reliably detected by immunostaining with a conformation-specific Rac1-GTP antibody. Rac1 was

mainly active at the leading edge with lower activity in the space between the nucleus and cell rear

(Figure 3K), similar to the patterns observed in the model for protrusion-retraction cycles

Figure 2 continued

depending on the initial state, the GTPase network evolves either to a stable steady state (right) or a stable

oscillatory regime (left).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Distinct dynamic regimes of the RhoA-Rac1 network for different effector abundances.

Figure supplement 2. Nullclines and vector fields describing the nine dynamic regimes of RhoA-GTP and Rac1-

GTP shown in Figure 2A.

Figure supplement 3. One-parameter bifurcation diagrams for changing ROCK and DIA abundances separately

in Figure 2A.
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Figure 3. Spatial propagation of RhoA and Rac1 activities during cell motility. (A) A 2-D calculation domain obtained by digitizing cell images. Different

cellular compartments are indicated. The x-axis represents the direction of cell polarization, the y-axis represents the perpendicular direction. (B, C) The

abundance profiles of DIA and ROCK used in simulations (red lines) are superimposed on the experimental spatial profiles (bar graphs in Figure 1C

and D). (D–G) Model-predicted spatial patterns of the RhoA and Rac1 activities for different phases of the cell movement cycle. (D, F) Rac1 and RhoA

Figure 3 continued on next page
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(Figure 3D). The GTPase waves can be detected using super-resolution imaging. These images cor-

roborated the Rac1-GTP presence towards the cell nucleus and rear (see super-resolution images in

Figure 3L–M and Figure 3—figure supplement 1, panel E). The series of images shown in

Figure 3K–M and Figure 3—figure supplement 1, panel E is consistent with the concept of travel-

ing Rac1-GTP waves predicted by the model.

The spatiotemporal activation dynamics of Rac1 and RhoA underlie the morphological events dur-

ing cell migration, that is protrusion-retraction cycles at the front and the retraction cycle at the rear

(Ridley et al., 2003; Video 2). These mechanical processes, involving cytoskeleton proteins, can be

coordinated by periodic propagating waves of RhoGTPase activities described by our model.

Hysteresis of Rac1 and RhoA activities and cell shape features
We previously showed that PAK inhibition could change the cell shape of MDA-MB-231 cells from

mesenchymal to amoeboid (Byrne et al., 2016). The mesenchymal mode of migration features an

elongated cell morphology and high Rac1 activity, whereas the amoeboid mode is hallmarked by a

rounded morphology and high RhoA activity (Sanz-Moreno et al., 2008). These morphologies and

migration types are mutually exclusive but can transition into each other. Our previous study showed

that this transition correlated with the hysteresis of active RhoA and Rac1 upon PAK inhibition

(Byrne et al., 2016). Hysteresis is the hallmark of bistability: if a parameter, such as the PAK abun-

dance, reaches a threshold value, then the system flips from one stable state to another stable state,

at which it remains for a prolonged period of time even when this parameter has returned to its ini-

tial value (Markevich et al., 2004; Sha et al., 2003).

Our model now allows us to examine the exact spatiotemporal kinetics of the GTPase network in

response to changes in PAK abundance or activity. Varying PAK causes Rac1 and RhoA activities to

move through different dynamic regimes (shown by the line connecting points I – II – III in

Figure 4A). In unperturbed cells, GTPase activi-

ties oscillate at the leading edge. This initial net-

work state corresponds to point I in region 1n

and unperturbed ROCK, PAK and DIA abundan-

ces and activities (the point I coordinates are (1,

1) in Figure 4A). Because Rac1 and RhoA are dif-

ficult to target for therapeutic interventions, we

used a small molecule PAK inhibitor (IPA-3) in

our previous study (Byrne et al., 2016). As PAK

abundance gradually decreases (or PAK inhibi-

tion increases), the system moves from the oscil-

latory region 1 to the BiDR region 3, before

reaching a bistable regime (regions 7 and 8), as

shown by point II. In the BiDR region, (i) a stable

high RhoA-GTP, low Rac1-GTP state and (ii) a

stable oscillatory state with a high average Rac1-

GTP coexist at the leading edge (Figure 2F and

Figure 2—figure supplement 2, panel D). While

Figure 3 continued

activity snapshots during a protrusion-retraction cycle at the leading edge (t = 175 s from the start of the moving cycle). (E, G) represent snapshots

when the Rac1 and RhoA activity wave have spread over the entire cell, reaching the rear (t = 1518 s). (H) The RhoA activity at the leading edge and cell

body during a protrusion-retraction phase measured by RhoA FRET probe in space and time. The arrows compare model-predicted and experimentally

measured patterns, indicating zones of RhoA oscillatory and high constant activities and a ‘dark zone’ of low RhoA activity. (I) Spatiotemporal pattern of

the RhoA activity during further RhoA wave propagation into the cell. (J) The number of RhoA activity bursts at the cell body and rear during 10 min

measured using the RhoA FRET probe. Error bars represent 1st and 3rd quartiles, *** indicate p<0.001 calculated using unpaired t-test. (K–M)

Fluorescent microscopy images of Rac1 activity (red), combined with staining for F-actin (phalloidin, white) and the nucleus (DAPI, blue) in fixed cells for

different phases of the cell movement cycle; (K) a protrusion-retraction cycle at the leading edge, and (L, M) present Rac1 activity wave propagation

into the cell body. The images (L, M) were obtained by super-resolution microscopy.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Spatial propagation of RhoA and Rac1 activities during cell motility.

Video 1. Model-predicted spatiotemporal activity

patterns of RhoA and Rac1.

https://elifesciences.org/articles/58165#video1
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moving from point I into area 3, the system con-

tinues to display the stable oscillatory state with

high average Rac1-GTP. In the bistable regions 7

and 8, two stable states co-exist (i) high RhoA-

GTP, low Rac1-GTP and (ii) low RhoA-GTP, high

Rac1-GTP (Figure 2—figure supplement 2, pan-

els H and I). Entering area 7 from the BiDR area

3, the system relaxes to the steady state with the

higher Rac1-GTP level. Only with the further

PAK decrease, a saddle-node bifurcation (see

Materials and methods) shifts the system to the

alternative steady state with the much lower

Rac1-GTP level.

To illustrate the network evolution in

response to a gradual decrease in the PAK abun-

dance, we have plotted the trajectories of the

Rac1 and RhoA activities, averaged over the cell

volume and time (blue curves in Figure 4B and

C). Figure 4B shows that the average Rac1 activ-

ity first slowly decreases and then abruptly

decays after passing point II (Figure 4B). If we

follow the Rac1-GTP trajectory in response to

increasing PAK inhibitor doses, we obtain a simi-

lar curve (Figure 4—figure supplement 1). The average RhoA-GTP behaves oppositely, steadily

increasing and then jumping to the peak activity after the network passes the BiDR and bistable

regions (blue curves in Figure 4C and Figure 4—figure supplement 1, panel B showing the RhoA-

GTP trajectories in response to PAK abundance decrease or IPA-3 increase, respectively). A further

decrease in the PAK abundance moves the RhoA-Rac1 network into point III of region 6 with a single

steady state of active RhoA and low Rac1 activity (Figure 4A–C).

The spatiotemporal dynamic pattern corresponding to point I (Figure 4B and C) is a propagating

wave illustrated in Figure 3D–H and schematically shown in Figure 4D where the blue and black

arrows illustrate oscillations and the wave propagation along a cell. For point II, the RhoA and Rac1

activity patterns depend on space, but do not change with time (Figure 4E). Such spatial dynamics

are referred to as a pinning or stalled wave, meaning that a wave of activation first propagates in

space, then decelerates and eventually stops, forming stationary RhoA and Rac1 activity profiles

(Mori et al., 2008) with high steady-state Rac1-GTP at the leading edge (Figure 4E). Phenotypically

cells maintain a mesenchymal state and polarized shape in both states I and II (Figure 3I and J). For

point III, the resulting steady-state profile features high RhoA and low Rac1 activities along the entire

cell (Figure 4F), which is a hallmark of amoeboid cells (Sahai and Marshall, 2003; Sanz-

Moreno et al., 2008; Wyckoff et al., 2006). Our results suggest that the transition from the mesen-

chymal to the amoeboid phenotype becomes switch-like once PAK activity falls below a critical

threshold (Byrne et al., 2016).

What about the transition back, from point III to point I? Because the underlying GTPase activities

show hysteretic behavior, the transition from amoeboid back to the mesenchymal state should follow

a different path. Indeed, in our previous study, we observed that a switch from a mesenchymal to

amoeboid state occurred at a higher level of PAK inhibition than a switch back when inhibition was

gradually reduced (Byrne et al., 2016). Our model now can explain the underlying spatiotemporal

GTPase dynamics. If cells are forced into the amoeboid state by inhibiting PAK and then allowed to

gradually regain PAK activity (red curves in Figure 4B and C, and Figure 4—figure supplement 1),

the network does not pass through the stalled wave state (point II in Figure 4B and C). It rather first

moves from point III in region 6 through bistable regions 8 and 7, maintaining high RhoA and low

Rac1 activities that corresponds to Figure 4F. Thus, the network trajectory progresses through alter-

native states compared to the movement from point I to point III. Upon further relief of PAK inhibi-

tion, the network then passes through the BiDR region, and the Rac1 activity jumps to a high value,

whereas the RhoA activity switches to a low value, approaching initial point I (Figure 4B and C).

Video 2. Live-cell imaging of cel movement cycles. Red

color represents staining of the nuclei. Frame

increment is 10 min.

https://elifesciences.org/articles/58165#video2
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Figure 4. Hysteresis of the RhoA and Rac1 activities are manifested upon PAK inhibition and recapitulated by a spatiotemporal model. (A) Distinct

dynamic regimes of the RhoA-Rac1 network for different DIA and ROCK abundances. Colors and numbers of dynamic regimes are the same as in

Figure 2A. (B, C) Model-predicted dependencies of the RhoA and Rac1 activities on the PAK abundance for gradually decreasing (blue) and increasing

(red) PAK abundances. The network evolution occurs through two different routes (blue and red curves in B and C). It is calculated by averaging the

Figure 4 continued on next page
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Summarizing, the experimentally observed hysteresis of RhoA and Rac1 activities upon PAK inhi-

bition is explained by the network evolution through the BiDR and bistable regions. The morphologi-

cal cell shape changes also follow this pattern. Importantly, bistability in the RhoA-Rac1 network

only can be achieved through PAK inhibition, and only when PAK is largely inhibited, cells leave the

bistable regions and reach a stable state III where their cell shape becomes amoeboid (Edelstein-

Keshet, 2016). Our model allows us to systematically dissect the biochemical states that program

the GTPase dynamics and resulting cell movement.

ROCK inhibition results in multiple competing lamellipodia and multi-
polar cell shapes
Having investigated the consequences of PAK inhibition, we next studied the effects of ROCK inhibi-

tion. The model predicts that a decrease in ROCK activity below a certain threshold results in the for-

mation of several oscillatory centers of GTPase activities featuring high (averaged over time) Rac1

activity (Video 3). In contrast to periodic RhoGTPase waves propagating from a single Rac1 oscil-

latory center at the leading edge, several oscillatory Rac1 activity centers result in the uncoordinated

and chaotic emergence of waves, thereby preventing a single wave propagation along a cell (com-

pare Videos 1 and 3). These findings might imply the emergence of multi-polar cells that extend

lamellipodia in several different directions. In fact, multiple competing lamellipodia emerging as a

result of ROCK inhibition were previously reported (Worthylake and Burridge, 2003).

To determine if ROCK inhibition could induce multiple Rac1-GTP foci, we seeded MDA-MB-231

cells on collagen and treated the cells with the pan-ROCK inhibitor Y-27632. After 15 min, we fixed

the cells and stained for active Rac1 and F-actin. Spatially resolved Rac1 activity showed two or three

Rac1-GTP poles, whereas cells not incubated with the inhibitor were exclusively mono-polar

(Figure 5A and Figure 5—figure supplement 1, panel A). Using the RhoA-GTP FRET-probe to mea-

sure RhoA activity in a spatially resolved manner, Figure 5B showed the existence of several centers

of uncoordinated RhoA activities. These dynam-

ics are in line with model-predicted patterns

(Video 3), and in a sharp contrast to cells where

ROCK is not inhibited (Figure 3, and Video 1).

In the absence of ROCK inhibitor, the RhoA-

GTP bursts at the cell rear only occur when a

propagating wave reaches the rear, that is at low

frequency. These bursts cause the cell tail retrac-

tion and are associated with the last step of the

movement cycle of a polarized elongated cell.

When ROCK is inhibited, a GTPase oscillatory

center emerges in the tail with the correspond-

ing increase in the frequency of RhoA-GTP

bursts (Figure 5—figure supplement 1, panels

B and C). As a result, a cell loses the ability to

retract the tail. These cells do not lose polarity

but exhibit substantial morphological changes,

acquiring largely elongated shapes (compare

Videos 2 and 4). In line with these results, our

experiments suggest that the total migration dis-

tance is smaller for cells treated with ROCK

Figure 4 continued

GTPase activities over the time and cell volume based on western blot data reported in our previous study (Byrne et al., 2016). Points I, II and III

shown in black (A) are also indicated on the network trajectories (B, C). (D–F) Snapshots of simulated RhoA-GTP and Rac1-GTP spatiotemporal patterns

that emerge for different PAK abundances are shown for a 1-D section of a cell. The x axis corresponds to the normalized cell length (Figure 3A).

Arrows in panel (D) illustrate oscillations and the wave propagation along a cell.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Hysteresis of the RhoA and Rac1 activities are manifested upon PAK inhibition.

Video 3. Model-predicted spatiotemporal activity

patterns of RhoA and Rac1 when ROCK is inhibited by

2.5 mM of Y-27632.

https://elifesciences.org/articles/58165#video3
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inhibitor than for untreated cells (Figure 5—figure supplement 1, panel D). This decrease can be

explained by the formation of multiple lamellipodia and the inability of ROCK-inhibited cells to

retract their tail.

Summing up, these data suggest that the ROCK activity above a certain threshold is necessary

for the formation of a single high Rac1 activity center at the leading edge and avoiding the appear-

ance of multiple high Rac1 activity centers in a cell. Thus, ROCK cooperates with PAK to maintain

the polarized lamellipodia formation and the cell shape typical for mesenchymal cell movement.

Discussion
RhoGTPases are core regulators of mesenchymal and amoeboid cell migration. They integrate multi-

ple internal and external cues (Campa et al., 2015; Devreotes et al., 2017; Lin et al., 2015;

Park et al., 2017; Park et al., 2019) and relay information to a variety of cellular protein machiner-

ies, including proteins driving actin polymerization and cytoskeleton rearrangements, thereby

enabling cell migration (Warner et al., 2019). Although molecular details of RhoGTPase - effector

interactions have been elaborated, we still lack an overall picture of how these GTPase activities and

effector interactions are coordinated between the leading and trailing edge in order to enable cell

A 

B 
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 0 µm                54 µm 

t 

0 min 

   t 

10 min 

Control 

RacGTP                       Phalloidin                  Merge 

     20 μm          20 μm          20 μm     

ROCK inhibitor 

RacGTP                      Phalloidin                    Merge 

      20 μm            20 μm            20 μm      

Figure 5. Inhibition of ROCK leads to the formation of multi-polar cells. (A) Fluorescent microscopy images of Rac1 activity (red), and F-actin

(phalloidin, white) and nuclear (DAPI, blue) staining in fixed MDA-MB-213 cells treated or not with 2.5 mM Y-27632 ROCK inhibitor for 15 min. (B)

Spatiotemporal pattern of the RhoA activity in cells treated with 2.5 mM of ROCK inhibitor Y-27632 measured by the RhoA FRET probe.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Inhibition of ROCK leads to the formation of multi-polar cells.
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movement. Here, we present a minimal biochem-

ical mechanism that is necessary and sufficient for

the cyclic process of cell migration. This mecha-

nism integrates different temporal dynamics of

the RhoA and Rac1 GTPases at the cell front,

body and rear and shows how these activities are

coordinated by propagating GTPase activation

waves. Besides, our model rationalizes how the

amoeboid and mesenchymal types of migration

interchange by suppression or over-activation of

specific RhoA and Rac1 effectors.

A traditional view on mesenchymal migration

was that high Rac1 activity persists only at the

leading edge, whereas high RhoA activity exists

mainly at the rear. This view was supported by

the reported mutual antagonism of Rac1 and

RhoA (Byrne et al., 2016; Sanz-Moreno et al.,

2008). However, live cell imaging experiments

showed oscillations in RhoA activity at the lead-

ing edge, challenging the traditional view

(Machacek et al., 2009; Pertz, 2010;

Tkachenko et al., 2011). Several studies sug-

gested that RhoA not only inhibits Rac1 via ROCK but also activates Rac1 via DIA (Guilluy et al.,

2011a; Tsuji et al., 2002). Our results and literature data (Brandt et al., 2007; Goulimari et al.,

2005; Newell-Litwa et al., 2015; Watanabe et al., 1997; Wheeler and Ridley, 2004) show that the

spatial localization of DIA and ROCK is different along the cell; ROCK is more abundant at the cell

rear and body, whereas DIA is more abundant at the leading edge that at the rear (Figure 1C and

D). This difference leads to marked changes in the cellular distribution of RhoA-ROCK versus RhoA-

DIA effector complexes (Figure 1A and B). Differential localization of DIA and ROCK, as well as dif-

ferent spatial distribution of GEFs, GAPs, and guanosine nucleotide dissociation inhibitors (de Beco

et al., 2018; Nikonova et al., 2013; Tsyganov et al., 2012), generate distinct circuitries of RhoA-

Rac1 interactions and different RhoA and Rac1 kinetics along a cell (Figure 2B–F). Oscillations of

RhoA and Rac1 activities at the leading edge guide protrusions and retractions, whereas high, stable

RhoA activity and low Rac1-GTP at the rear maintain focal adhesions and the cell attachment to the

substrate. Although the distinct RhoGTPase dynamics at the front and rear during a cell migration

cycle have been described, it is unknown how exactly a cell integrates these behaviors to coordinate

cell movement.

To better understand the kinetic communication between the front and rear, we have developed

a model of the RhoGTPase dynamic behaviors in time and space. Our model suggests that periodi-

cally repeating RhoGTPase waves connect protrusion-retraction oscillations of RhoA and Rac1 activi-

ties at the leading edge and almost stable RhoA and Rac1 activities at the rear. The RhoGTPase

waves occur due to diffusion fluxes that are induced by different RhoA-GTP and Rac1-GTP concen-

trations along the cell and the excitable dynamics of RhoA and Rac1 generated by negative and pos-

itive feedback loops in the network (Tsyganov et al., 2012). These RhoA and Rac1 activity waves

create an autonomous, cyclic mechanism that controls the mesenchymal type of cell migration.

In the initial phase of cell migration, the Rac1-RhoA oscillations push out and retract lamellopodia

at the leading edge permitting the cell to explore its environment and follow chemotactic cues

(Machacek et al., 2009), while high RhoA activity at the trailing edge stabilizes cell adhesion

(Ren et al., 2000). In the late migration phase, RhoA activity extends toward the front allowing focal

adhesions to form at the front, and stress fibers to generate contractile force in the cell body that

will retract the rear. At the same time, Rac1 activity traveling toward the trailing edge destabilizes

focal adhesions at the rear. The combination of these activities pulls up the rear resulting in cell

movement. Their critical coordination is accomplished by the spatially resolved dynamic regulation

of the excitable Rac1 and RhoA system described by our mathematical model.

Reaction–diffusion equations have been previously used to describe excitable medium and

emerging waves in cellular systems (FitzHugh, 1961; Meinhardt and de Boer, 2001;

Video 4. Live-cell imaging of cellular movement cycles

in cells treated with 10 mM Y-27632 ROCK inhibitor.

Red color represents staining of the nuclei.

https://elifesciences.org/articles/58165#video4
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Nagumo et al., 1962). In these systems, an activator makes a positive feedback, whereas an inhibi-

tor generates a negative interaction (Xiong et al., 2010). Using an activator–inhibitor excitable sys-

tem, joint waves of cytoskeletal and signaling elements have been modeled (Bement et al., 2015;

Graessl et al., 2017; Weiner et al., 2007; Wu, 2017). Here, we present a core model of the signal-

ing RhoA – Rac1 system, which captures the formation of RhoA-Rac1 periodic propagating waves

that coordinate different signaling dynamics at the cell trailing and leading edges. In our core net-

work, intertwined regulatory connections from RhoGTPase effectors to the GEFs and GAPs can be

induced not only by phosphorylation or the formation of protein complexes but can also

be mediated by cytoskeletal proteins (Banerjee and Wedegaertner, 2004; Lovelace et al., 2017;

Mitin et al., 2012; Ren et al., 1998; Saczko-Brack et al., 2016). We hypothesize that crosstalk inter-

actions of this core signaling network with cytoskeleton proteins generate actomyosin waves and the

cytoskeletal dynamics required for cell migration (Saha et al., 2018).

Model predictions are supported by imaging and western blot experiments. Experiments with

the RhoA FRET probe corroborated the predictions of RhoA-GTP dynamics at the leading edge

(Figure 3H) and cell body and rear (Figure 3I and J and Figure 3—figure supplement 1, panel C).

Cell staining with specific Rac1-GTP antibody provided snapshots of Rac1 activity corresponding to

protrusion-retraction cycles (Figure 3K) and the spreading of Rac1 activity beyond the leading edge

into the cell body (Figure 3L and M and Figure 3—figure supplement 1, panel C, super-resolution

microscopy images) as predicted by the model. During a cycle of periodic wave propagation, the

model has predicted a greater number of RhoA activity bursts at the cell leading edge than at the

cell rear, which is fully supported by our data (Figure 3J). Our previous western blot experiments

showed the hysteresis of RhoA and Rac1 activities following PAK inhibition and then washing-out

the inhibitor (Byrne et al., 2016). A reaction-diffusion model of the RhoGTPase dynamics developed

here demonstrates the hysteresis of the averaged RhoGTPase activities for the non-stationary spatio-

temporal dynamics, – a novel phenomenon previously observed in biology for switches between

steady states of bistable systems (Bagowski and Ferrell, 2001; Bhalla et al., 2002; Craciun et al.,

2006; Delbrück, 1949; Ferrell, 2002; Monod and Jacob, 1961; Xiong and Ferrell, 2003).

Although PAK inhibition (Figure 4) induces a transition from the mesenchymal to amoeboid

mode of migration and the corresponding changes in the cell shapes (Byrne et al., 2016), ROCK

inhibition leads to the formation of multiple centers of Rac1 oscillations (Figure 5) and multiple com-

peting lamellipodia (Worthylake and Burridge, 2003). At the same time, DIA downregulation by

siRNA resulted in substantial rewiring of the RhoA-Rac1 signaling network, manifested by an

increase in RhoA abundance and a decrease in Rac1 abundance (Figure 1—figure supplement 1,

panels A and B). Model simulations show that these changes can decrease a threshold DIA abun-

dance required to maintain the initial GTPase dynamics in time and space (Figure 5—figure supple-

ment 1, panel E). Thus, cells tend to adapt to DIA1 perturbation by adjusting other protein

abundances to keep a minimally perturbed Rho-Rac signaling pattern.

Elegant mathematical models have analyzed the dynamics of small networks of cytoskeleton pro-

teins and GTPases and emerging actin travelling waves (Barnhart et al., 2017; Devreotes et al.,

2017; Holmes et al., 2012; Huang et al., 2013). It was suggested that dynamics of protrusion-

retraction cycles results from coupling of a ‘pacemaker’ signal transduction and a ‘motor’ of cyto-

skeletal networks (Huang et al., 2013). These models, together with a more abstract model of

generic activators and inhibitors (Cao et al., 2019), explained the observed wave-like signal trans-

duction patterns and actin waves, which were localized to the cell front, driving protrusion-retraction

cycles (Miao et al., 2019). The periodic waves of Rac1-RhoA activities described in this paper propa-

gate through the entire cell, coordinating protrusion-retraction cycles at the front and the adhesion-

retraction cycle at the rear, and are different from travelling waves reported previously. These waves

also differ from trigger protein phosphorylation waves that propagate in spatially distributed bista-

ble signaling cascades (Kholodenko, 2009; Markevich et al., 2006; Muñoz-Garcı́a et al., 2009).

Another aspect of migration is that cells continuously change shapes during their movement. Wave

interactions with deforming cell boundaries will likely modulate the propagation patterns (Cao et al.,

2019), which can be further analyzed in a future research.

In addition to diffusion and excitable properties of signaling networks, the cell front and rear can

communicate via other molecular mechanisms. It was suggested that microtubules can play an

important role in the spatial localization of RhoGTPase related proteins and the coordination of front

and back signaling (Cullis et al., 2014; Meiri et al., 2012; Ren et al., 1998). Staining intensities of
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F-actin, an indicator of Rac signaling, at the front of polarized neutrophils and phosphorylated myo-

sin light chain 2 (pMLC2), an indicator of RhoA signaling, at the cell rear showed that these intensi-

ties were neither positively correlated nor anticorrelated (Wang et al., 2013). This discovered

buffering of the front and rear signaling was completely destroyed by the disruption of microtubules

(Wang et al., 2013). Different spatial concentration profiles of RhoA and Rac1 downstream effectors

considered in our model might depend on the microtubule network.

Mechanical tension and mechano-chemical feedback have also been suggested as mechanisms

coordinating behaviors at the cell front and the rear (Abu Shah and Keren, 2013; Bays et al., 2014;

Collins et al., 2012; Guilluy et al., 2011b; Lessey et al., 2012; Park et al., 2017; Saha et al., 2018;

Warner et al., 2019). It was proposed that membrane tension is responsible for maintaining front-

back polarity rather than diffusible molecules generated at the cell leading edge (Houk et al.,

2012). However, subsequent work, which exploited a fluid dynamic model with the flow resistance

emerging from cytoskeleton-bound transmembrane proteins, showed that membrane tension prop-

agates only locally and fails to mediate long-range signaling (Shi et al., 2018). These findings sup-

port a view that mechanics only modulates biochemical signaling, as suggested by our model.

In summary, our spatiotemporal model of RhoA-Rac1 signaling proposes how different GTPase

dynamics at the cell front and rear are coupled and explains the changes in signaling patterns and

cell shapes upon inhibition of GTPase effectors. It represents a minimal, experimentally validated

model of the biochemical RhoGTPase network that regulates cell migration. This core biochemical

network might be a foundation of detailed mechanistic models that would include many more signal-

ing and cytoskeleton proteins, such as key RhoGEFs and RhoGAPs out of 145 known proteins. A

core electro-physiological network model of the heart rhythm and wave propagation (Noble, 1962;

Noble, 2007), as well as a model of cell cycle in Xenopus oocytes (Novak and Tyson, 1993) cap-

tured basic mechanisms of cell’s oscillatory machinery and laid the background for more sophisti-

cated and detailed models that now involve tens of ion channels and cell cycle proteins,

respectively.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody Anti-Rac1 clone 23A8
(Mouse monoclonal)

Millipore cat.05–389 (1:500)

Antibody Anti-RhoA (26C4)
(Mouse monoclonal)

Santa-Cruz
Biotechnology

cat.sc-418 (1:200)

Antibody anti-GAPDH (D16H11)
XP (Rabbit monoclonal)

CST cat.5174 (1:3000)

Antibody anti-DIA1
(Rabbit polyclonal)

Thermo cat.PA5-21409 WB (1:1500)
IF (1:200)

Antibody anti-ROCK1
(Rabbit polyclonal)

Thermo cat.PA5-22262 (1:100)

Antibody anti-Rac-GTP
(Mouse monoclonal)

New East Bio cat.26903 (1:100)

Antibody Anti-mouse F(ab’)2
Fragment Alexa
Fluor 647
(Goat polyclonal)

Thermo cat. A-21237 (1:400)

Antibody Anti-rabbit F(ab’)2
Fragment Alexa
Fluor 594
(Goat polyclonal)

Thermo cat. A-11072 (1:400)

Antibody Anti-rabbit Alexa
Fluor-488
(Donkey polyclonal)

Thermo cat. A-21206 (1:250)

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody Anti-rabbit Alexa
Fluor-594
(Goat polyclonal)

Thermo cat. A-11012 (1:250)

Antibody Anti-rabbit IgG,
HRP-linked
(Goat polyclonal)

CST cat.7074 (1:10000)

Antibody Anti-mouse IgG,
HRP-linked
(Horse polyclonal)

CST cat.7076 (1:10,000)

Strain, strain
background
(Lentivirus)

IncuCyte NucLight Red
Lentivirus Reagent

Essen Cat. 4625

Chemical
compound, drug

Y-27632 Sigma Aldrich Cat.Y0503

Chemical
compound, drug

GSK 269962 Selleckchem Cat.S7687

Chemical
compound, drug

4,6-Diamidino-2-
phenylindole
dihydrochloride
(DAPI), stain

Sigma Aldrich Cat.10236276001 (1 mg/ml)

Chemical
compound, drug

Rhodamine Phalloidin Thermo Cat. R415

Chemical
compound, drug

Phalloidin-
Alexa Fluor-488

Thermo Cat. A12379

Chemical
compound, drug

Puromycin Sigma Aldrich Cat. P8833

Chemical
compound, drug

Polibrene Millipore Cat.TR-1003-G

Chemical
compound, drug

Lipofectamine
RNAiMax

Thermo Cat.13778

Other GST-Beads Sigma Aldrich G.4510

Other Dulbecco’s Modified
Eagle Medium (DMEM)

Sigma Aldrich Cat.D6429

Other FluoroBrite
DMEM Media

Thermo Cat. A1896701

Other Fetal Bovine Serum
(FBS)

Gibco Cat.10270

Other Collagen (rat tail) Sigma Aldrich Cat.11179179001

Cell line
(Human)

MDA-MB-231 ATCC Cat.HTB-26 Authenticated by the
Beatson Institute,
Glasgow, UK

Transfected
Construct
(Human)

DIAPH1 siRNA
SMART Pool

Dharmacon cat. L-010347-00-0010

Recombinant
DNA reagent

GST-rhotekin-RBD Dr. Mike Olson gift
(Beatson Institute,
Glasgow, UK)

Recombinant
DNA reagent

GST-PAK-CRIB Dr. Piero Crespo
gift (IBBTEC,University
of Cantanbria, Spain)

Recombinant
DNA reagent

mTFP-YFP RhoA
activity probe

Prof. Olivier Pertz Gift
(Institute of Cell
Biology, Bern,
Switzerland)

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Recombinant
DNA reagent

psPAX-2 Prof. Olivier Pertz Gift

Recombinant
DNA reagent

VsVg Prof. Olivier Pertz Gift

Software, algorithm Fiji Schindelin et al., 2012 https://imagej.net/Fiji

Software, algorithm OpenFOAM Weller et al., 1998 https://www.
openfoam.com/

Software, algorithm ParaView Ayachit, 2015 https://www.
paraview.org/

Software, algorithm Salome Ribes and Caremoli, 2007 https://www.salome-platform.org/

Software, algorithm Python https://www.python.org/

Software, algorithm SciPy Virtanen et al., 2020 https://www.scipy.org/

Software, algorithm MatplotLib Hunter, 2007 https://matplotlib.org/

Software, algorithm OpenCV Bradski, 2000 https://opencv.org/

Software, algorithm DYVIPAC Nguyen et al., 2015 https://bitbucket.org/
andreadega/dyvipac-
python/src/master/

Software, algorithm BioNetGen Blinov et al., 2004;
Harris et al., 2016

https://www.csb.pitt.
edu/Faculty/Faeder/?
page_id=409

Experiments
Tissue Culture and cell treatment
Cells
MDA-MB-231 breast cancer cells (a gift from Brad Ozanne, Beatson Institute) were cultured in

DMEM supplemented with 2 mM glutamine and 10% fetal calf serum at 37˚C in a humidified atmo-

sphere containing 5% CO2. MDA-MB-231 expressing the RhoA activity probe were generated by

lentiviral infection of the mTFP-YFP RhoA activity probe (Fritz et al., 2013) and selected with puro-

mycin at 2 mg/ml for 3 days. MDA-MB-231 cells with constitutive expression of nuclear mKATE2

were generated by infecting MDA-MB-231 cells with IncuCyte NucLight Red Lentivirus Reagent (Cat.

No. 4625) in the presence of polybrene (6 mg/ml, Sigma). After 48 hr, selection was performed by

supplement the media with puromycin (2 mg/ml, Sigma). All aforementioned cell lines were myco-

plasma negative and tested on a monthly basis when in culture.

ROCK inhibition
Cells were incubated with either vehicle, 1 mM GSK 269962 (Tocris) or 2.5, 5 or 10 mM (as indicated

in manuscript) Y-27632 (Sigma) for 20 min before the experiments were carried out.

Knock down by siRNA
Knock-down of DIA1 was achieved by transfecting a smartpool of three siRNAs targeting the human

DIAPH1 mRNA and non-targeting siRNA control (Dharmacon cat. L-010347-00-0010). Both siRNAs

were transfected at a final concentration of 50 nM using Lipofectamine RNAiMax (Cat.13778) in a

1:2 (v/v) ratio. Cells were kept for 48 hr before the experiments were carried out.

Rac1 and RhoA pulldowns
MDA-MB-231 and MDA-MB-231 transfected with siRNAs against DIAPH1 were seeded in a 6-well

plate coated with rat-tail collagen (see siRNA experiments section) and lysed in 500 ml ice-cold lysis

buffer (50 mM Tris-HCl, pH 7.5, 0.2% (v/v) Triton X-100, 150 mM NaCl, 10 mM MgCl2) supplemented

with 1 mM protease inhibitors PMSF and leupeptin (Sigma). Cell lysates were cleared of debris by

centrifugation for 10 min at 20,000xg at 4˚C. 10 ml of the cleared lysate were kept as loading control.

The remainder of the lysates were incubated with 6 ml of GST-PAK-CRIB beads for Rac1 pulldowns
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or GST-Rhotekin-RBD beads for RhoA pulldowns for 1 hr at 4˚C under end-to-end rotation. The

GST-PAK-CRIB and GST-Rhotekin-RBD beads were produced as described by Pellegrin and Mellor,

2008. The beads were washed with one volume of lysis buffer. The beads and an aliquot of the total

lysate as input control were separated by SDS gel electrophoresis using 4–12% NuPAGE precast

gels according to the manufacturer’s instructions. Gels were electroblotted onto PVDF membranes

(Sartorius). Blots were blocked in TBST (50 mM Tris, pH 7.5, 150 mM NaCl, 0.05% Tween-20) con-

taining 5% milk powder and incubated overnight with primary antibody followed by secondary anti-

bodies linked to horse radish peroxidase (HRP). Antibodies used included: Rac1 antibody (Millipore,

clone 238A, 1:500), anti-RhoA antibody (Santa Cruz Biotechnology 26C4, sc-418, 1 mg/ml), anti-

GAPDH (CST D16H11 XP, diluted 1:3000) and anti-DIA1 (Thermo Fisher cat.PA5-21409, 1 mg/ml).

Secondary anti-rabbit and anti-mouse HRP-conjugated antibodies were obtained from CST and used

at 1:10,000 dilution. Western Blots were developed using SuperSignal West Femto Maximum Sensi-

tivity Substrate (Thermo Fisher). Images of the blots were acquired in a Bio-Rad ChemiDoc Imager.

The western blot bands were quantified using ImageJ.

Immunofluorescence
Cells were seeded onto high performance glass coverslip, thickness 1 1/2 (Zeiss, cat.474030-9000-

000) coated with 0.01% collagen. For ROCK inhibition cells were pretreated as indicated in the cor-

responding section with Y-27632. Cells were washed twice with PBS, fixed and permeabilized with

3.7% formaldehyde, 0.025% NP-40 in 50 mM Pipes pH6.8, 10 mM MgCl2 for 5 min and blocked in

TBS (50 mM Tris, pH 7.5, 150 mM NaCl) containing 2% BSA for 1 hr. Coverslips were incubated

overnight in TBS containing 1% BSA with primary anti-Rac1-GTP (New East Bio cat.26903) (1:100),

anti-ROCK1 (Thermo cat.PA5-22262) (1:100) or anti-DIA1 (1:200) antibodies. Slides were washed

twice with TBS and then incubated for 1 hr at room temperature with secondary antibodies anti-

mouse F(ab’)2 Fragment Alexa Fluor 647 Conjugate (Thermo cat. A-21237), Donkey anti-rabbit Alexa

fluor-488 (Cat. A-21206) or anti-rabbit Alexa fluor-594 (Thermo cat. A-11012) for confocal; anti-rabbit

F(ab’)2 Fragment Alexa Fluor 594 Conjugate (Thermo cat. A-11072) and anti-mouse F(ab’)2 Frag-

ment Alexa Fluor 647 Conjugate for super-resolution microscopy. Slides were washed twice with

TBS and incubated with DAPI, 1:100, and phalloidin, conjugated with rhodamine or Alexa Fluor-488

(1:100) (Thermo A12379) for 5 min, washed two times and mounted using VECTASHIELD antifade

mounting media (Vector labs Cat. H-1000). Confocal images were taken with an Olympus FV100 or a

Nikon A1+ confocal, with 60x oil objective. Super-resolution images were taken with a N-SIM micro-

scope using a with 100x oil objective.

Proximity ligation assay
The Proximity Ligation Assay (PLA) visualizes an interaction between two proteins that co-localize

within < 40 nm by an oligonucleotide-mediated ligation and enzymatic amplification reaction whose

product is subsequently recognized by a fluorescent probe. Consequently, each fluorescent spot

indicates that two proteins are in proximity. The mouse/rabbit Duolink in situ red starter kit (Olink,

Uppsala, Sweden) was used according to the manufacturer’s instructions. MDA-MB-231 cells were

seeded at 1 � 104 cells per well in a 6-well plate. The cells were fixed and permeabilized as

described above for immunofluorescence studies. Then, the cells were incubated with a 1:100 dilu-

tion of the primary antibodies (RhoA and DIA) in PBS containing 0.01% BSA overnight at 4˚C. For

the rest of the protocol the manufacturer’s instructions were followed. Briefly, the cells were washed

in Buffer A (supplied with the kit) three times for 15 min and incubated with the PLA probes for 1 hr

at 37˚C in a humidified chamber. This was followed by a 10 min and a 5-min wash in Buffer A. The

ligation reaction was carried out at 37˚C for 1 hr in a humidified chamber followed by a 10 and 5 min

wash in Buffer A. The cells were then incubated with the amplification mix for two hours at 37˚C in a

darkened humidified chamber. After washing with 1x Buffer B (supplied with the kit) for 10 min and

1 min wash with 0.01x buffer B, followed by 488 phalloidin staining (Molecular Probes Catalog num-

ber: A12379) to visualize cellular F-actin, the cells were mounted using the mounting media (contain-

ing DAPI to visualize cell nucleus) supplied with the kit. Images were quantified using Fiji distribution

of ImageJ. A longitudinal axis emanating at the cell front was drawn through selected cells. Along

this axis, the cell was divided into three segments: 10% corresponding to the cell front, 70% corre-

sponding to the cell middle, and 20% corresponding to the cell rear. Then the image was converted
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into a 2-bit image and masks over PLA reactions were drawn. Finally, the number of PLA reactions

per segment as well as the total area occupied by PLA signals per segment were quantified. All the

statistical analyses for PLA were done in Excel.

Random migration assays
Cell migration assays were performed with cell lines stably expressing nuclear mKATE2 (a red fluo-

rescence protein allowing cell tracking) treated with either vehicle, the ROCK inhibitors Y-27632 (10

mM) or GSK-269962 (1 mM). Cells were seeded on IncuCyte ImageLock 96-well plates (cat.4379) at

100 cells per well and placed into an IncuCyte ZOOM with a dual color filter unit. Images were cap-

tured every 10 min using phase contrast and red channel with an 10�/0.25 ph1 objective, over a 24

hr period. Stacks of the red florescence channel were created. ImageJ software was used to enhance

contrast, subtract background and transform the images to 8-bit greyscale. Random migration tra-

jectories were obtained from the images using the FastTracks Matlab plugin (DuChez, 2018), subse-

quent statistical analysis and plotting were done in Python.

Assaying RhoA activity by live-cell FRET imaging
MDA-MB-231 stably expressing the mTFP-YFP RhoA-GTP FRET biosensor (Kim et al., 2015) were

seeded in Fluorodish glass-bottomed plate (cat.FD35-100) coated with collagen. Cells were treated

as indicated for siRNA or ROCK inhibition experiments (Y-27632 2.5 mM). The biosensor-expressing

cells were imaged at 5 s intervals for 10 min in an Andor Dragonfly spinning disk confocal micro-

scope with a 60x/1.4 - Oil objective. An excitation wavelength (445 nm) was used for both mTFP and

FRET channels, while 480 and 540 nm emission filters were used for the mTFP and FRET channels,

respectively, with the Confocal 40 mm High Sensitivity imaging mode. A cell-free area using the

same settings for exposure and time was acquired for background correction. The raw images were

de-noised with the ImageJ PureDenoise plugin (Luisier et al., 2010), and ratiometric images were

generated. Kymographs were built using MultiKymographr plugin.

Modeling
Relating the PLA data to the total effector concentrations
The PLA data showed that RhoA interactions with its effectors DIA and ROCK change along the cell

from the cell rear to the leading edge (Figures 1A and B). This correlates with our experimental

data (Figures 1C and D) and the literature data on DIA and ROCK localization, suggesting that the

concentrations of DIA and ROCK are different at the leading edge, in the middle of the cell, and at

the cell rear (Watanabe et al., 1997; Wheeler and Ridley, 2004; Brandt et al., 2007;

Goulimari et al., 2005; Newell-Litwa et al., 2015). The steady-state concentration of the complex

of RhoA-GTP Rho-T½ �ð Þ and DIA DIA-Rho-T½ �ð Þ can be derived using the rapid equilibrium approxima-

tion and the dissociation constant (KRhoDIA
d ). Taking into account the moiety conservation for DIA, we

obtain,

½DIA� � ½Rho-T � ¼KRhoDIA
d � ½DIA-Rho-T�

DIAtot ¼ DIA½ �þ DIA-Rho-T½ �
(1)

Our quantitative proteomic data suggest that the RhoA abundance is at least 10-fold higher than

the abundance of all DIA isoforms combined, Supplementary file 1 (Byrne et al., 2016). Therefore,

in Equation 1 we can neglect the changes in the RhoA-GTP concentration caused by the RhoA-GTP

sequestration into the complex with DIA. The KRhoDIA
d is at least two orders of magnitude smaller

than the RhoA abundance (Lammers et al., 2008), which leads to an approximate, linear depen-

dence of the complex concentration on the total DIA abundance

DIA-Rho-T½ � ¼
DIAtot � ½Rho-T�

KRhoDIA
d þ ½Rho-T�

~DIAtot (2)

Thus, our data on the changes in the RhoA-DIA complexes along the cell length at the constant

RhoA-GTP level can be interpreted as the changes in the abundance of DIA that can bind RhoA-GTP

in the plasma membrane, corroborating the literature data (Brandt et al., 2007; Goulimari et al.,

2005; Newell-Litwa et al., 2015; Watanabe et al., 1997; Wheeler and Ridley, 2004).
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The abundance of all ROCK isoforms is also much smaller than the RhoA abundance (see

Supplementary file 1), which together with the cooperative binding of ROCK domains to active

RhoA (Blumenstein and Ahmadian, 2004) allows us to conclude that the RhoA-GTP-ROCK complex

concentration can also be approximated as a linear function of the total ROCK abundance (ROCK tot).

Consequently, in the model the total abundances of DIA and ROCK depend on the spatial coordi-

nate along the cell, as shown in Figures 3B and C. Associating the x axis with the cell length and

considering the y axis along the cell width, we use the following distribution of the DIA and ROCK

abundances along the x-axis,

DIAtot xð Þ ¼ DIAh �DIAlð Þ � x
L
þDIAl; DIAh>DIAl (3)

ROCK tot xð Þ ¼
ROCKl; 0� x� xl
ROCKh; xl � x� L

�

; ROCKh>ROCKl

where L is the cell length.

Modeling the RhoA - Rac1 network dynamics
The spatiotemporal dynamics of the RhoA - Rac1 network are governed by a partial differential

equation (PDE) system, referred to as a reaction-diffusion model. To derive this PDE system, we first

consider ordinary differential equation (ODE) systems that describe biochemical reactions and RhoA

and Rac1 interactions with their effectors at any fixed point in the cellular space. The difference

between the ODE systems at distinct spatial points is brought about by the changes in the total

abundances of ROCK1 and DIA along the longitudinal axis of polarized cells given by Equation 3

(see also Figure 3B and C). These ODE equations are then converted to a PDE system by account-

ing for the diffusion fluxes of active and inactive protein forms.

The model was populated by the protein abundances from our quantitative mass spectrometry

data (Byrne et al., 2016). The data suggested that Rac1 and RhoA were the most abundant Rac and

Rho isoforms and that their levels exceed the abundances of PAK, ROCK and DIA isoforms com-

bined by an order of magnitude (Supplementary file 1). The abundances of ROCK1 and ROCK2

were comparable, DIA1 was the most abundant DIA isoform, and PAK2 was the only detected PAK

isoform.

We considered the time scale on which the total abundances of RhoA (Rhotot), DIA (DIAtot), ROCK

(ROCK tot), Rac1 (Ractot) and PAK (PAK tot) are conserved. We denote active, GTP-bound forms of

RhoA and Rac1 by Rho-T½ � and Rac-T½ �, and inactive GDP-bound forms by Rho-D½ � and Rac-D½ �. Active

forms of DIA, ROCK and active (phosphorylated) PAK are denoted by DIA�½ �, ROCK�½ � and pPAK½ �;

respectively. Because of the conservation constraints, the concentrations of active forms can be

approximately expressed as the corresponding total abundances minus concentrations of inactive

forms. Then, assuming the Michaelis-Menten kinetics for the rates of activation and deactivation

reactions of the active forms of the GTPases and their effectors ( DIA�½ �, ROCK�½ � and pPAK½ �), the

temporal kinetics of the network are given by the following system of ODEs,

d Rho-T½ �

dt
¼ aRho

DIAa
Rho
PAKV

Rho
GEF

Rhotot � Rho-T½ �ð Þ=KRho
GEF

1þ Rhotot � Rho-T½ �ð Þ=KRho
GEF

�VRho
GAP

Rho-T½ �=KRho
GAP

1þ Rho-T½ �=KRho
GAP

d DIA�½ �

dt
¼ aDIA

RhoV
DIA
a

DIAtot � DIA�½ �ð Þ=KDIA
a

1þ DIAtot � DIA�½ �ð Þ=KDIA
a

�VDIA
i

DIA�½ �=KDIA
i

1þ DIA�½ �=KDIA
i

d ROCK�½ �

dt
¼ aROCK

Rho VROCK
a

ROCK tot � ROCK�½ �ð Þ=KROCK
a

1þ ROCK tot � ROCK�½ �ð Þ=KROCK
a

�VROCK
i

ROCK�½ �=KROCK
i

1þ ROCK�½ �=KROCK
i

d Rac-T½ �

dt
¼ aRac

DIAa
Rac
PAKV

Rac
GEF

Ractot � Rac-T½ �ð Þ=KRac
GEF

1þ Ractot � Rac-T½ �ð Þ=KRac
GEF

�aRac
ROCKV

Rac
GAP

Rac-T½ �=KRac
GAP

1þ Rac-T½ �=KRac
GAP

d pPAK½ �

dt
¼ aPAK

Rac V
PAK
a

PAK tot � pPAK½ �ð Þ=KPAK
a

1þ PAK tot � pPAK½ �ð Þ=KPAK
a

�VPAK
i

pPAK½ �=KPAK
i

1þ pPAK½ �=KPAK
i

(4)

Here, the maximal rates and the Michaelis-Menten constants are denoted by the capital letters

V’s and K’s with relevant indices. These V’s values correspond to the maximal rates in the absence of
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positive or negative regulatory interactions between GTPases, which modify reaction rates. We

describe the regulatory interactions, which specify the negative or positive influence of the active

form of protein Y on protein X, by the dimensionless multipliers aX
Y (illustrated in Figure 2—figure

supplement 1, panel E) (Tsyganov et al., 2012). Assuming general hyperbolic modifier kinetics,

each multiplier aX
Y has the same functional form Cornish-Bowden, 2012,

aX
Y ¼

1þgX
Y �Ya=K

X
Y

1þYa=K
X
Y

(5)

Here, Ya is active form of protein Y. The coefficient gX
Y > 1 indicates activation; gX

Y< 1 inhibition;

and gX
Y = 1 denotes the absence of regulatory interactions, in which case the modifying multiplier aX

Y

equals 1. KX
Y is the activation or inhibition constant.

Model-predicted different temporal dynamics of the GTPase activities
Substituting the expressions for modifying multipliers (Equation 5) into Equations 4, we obtain the

following equations governing the temporal dynamics of the active protein forms.

d Rho-T½ �

dt
¼ VRho

GEF

1þgRho
DIA DIA�½ �=KRho

DIA

1þ DIA�½ �=KRho
DIA

1þgRho
PAK pPAK½ �=KRho

PAK

1þ pPAK½ �=KRho
PAK

Rhotot � Rho-T½ �ð Þ=KRho
GEF

1þ Rhotot � Rho-T½ �ð Þ=KRho
GEF

�VRho
GAP

Rho-T½ �=KRho
GAP

1þ Rho-T½ �=KRho
GAP

d DIA�½ �

dt
¼ VDIA

a

1þgDIA
Rho Rho-T½ �=KDIA

Rho

1þ Rho-T½ �=KDIA
Rho

DIAtot � DIA�½ �ð Þ=KDIA
a

1þ DIAtot � DIA�½ �ð Þ=KDIA
a

�VDIA
i

DIA�½ �=KDIA
i

1þ DIA�½ �=KDIA
i

d ROCK�½ �

dt
¼ VROCK

a

1þgROCK
Rho Rho-T½ �=KROCK

Rho

1þ Rho-T½ �=KROCK
Rho

ROCK tot � ROCK�½ �ð Þ=KROCK
a

1þ ROCK tot � ROCK�½ �ð Þ=KROCK
a

�VROCK
i

ROCK�½ �=KROCK
i

1þ ROCK�½ �=KROCK
i

d Rac-T½ �

dt
¼ VRac

GEF

1þgRac
DIA DIA�½ �=KRac

DIA

1þ DIA�½ �=KRac
DIA

1þgRac
PAK pPAK½ �=KRac

PAK

1þ pPAK½ �=KRac
PAK

Ractot � Rac-T½ �ð Þ=KRac
GEF

1þ Ractot � Rac-T½ �ð Þ=KRac
GEF

�VRac
GAP

1þgRac
ROCK ROCK�½ �=KRac

ROCK

1þ ROCK�½ �=KRac
ROCK

Rac-T½ �=KRac
GAP

1þ Rac-T½ �=KRac
GAP

d pPAK½ �

dt
¼ VPAK

a

1þgPAK
Rac Rac-T½ �=KPAK

Rac

1þ Rac-T½ �=KPAK
Rac

PAK tot � pPAK½ �ð Þ=KPAK
a

1þ PAK tot � pPAK½ �ð Þ=KPAK
a

�VPAK
i

pPAK½ �=KPAK
i

1þ pPAK½ �=KPAK
i

(6)

Because DIAtot and ROCK tot depend on the spatial coordinate along the cell (Equation 3), and

DIAtot, ROCK tot, and PAK tot were perturbed experimentally, we first explored the different possible

types of the network temporal dynamics (Equation 6) in the parameter space of these three effector

abundances. We obtained bifurcation diagrams in each of the three planes of the two effector abun-

dances and classified different types of the dynamic regimes that can be detected (Figure 2C,

Figure 4A, and Figure 2—figure supplement 1, panels A-C). We used BioNetGen (Blinov et al.,

2004; Harris et al., 2016) and DYVIPAC (Nguyen et al., 2015), software packages, and SciPy (Oli-

phant, 2007) and Matplotlib Python libraries (Hunter, 2007). In brief, the sbml file (Hucka et al.,

2018) describing our ODE model was prepared using BioNetGen software (Blinov et al., 2004;

Harris et al., 2016). Then, the DYVIPAC python software package (Nguyen et al., 2015) was used

to sample a 2-D parameter space and to determine the number and the stability types of steady

states for each sample point in this parameter space. The DYVIPAC algorithm allowed detecting

only local bifurcations (Kuznetsov, 2004), and the obtained sampling data served as an input to a

python script, which plotted initial two-paramter bifurcation diagrams. To reveal the borders of non-

local bifurcations, for example saddle homoclinic bifurcation (Nekorkin, 2015), we analyzed the

phase portraits of the system by plotting nullclines, vector fields and limit cycles generated using

python scripts. Then, the necessary changes to the bifurcation diagrams were done manually to
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include borders for non-local bifurcations. The code that performs calculations is provided in the

Supplemental Information.

To get initial insights into different dynamic regimes of this 5 ODE system (Equation 6), we ana-

lyzed the vector fields and the nullclines for a 2 ODE system, obtained using the quasi steady-state

approximation. Because the concentrations of active forms of DIA, ROCK and PAK are an order of

magnitude less than the GTPase concentrations, this allows us to introduce a small parameter into

our ODE system. Using the Tikhonov theorem (Tikhonov, 1952; Tikhonov et al., 1985), we can

express these active effector concentrations in terms of Rho�T½ � and Rac�T½ � by applying the quasi

steady-state approximation, as follows (Tsyganov et al., 2012),

d DIA�½ �
dt

¼ 0

d ROCK�½ �
dt

¼ 0

d pPAK½ �
dt

¼ 0

8

>

>

<

>

>

:

!

DIA�½ � ¼ fDIA Rho-T½ �; Rac-T½ �ð Þ

ROCK�½ � ¼ fROCK Rho-T½ �; Rac-T½ �ð Þ

pPAK½ � ¼ fPAK Rho-T½ �; Rac-T½ �ð Þ

8

>

<

>

:

(7)

To find the functions, fDIA, fROCK , and fPAK , Equation 7 were solved numerically for each value of

active RhoA and Rac1. The solutions were substituted into the equations governing the dynamics of

RhoA-GTP and Rac1-GTP (see Equation 6) to obtain the following system of only two differential

equations.

d Rho-T½ �

dt
¼ VRho

GEF

1þgRho
DIAfDIA=K

Rho
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Rho
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Rho
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1þ fPAK=K
Rho
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Rhotot � Rho-T½ �ð Þ=KRho
GEF

1þ Rhotot � Rho-T½ �ð Þ=KRho
GEF

�VRho
GAP

Rho-T½ �=KRho
GAP

1þ Rho-T½ �=KRho
GAP

d Rac-T½ �

dt
¼ VRac

GEF

1þgRac
DIAfDIA=K

Rac
DIA

1þ fDIA=K
Rac
DIA

1þgRac
PAK fPAK=K

Rac
PAK

1þ fPAK=K
Rac
PAK

Ractot � Rac-T½ �ð Þ=KRac
GEF

1þ Ractot � Rac-T½ �ð Þ=KRac
GEF

�VRac
GAP

1þgRac
ROCK fROCK=K

Rac
ROCK

1þ fROCK=K
Rac
ROCK

Rac-T½ �=KRac
GAP

1þ Rac-T½ �=KRac
GAP

(8)

Figure 2—figure supplement 2, panels A-I illustrate the vector fields and nullclines for a 2-D sys-

tem describing the temporal dynamics of RhoA-GTP and Rac1-GTP. Each dynamic regime shown in

Figures 2C and 4A and Figure 2—figure supplement 1, panels A-C has the corresponding phase

portrait in Figure 2—figure supplement 2. The red line represents the solution for the equation

d Rho�T½ �=dt¼ 0 (the RhoA nullcline), and the blue line represents the solution for the equation

d Rac�T½ �=dt¼ 0 (the Rac1 nullcline).

Points of intersection of the nullclines are network steady states for both 5 ODE and 2 ODE sys-

tems. These states can be stable or unstable (shown by bold points or triangles, respectively in Fig-

ure 2—figure supplement 2, panels A-I). For each of dynamic regimes 0, 1 and 6 there is only a

single steady state, which is a stable focus for regime 0, stable node for regime 6 and an unstable

focus for regime 1 (points 1 at Figure 2—figure supplement 2, panels A, B and G). If a steady state

is unstable focus, self-sustained oscillations (a limit cycle) may or may not exist in the system,

depending on the global topology of the vector fields. In our system, although unstable focus steady

states are observed in regimes 1–5 and 7, self-sustained oscillations exist only in regimes 1 and 3.

For these oscillatory regimes, we plotted projections of the limit cycle trajectory calculated for a

five-dimensional ODE system (Equation 6) to a two-dimensional space of active RhoA and active

Rac1 concentrations (green curves in Figure 2—figure supplement 2, panels B and D). 1-D bifurca-

tion diagrams presented in Figure 2—figure supplement 3 illustrate transitions between these dif-

ferent regimes.

The increase in the DIA abundance at low, fixed ROCK abundance can transform dynamic regime

0 into dynamic regime 1 (Figure 2—figure supplement 1, panel A and Figure 2—figure supple-

ment 3, panels C and D), following the Andronov-Hopf bifurcation (Kuznetsov, 2004). This bifurca-

tion results in losing the stability of the focus (point 1, Figure 2—figure supplement 2, panels A and

B) and the appearance of a stable limit cycle around the unstable focus (green trajectory, Figure 2—

figure supplement 2, panel B, dashed lines, Figure 2—figure supplement 3, panels C and D). The

point with the coordinates (1, 1) in Figure 2A and Figure 2—figure supplement 1, panel A is the

‘physiological point’ of sustained oscillations at the leading edge.
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An increase in the ROCK abundance at fixed DIA abundance can transform dynamic regime 1

into regime 3 termed BiDR (Figure 2C and Figure 2—figure supplement 3, panels A and B). At cer-

tain enlarged ROCK abundances, the Rac1 nullcline crosses the RhoA nullcline generating a saddle

point and a stable node (points 2 and 3, Figure 2—figure supplement 2, panel D), known as a sad-

dle-node bifurcation (Kuznetsov, 2004). In the BiDR regime a stable limit cycle coexists with a stable

node, and each of these dynamic regimes has its own basin of attraction (Figure 2—figure supple-

ment 2, panels D, and Figure 2—figure supplement 3, panels A and B). A saddle point separates

the basins of attraction of the limit cycle and the stable node. The further increase in the ROCK

abundance moves the system to regime 2 (Figure 2—figure supplement 3, panels A and B) where

the limit cycle disappears, whereas an unstable focus (point 1, Figure 2—figure supplement 2,

panel C), saddle (point 2, Figure 2—figure supplement 2, panel C) and stable node (point 3, Fig-

ure 2—figure supplement 2, panel C) persist. The disappearance of the limit cycle occurs when it

merges with a saddle point in the process termed as a saddle homoclinic bifurcation (Nekor-

kin, 2015). Thus, although regimes 2 and 3 have the same number and stability types of the steady-

state solutions, a stable limit cycle exists only in regime 3. Whereas in regime 2, there is no stable

limit cycle, perturbations to Rac1 can result in generation of overshooting Rac1 activity pulses before

the actviity returns to the stable steady state. These pulses occur when the system trajectory follows

the vector-field around the unstable focus (point 1, Figure 2—figure supplement 2, panel C). Thus,

although regime 2 is monostable, it creates excitable media that supports the propagation of excit-

able activity pulses.

If the DIA abundance increases at the high, fixed ROCK abundance, a saddle-node bifurcation

appears earlier than the Andronov-Hopf bifurcation, and dynamic regime 1 with single stable focus

transforms into dynamic regime 4 (Figure 2—figure supplement 1, panel A, and Figure 2—figure

supplement 3, panels E and F) with stable node (point 3, Figure 2—figure supplement 2, panel E)

and saddle point (point 2, Figure 2—figure supplement 2, panel E) in addition to the stable focus

(point 1, Figure 2—figure supplement 2, panel E). At some point (Figure 2—figure supplement 1,

panel B) dynamic regimes 0–4 converge, the saddle-node, the saddle homoclinic and the Andronov-

Hopf bifurcations happen simultaneously in a process known as the Bogdanov-Takens bifurcation

(Kuznetsov, 2004).

Regimes 4 and 8 have two stable steady states (points 1 and 3, Figure 2—figure supplement 2,

panels E and I) and one saddle point (point 2, Figure 2—figure supplement 2, panels E and I),

which separates the basins of attraction of the stable states. Regime 8 is a classic bistability regime

arising from a double negative feedback in the RhoA-Rac1 network (Figure 2—figure supplement

3, panels E and F). One stable node has the high RhoA and low Rac activities, whereas the other sta-

ble node has the high Rac and low Rho activities (points 1 and 3, Figure 2—figure supplement 2,

panel I) (Byrne et al., 2016). In regime 4, one of the stable steady states is a stable node, whereas

the other is a stable focus. Both stable states have low Rac1-GTP levels, but the stable focus (point

1, Figure 2—figure supplement 2, panel E) has a low RhoA-GTP level, while the stable node (point

3, Figure 2—figure supplement 2, panel E) has a high RhoA-GTP level. Regime 4 occurs for low

DIA abundances, when the activating connection from RhoA to Rac1 is weak. The dynamical behav-

ior of regime 7 is similar to the dynamics of regime 8. Both regimes exhibit two stable nodes (points

3 and 5 for regime 7, Figure 2—figure supplement 2, panel H) and a saddle resulting in bistability.

Regime 7 has an additional unstable focus and saddle (points 1–2, Figure 2—figure supplement 2,

panel H), which do not substantially change the basins of attraction of stable nodes.

Regime 6 has a single steady state that is a stable node, to which all solutions converge regard-

less of the initial conditions (Figure 2—figure supplement 2, panel G). The dynamical behavior of

regime 5 is similar to the dynamics of regime 6. Regime 5 has a single stable node but also an addi-

tional unstable focus and saddle (points 1–2, Figure 2—figure supplement 2, panel F), which does

not substantially change the basin of attraction of the stable node.

Summarizing, the above analysis of a 2-D system (Equation 8) helped us comprehend the

dynamic behaviors and parameter bifurcation diagrams obtained for a 5-D system (Equation 6, in

Figures 2C and 4A and Figure 2—figure supplement 1, panels A-C).

Describing spatiotemporal dynamical regimes in the model
To explore the spatiotemporal behavior of the RhoA-Rac1 network in an entire cell, we took into

account diffusion fluxes and spatial distribution of RhoA, Rac1 and their effectors. The
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spatiotemporal dynamics of the system is described by the following system of partial differential

equations (PDEs). Since active and inactive forms of RhoA and Rac1 GTPases can have different dif-

fusion coefficients, the PDEs include both protein forms.

q½Rho-T�

qt
¼ VRho

GEF

1þgRho
DIA½DIA

��=KRho
DIA

1þ ½DIA��=KRho
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(9)

Here, DRhoT and DRhoD are the diffusion coefficients of active and inactive forms of RhoA, and

DRacT and DRacD are the diffusion coefficients of active and inactive forms of Rac1. For all forms of

RhoA and Rac1, zero-gradient boundary conditions are considered at the boundaries of the compu-

tational domain, describing no flux conditions at the cell borders. The spatial profiles of the total

DIA and ROCK concentrations are set by Equation 3 that describes their distribution along the cell

length (the x-axis). No other total abundances vary with the cell length in our reaction-diffusion

model.

At the leading edge, the total concentrations of DIA and ROCK correspond to oscillatory regimes

1 and 3 observed for a well-mixed system (Figure 2A, B and F, and Figure 2—figure supplement

2, panels B and D). In the spatial case, the PDE equations (Equation 9) with these parameters gener-

ate excitable media, where self-sustained waves of the RhoA and Rac1 activities are formed periodi-

cally. Thus, the leading edge can be considered as a ‘pacemaker’ of the GTPase cellular machinery

(Huang et al., 2013), by analogy to the sinoatrial node in the heart (Mangoni and Nargeot, 2008).

At the cell body and rear the total concentration of DIA is lower, and the total concentration of

ROCK is higher than at the leading edge. For the well-mixed system (Equation 6), these concentra-

tion parameters correspond to regime 2 (Figure 2A and C and Figure 2—figure supplement 2,

panel C). For the dynamics in space and time, these parameters bring about weakly excitable media,

which can propagate self-sustained waves of RhoA and Rac1 activities after receiving a strong stimu-

lus, but unable to autonomously generate such waves. In the stimulus absence, high RhoA and low

Rac1 stationary activities are maintained in this media. Following an over-threshold stimulus, this

weakly excitable media propagates the wave of high Rac1 activity, and then returns to the steady

state with high RhoA and low Rac1 activities. Importantly, the excitability of this media gradually

Bolado-Carrancio et al. eLife 2020;9:e58165. DOI: https://doi.org/10.7554/eLife.58165 25 of 34

Research article Cell Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.58165


decays approaching the cell rear. As a result, in a mesenchymal polarized cell a number of waves of

RhoA and Rac1 activity must be generated at the leading edge to induce a self-sustained wave in

the cell body and rear, in contrast with the heart where every wave generated in the sinoatrial node

spreads through the entire heart. The higher concentration of ROCK exists at the cell body and rear,

the higher number of waves must be generated at the leading edge before a GTPase activity wave

propagates through an entire cell. If the total ROCK concentration of is too high in the cell body and

rear, the waves generated at the leading edge vanish before propagating deeply into the cell and

reaching the cell rear.

Thus, high excitability at the leading edge and low excitability in the cell body and at the rear

result in a cyclic dynamic pattern, in which multiple protrusion-retraction cycles are generated at the

leading edge before a migrating cell moves.

Modeling the mechanisms of PAK and ROCK inhibition
The mechanism of PAK inhibition by allosteric inhibitor IPA-3 was modeled similarly as in our previ-

ous study (Byrne et al., 2016). IPA-3 reversibly binds to an inactive PAK conformation, and prevents

PAK activation (Deacon et al., 2008; Viaud and Peterson, 2009). Assuming rapid equilibrium of

inactive PAK – inhibitor complex, the effect of PAK inhibitor IPA-3 is modelled by considering the

concentration of inactive PAK as the following function of [IPA-3],

½PAK�ð½IPA�3�Þ ¼
PAKj½IPA�3�¼0

ð1þ ½IPA�3�
KPAK
I

Þ
(10)

Both, ATP competitive ROCK inhibitor Y-27632 and ATP bind to an active conformation of the

ROCK kinase (Yamaguchi et al., 2006; Ishizaki et al., 2000). Thus when Y-27632 is present, the

decrease in the ROCK kinase activity can be described by the following multiplier, b<1,

b¼ 1þ
ATP½ �

KATP
d

� �

= 1þ
ATP½ �

KATP
d

þ
Y�27632½ �

KROCK
I

� �

(11)

Dimensionless equations
To reduce the number of parameters, we express the PDE system, Equation 9, in a dimensionless

form, Equation 10 (Barenblatt, 2003). To simplify the interpretation of numerical results, we left the

time as the only dimensional variable (measured in seconds) that directly corresponds to the time,

measured in experiments.
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(12)

The parameters are listed in Supplementary file 2. Many parameters were taken from our previ-

ous mechanistic model of the RhoA-Rac1 network, which was tailored to MDA-MB-231 cells

(Byrne et al., 2016), – the same cell line we used in this work. As in the previous model, we used

quantitative mass spectrometry data to determine the prevailing protein isoforms of the RhoA-Rac1

network in MDA-MB-231 cells, as well as the protein abundances. The parameters of activation and

deactivation of RhoA, Rac1 and PAK were estimated based on the literature data (Lyda et al., 2019;

Tang et al., 2018). The parameters of activation and deactivation of DIA and ROCK were estimated

based on typical association and dissociation constants of protein-protein interactions

(Kholodenko et al., 1999). The parameters of hyperbolic multipliers (Equation 5) were estimated

based on the parameters used in Tsyganov et al., 2012. The diffusion coefficients of RhoA and

Rac1 were taken from Das et al., 2015. The cell shape and size parameters were taken from the

imaging data, generated in present study.

Numerical methods for solving PDE equations
The PDE system (Equation 10) was solved numerically by the finite volume method (Patankar, 1980)

aided by the splitting technique (Oran and Boris, 1987), and using the OpenFOAM platform

(Jasak, 2009). A computational 2D domain was obtained by extracting contours of cells from experi-

mental cell images using the OpenCV library (Bradski, 2000) and meshed by non-structured triangu-

lar meshes using the Salome platform (Ribes and Caremoli, 2007). An example of the
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computational mesh is presented in Figure 3—figure supplement 1, panel F. The x and y axes were

set along the cell length and width as depicted in Figure 3A. Distributions of the total concentra-

tions of DIA and ROCK were set according to Equations 3 and 10. For equations describing spatio-

temporal dynamics of active and inactive forms of Rho and Rac1, zero-gradient boundary conditions

were applied. The diffusion term was discretized using unstructured triangular meshes by means of

the ‘over-relaxed correction’ technique (Jasak, 1996). ODE systems describing chemical kinetics

were solved using fifth-order Cash-Karp embedded Runge-Kutta scheme with error control and

adjusted time-step size (Press et al., 1992). The simulation results were visualized using the Para-

View software package (Henderson, 2007).
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