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1. Introduction

Several complex mission planning operations necessitate the coordination and cooperation of het-

erogeneous vehicles with different but complementary capabilities (see, e.g., Murray (2007)). For

instance, the recent technological advances in the capabilities of unmanned aerial vehicles (UAVs),

also known as drones, facilitate their use together with other ground vehicles or naval vessels in

order to improve the effectiveness, speed, range, safety, and cost of operations in various humani-

tarian, ecological, environmental, and military applications.

In this paper, we focus on a two-vehicle system consisting of a slow but large vehicle, referred

to as the Carrier (e.g., a ship), with a virtually unlimited operational capability, and a faster but

smaller vehicle, referred to as the Vehicle, with a limited operational capability (e.g., a helicopter
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or a drone). The Carrier is capable of transporting, deploying, recovering, and servicing the Vehi-

cle. Such systems are frequently used in search-and-rescue, surveillance, monitoring, and logistics

operations. In each such operation, there is a set of target points to be visited by the Vehicle for

the purpose of rescuing victims, taking pictures and certain measurements, or performing delivery

and pick-up operations. For each target point, the Vehicle should leave the Carrier at some take-off

point, visit the target point, and return to the Carrier for servicing, refueling or recharging pur-

poses without exhausting its limited operational capability. We focus on the problem of planning

and coordinating the routes of the Carrier and the Vehicle in such a way that all of the target

points are visited in minimum total time starting from an origin and ending at a prespecified

destination. This problem, called the Carrier-Vehicle Traveling Salesman Problem (CVTSP), has

been introduced by Garone et al. (2010b).

The CVTSP is applicable in settings in which the Carrier can travel, without any restriction,

in the Euclidean plane. With the rapid advances in the capabilities of drones, the CVTSP finds

interesting applications in maritime search-and-rescue operations, mapping oil spills in the oceans,

monitoring operations in marine sciences, offshore platform logistics, and, more recently, in military

operations in which drones are launched from and recovered by a plane. Due to the different

capabilities of the Vehicle and the Carrier, there are several settings in which the Carrier may

not necessarily have the capability required during the visit of a target point, as in surveillance,

monitoring, or offshore logistics operations. Alternatively, it may be impractical, costly, or even

risky for the Carrier to visit a target point, as in search-and-rescue and military operations. The

CVTSP is particularly applicable in time-critical marine based search-and-rescue operations as well

as post-disaster operations after marine oil spills. Any improvement of the planning process would

translate into more lives saved, reduced environmental damage, and decreased cost of operations.

Solving the CVTSP requires the determination of the sequence of the target points to be visited,

which is inherently a combinatorial problem, and the computation of the take-off and landing

points for each target point, which is a continuous problem. Indeed, under the assumption that the

Vehicle and Carrier speeds are identical, the CVTSP reduces to the minimum-cost Hamiltonian

path problem, or the Euclidean Traveling Salesman Problem (TSP) if the origin and destination

are identical. Therefore, the CVTSP is, in general, NP-hard.

We next briefly review the literature on the CVTSP. A simpler version of the CVTSP has

been introduced in Garone et al. (2008), where the order of the target points to be visited is a

priori fixed, referred to as the Carrier Vehicle Problem (CVP). The authors obtain closed-form

solutions for some special cases with up to two target points. Building on the results from these

simpler cases, they propose a heuristic for an arbitrary number of target points. The more general

version of the CVTSP, in which the order of the target points is not a priori given, is studied
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in Garone et al. (2010b, 2011). The authors observe that the CVP can be formulated as a convex

optimization problem. They propose a two-stage heuristic method, in which a near-optimal solution

to the Euclidean Traveling Salesman Problem on the target points is computed in the first stage

by employing a polynomial-time approximation scheme and the CVP is solved by fixing this order

in the second stage. For the resulting solution, they establish a worst-case approximation error

bound, which depends on the approximation error in the first stage as well as some data-dependent

parameters. In Garone et al. (2011), the authors propose enumerating all possible sequences of

target points and solving the CVTSP with each fixed sequence for instances with up to 5 target

points.

In Gambella et al. (2018), an exact solution approach based on a mixed integer second order

conic (MISOC) optimization model is proposed for the CVTSP. The main algorithmic contribution

of the authors is a Ranking Based Algorithm (RBA) that is based on enumeration of Hamiltonian

paths starting from the origin, visiting the set of target points, and ending at the destination.

For a fixed Hamiltonian path, they compute a lower bound on the optimal value of the CVTSP.

The paths are then ranked in ascending order of the lower bounds. For each path in that order,

they solve the CVP with this fixed sequence to obtain an upper bound. The procedure terminates

with an optimal solution if the upper bound matches the lower bound. The authors report optimal

solutions on instances with up to 15 target points in less than an hour of CPU time.

A further extension of the CVTSP, referred to as the Generalized Carrier-Vehicle Traveling

Salesman Problem (GCVTSP), is studied in Garone et al. (2014), where the Vehicle is allowed to

visit multiple target points between a take-off and landing. A mixed integer nonlinear optimization

model is presented and a three-stage heuristic method is proposed, which is composed of approx-

imately solving the Euclidean TSP on the target points in order to fix the sequence in the first

stage, determining the cluster of target points to be visited between each take-off and landing for

the given sequence in the second stage, and computing the take-off and landing points for each

cluster in the third stage. In Klauco et al. (2014), the authors formulate the GCVTSP with a fixed

order of target points as a mixed integer second order conic optimization problem and report exact

solutions on instances with 30 – 100 target points in 103− 105 seconds.

After the initial version of this manuscript was submitted, we became aware of a related study

on the Mothership and Drone Routing Problem introduced by Poikonen and Golden (2019), which

is essentially the same problem as the CVTSP studied in this paper. The authors propose an exact

branch-and-bound method, which is based on systematically enumerating all the visit sequences

and solving the corresponding CVP to compute the take-off and landing points for each fixed

sequence. They also propose several heuristic methods. Their exact method is able to solve ran-

domly generated instances with up to 20 target points. They also consider the extension in which

the Vehicle is allowed to visit multiple target points.
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We note that the CVTSP is defined in the Euclidean plane, and there is a separate extensive

literature on multi-vehicle systems defined on networks. One of the earliest such problems is the

Flying Sidekick Traveling Salesman Problem introduced by Murray and Chu (2015), inspired by the

drone delivery systems of logistics companies and e-tailers. Similar problems with slight variations

have been studied (see, e.g., Agatz et al. (2018), Bouman et al. (2018), Ha et al. (2018), Saleu

et al. (2018), Poikonen et al. (2019)). For other variants of the problem including multiple vehicles

and multiple drones, we refer the reader to Murray and Raj (2020) and the references therein. In

each of these variants of the problem, the landing and take-off points of the Vehicle are restricted

to the set of the locations of target points or the depot (i.e., the origin in the context of the

CVTSP). This assumption makes the problem amenable to a mixed integer linear programming

formulation. In contrast, since the Vehicle is allowed to take-off and land at any point in the plane

in the CVTSP, the synchronization of the Carrier and the Vehicle necessitates the use of nonlinear

Euclidean distance constraints. As such, the CVTSP is a fundamentally different problem and its

exact formulation requires a mixed integer nonlinear model (see Section 3).

Another related problem is the Traveling Salesman Problem with Neighborhoods (TSPN), intro-

duced in Arkin and Hassin (1994), which is concerned with finding the minimum-cost tour that

visits a certain neighborhood of each target point. While certain special cases of the problem

admit polynomial-time approximation schemes (see, e.g., Dumitrescu and Mitchell (2003), Mitchell

(2007), Bodlaender et al. (2009), Chan and Jiang (2016)), the general version of the TSPN is NP-

hard to approximate below a certain accuracy (see, e.g., de Berg et al. (2005), Safra and Schwartz

(2006)). The reader is also referred to Gulczynski et al. (2006), Coutinho et al. (2016) for the

related problem of close enough TSP.

Similar to Garone et al. (2010b, 2011) and Gambella et al. (2018), we focus on the variant of the

CVTSP in which the order of target points is not a priori given and the Vehicle can visit one target

point between each take-off and landing. The RBA of Gambella et al. (2018) can solve instances

of the CVTSP with up to 15 target points to optimality, a relatively small number given the large

scale of operations. For instance, following the earthquake and tsunami of 26 December 2004 in

the Indian Ocean, 69 inhabited islands were impacted in the Maldives alone (see, e.g., UNEP

(2005)). In this paper, we aim to develop exact and approximate solution approaches for larger

instances of the CVTSP by identifying and exploiting specific structural properties of the problem.

Our contributions are as follows. We establish several structural properties of the CVTSP. By

exploiting these properties, we develop a new MISOC optimization model. In contrast with the

optimization model of Gambella et al. (2018) that employs assignment variables for determining the

visiting order of target points, our formulation relies on routing variables and subtour elimination
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constraints. We derive several optimality cuts arising from geometric observations. We also devise

heuristic methods for computing near-optimal solutions for larger instances.

The rest of the paper is organized as follows. In Section 2, we give a formal definition of the

CVTSP and identify several structural properties. We present improved and new formulations

for the CVTSP in Section 3. Heuristic algorithms are presented in Section 4. Our computational

experiments are reported in Section 5. Finally, we conclude the paper in Section 6.

2. Problem Definition and Structural Properties

In this section, we first give a formal definition of the CVTSP. Then, we present several structural

properties that will later be utilized in our optimization formulation.

2.1. Problem Definition

As stated in the introduction, we consider a multi-vehicle system consisting of a slow Carrier with

a long-range operational capability and a fast Vehicle with a limited range. The Carrier is able to

transport, deploy, recover, and service the Vehicle. At the beginning of the mission, the Vehicle is

assumed to be based on the Carrier located at an origin with full operational capability. Both the

Carrier and the Vehicle should return to a prespecified destination at the end of the mission. The

destination may, in general, be different from the origin.

The locations are specified by the (x, y)-coordinates on the plane. The Carrier can follow any

continuous trajectory without exceeding its maximum speed. The Vehicle is transported by the

Carrier whenever it is not deployed. Once the Vehicle is deployed, it can follow any continuous

trajectory without exceeding its maximum speed and its maximum operating time. The Vehicle

should return to the Carrier before exhausting its operational capability, which we assume to be

instantaneously restored as soon as the Vehicle lands on the Carrier. During the mission, the Vehicle

should visit a set of target points whose locations are assumed to be known. For each target point,

the Vehicle takes off from the Carrier, travels to the location of the target point, and returns to

the Carrier. We assume that the service time of the Vehicle at a target point is negligible. The

objective is to plan the routes of the Carrier and the Vehicle in such a way that the mission is

completed as quickly as possible.

The parameters of the problem are given in Table 1.

In Figure 1, we present an illustration of an optimal solution for LD21 3, one of the instances

of the CVTSP with 20 target points used in our computational experiments in Section 5, where

take-off, target, and landing points are denoted by empty, lightly-shaded, and fully-shaded vertices,

respectively. For this instance, the origin and the destination, denoted by o and f , are at the same

coordinates. The parameters regarding the Carrier’s speed, the Vehicle’s speed, and the Vehicle’s
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n Number of target points
T Set of target points (T = {1, . . . , n})
qj Coordinates of the target point j, j = 1, . . . , n
Vv Maximum speed of the Vehicle
Vc Maximum speed of the Carrier (Vc ≤ Vv)
a Maximum operating time (autonomy) of the Vehicle
po Coordinates of the origin
pf Coordinates of the destination

Table 1 Parameters of the CVTSP

autonomy in this example are Vc = 1, Vv = 5, a= 1. In Figure 1, the path of the Carrier is depicted

by solid blue line segments whereas the path of the Vehicle is illustrated by dashed blue line

segments. The optimal solution of the TSP on target points and the origin is denoted by red dotted

line segments. As illustrated by this example, the optimal visit sequence of the target points in

the CVTSP can be different from that of the optimal TSP tour due to the additional flexibility

provided by the Vehicle. Therefore, solving the CVP using an optimal TSP tour on the target

points may result in a suboptimal solution for the CVTSP. This example provides a justification

for studying exact methods for the CVTSP.

2.2. Structural Properties

In this section, we prove several structural properties of the CVTSP, which we will utilize to develop

a stronger formulation.

Let us denote by pto,k and pl,k the coordinates of the take-off and landing points of the Vehicle

before and after visiting the target point in the kth order in an optimal solution of the CVTSP,

respectively, where k= 1, . . . , n. Therefore, the trajectory of the Carrier is given by

po, pto,1, pl,1, pto,2, pl,2, . . . , pto,n, pl,n, pf .

As already observed in Garone et al. (2014), during any period in which the Vehicle is transported

by the Carrier, the Carrier should clearly travel along straight line segments at its maximum speed

denoted by Vc. It follows that the total time during which the Carrier transports the Vehicle is

given by

t∗CV =
1

Vc

(
‖po− pto,1‖+

n−1∑
k=1

‖pl,k− pto,k+1‖+ ‖pl,n− pf‖

)
, (1)

where ‖ · ‖ denotes the Euclidean norm.

Let us now focus on the total time required to visit a target point j ∈ T . Let us define sto,j and

sl,j as in Table 2, which will be used frequently in the remainder of this section.
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o/f

Figure 1 Optimal solutions of CVTSP (in blue) and TSP (in red) for the instance LD21 3

If the target point j is visited in the kth order, then we have sto,j = pto,k and sl,j = pl,k, where

j ∈ T and k= 1, . . . , n. The time elapsed during the visit of the target point j is given by

t∗j = max
{
tcj, t

v
j

}
, j ∈ T, (2)
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sto,j

Coordinates of the take-off point of the Vehicle right before
visiting the target point j in an optimal solution of the
CVTSP, j ∈ T

sl,j

Coordinates of the landing point of the Vehicle right after
visiting the target point j in an optimal solution of the
CVTSP, j ∈ T

Table 2 Definitions of sto,j and sl,j , j ∈ T

where tcj and tvj denote the minimum travel time of the Carrier and the Vehicle, respectively, and

are given by

tcj =
‖sto,j − sl,j‖

Vc
, tvj =

‖sto,j − qj‖+ ‖qj − sl,j‖
Vv

, j ∈ T. (3)

Due to the limited operational capability of the Vehicle, we have t∗j ≤ a, j ∈ T . We henceforth refer

to t∗j as the visit duration of target point j.

The optimal value of the CVTSP, which corresponds to the minimum completion time of the

mission, is therefore given by

t∗ = t∗CV +
∑
j∈T

t∗j , (4)

where t∗CV and t∗j are given by (1) and (2), respectively.

The following definition will be useful.

Definition 1. Given an instance of the CVTSP, suppose that tcj and tvj are defined as in (3),

where j ∈ T . Then,

(i) if tcj < t
v
j , then the Carrier is said to wait for the Vehicle at target point j,

(ii) if tvj < t
c
j, then the Vehicle is said to wait for the Carrier at target point j,

(iii) if tcj = tvj , then the Carrier and the Vehicle are said to be perfectly synchronized at target

point j.

The next result illustrates a useful property of an optimal solution of the CVTSP.

Lemma 1. In any optimal solution of the CVTSP, the Carrier never waits for the Vehicle at

any target point, i.e., tvj ≤ tcj for each j ∈ T , where tcj and tvj are defined as in (3).

Proof. Suppose, for a contradiction, that there exists an optimal solution of the CVTSP such

that the Carrier waits for the Vehicle at some target point j ∈ T , i.e., tcj < tvj = t∗j by (2). Let us

denote the take-off point before visiting target point j by to and the landing point after visiting

target point j by `. Let us denote by i the previous point on the trajectory of the Carrier, which is

either the landing point of the target point visited right before target point j or the origin. Figure 2

illustrates a schematic representation, where the solid lines represent the trajectory of the Carrier

whereas the dashed lines correspond to that of the Vehicle. Note that both the take-off point and

the landing point should be different from the target point j since we would otherwise have tvj ≤ tcj
since Vc ≤ Vv, contradicting our hypothesis.



Author: Article Short Title

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 9

i

to

to′

j

`

i

to

to′

j

`

Figure 2 Illustration of the proof of Lemma 1

We make the following claim. There exists a point to′ on the line segment between to and j

such that deploying the Vehicle at to′ as opposed to to strictly improves the objective function

value. The coordinates of any point on the line segment between to and l, denoted by to(α), are

given by (1 − α)sto,j + αqj = sto,j + α(qj − sto,j) for some α ∈ [0,1], where qj, sto,j, and sl,j are

defined as in Tables 1 and 2. Let us denote the travel time of the Carrier from to to to(α) and

from to(α) to ` by tc(α) and the travel time of the Vehicle from to(α) to j and from j to ` by

tv(α), where α∈ [0,1]. Clearly, each of tc(α) and tv(α) is a continuous function of α and tv(α) is a

strictly decreasing function. Furthermore, tc(0) = tcj < tv(0) = tvj and tc(1)≥ tv(1) since Vc ≤ Vv and

sl,j 6= qj. It follows that there exists α∗ ∈ (0,1] such that tc(α
∗) = tv(α

∗)< tv(0) = tvj ≤ a since tv(α)

is strictly decreasing. Denoting to(α∗) by to′, if the Vehicle is deployed at to′ instead of to, then

the visit duration of target point j would be strictly smaller than tjv. Furthermore, note that using

a shortcut from i to to′ in the route of the Carrier will not increase the travel time of the Carrier

by the triangle inequality. This contradicts the optimality of the original solution. �

Our next result establishes the existence of an optimal solution of the CVTSP such that the

Carrier and the Vehicle are perfectly synchronized at each target point.

Proposition 1. Given an instance of the CVTSP, there exists an optimal solution such that

the Carrier and the Vehicle are perfectly synchronized at each target point, i.e., tvj = tcj for each

j ∈ T , where tcj and tvj are defined as in (3).

Proof. Suppose that there exists an optimal solution such that the Carrier and the Vehicle are

not perfectly synchronized at some target point j ∈ T . By Lemma 1, we have tvj < t
c
j = t∗j , i.e., the

Vehicle waits for the Carrier at target point j. Similar to the proof of Lemma 1, let us denote the

take-off point before visiting target point j by to and the landing point after visiting target point

j by `. Let us denote by i the previous point on the trajectory of the Carrier, which is either the

landing point of the target point visited right before target point j or the origin. In Figure 3, the

solid lines represent the trajectory of the Carrier whereas the dashed lines correspond to that of
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the Vehicle. Note that at least one of the take-off and landing points should be different from the

target point j since we would otherwise have tvj = tcj = t∗j = 0, contradicting our hypothesis.

i

to

to′

j

`

i

to

to′

j

`

Figure 3 Illustration of the proof of Proposition 1

Following a similar argument as in the proof of Lemma 1, there exists a point to′ on the line

segment between to and ` such that the travel time of the Carrier and that of the Vehicle are

identical and smaller than tcj if the Vehicle is deployed at to′ instead of to. Finally, by the triangle

inequality, we can use a short cut between i and to′ in the trajectory of the Carrier without

increasing its total travel time from i to `. It follows that any optimal solution in which the Carrier

and the Vehicle are not perfectly synchronized at a target point can be modified without worsening

the objective function value and ensuring perfect synchronization. �

Note that there may be an optimal solution of the CVTSP in which perfect synchronization may

not necessarily be satisfied at a particular target point. Indeed, a close examination of the proof of

Proposition 1 reveals that the objective function value remains the same if, for instance, the points

i, to, and to′ are collinear. Nevertheless, Proposition 1 ensures the existence of an optimal solution

with perfect synchronization at all target points.

The next result is an immediate consequence of Proposition 1.

Corollary 1. Given an instance of the CVTSP, there exists an optimal solution such that

(i) the Carrier moves along straight line segments at its maximum speed Vc,

(ii) the Vehicle moves along straight line segments at its maximum speed Vv, and

(iii) the Carrier and the Vehicle are perfectly synchronized at each target point.

Next, we focus on the distance from the take-off or landing point to a target point. Denoting

the visit duration of target point j by t∗j in an optimal solution (see (2)), a naive upper bound on

each of the two distances is given by t∗j Vv. The next result provides a tighter upper bound.
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Proposition 2. Given an instance of the CVTSP, any optimal solution satisfies

max{‖sto,j − qj‖ ,‖sl,j − qj‖} ≤
t∗j (Vv +Vc)

2
≤ a (Vv +Vc)

2
, j ∈ T, (5)

where sto,j and sl,j are defined as in Table 2 and t∗j is given by (2).

Proof. The second inequality in (5) directly follows from the inequality t∗j ≤ a, j ∈ T . For the

first inequality, let us fix j ∈ T . By the triangle inequality,

‖sto,j − qj‖ ≤ ‖sto,j − sl,j‖+ ‖sl,j − qj‖ (6)

= tcjVc + tvjVv −‖sto,j − qj‖ (7)

≤ t∗jVc + t∗jVv −‖sto,j − qj‖ , (8)

where we used (3) in the second line and (2) in the last line. It follows that ‖sto,j − qj‖ ≤

t∗j (Vv +Vc)/2. The upper bound on ‖sl,j − qj‖ can be obtained in a similar manner. �

The next corollary establishes the existence of an optimal solution in which the distance from

the take-off or landing point to each target point can be bounded below.

Corollary 2. Given an instance of the CVTSP, there exists an optimal solution such that

min{‖sto,j − qj‖ ,‖sl,j − qj‖} ≥
t∗j (Vv −Vc)

2
, j ∈ T, (9)

where sto,j and sl,j are defined as in Table 2 and t∗j is given by (2).

Proof. By Corollary 1, there exists an optimal solution of the CVTSP such that the Carrier

and the Vehicle are perfectly synchronized at each target point. For such an optimal solution,

‖sto,j − qj‖+ ‖sl,j − qj‖= Vv t
∗
j , j ∈ T.

The relation (9) follows immediately from (5) and the equation above. �

We next introduce the following definition.

Definition 2. Given an instance of the CVTSP, the Vehicle is said to use its full autonomy at

target point j in an optimal solution if tvj = a, where j ∈ T , and tvj is given by (3).

The next corollary follows from Proposition 2.

Corollary 3. Given an instance of the CVTSP, suppose that sto,j and sl,j are defined as in

Table 2, where j ∈ T . If

max{‖sto,j − qj‖ ,‖sl,j − qj‖}=
a (Vv +Vc)

2
, (10)
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then the Vehicle uses its full autonomy at target point j and the Carrier and the Vehicle are perfectly

synchronized at target point j.

Proof. By Proposition 2, we obtain t∗j = a. Since t∗j = max{tvj , tcj}= a and tvj ≤ tcj by Lemma 1,

we have tvj ≤ tvc = a. If tvj < t
c
j, then, by (6)–(8), we would obtain

‖sto,j − qj‖<aVc + aVv −‖sto,j − qj‖ ,

which would imply that ‖sto,j − qj‖< a(Vv + Vc)/2. A similar argument would yield ‖sl,j − qj‖<
a(Vv + Vc)/2, which would contradict (10). It follows that tvj = tcj = a, i.e., the Carrier and the

Vehicle are perfectly synchronized at target point j. �

The next technical lemma establishes a geometric property that will be useful in the proof of

the subsequent proposition.

Lemma 2. Given an instance of the CVTSP, suppose that the Carrier and the Vehicle are per-

fectly synchronized at a target point j ∈ T . Consider the triangle with the base given by the line

segment between sto,j and sl,j and the apex given by qj, where sto,j and sl,j are defined as in Table 2

and qj is defined as in Table 1. The height of this triangle, denoted by hj, satisfies

hj ≤
t∗j
2

√
V 2
v −V 2

c , (11)

where t∗j is given by (2).

Proof. Suppose that the Carrier and the Vehicle are perfectly synchronized at a target point

j ∈ T . If t∗j = 0, then sto,j = sl,j = qj, which implies that the triangle degenerates to a point and

hj = 0, clearly satisfying (11).

Suppose now that t∗j > 0. Consider the triangle with with the base given by the line segment

between sto,j and sl,j and the apex given by qj. Let us denote the length of the base by α and the

lengths of the other two sides by β and γ. By perfect synchronization,

α = Vc t
∗
j ,

β+ γ = Vv t
∗
j .

The area of this triangle is given by (αhj)/2. By Heron’s formula,

αhj
2

=
√
s(s−α)(s−β)(s− γ),

where s= (α+β+ γ)/2 = ((Vv +Vc)t
∗
j )/2. Therefore,

h2
j =

4s(s−α)(s−β)(s− γ)

α2
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=
4[((Vv +Vc)t

∗
j )/2][((Vv −Vc)t∗j )/2](s−β)(s− γ)

V 2
c (t∗j )

2

=
(V 2

v −V 2
c )(s−β)(s− γ)

V 2
c

By the triangle inequality, s− β ≥ 0 and s− γ ≥ 0. The last term is clearly maximized if β = γ =

(Vv t
∗
j )/2, which implies that

h2
j ≤

(V 2
v −V 2

c )[(Vc t
∗
j )/2]2

V 2
c

=
(V 2

v −V 2
c )(t∗j )

2

4
,

which establishes (11). �

The next result allows us to identify a subset of the target points at which the Vehicle uses its

full autonomy in an optimal solution.

Proposition 3. Given an instance of the CVTSP, if a target point j, where j ∈ T , satisfies all

of the following conditions

(i) ‖po− qj‖ ≥ a(Vv+Vc)

2
,

(ii) ‖qi− qj‖ ≥ a (Vv +Vc) ,∀ i∈ T \ {j}, and

(iii) ‖pf − qj‖ ≥ a(Vv+Vc)

2
,

then there exists an optimal solution such that the Vehicle uses its full autonomy at target point j

and the Carrier and the Vehicle are perfectly synchronized at target point j.

For the sake of brevity, we provide the proof of Proposition 3 in the Appendix. The next result

generalizes the sufficient conditions for full autonomy given in Proposition 3 by taking into account

the visit sequence of the target points.

Proposition 4. There exists an optimal solution of the CVTSP such that the Vehicle uses its

full autonomy at target point j, where j ∈ T , if the Carrier travels

(i) from the origin to target point j, and ‖po− qj‖ ≥ a(Vv+Vc)

2
, or

(ii) from target point i∈ T \ {j} to target point j, and ‖qi− qj‖ ≥ a (Vv +Vc),

and

(iii) from target point j to target point i∈ T \ {j}, and ‖qi− qj‖ ≥ a (Vv +Vc), or

(iv) from target point j to the destination, and ‖qj − pf‖ ≥ a(Vv+Vc)

2
.

The proof of Proposition 4 is also provided in the Appendix.

3. Formulations

As stated in the introduction, the formulation of Gambella et al. (2018) employs assignment vari-

ables for sequencing target points. In this section, we present a new optimization model for the

CVTSP that relies on routing variables. In addition, we utilize the structural properties presented

in Section 2 to present several optimality cuts.
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3.1. A Mixed Integer Nonlinear Programming Formulation

In this section, we present a new optimization model for the CVTSP. We use the same parameters

presented in Table 1. Our decision variables are presented in Table 3.

xij Binary variable which is equal to 1 if target point i is visited right before
target point j and 0 otherwise, i∈ T ; j ∈ T

xo,j Binary variable which is equal to 1 if target point j is visited right after
the origin (i.e., j is the first target point to be visited) and 0 otherwise,
j ∈ T

xj,f Binary variable which is equal to 1 if target point j is visited right
before the destination (i.e., j is the last target point to be visited) and
0 otherwise, j ∈ T

sto,j Coordinates of the take-off point of the Vehicle before visiting the target
point j, j ∈ T

sl,j Coordinates of the landing point of the Vehicle after visiting the target
point j, j ∈ T

ρij Distance traveled by the Carrier from target point i to target point j if
target point j is visited right after target point i, i∈ T ; j ∈ T

ρo,j Distance traveled by the Carrier from the origin to target point j if
target point j is visited right after the origin, j ∈ T

ρj,f Distance traveled by the Carrier from target point j to the destination
if target point j is visited right before the destination, j ∈ T

tj Visit duration of target point j, j ∈ T
Table 3 Decision variables of CVTSP1

Next, we present our alternative formulation, denoted by CVTSP1:

min
∑
j∈T

tj +
∑
i∈T

∑
j∈T

(1/Vc)ρij +
∑
j∈T

(1/Vc) (ρo,j + ρj,f ) (12)

s.t.

‖sto,j − sl,j‖ ≤ Vc tj, j ∈ T (13)

‖sto,j − qj‖+ ‖sl,j − qj‖ ≤ Vv tj, j ∈ T (14)

‖sto,j − qj‖ ≤ (1/2) (Vv +Vc) tj, j ∈ T (15)

‖sl,j − qj‖ ≤ (1/2) (Vv +Vc) tj, j ∈ T (16)

‖po− sto,j‖ ≤ ρo,j + (1−xo,j) (‖po− qj‖+ (1/2) (Vv +Vc)a) , j ∈ T (17)

xo,j ‖po− qj‖ ≤ ρ0,j + (1/2) (Vv +Vc) tj, j ∈ T (18)

‖sl,j − pf‖ ≤ ρj,f + (1−xj,f ) (‖qj − pf‖+ (1/2) (Vv +Vc)a) , j ∈ T (19)

xj,f ‖qj − pf‖ ≤ ρj,f + (1/2) (Vv +Vc) tj, j ∈ T (20)

‖sto,j − sl,i‖ ≤ ρij + (1−xij) (‖qj − qi‖+ (Vv +Vc)a) , i∈ T, j ∈ T (21)
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xij ‖qj − qi‖ ≤ ρij + (1/2) (Vv +Vc) (ti + tj) , i∈ T, j ∈ T (22)

xjj = 0, j ∈ T (23)

xo,j +
∑
i∈T

xij = 1, j ∈ T (24)

xj,f +
∑
k∈T

xjk = 1, i∈ T (25)∑
i∈S

∑
j∈S

xij ≤ |S| − 1, S ⊆ T ; 2≤ |S| ≤ n (26)

tj ≤ a, j ∈ T (27)

ρij ≥ 0, i∈ T, j ∈ T (28)

ρo,j ≥ 0, j ∈ T (29)

ρj,f ≥ 0, j ∈ T (30)

tj ≥ 0, j ∈ T (31)

xij ∈ {0,1}, i∈ T, j ∈ T (32)

xo,j ∈ {0,1}, j ∈ T (33)

xj,f ∈ {0,1}, j ∈ T. (34)

The objective function (12) is composed of the sum of the total travel time of the Carrier along

its trajectory while transporting the Vehicle and the total visit duration of the target points. The

constraints (13) and (14) correspond to the visit duration of the target points. The constraints

(15) and (16) directly follow from Proposition 2. If the target point j is the first target point to

be visited (i.e., if xo,j = 1), then ρo,j corresponds to the distance traveled by the Carrier from the

origin to the target point j by (17). Otherwise, ρo,j can be set to zero by the triangle inequality and

Proposition 2. The constraint (18) is redundant if xo,j = 1. Otherwise, it reduces to the triangle

inequality between the origin, take-off point before visiting target point j, and target point j by

Proposition 2, thereby providing a lower bound on ρo,j. The constraints (19) and (20) account for

the last target point to be visited and are structured similarly to (17) and (18), respectively. The

distance traveled by the Carrier between the landing point of target point i and the take-off point

of target point j is reflected in the constraints (21) and (22) in a similar manner. The constraints

(23)–(26) ensure that all target points are visited in a proper order starting from the origin and

ending at the destination. Note that we employ subtour elimination constraints (26) since our

model relies on routing variables xij. The maximum operating time of the Vehicle is reflected in

(27). Finally, the constraints (28)–(34) specify the ranges of the decision variables.

CVTSP1 is a mixed integer second order conic optimization model consisting of n2 + 5n linear

constraints, 2n − n − 1 subtour elimination constraints, n2 + 7n three-dimensional second order
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conic constraints, n2 + 3n nonnegative continuous variables, 4n general continuous variables, and

n2 + 2n binary variables.

3.2. Optimality Cuts

In this section, we present a set of optimality cuts for CVTSP1. Let us define the following index

sets:

Ij = {i∈ {1, . . . , n} : ‖qi− qj‖ ≥ a (Vv +Vc)} , j ∈ T, (35)

Io = {i∈ {1, . . . , n} : ‖po− qi‖ ≥ a (Vv +Vc)/2} , (36)

If = {i∈ {1, . . . , n} : ‖pf − qi‖ ≥ a (Vv +Vc)/2} . (37)

Proposition 5. Given an instance of the CVTSP, there exists an optimal solution of CVTSP1

that satisfies each of the following inequalities:

tj ≥ a

xo,j +
∑
i∈Ij

(xij +xji) +xj,f − 1

 , ∀j ∈ Io ∩If , (38)

tj ≥ a

∑
i∈Ij

(xij +xji) +xj,f − 1

 , ∀j ∈ (T \ Io)∩If , (39)

tj ≥ a

xo,j +
∑
i∈Ij

(xij +xji)− 1

 , ∀j ∈ Io ∩ (T \ If ), (40)

tj ≥ a

∑
i∈Ij

(xij +xji)− 1

 , ∀j ∈ (T \ Io)∩ (T \ If ). (41)

Proof. The proof directly follows from Proposition 4 and the constraints (24) and (25). �

For the next proposition, we introduce the auxiliary variables presented in Table 4.

δto,j Distance traveled by the Vehicle from the take-off point sto,j to target
point j, j ∈ T

δl,j Distance traveled by the Vehicle from target point j to the landing point
sl,j to , j ∈ T

Table 4 Auxiliary decision variables of CVTSP1

Proposition 6. Given an instance of the CVTSP, there exists an optimal solution of CVTSP1

that satisfies each of the following relations:

‖sto,j − qj‖ ≤ δto,j, j ∈ T, (42)

‖sl,j − qj‖ ≤ δl,j, j ∈ T, (43)
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δto,j + δl,j = Vv tj, j ∈ T, (44)

δto,j ≥ (1/2)(Vv −Vc)tj, j ∈ T, (45)

δl,j ≥ (1/2)(Vv −Vc)tj, j ∈ T. (46)

Proof. The inequalities (42) and (43) follow from the definitions of δto,j and δl,j in Table 4. The

equality (44) follows from Corollary 1 and the inequalities (45) and (46) are implied by Corollary 2.

�

Note that we refer to the relations in Propositions 5 and 6 as optimality cuts since there may exist

feasible (even optimal) solutions of CVTSP1 that violate these relations. For instance, consider

a CVTSP instance with one target point, where po = (0,0), pf = (4,0), q1 = (2,0), Vc = 1, Vv = 2,

and a= 1. Clearly, in any optimal solution of the CVTSP, the Carrier moves along a straight line

segment from the origin to the destination through the target point. As such, the Vehicle does

not need to leave the Carrier. However, by Propositions 5 and 6, we can impose t1 = a= 1, which

implies that there are only two optimal solutions that satisfy the given optimality cuts. Either

the Vehicle takes off at (0.5,0), visits the target point, and lands on the Carrier at (1.5,0), or the

Vehicle takes off at (0,2.5), visits the target point, and lands on the Carrier at (3.5,0). Note that, in

both optimal solutions, the Vehicle uses full autonomy, moves along straight line segments, and is

perfectly synchronized with the Carrier. As illustrated by this simple example, these relations may

reduce the feasible region and our results in Section 2 imply the existence of an optimal solution

that satisfies each of these relations.

We have also attempted to utilize the lower bound presented by Garone et al. (2010a) and used

by Gambella et al. (2018) for the case when the order of the target points is fixed. Denoting the

order ord, and the total length of the TSP tour corresponding to ord as TSP (ord), the lower bound

is:

LB(ord) =
TSP (ord)

Vc
−nVva

Vc
+na. (47)

In order to generalize this lower bound, we have replaced TSP (ord) with the TSP distance of the

target points based on the routing variables. The resulting optimality cut is

∑
j∈T

tj +
∑
i∈T

∑
j∈T

(1/Vc)ρij +
∑
j∈T

(1/Vc) (ρ0,j + ρj,f )≥∑
i∈T
‖po− qi‖xo,i +

∑
i∈T

∑
j∈T
‖qi− qj‖xi,j +

∑
j∈T ‖qj − pf‖xj,f

Vc
−nVva

Vc
+na. (48)
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However, this optimality cut was not observed to improve the lower bound or the solution time of

our models except for a subset of instances.

4. Heuristic Algorithms

In this section, we provide a constructive algorithm to generate an initial solution, and an Iterated

Local Search (ILS) algorithm to find high quality solutions for larger instances of the CVTSP.

4.1. Constructive Algorithm

We start by a short discussion of the CVP, which can be solved in polynomial time to find the

optimal take-off and landing points for a given sequence of target points. Hence, it is theoretically

possible to only search over the possible sequences of target points and use the CVP to determine

the take-off and landing points for each sequence. However, being a second order conic optimization

problem, the CVP still requires a non-negligible amount of CPU time. Table 5, which presents

the results of our computational experiments with the CVP with varying number of target points,

clearly reveals that the average CPU time requirement makes it impractical to repeatedly solve

the CVP within a local search operator.

Table 5 Average CPU time requirement to solve a CVP instance for |T |
|T | CPU time (seconds)
10 0.07
20 0.56
30 1.5
40 4.92
50 12.62
60 32.65
70 76.06
80 153.75
90 318.36

100 645.82

On the other hand, solving the CVP for a limited number of times can significantly improve

the quality of solutions of a heuristic algorithm. An intuitive constructive heuristic for the CVTSP

is to solve the Hamiltonian Path Problem (HPP) from the origin to the destination through the

target points, and solve the CVP for the resulting sequence. We remark that a similar constructive

heuristic algorithm was also employed in Garone et al. (2010b).

We denote by σ the sequence of target points to be visited in a solution, where σ(i) corresponds

to the index of the target point to be visited in the ith order. Finally, for the sake of brevity, we

will refer to the vector of all landing and take-off coordinates as s. This constructive heuristic is

presented in Algorithm 1.



Author: Article Short Title

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 19

Algorithm 1 Constructive heuristic

1: Solve a Hamiltonian Path Problem from o to f through T to determine σ∗

2: Solve an instance of the CVP for σ∗ to find s∗

We remark that an optimal solution of the HPP does not necessarily yield a high quality solution

of the CVTSP by itself, and can deviate significantly from the optimal sequence for the CVTSP

solution, as shown in Figure 4. We have also observed that the optimal objective function value of

the HPP deviates by 11.76% from the optimal value of the CVTSP on average for the instances

with knownoptimal solutions. Therefore, we propose an iterated local search algorithm in the next

section in an attempt to improve the solution constructed by Algorithm 1.

4.2. Iterated Local Search algorithm

Iterated Local Search (ILS) is a metaheuristic algorithm that has been successfully used for solving

many variants of the TSP and the Vehicle Routing Problem (VRP). It is based on the idea of per-

turbing a given solution and re-optimizing through local search operators. We refer the interested

reader to the comprehensive paper by Subramanian et al. (2013). Most of the ILS implementations

for the VRP use the sequence of the customers to represent solutions. We will write σ∗ to denote the

best known sequence, and s∗ to denote the associated take-off and landing coordinates. Finally, we

will denote the objective function value corresponding to a sequence σ and the associated take-off

and landing coordinates s as z(σ, s).

In our algorithmic design, we have opted to implement three well-known local search operators

to improve the sequence, namely, 1-OPT (removing a target point in the sequence and reinserting

it in a different position), 2-OPT (exchanging two carrier arcs in the route, which corresponds

to reversing a section of the sequence), and 2-EXCHANGE (swapping two target points in the

sequence) (Groër et al. 2010), and choose the best sequence found among them in each iteration.

For 1-OPT and 2-EXCHANGE, we have implemented the operators to retain the take-off and

landing coordinates of each target point, effectively preserving feasibility. In our implementation

of 2-OPT, we have evaluated the resulting solutions by swapping the take-off and landing points

of each target point within the reversed section. This approach has allowed us to attain better

solutions while still preserving feasibility.

As pointed out in Section 4.1, for any given sequence σ, it is possible to determine s by iteratively

solving instances of the CVP. However, repeatedly recomputing take-off and landing points using

the CVP results in computational overhead, especially when implemented within a local search

operator. To balance the trade-off between the computational effort and the search for better

solutions, we adopt the following two approaches. First, we compute the take-off and landing points

only at the beginning of each local search iteration. Second, rather than solving the CVP, we
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construct a solution of the CVP by iteratively solving a basic variant of the CVP, which we refer

to as CVP-B, to determine the take-off and landing points.

The CVP-B is a special case of the CVP with only one target point. Devoid of the need

to sequence the target points, CVP-B can be formulated as a second order conic optimization

model with four variables that correspond to the coordinates of the take-off and the landing

points of the Vehicle, and four constraints given by (13), (14), (15), (16). We will refer to an

instance of CVP-B starting from qi, visiting qj, and ending at qk as CVP-B(qi, qj, qk). Recall that

σ denotes the sequence of target points to be visited in a solution, where σ(i) corresponds to the

index of the target point to be visited in the ith order. For a given sequence σ, we first solve

CVP-B(po, qσ(1), qσ(2)) to determine the take-off and landing points for qσ(1). Next, we treat the

landing point of qσ(1) as the origin, qσ(2) as the target point, and qσ(3) as the destination in order

to compute the take-off and landing points for qσ(2). We continue in an iterative manner until we

solve the CVP-B to compute the take-off and landing points for qσ(n) by treating pf as the final

destination. Therefore, we construct a feasible solution of CVP by instead solving |T |+1 instances

of the simpler variant CVP-B.

In the ILS algorithm we present below, we exactly solve the CVP twice: Once at the beginning

for theinitial HPP sequence (Algorithm 1), and once at the end for the best known sequence to

ensure the optimality ofthe take-off and landing points..

A crucial component of ILS is the perturbation step, where we have used the same operators

to move to random solutions, and chose 1 to 3 such moves for each operator. We have set the

number of iterations kmax = 2|T |, which we have observed to provide high quality solutions without

requiring extensive CPU time. The details of the algorithm are presented as Algorithm 2.

5. Computational Results

In our computational experiments, we used CPLEX 12.8.0 as a mixed integer second order conic

optimization solver. We have conducted experiments on the nodes of the computing cluster Balena

hosted at the University of Bath, with Intel E5-2650 v2 CPUs at a speed of 2.60 GHz. We have

implemented the model of Gambella et al. (2018) on the same platform, and limited both models

to use a single thread, in order to ensure a fair comparison. In all tables below, the acronyms LB

and UB correspond to lower bound and upper bound, respectively.

5.1. Models

We have started by testing the model of Gambella et al. (2018), CVTSP1, as well as CVTSP1′ that

includes the optimality cuts (38) - (46). All models were tested on the instance sets kindly provided

by the authors of Gambella et al. (2018), and we imposed a CPU time limit of 3600 seconds.
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Algorithm 2 Iterated Local Search

1: Invoke Algorithm 1 to determine σ∗ and s∗

2: For k= 1 to kmax do

3: σ= σ∗; s = s∗

4: Perturb σ by applying random 1-OPT, 2-OPT, and 2-EXCHANGE moves.

5: Do

6: Solve CVP-B(po, qσ(1), qσ(2)) to determine sto,σ(1) and sl,σ(1)

7: For ord= 2 to |T | − 1 do

8: Solve CVP-B(sl,σ(ord−1), qσ(ord), qσ(ord+1)) to determine sto,σ(ord) and sl,σ(ord)

9: End For

10: Solve CVP-B(sl,σ(n−1), qσ(n), pf ) to determine sto,σ(n) and sl,σ(n)

11: σ′ = σ

12: Apply local search to σ using 1-OPT, 2-OPT, and 2-EXCHANGE operators.

13: While σ 6= σ′

14: If z(σ, s)< z(σ∗, s∗) Then

15: σ∗ = σ; s∗ = s

16: End If

17: End For

18: Solve an instance of the CVP for σ∗ to update s∗

The subtour elimination constraints (26) were implemented as connectivity constraints from the

origin to each target point, and from each target point to the destination. Violated connectivity

constraints were separated by solving a max-flow problem on the residual graph generated by the

fractional xij values at each node of the branch-and-cut tree, similar to the implementation in

Battarra et al. (2010). The relations (38) - (46) were directly added to the model for the target

points that are distant, i.e. j ∈ T : j ∈ Io, j ∈ If ,Ij = T \{j}, and passed on to CPLEX as user cuts

for the rest of the target points.

The instances from Gambella et al. (2018) are comprised of four families, denoted by SD, MD,

LD, and VLD. In each family, instances are randomly generated in the following fashion. In SD

and MD, target point coordinates are uniformly generated in [−25,25] and [−25,25], respectively.

On the other hand, in LD and VLD, larger intervals of [−50,50] and [−50,50] are used to generate

the target point coordinates. In the families MD and VLD, target points are chosen to satisfy

‖qi − qj‖ ≥ Vva for each i ∈ T and j ∈ T , where i 6= j, whereas no such restriction is imposed in

the families SD and LD. Each instance is denoted by FAM N NUM, where FAM ∈ {SD, MD, LD,

VLD}, N = n+ 1 with N ∈ {11,12, . . . ,16}, and NUM ∈ {1,2,3}. Therefore, a total of 72 instances
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were tested. In each instance, the parameters were given by Vc = 1, Vv = 5, a= 1, po = [0,0]T , and

pf = [0,0]T .

Detailed results are presented in Tables 6, 7, 8, and 9, where the best CPU time (in seconds) for

each instance is indicated in boldface. Notably, we did not improve upon any of the upper bounds

found by Gambella et al. (2018), hence we denote the upper bounds under the heading “Gambella

RBA UB”. For instance sets LD and VLD, CVTSP1 improves the average CPU time requirement

of Gambella et al. (2018) by factors of 8.75 and 9.30, respectively. In addition, CVTSP1 successfully

solves a previously unsolved instance with |T |= 15. Furthermore, CVTSP1′ augments these results

to improvement factors of 17.58 and 12.78, respectively. Notably, the model of Gambella et al.

(2018) is consistently faster for smaller instances, and the factors of improvement are due to

instances with |T | ∈ {14,15}. More modest improvements are observed for the instance sets MD

and SD, with similar performances in terms of instance size. In these instance sets, CVTSP1′ can

successfully solve 2 previously unsolved instances. We conclude that CVTSP1′ clearly outperforms

both the MISOC model of Gambella et al. (2018) and CVTSP1 for these instances.

Table 6 Comparison of the models for SD instances

Instance Gambella RBA UB Gambella MISOC CPU CVTSP1 CPU CVTSP1′ CPU
SD11 1 108.76 1.96 41.64 17.06
SD11 2 113.92 8.62 91.36 68.36
SD11 3 125.19 1.93 28.45 15.16
SD12 1 107.60 2.28 20.41 12.47
SD12 2 153.94 1.96 58.67 23.67
SD12 3 118.61 8.76 32.33 22.56
SD13 1 116.12 4.12 37.91 22.84
SD13 2 136.86 137.52 689.08 919.78
SD13 3 121.47 13.11 84.08 36.53
SD14 1 128.14 201.05 471.73 128.36
SD14 2 124.66 152.53 357.42 134.48
SD14 3 138.07 103.62 82.94 69.44
SD15 1 123.67 403.20 359.25 240.83
SD15 2 136.10 643.02 592.08 436.47
SD15 3 132.72 3600.00 3600.00 3600.03
SD16 1 145.10 3600.00 379.55 346.86
SD16 2 155.36 3600.00 3600.00 2228.28
SD16 3 128.38 3600.00 3600.00 2060.22
Average 893.54 784.83 576.86

We are not able to provide a direct comparison of our results with those of the RBA of Gambella

et al. (2018), due to the difference of the computing platforms used. However, the CPU speed of

the computer (3.10 GHz) they have used is faster than our CPU by a factor of 1.2. For the sake of

brevity, we will forgo an instance-by-instance comparison and will compare only average results,

as presented in Table 10. CVTSP1′ is observed to provide significant improvement factors for all
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Table 7 Comparison of the models for MD instances

Instance Gambella RBA UB Gambella MISOC CPU CVTSP1 CPU CVTSP1′ CPU
MD11 1 146.85 0.19 9.42 5.28
MD11 2 132.12 0.60 31.58 9.53
MD11 3 133.42 0.76 29.16 10.86
MD12 1 157.74 2.15 21.27 15.86
MD12 2 165.63 1.98 24.02 23.69
MD12 3 121.24 1.58 34.77 19.03
MD13 1 150.89 15.25 77.94 63.75
MD13 2 130.99 16.92 74.94 42.75
MD13 3 150.37 12.72 46.08 29.38
MD14 1 146.95 24.23 169.53 65.61
MD14 2 163.59 54.06 146.58 83.95
MD14 3 153.01 38.34 89.48 44.95
MD15 1 168.24 1476.65 2538.06 789.94
MD15 2 136.94 1277.98 493.59 234.95
MD15 3 157.86 624.48 1118.97 656.53
MD16 1 166.21 3600.00 3600.00 1716.09
MD16 2 177.23 3232.09 786.81 420.25
MD16 3 64.37 3600.00 475.14 198.94
Average 776.67 542.63 246.19

Table 8 Comparison of the models for LD instances

Instance Gambella RBA UB Gambella MISOC CPU CVTSP1 CPU CVTSP1′ CPU
LD11 1 311.55 0.06 4.24 2.45
LD11 2 345.19 0.23 5.09 3.84
LD11 3 299.53 0.21 2.41 4.52
LD12 1 296.07 0.29 6.92 4.77
LD12 2 308.26 0.69 6.77 6.53
LD12 3 270.31 0.16 3.27 3.67
LD13 1 261.64 1.43 13.28 10.98
LD13 2 294.85 2.16 8.30 8.69
LD13 3 307.34 2.39 10.83 7.64
LD14 1 319.80 5.84 11.75 7.94
LD14 2 282.91 23.94 47.77 28.98
LD14 3 301.60 5.35 11.39 8.42
LD15 1 299.04 45.95 41.66 28.67
LD15 2 314.01 160.90 25.94 25.47
LD15 3 324.79 440.25 158.58 74.16
LD16 1 322.05 350.77 25.06 13.53
LD16 2 338.70 2726.22 267.66 75.34
LD16 3 353.87 2403.94 53.75 35.42
Average 342.82 39.15 19.50

instance sets, for LD and VLD in particular, despite the difference of the CPU speed. CVTSP1′

can also solve 2 instances that could not be solved by RBA.

To explore the computational reach of CVTSP1′, we have generated larger instances using

the same generation scheme, for |T | ∈ {16,17,18,19,20,25,30,35,40,45,50}. These instances will

be made available by the first author upon request. Table 11 presents the results for |T | ∈

{16,17,18,19,20}, where a CPU time limit of 7200 was used. CVTSP1 and CVTSP1′ have suc-

cessfully solved 59 out of 60 instances, extending the computational reach of exact algorithms from
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Table 9 Comparison of the models for VLD instances

Instance Gambella RBA UB Gambella MISOC CPU CVTSP1 CPU CVTSP1′ CPU
VLD11 1 257.24 0.31 6.45 3.67
VLD11 2 324.75 0.08 4.31 4.36
VLD11 3 226.13 0.14 6.36 4.34
VLD12 1 326.04 0.14 3.52 4.69
VLD12 2 274.19 0.21 3.64 4.44
VLD12 3 281.94 0.50 11.17 4.81
VLD13 1 316.71 4.26 28.38 16.13
VLD13 2 239.26 1.56 8.56 8.08
VLD13 3 281.33 0.98 6.88 7.61
VLD14 1 319.63 11.69 20.64 26.55
VLD14 2 300.17 2.38 13.63 10.14
VLD14 3 280.37 3.79 20.56 10.5
VLD15 1 295.33 2.18 20.81 15.61
VLD15 2 314.70 50.91 21.13 14.89
VLD15 3 264.95 5.16 15.59 13.63
VLD16 1 379.91 624.76 46.44 35.06
VLD16 2 355.42 861.46 88.13 62.16
VLD16 3 305.99 3600.00 229.26 157.83
Average 287.25 30.86 22.47

Table 10 Comparison of the average results of the RBA of Gambella et al. (2018) and CVTSP1′

Gambella RBA CVTSP1′

Instance set CPU Optimal CPU Optimal
SD 660.77 16/18 576.86 17/18
MD 551.42 17/18 246.19 18/18
LD 78.13 18/18 19.50 18/18
VLD 52.66 18/18 22.47 18/18

|T |= 15 to |T |= 20. It can be observed from Table 11 that the lower bounds provided by CVTSP1′

are significantly stronger than those of the MISOC model of Gambella et al. (2018). CVTSP1′

outperforms CVTSP1 for 49 out of 60 instances in terms of CPU time. Unfortunately, we cannot

provide a comparison with RBA due to the lack of the source code of the authors’ implementation.

5.2. Iterated Local Search

We have then proceeded to test the performance of the ILS algorithm, by testing it on the same

instance set performing 10 experiments per instance. Tables 12, 13, 14, and 15 report the average

results for the instances with |T | ∈ {10,11,12,13,14,15,20}, for which we have strong lower bounds

provided by CVTSP1′. The average CPU time requirement per instance and the average CPU

requirement by instance size are reported under column headings ‘CPU’ and ‘Average CPU’,

respectively. The average optimality gap, computed as the ratio of the difference between the upper

and lower bounds divided by the lower bound, is observed to have an overall average of 0.18%. The

only exception is the instance SD15 3, for which none of the three models or RBA could provide

an exact solution. The performance is observed to be particularly high for the instance set VLD,
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Table 11 Comparison of the models for the new instances with |T | ∈ {16,17,18,19,20}
Gambella MISOC CVTSP1 CVTSP1′

Instance UB LB Gap (%) CPU UB LB Gap (%) CPU UB LB Gap (%) CPU
SD17 1 295.33 234.76 25.80 7200.00 285.58 285.58 0.00 44.07 285.58 285.58 0.00 36.98
SD17 2 357.74 204.54 74.90 7200.00 341.49 341.49 0.00 215.62 341.49 341.49 0.00 190.38
SD17 3 286.28 155.62 83.96 7200.00 270.31 270.31 0.00 123.38 270.31 270.31 0.00 107.42
SD18 1 351.79 222.06 58.42 7200.00 329.47 329.47 0.00 95.45 329.47 329.47 0.00 104.69
SD18 2 338.97 206.07 64.49 7200.00 314.49 314.49 0.00 72.70 314.49 314.49 0.00 58.15
SD18 3 381.83 179.94 112.20 7200.00 341.80 341.80 0.00 397.79 341.80 341.80 0.00 262.13
SD19 1 390.30 191.75 103.55 7200.00 359.70 359.70 0.00 1567.84 359.70 359.70 0.00 1327.38
SD19 2 372.80 179.37 107.84 7200.00 312.15 312.15 0.00 64.26 312.15 312.15 0.00 51.94
SD19 3 388.31 212.70 82.57 7200.00 379.31 379.31 0.00 830.60 379.31 379.31 0.00 429.47
SD20 1 396.96 166.23 138.80 7200.00 365.93 365.93 0.00 2845.95 365.93 365.93 0.00 2317.80
SD20 2 366.12 223.80 63.59 7200.00 355.71 355.71 0.00 1029.80 355.71 355.71 0.00 2857.17
SD20 3 431.74 144.93 197.90 7200.00 341.76 341.76 0.00 694.78 341.76 341.76 0.00 403.03
SD21 1 434.67 209.44 107.54 7200.00 371.82 371.82 0.00 157.74 371.82 371.82 0.00 78.72
SD21 2 419.55 133.77 213.65 7200.00 373.80 373.80 0.00 4217.53 373.80 373.80 0.00 2723.54
SD21 3 350.28 102.39 242.11 7200.00 350.28 350.28 0.00 3471.80 350.28 350.28 0.00 3850.27
Average 111.82 7200.00 0.00 1055.29 0.00 986.60

MD17 1 340.54 243.18 40.04 7200.00 322.21 322.21 0.00 32.13 322.21 322.21 0.00 44.80
MD17 2 375.15 272.96 37.44 7200.00 350.08 350.08 0.00 189.15 350.08 350.08 0.00 91.71
MD17 3 405.54 200.93 101.83 7200.00 356.27 356.27 0.00 39.80 356.27 356.27 0.00 33.61
MD18 1 379.83 211.10 79.93 7200.00 346.43 346.43 0.00 176.01 346.43 346.43 0.00 122.22
MD18 2 341.80 217.00 57.52 7200.00 335.27 335.27 0.00 63.81 335.27 335.27 0.00 60.85
MD18 3 439.54 213.39 105.98 7200.00 376.27 376.27 0.00 117.60 376.27 376.27 0.00 107.19
MD19 1 426.68 146.58 191.09 7200.00 364.45 364.45 0.00 329.67 364.45 364.45 0.00 157.89
MD19 2 424.95 197.06 115.64 7200.00 370.01 370.01 0.00 216.08 370.01 370.01 0.00 119.73
MD19 3 424.84 158.78 167.56 7200.00 345.01 345.01 0.00 114.86 345.01 345.01 0.00 82.63
MD20 1 421.84 174.40 141.89 7200.00 341.91 341.91 0.00 498.29 341.91 341.91 0.00 249.25
MD20 2 359.41 153.24 134.54 7200.00 332.47 332.47 0.00 633.07 332.47 332.47 0.00 676.15
MD20 3 399.58 176.75 126.07 7200.00 342.91 342.91 0.00 191.52 342.91 342.91 0.00 128.94
MD21 1 451.89 109.98 310.88 7200.00 363.66 363.66 0.00 1075.81 363.66 363.66 0.00 792.71
MD21 2 418.01 114.14 266.23 7200.00 344.70 344.70 0.00 1632.04 344.70 344.70 0.00 463.34
MD21 3 455.66 86.31 427.95 7200.00 363.71 363.71 0.00 466.48 363.71 363.71 0.00 442.70
Average 153.64 7200.00 0.00 385.09 0.00 238.25

LD17 1 391.63 217.67 79.92 7200.00 380.11 380.11 0.00 178.32 380.11 380.11 0.00 125.73
LD17 2 358.52 234.40 52.95 7200.00 323.68 323.68 0.00 59.74 323.68 323.68 0.00 46.76
LD17 3 391.46 155.23 152.18 7200.00 349.20 349.20 0.00 103.31 349.20 349.20 0.00 56.40
LD18 1 394.76 164.37 140.16 7200.00 329.43 329.43 0.00 35.29 329.43 329.43 0.00 27.52
LD18 2 342.50 142.67 140.06 7200.00 287.78 287.78 0.00 63.96 287.78 287.78 0.00 92.67
LD18 3 389.83 188.46 106.85 7200.00 368.89 368.89 0.00 124.69 368.89 368.89 0.00 160.26
LD19 1 348.81 166.71 109.23 7200.00 313.50 313.50 0.00 778.58 313.50 313.50 0.00 520.81
LD19 2 384.38 157.53 144.01 7200.00 359.53 359.53 0.00 125.51 359.53 359.53 0.00 141.38
LD19 3 338.75 133.64 153.48 7200.00 323.57 323.57 0.00 1290.56 323.57 323.57 0.00 647.55
LD20 1 407.15 152.59 166.82 7200.00 376.88 376.88 0.00 990.95 376.88 376.88 0.00 521.94
LD20 2 389.09 191.69 102.98 7200.00 334.67 334.67 0.00 1549.34 334.67 334.67 0.00 1630.62
LD20 3 382.88 149.82 155.56 7200.00 334.96 334.96 0.00 2330.24 334.97 334.96 0.00 1299.39
LD21 1 495.10 177.07 179.61 7200.00 400.73 400.73 0.00 534.71 400.73 400.73 0.00 321.13
LD21 2 408.63 134.42 203.99 7200.00 348.67 339.25 2.78 7200.00 348.67 337.64 3.27 7200.00
LD21 3 463.03 118.78 289.81 7200.00 365.98 365.98 0.00 1754.99 365.98 365.98 0.00 1434.91
Average 145.17 7200.00 0.19 1141.35 0.22 948.47

VLD17 1 363.22 261.95 38.66 7200.00 337.94 337.94 0.00 108.42 337.94 337.94 0.00 94.53
VLD17 2 342.21 204.69 67.18 7200.00 303.03 303.03 0.00 31.74 303.03 303.03 0.00 30.62
VLD17 3 398.66 253.57 57.22 7200.00 371.44 371.44 0.00 36.58 371.44 371.44 0.00 32.65
VLD18 1 359.39 228.17 57.51 7200.00 326.79 326.79 0.00 44.47 326.79 326.79 0.00 25.95
VLD18 2 369.31 204.31 80.76 7200.00 344.19 344.19 0.00 412.83 344.19 344.19 0.00 389.31
VLD18 3 358.17 185.15 93.45 7200.00 320.31 320.31 0.00 60.54 320.31 320.31 0.00 40.90
VLD19 1 399.65 190.05 110.29 7200.00 337.27 337.27 0.00 113.66 337.27 337.27 0.00 68.31
VLD19 2 399.02 138.14 188.85 7200.00 314.04 314.04 0.00 71.67 314.04 314.04 0.00 64.92
VLD19 3 425.96 187.38 127.33 7200.00 392.18 392.18 0.00 974.66 392.18 392.18 0.00 559.74
VLD20 1 387.35 115.88 234.28 7200.00 362.99 362.99 0.00 875.97 362.99 362.99 0.00 576.73
VLD20 2 435.12 154.86 180.97 7200.00 355.56 355.56 0.00 163.72 355.56 355.56 0.00 133.79
VLD20 3 381.21 92.50 312.13 7200.00 310.86 310.86 0.00 348.91 310.86 310.86 0.00 168.59
VLD21 1 466.43 115.97 302.19 7200.00 388.97 388.97 0.00 1442.15 388.97 388.97 0.00 3804.03
VLD21 2 505.43 144.73 249.22 7200.00 387.86 387.86 0.00 1342.39 387.86 387.86 0.00 1224.05
VLD21 3 419.35 113.95 268.03 7200.00 337.64 337.64 0.00 4076.81 337.64 337.64 0.00 1944.37
Average 157.87 7200.00 0.00 673.63 0.00 610.57
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for which the target points are more sparsely distributed. The ILS algorithm finds the optimal

solution for 77% of these instances, in 10 runs out of 10 with different random number seeds.

For larger instances with |T | ∈ {25,30,35,40,45,50}, we have computed the deviation of the

results found by the ILS algorithm from the Best Known Solution (BKS) value to observe the

robustness of the performance, the details of which are presented in Tables 16, 17, 18, and 19. The

overall deviation is computed as 0.79%, quite uniformly distributed among the four instance sets.

Table 12 Results of the ILS algorithm for instance set SD

Instance Average UB LB Gap (%) CPU Average CPU
SD11 1 108.76 108.76 0.00 9.11
SD11 2 113.92 113.92 0.00 7.95
SD11 3 125.19 125.19 0.00 9.24 8.76
SD12 1 107.60 107.60 0.00 12.44
SD12 2 154.02 153.94 0.05 12.25
SD12 3 118.61 118.61 0.00 12.47 12.38
SD13 1 116.12 116.12 0.00 17.61
SD13 2 137.06 136.86 0.15 14.29
SD13 3 121.47 121.47 0.00 17.04 16.32
SD14 1 128.14 128.14 0.00 21.65
SD14 2 124.66 124.66 0.00 19.45
SD14 3 138.07 138.07 0.00 20.05 20.38
SD15 1 125.79 123.67 1.71 24.03
SD15 2 136.64 136.10 0.39 25.18
SD15 3 134.37 118.36 13.53 23.38 24.20
SD16 1 145.10 145.10 0.00 32.21
SD16 2 155.58 155.35 0.15 30.37
SD16 3 128.38 125.70 2.13 31.21 31.26
SD17 1 285.66 285.58 0.03 36.03
SD17 2 341.49 341.49 0.00 40.97
SD17 3 270.31 270.31 0.00 37.01 38.00
SD18 1 329.47 329.47 0.00 46.34
SD18 2 314.49 314.49 0.00 44.48
SD18 3 342.03 341.80 0.07 44.04 44.95
SD19 1 360.02 359.70 0.09 48.37
SD19 2 312.15 312.15 0.00 54.76
SD19 3 379.31 379.31 0.00 52.82 51.98
SD20 1 365.93 365.93 0.00 56.73
SD20 2 355.92 355.71 0.06 53.10
SD20 3 341.76 341.76 0.00 62.59 57.47
SD21 1 371.82 371.82 0.00 71.05
SD21 2 375.85 373.80 0.55 66.34
SD21 3 350.93 350.28 0.19 65.70 67.69

5.3. Experiments on the instances of Poikonen and Golden (2019)

We have compared the models with the branch-and-bound algorithm of Poikonen and Golden

(2019) on the instances generated by the authors. These instances are distinctly different in nature,

where the speed of the vehicle is only twice that of the carrier i.e. Vv = 2, but the autonomy of



Author: Article Short Title

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 27

Table 13 Results of the ILS algorithm for instance set MD

Instance Average UB LB Gap (%) CPU Average CPU
MD11 1 146.85 146.85 0.00 9.49
MD11 2 132.12 132.12 0.00 9.59
MD11 3 133.48 133.42 0.05 9.18 9.42
MD12 1 157.85 157.74 0.07 13.31
MD12 2 165.74 165.63 0.06 13.51
MD12 3 121.24 121.24 0.00 12.45 13.09
MD13 1 151.11 150.89 0.15 15.54
MD13 2 131.35 130.99 0.27 16.53
MD13 3 150.37 150.37 0.00 16.10 16.06
MD14 1 146.95 146.95 0.00 19.52
MD14 2 163.59 163.59 0.00 18.82
MD14 3 153.01 153.01 0.00 19.44 19.26
MD15 1 168.24 168.24 0.00 23.17
MD15 2 136.94 136.94 0.00 23.15
MD15 3 157.86 157.86 0.00 23.72 23.35
MD16 1 166.21 166.21 0.00 34.78
MD16 2 177.50 177.23 0.15 30.46
MD16 3 164.37 164.37 0.00 29.75 31.66
MD17 1 322.21 322.21 0.00 38.20
MD17 2 350.08 350.08 0.00 36.55
MD17 3 356.27 356.27 0.00 40.59 38.45
MD18 1 346.47 346.43 0.01 46.71
MD18 2 335.27 335.27 0.00 42.63
MD18 3 376.41 376.27 0.04 45.62 44.99
MD19 1 364.45 364.45 0.00 48.23
MD19 2 370.01 370.01 0.00 51.52
MD19 3 345.01 345.01 0.00 48.04 49.26
MD20 1 341.91 341.91 0.00 59.70
MD20 2 332.49 332.47 0.00 54.35
MD20 3 342.91 342.91 0.00 60.96 58.34
MD21 1 363.77 363.66 0.03 69.91
MD21 2 344.71 344.70 0.00 69.76
MD21 3 363.71 363.71 0.00 74.47 71.38

the vehicle is a = 20. For these instances, both the MISOC of Gambella et al. (2018) and the

branch-and bound algorithm of Poikonen and Golden (2019) can outperform CVTSP1′, as the

results in Table 20 show. Each row of Table 20 corresponds to the average result of 25 instances

for the corresponding instance type and size. We think that there are two possible reasons for

the degradation of the performance of CVTSP1′ on these instances. First, the sets (35) - (37) are

potentially smaller, thereby reducing the number of optimality cuts in Proposition 5. Second, the

big-M constraints (17), (19), and (21) in CVTSP1′ are considerably weaker due to the large value

of a, which presumably leads to looser relaxations. Notably, (48) improved the performance of

CVTSP1′ for these instances.

Finally, we have observed that ILS performs well for this set of instances with known optimal

solutions, with an average optimality gap of 0.37% for the regular instances and 1.40% for the

clustered instances.
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Table 14 Results of the ILS algorithm for instance set LD

Instance Average UB LB Gap (%) CPU Average CPU
LD11 1 311.55 311.55 0.00 10.62
LD11 2 345.20 345.19 0.00 10.15
LD11 3 299.53 299.53 0.00 10.05 10.27
LD12 1 296.07 296.07 0.00 12.55
LD12 2 308.26 308.26 0.00 12.59
LD12 3 270.31 270.31 0.00 14.08 13.07
LD13 1 261.64 261.64 0.00 17.24
LD13 2 294.85 294.85 0.00 16.99
LD13 3 307.34 307.34 0.00 17.32 17.19
LD14 1 319.80 319.79 0.00 21.41
LD14 2 282.92 282.91 0.00 19.64
LD14 3 301.60 301.60 0.00 22.22 21.09
LD15 1 299.04 299.04 0.00 26.32
LD15 2 314.01 314.01 0.00 24.94
LD15 3 324.79 324.79 0.00 25.70 25.65
LD16 1 322.05 322.05 0.00 31.75
LD16 2 338.70 338.70 0.00 31.20
LD16 3 354.89 353.87 0.29 29.38 30.77
LD17 1 380.11 380.11 0.00 38.45
LD17 2 323.68 323.68 0.00 37.38
LD17 3 349.20 349.20 0.00 36.23 37.36
LD18 1 329.43 329.43 0.00 45.54
LD18 2 287.78 287.78 0.00 41.00
LD18 3 369.28 368.89 0.10 40.96 42.50
LD19 1 313.64 313.50 0.04 52.77
LD19 2 359.53 359.53 0.00 51.09
LD19 3 323.57 323.57 0.00 47.94 50.60
LD20 1 376.88 376.88 0.00 57.20
LD20 2 334.67 334.67 0.00 58.10
LD20 3 334.96 334.96 0.00 60.60 58.63
LD21 1 400.73 400.73 0.00 78.02
LD21 2 349.17 339.25 2.92 72.73
LD21 3 366.11 365.98 0.04 66.89 72.55

6. Conclusions

We have studied the CVTSP and provided structural properties that pertain to optimal solutions,

i.e., perfect synchronization of the Carrier and the Vehicle, the maximum feasible take-off and

landing distances for the Vehicle at the target points, and the conditions under which the Vehicle

would utilize all of its autonomy in an optimal solution. We have presented a new mixed integer

second order conic optimization model, based on the properties and subtour elimination constraints

from the Traveling Salesman Problem literature, and augmented it with optimality cuts. Extensive

computational experiments have demonstrated the superiority of our model and that it is capable

of solving instances with up to 20 target points. We have also provided an ILS algorithm that can

provide near-optimal solutions within 10 minutes of CPU time for instances with up to 50 target

points.
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Table 15 Results of the ILS algorithm for instance set VLD

Instance Average UB LB Gap (%) CPU Average CPU
VLD11 1 257.24 257.24 0.00 10.51
VLD11 2 324.75 324.75 0.00 11.13
VLD11 3 226.13 226.13 0.00 10.92 10.86
VLD12 1 326.04 326.04 0.00 14.59
VLD12 2 274.19 274.19 0.00 15.67
VLD12 3 281.94 281.94 0.00 13.48 14.58
VLD13 1 316.74 316.71 0.01 19.59
VLD13 2 239.26 239.26 0.00 18.62
VLD13 3 281.33 281.33 0.00 18.24 18.81
VLD14 1 319.63 319.63 0.00 23.04
VLD14 2 300.17 300.17 0.00 25.53
VLD14 3 280.37 280.37 0.00 25.28 24.62
VLD15 1 295.33 295.33 0.00 28.47
VLD15 2 314.70 314.70 0.00 30.90
VLD15 3 264.95 264.95 0.00 29.80 29.72
VLD16 1 379.91 379.91 0.00 31.04
VLD16 2 355.42 355.42 0.00 35.41
VLD16 3 306.32 305.99 0.11 31.14 32.53
VLD17 1 337.94 337.94 0.00 39.93
VLD17 2 303.03 303.03 0.00 39.06
VLD17 3 371.44 371.44 0.00 41.58 40.19
VLD18 1 326.80 326.79 0.00 45.35
VLD18 2 344.79 344.19 0.17 44.39
VLD18 3 320.31 320.31 0.00 50.47 46.73
VLD19 1 337.27 337.27 0.00 51.07
VLD19 2 314.04 314.04 0.00 51.60
VLD19 3 392.18 392.18 0.00 50.39 51.02
VLD20 1 362.99 362.99 0.00 57.22
VLD20 2 355.60 355.56 0.01 59.94
VLD20 3 310.86 310.86 0.00 57.39 58.18
VLD21 1 389.40 388.97 0.11 63.77
VLD21 2 387.86 387.86 0.00 72.35
VLD21 3 337.64 337.64 0.00 63.90 66.68
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Table 16 Results of the ILS algorithm for larger SD instances

Instance Average UB BKS Deviation (%) CPU Average CPU
SD26 1 393.56 393.56 0.00 114.25
SD26 2 413.12 413.12 0.00 109.32
SD26 3 378.69 378.69 0.00 112.36 111.98
SD31 1 408.99 408.99 0.00 186.34
SD31 2 352.59 352.59 0.00 157.93
SD31 3 390.10 388.68 0.36 161.96 168.74
SD36 1 479.52 479.52 0.00 240.47
SD36 2 413.77 413.77 0.00 234.43
SD36 3 384.90 384.90 0.00 246.15 240.35
SD41 1 485.61 485.61 0.00 328.54
SD41 2 452.43 452.43 0.00 329.00
SD41 3 455.08 455.08 0.00 365.14 340.89
SD46 1 504.77 504.77 0.00 460.09
SD46 2 417.48 417.48 0.00 456.20
SD46 3 509.55 509.55 0.00 466.12 460.80
SD51 1 449.58 449.58 0.00 611.47
SD51 2 448.58 448.58 0.00 620.98
SD51 3 512.18 512.18 0.00 631.85 621.43

Table 17 Results of the ILS algorithm for larger MD instances

Instance Average UB BKS Deviation (%) CPU Average CPU
MD26 1 345.22 345.22 0.00 122.42
MD26 2 417.27 416.73 0.13 104.45
MD26 3 413.35 412.09 0.31 109.62 112.16
MD31 1 424.24 424.24 0.00 173.22
MD31 2 413.55 413.47 0.02 171.95
MD31 3 473.10 473.10 0.00 172.87 172.68
MD36 1 431.14 431.14 0.00 244.57
MD36 2 419.99 419.99 0.00 246.84
MD36 3 375.21 375.21 0.00 225.14 238.85
MD41 1 448.76 448.76 0.00 313.00
MD41 2 427.43 427.43 0.00 326.27
MD41 3 474.80 474.80 0.00 338.76 326.01
MD46 1 475.46 475.46 0.00 447.51
MD46 2 485.85 485.85 0.00 442.42
MD46 3 527.79 527.79 0.00 449.39 446.44
MD51 1 471.55 471.55 0.00 648.69
MD51 2 498.48 498.48 0.00 602.42
MD51 3 509.48 504.62 0.96 631.86 627.66
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Table 18 Results of the ILS algorithm for larger LD instances

Instance Average UB BKS Deviation (%) CPU Average CPU
LD26 1 363.06 362.36 0.19 116.08
LD26 2 387.36 387.36 0.00 111.56
LD26 3 371.37 369.81 0.42 109.64 112.43
LD31 1 412.46 412.32 0.03 158.96
LD31 2 382.81 382.81 0.00 162.85
LD31 3 426.00 426.00 0.00 165.45 162.42
LD36 1 447.29 447.29 0.00 233.80
LD36 2 436.95 436.95 0.00 240.79
LD36 3 473.32 473.32 0.00 231.24 235.28
LD41 1 460.80 460.80 0.00 329.50
LD41 2 482.70 482.70 0.00 327.44
LD41 3 491.53 491.53 0.00 343.40 333.45
LD46 1 483.54 483.54 0.00 442.82
LD46 2 488.92 488.92 0.00 451.89
LD46 3 541.70 541.70 0.00 455.37 450.03
LD51 1 504.69 504.69 0.00 606.34
LD51 2 498.95 498.95 0.00 672.29
LD51 3 493.20 493.20 0.00 650.29 642.97

Table 19 Results of the ILS algorithm for larger VLD instances

Instance Average UB BKS Deviation (%) CPU Average CPU
VLD26 1 344.97 344.97 0.00 106.89
VLD26 2 417.36 415.45 0.46 110.17
VLD26 3 386.05 386.05 0.00 109.15 108.73
VLD31 1 407.16 407.16 0.00 166.33
VLD31 2 407.27 407.27 0.00 170.40
VLD31 3 401.43 401.43 0.00 181.80 172.84
VLD36 1 421.04 421.04 0.00 226.01
VLD36 2 415.35 415.35 0.00 232.88
VLD36 3 407.88 406.44 0.35 234.82 231.24
VLD41 1 460.33 459.25 0.23 331.93
VLD41 2 420.32 420.32 0.00 338.05
VLD41 3 450.69 450.69 0.00 323.29 331.09
VLD46 1 425.48 425.48 0.00 446.74
VLD46 2 490.50 490.50 0.00 440.85
VLD46 3 473.92 473.92 0.00 477.84 455.14
VLD51 1 494.95 494.95 0.00 626.69
VLD51 2 464.93 464.93 0.00 662.18
VLD51 3 494.45 494.45 0.00 640.56 643.14

Table 20 Computational results for the instances of Poikonen and Golden (2019)

Poikonen branch-and-bound Gambella MISOC CVTSP1′

Instance type Instance size CPU CPU Gap (%) CPU Gap (%)

10 1.54 54.56 0.00 1724.13 0.71
Regular 15 18.80 5897.45 7.78 7200.00 19.46

20 700.22 7200.00 48.13 N/A N/A

10 12.59 31.04 0.00 2713.42 0.00
Clustered 15 559.56 3939.31 1.35 7200.00 22.45

20 N/A 7200.00 16.10 N/A N/A
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Appendix

We now provide the proofs of Propositions 3 and 4.

A. Proof of Proposition 3

Proof. Assume that the conditions (i)− (iii) hold for some target point j ∈ T , but the Vehicle does not

use its full autonomy at target point j in any optimal solution. By Proposition 1, we can assume that the

Carrier and the Vehicle are perfectly synchronized at all target points. Suppose that sto,j and sl,j are defined

as in Table 2. Proposition 2 and the contrapositive of Corollary 3 imply that

max{‖sto,j − qj‖ ,‖sl,j − qj‖}<
a (Vv +Vc)

2
.

It follows by (i) and (iii) that sto,j 6= po and sl,j 6= pf , respectively. Furthermore, we claim that there does

not exist a target point j′ ∈ T \ {j} such that sto,j = sl,j′ or sl,j = sto,j′ . Suppose, for a contradiction, that

sto,j = sl,j′ for some j′ ∈ T \ {j}. Then, by Proposition 2, we should have

‖sto,j − qj′‖= ‖sl,j′ − qj′‖ ≤
a (Vv +Vc)

2
.

Then, by the triangle inequality,

‖qj − qj′‖ ≤ ‖qj − sto,j‖+ ‖sto,j − qj′‖<
a (Vv +Vc)

2
+
a (Vv +Vc)

2
= a (Vv +Vc) , (49)

which contradicts the condition (ii). A similar argument can be employed if sl,j = sto,j′ for some j′ ∈ T \{j}.
We therefore make the following claim: If the Vehicle does not use full autonomy at a target point j that

satisfies the conditions (i)− (iii), then the solution can be modified so that the Vehicle uses full autonomy

without compromising optimality.

Suppose that target point j satisfies the conditions (i)− (iii) and, for simplicity, let us denote the take-off

and landing points by to and `, respectively. Let us denote the point before to and the point after ` on the

trajectory of the Carrier by i and k, respectively. Consider a circle of radius a(Vv +Vc)/2 centered at target

point j. In Figures 4 and 5, the blue solid lines represent the trajectory of the Carrier whereas the blue

dashed lines correspond to that of the Vehicle. By Corollary 3, both to and ` should be strictly inside this

circle whereas neither of the points i and k can lie strictly inside this circle by the previous argument.

There are two cases:

Case 1: Suppose that the points i, to, `, and k are all collinear (see Figure 4). In this case, suppose that

to is replaced by to′ located on the boundary of the circle and ` is replaced by `′, which is located at a

distance of Vc a from to′ so that the travel time of the Carrier is exactly equal to a (see the first illustration

in Figure 4). Denoting the coordinates of to′ and `′ by sto′,j and s`′,j , respectively, the triangle inequality

yields

‖qj − s`′,j‖ ≥ ‖sto′,j − qj‖−‖sto′,j − s`′,j‖=
a(Vv +Vc)

2
−Vc a=

a(Vv −Vc)

2
,

which implies that the travel time of the Vehicle from to′ to qj and from qj to `′ satisfies

‖sto′,j − qj‖+ ‖qj − s`′,j‖
Vv

≥ a(Vv +Vc) + a(Vv −Vc)

2Vv

= a.
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Therefore, if the travel time of the Vehicle is equal to a, then we obtain an optimal solution with perfect

synchronization since the mission completion time remains the same and the Vehicle uses its full autonomy,

which establishes our claim.

If the travel time of the Vehicle is strictly greater than a, then we move the pair to′ and `′ towards the

inside of the circle while maintaing the distance of Vc a between them. Consider the case in which the triangle

with the base given by the line segment between to′ and `′ and the apex given by j forms an isosceles triangle

(see the second illustration in Figure 4). By Lemma 2, the height of the triangle with the base given by the

line segment between to and ` and the apex given j satisfies

hj ≤
t∗j
2

√
V 2
v −V 2

c <
a

2

√
V 2
v −V 2

c ,

where the last inequality is due to our assumption that the Vehicle does not use its full autonomy. Clearly,

the triangle with the base given by the line segment between to′ and `′ and the apex given by j also has

height hj . Denoting the travel time of the Vehicle from to′ to j and from j to `′ by t, we obtain

V 2
v t

2

4
= h2

j +
V 2
c a

2

4
<
a2(V 2

v −V 2
c )

4
+
V 2
c a

2

4
=
V 2
v a

2

4

by the Pythagorean theorem, which implies that t < a. Since the travel time of the Vehicle changes continu-

ously as to′ moves away from the boundary of the circle, we conclude that there exists a pair of points to∗

and `∗ such that the travel time of each of the Carrier and the Vehicle is equal to a. Therefore, we obtain an

optimal solution with perfect synchronization since the mission completion time remains the same and the

Vehicle uses its full autonomy.

i

to
to′

j

`

k

`′

i

to′

j

k

`′

Figure 4 Illustration of Case 1 in the proof of Proposition 3

Case 2: Suppose that the points i, to, `, and k are not collinear. In this case, we claim that the travel

time of the Carrier between to and ` is equal to a (i.e., tcj = a) in every optimal solution. Suppose, for a

contradiction, that there exists an optimal solution such that tcj < a. By Lemma 1, we obtain tvj ≤ tcj < a.

There are two subcases:
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i

to

to′

j

`

k

i

k

to

`′

j

`

Figure 5 Illustration of Case 2 in the proof of Proposition 3

Case 2a: Suppose that i, to, and ` are not collinear. Then, we can replace to by a point to′ on the incoming

path of the Carrier which is closer to the boundary of the circle (see the first illustration in Figure 5) while

ensuring that the maximum of the travel time of the Vehicle and the Carrier is less than or equal to a.

Therefore, we retain feasibility of the solution. By the triangle inequality, the travel time of the Carrier

between i and ` is strictly improved since i, to, and ` are not collinear, which contradicts the optimality of

the original solution. Therefore, the travel time of the Carrier between to and ` is equal to a in every optimal

solution. By Proposition 2, there exists an optimal solution with perfect synchronization, i.e., there exists

an optimal solution such that tjv = tjc = a. The assertion follows.

Case 2b: Suppose that to, `, and k are not collinear. Then, we can replace ` by a point `′ on the outgoing

path of the Carrier which is closer to the boundary of the circle (see the second illustration in Figure 5). A

similar argument as in Case 2a yields a contradiction. By invoking Proposition 2 once again, we complete

the proof. �

B. Proof of Proposition 4

Proof. We follow a similar argument as in the proof of Proposition 3. Under the assumption that either

(i) or (ii) is satisfied and either (iii) and (iv) is satisfied, we can adjust the take-off point to and `, if necessary

(see Figures 4 and 5), so that the Vehicle uses its full autonomy without worsening the objective function

value. �

References

N.A.H. Agatz, P. Bouman, and M. Schmidt. Optimization approaches for the traveling salesman problem

with drone. Transportation Science, 52(4):965–981, 2018.

E. M. Arkin and R. Hassin. Approximation algorithms for the geometric covering salesman problem. Discrete

Applied Mathematics, 55(3):197–218, 1994.



Author: Article Short Title

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 35
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