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Summary
An algorithm is presented for discrete element method simulations of
energy-conserving systems of frictionless, spherical particles in a reversed-time
frame. This algorithm is verified, within the limits of round-off error, through
implementation in the LAMMPS code. Mechanisms for energy dissipation such
as interparticle friction, damping, rotational resistance, particle crushing, or
bond breakage cannot be incorporated into this algorithm without causing
time irreversibility. This theoretical development is applied to critical-state soil
mechanics as an exemplar. It is shown that the convergence of soil samples,
which differ only in terms of their initial void ratio, to the same critical state
requires the presence of shear forces and frictional dissipation within the soil
system.
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1 INTRODUCTION

Most simulations aim to model a real system with maximal fidelity, limited by practical considerations such as the finite
nature of computational resources. However, there is a second category of simulations in which some nonphysical ele-
ment is deliberately introduced into a simulated system in order to further our understanding of the real system. One
relatively commonplace example is discrete element method (DEM) simulations of frictionless particles. These serve as
a valuable limiting case for real particle systems which can vary significantly in interparticle friction but are never com-
pletely frictionless. The subject of this paper, reversed-time DEM, is within this second category of simulations. While
Einstein’s theory of special relativity allows for time to speed up or slow down, reversing time is not thought possible
according to our current understanding of physics.

An algorithm which is deterministic, such as DEM, is not necessarily time-reversible.1 To the best of the author’s
knowledge, since the development of DEM by Cundall and Strack2 more than 40 years ago, no one has explored the
possibility of setting DEM within a reversed-time framework. This is somewhat surprising as the time reversibility of
molecular dynamics, which is algorithmically related to DEM, has been explored in depth, beginning with Orban and
Bellemans3 in the 1960s. More recent investigations of time reversibility in molecular dynamics have involved the use of
integer arithmetic to eliminate round-off errors in floating-point computations.4

The development of symplectic, reversible integrators for molecular dynamics has been an area of significant research
activity.5-8 These integrators have been proposed for application to both Hamiltonian and non-Hamiltonian dynamical
systems.8 However, one of the simple variants of Verlet, for example, velocity-Verlet, is almost invariably chosen as the
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explicit time integrator for DEM as these integrators strike a good balance between computational cost, stability, and
accuracy.9 Velocity-Verlet and similar integrators are symplectic and time-reversible, neglecting round-off errors in typical
computer implementations.10

The rationale for exploring the time reversibility of DEM is different from that of molecular dynamics. Time reversibil-
ity is of significance in molecular dynamics because it guarantees the conservation of energy and angular momentum.
Most DEM simulations, by contrast, dissipate a large proportion of the energy input to the system through mechanisms
such as frictional sliding, damping, particle crushing or bond breakage. Hence, the primary motivation for investigating
the time reversibility of DEM is its implications for existing theories of granular behavior. In this paper, the implications
of time reversibility on critical-state soil mechanics is considered as an exemplar.

In Section 2, a typical soft-sphere DEM algorithm is summarised. A reversed-time algorithm for an energy-conserving
system of frictionless spherical particles is presented in Section 3 along with a description of its implementation in the
LAMMPS code11 and some results of verification cases. Sections 4 and 5 consider the time reversibility of more compli-
cated particle systems including shear forces, friction or damping. The implications of these findings for critical-state soil
mechanics are discussed in Section 6 before concluding in Section 7.

2 CONVENTIONAL FORWARD-TIME DEM ALGORITHM

The second-order velocity-Verlet integration scheme is considered here due to its widespread use in DEM codes. As
with all explicit numerical integration schemes, its stability is contingent on choosing a time step, Δt, which is smaller
than some critical value.12 For simplicity, we assume a fixed Δt and spherical particles. However, it is noted that the
assumption of a fixed time step is not essential to ensure the time reversibility of a geometric numerical integration
scheme. In particular, the Störmer–Verlet method can be formulated with an adaptive time step size while retaining its
time reversibility.13,14

Consider one particle of radius r, mass m and moment of inertia I = 2
5

mr2 within a system of particles at a time t
during a simulation. At the start of the time step t → t + Δt, the particle’s translational velocity vt and rotational velocity
𝝎t are partially updated based on the net (resultant) force and moment, f t and Mt, according to Equations (1) and (2):

vt+Δt
2
= vt +

Δt
2m

ft. (1)

𝝎t+Δt
2
= 𝝎t +

Δt
2I

Mt. (2)

The displacement x of the particle is updated using this “half-step” velocity:

xt+Δt = xt + Δtvt+Δt
2
. (3)

The rotation of the particle may be updated similarly using 𝝎t+Δt
2

though the accumulated rotation is not routinely
stored for spheres. The interparticle overlap and increment of relative shear displacement at each contact c, respectively,
denoted as Un

c,t+Δt and 𝛿Us
c,t+Δt, may then be updated. These are used to calculate the contact forces fc,t+Δt. The net force

acting on the particle is an accumulation of j interparticle contact forces, as well as body forces such as gravity or forces
imposed by moving fluids on the particle such as drag, buoyancy or lift, where present. Damping also affects the net force
acting on the particle. Similarly, the net moment (or torque) is a summation of contributions from j interparticle contacts
along with optional contributions from fluids or rotational (rolling and/or twisting) resistance.

Considering only the interparticle contacts:

ft+Δt =
j∑

c=1
f n

c,t+Δt +
j∑

c=1
f s

c,t+Δt, (4)

Mt+Δt =
j∑

c=1
x r

c,t+Δt × f s
c,t+Δt, (5)

where n and s superscripts are used to distinguish normal and shear/tangential components of contact force. The
contribution of each interparticle contact to moment, calculated as the product of shear force and the displacement of the
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interparticle contact from the particle’s centroid xr
c,t+Δt, does not require incremental calculation. Neither does each nor-

mal contact force (Equation (6)), generally calculated using either a linear contact model where kn is a constant normal
spring stiffness or a Hertzian model where Hn

c = 4G
3(1−𝜈)

√
rarb

ra+rb
is a function of the radii of the contacting particles (ra, rb),

particle shear modulus G and Poisson’s ratio 𝜈.

f n
c,t+Δt =

⎧⎪⎨⎪⎩
−knUn

c,t+Δt if linear
−Hn

c Un

c,t+Δt
3
2

if Hertzian
. (6)

Each tangential contact force requires incremental calculation, that is, f s
c,t+Δt is computed from the value at the preceding

time step, f s
c,t. Before updating f s

c,t, it must be mapped onto the contact plane at time step t + Δt as the contact normal
may have changed and/or the particle may have rotated about the contact normal between time steps t and t + Δt. There
are several approaches to perform this “shear force remapping” in DEM codes;15 for this study, the following three-step
approach has been adopted:

f s,A
c,t = f s

c,t − n
(

n ⋅ f s
c,t
)
, (7)

f s,B
c,t = f s,A

c,t

|f s
c,t||f s,A
c,t | , (8)

f s,C
c,t = Rf s,B

c,t . (9)

f s,A
c,t is the projection of the existing shear force at time step t onto the new contact plane defined by the normal

unit vector n.16 Equation (8) conserves the magnitude of the shear force by rescaling f s,A
c,t to f s,B

c,t .17 Equation (9) is a
correction for rigid body spin around the contact normal where R is a rotation matrix constructed using 𝝎t+Δt

2
.15,18 Of

course, Equations (7),(8),(9) are not required for a newly formed contact in which case f s,C
c,t = [0; 0; 0]. After the shear

force has been mapped to the new contact plane, if required, it is updated:

f s
c,t+Δt = f s,C

c,t −

{
ks𝛿Us

c,t+Δt if linear
Hs

c𝛿Us
c,t+Δt if Hertzian

, (10)

where ks is a constant shear spring stiffness and Hs
c = Hn

c

√
Un

c,t+Δt
3(1−𝜈)

2−𝜈
. The accumulated shear force is set to zero when

an interparticle contact is lost. Finally, the magnitude of f s
c,t+Δt is limited to 𝜇|f n

c,t+Δt| by a Coulomb friction criterion
where 𝜇 is the interparticle friction coefficient.

At the end of the time step, the velocity update is completed using Equations (11) and (12):

vt+Δt = vt+Δt
2
+ Δt

2m
ft+Δt. (11)

𝝎t+Δt = 𝝎t+Δt
2
+ Δt

2I
Mt+Δt. (12)

3 REVERSIBILITY OF UNDAMPED FRICTIONLESS SYSTEMS

Consider in the first instance the idealised case of frictionless particles without damping or other complications of the
basic DEM algorithm. This significantly simplifies the algorithm presented in Section 2 by eliminating shear forces, and
hence the net moment, Equation (5), becomes zero. Since the angular velocities are unchanged throughout the simulation,
Equations (2) and (12) do not require calculation. Thus, the algorithm in the forward-time frame simplifies to:

vt+Δt
2
= vt +

Δt
2m

ft. (13)

xt+Δt = xt + Δtvt+Δt
2
. (14)
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ft+Δt =

⎧⎪⎪⎨⎪⎪⎩
−

j∑
c=1

knUn
c,t+Δt if linear

−
j∑

c=1
Hn

c Un

c,t+Δt
3
2

if Hertzian.

(15)

vt+Δt = vt+Δt
2
+ Δt

2m
ft+Δt. (16)

Even though the velocity-Verlet integration scheme is symplectic, at first appearance it seems that
Equations (13),(14),(15),(16), taken as a whole, cannot be reversed in time. In the forward-time frame, the net force is
obtained from a summation of contact forces; in the reversed-time frame, it might seem unavoidable that the net force
would have to be apportioned in some way to the contacts which cannot be done uniquely. In fact, that is not the case:
the contact forces can be obtained from the particle displacements, which can be updated prior to the force calculation.
There is therefore a change in the order in which the equations are computed in the reversed-time frame compared to
the forward-time frame as shown in Equations (17),(18),(19),(20):

vt+Δt
2
= vt+Δt −

Δt
2m

ft+Δt. (17)

xt = xt+Δt − Δtvt+Δt
2
. (18)

ft =

⎧⎪⎪⎨⎪⎪⎩
−

j∑
c=1

knUn
c,t if linear

−
j∑

c=1
Hn

c Un

c,t
3
2

if Hertzian.

(19)

vt = vt+Δt
2
− Δt

2m
ft. (20)

Gravitational force, as a body force of constant magnitude, may be readily incorporated into this reversed-time algorithm
by addition to f t.

3.1 Numerical implementation

The open-source LAMMPS code11 was adapted to operate in a reversed-time frame. Implementing
Equations (17),(18),(19),(20) in LAMMPS was straightforward. The signs of Equations (13), (14), and (16) were switched
in the initial_integrate and final_integrate functions of FixNVESphere to decrement rather than increment time. Time
steps still counted forward to avoid more substantial modifications of the code. The order of function calls in Verlet::run
was altered so that end_of_step functions, ordinarily invoked at the end of a time step as their name implies, were invoked
at the beginning of a time step. Furthermore, data output was moved to the very start of a time step to ensure that data
files are consistent with the conventional forward-time LAMMPS implementation.

In addition to the fundamental calculation cycle described in Section 2, every practical MD/DEM code contains algo-
rithms to detect contacting particles efficiently. LAMMPS uses link-cell methods to create and update Verlet neighbor lists
as required.11 Furthermore, most commonly used DEM codes are parallelised to take advantage of modern hardware and
enable very large-scale simulations. LAMMPS employs a domain decomposition approach, using MPI to transfer particle
data between adjoining processors on each time step. All of this “bookkeeping” works equally as well in a reversed-time
frame as in the conventional forward-time frame and did not require modification for this study.

One addition made to the main LAMMPS code was local damping. This was used to prepare a sample for oedometric
compression in Section 3.2.2. Local damping acts on a particle.19 Different variants exist; the simple one implemented in
LAMMPS employs the magnitude of the net force |ft+Δt|, the sign of particle velocity sgnvt+Δt

2
and a scalar local damping

coefficient 𝛾l:

fd
t+Δt = ft+Δt − 𝛾l|ft+Δt|sgnvt+Δt

2
, (21)

where the d superscript denotes damping.
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The other important addition made to LAMMPS was the computation of stress for a system of spheres, both the
representative 3× 3 stress tensor for each particle and the average stress in an assembly. The former is obtainable for a
particle of volume V p at time t as

𝝈
p
t = 1

V p

j∑
c=1

xr
c,t[f

n
c,t + f s

c,t], (22)

while the latter is calculated as

𝝈t =
1
V

N∑
p=1

𝝈
p
t V p, (23)

for N particles within a region of volume V . A detailed derivation is provided in literature.19,20 In the forward-time frame,
the representative particle stresses are computed after calculating the contact forces using Equations (6),(7),(8),(9),(10).
These stresses remain valid until the same point in the following time step, that is, 𝝈p

t and 𝝈t are active during the time
step spanning t → t + Δt. In the reversed-time frame, the stresses are out of sync: 𝝈p

t and 𝝈t are active during the time
step t → t − Δt. In practice, the error introduced is small as the average stresses on the assembly, which are required
for the quasi-static, stress-controlled verification simulation in Section 3.2.3, change little during successive time steps.
That simulation made use of periodic boundary conditions. Whenever a periodic cell changes in size or shape, particles
within the cell are remapped to the deforming space.21 In the absence of friction, this remapping is unproblematic in the
reversed-time frame.

3.2 Verification cases

Three verification cases were run after implementing the frictionless reversed-time algorithm as described in Section 3.1.
In each case, a conventional forward-time DEM simulation was run until the desired end state was reached. That state
was saved in a restart file which was imported as the starting point for the analogous reversed-time simulation. The
reversed-time simulation was run for the same number of time steps before comparing with the forward-time simula-
tion. It is noted that these verification simulations are not perfectly reversible due to round-off errors. In principle these
round-off errors could be eliminated by using integer arithmetic,4 but that was not considered to be necessary for this
demonstration.

3.2.1 Two-particle collision

Two identical particles, A and B, of diameter 1 cm and density 1000 kg m−3 were placed in a large cell. A was centred
at the origin; B was placed a distance of 0.0101 m along the x-axis to give an initial separation between A and B of 100
𝜇m. A and B were assigned initial translational velocities of [0.9; 0.1; 0.0] m s−1 and [0.0; 0.0; 0.1] m s−1, respectively. A
Hertzian contact model was adopted with a shear modulus G = 2 MPa and Poisson’s ratio 𝜈 = 0.2. Δt was set at 100 ns: far
lower than the critical value of 325 𝜇 s appropriate for a normal incident velocity around 1 m s−1.22 15 000 time steps, that
is, 1.5 ms, were run in both the forward- and reversed-time frames: sufficient time for the particles to collide and fully
separate. Figure 1 shows that much of the momentum of particle A is transferred to particle B by the collision. The plots
for the forward- and reversed-time frames are overlapping, showing an excellent correspondence between the algorithms.

3.2.2 Strain-controlled oedometer test

Nine hundred spherical particles were poured into a vertical cylinder of radius 0.1 m, closed off at the bottom (z = 0 m)
by a flat platen as illustrated in Figure 2A. The particle diameters in mm were randomly selected from the uniform
distribution U(9,11). The particles were allowed to settle under gravity in the presence of local damping (Equation (21))
until all of the kinetic energy had dissipated. Then a second flat platen was introduced at z = 0.2 m to fully confine the
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sample (Figure 2B). As in Section 3.2.1, G = 2 MPa and 𝜈 = 0.2 for the particles. The confining geometry had a shear
modulus of 1 GPa and a Poisson’s ratio of 0.2. Δt was set at 50 ns.

The upper platen was moved downwards at a constant velocity of −0.5 m s−1 to compress the sample before pausing
and allowing the kinetic energy to dissipate through damping. The forces on the lower and upper platens after this process
were −323 N and 318 N, respectively (5 N difference in magnitudes due to particle weight). A solid fraction of 0.606
was attained; the sample at this stage is sketched in Figure 2C. Damping was then disabled and the sample was further
compressed by moving the upper platen at a constant low velocity of −0.01 m s−1 for a total of 1.5× 106 time steps, that is,
75 ms. During this oedometric compression, the solid fraction increased to 0.625 while the forces on the platens increased
to approximately 700 N in magnitude, creating the final state represented in Figure 2D. This final state was imported to the
reversed-time frame code, the velocity of the upper platen was reversed to 0.01 m s−1 and a further 1.5× 106 time steps were
run to recover the original solid fraction of 0.606 and forces of −323/318 N. Although excellent agreement was achieved
between the forward- and reversed-time simulations as shown in Figure 3, the oscillations, which are particularly marked
for the upper platen, make it difficult to say definitively whether this is truly a reversible process. These oscillations
arise due to the lack of an energy dissipation mechanism during oedometric compression. The reversibility of energy
dissipation mechanisms is discussed in Section 5.

3.2.3 Face-centered cubic packing

Thornton23 developed expressions for the peak stress ratios in a face-centered cubic (fcc) assembly of uniform rigid spheres
subjected to plane strain and triaxial conditions. For the axisymmetric triaxial case with 𝜎2 = 𝜎3,23

𝜎1

𝜎3
= 2(1 + 𝜇)

1 − 𝜇
, (24)

where 𝜎1∕2∕3 are the major, intermediate, and minor principal stresses, respectively. 𝜎1
𝜎3

= 2 in the frictionless case (𝜇 = 0).
Each sphere has 12 contacts with neighbouring spheres in a fcc assembly. The failure mechanism described by Thornton23

results in the loss of four contacts under triaxial conditions, that is, a drop in coordination number from 12 to 8.
One hundred and twenty-eight monosized spheres of diameter 40 m were created in a fcc packing as shown in the inset

on Figure 4. A linear contact model was used with kn = 1× 1011 N m: a very large value to approximate the rigidity required
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F I G U R E 4 Principal stress ratios and coordination number against compression of the periodically bounded assembly (mm) as
described in Section 3.2.3. The uncompressed 128-sphere assembly is shown as an inset figure

by the analytical solution. The assembly was compressed isotropically to 150 kPa before “drained” triaxial compression
at a fixed strain rate of −1 × 10−6 s−1 in the z direction, with fixed 𝜎2 = 𝜎3 = 150 kPa in the x and y directions. Figure 4
shows that the expected analytical solutions were obtained: 𝜎1

𝜎3
= 2 and the coordination number drops from 12 to 8. The

final state was imported to the reversed-time frame code, with a reversal of shearing direction, in order to recover the
isotropic starting state.

Although the reversibility of this simulation is extremely good, it is not perfectly reversible even if round-off errors are
disregarded. The stress calculations in the forward- and reversed-time frames differ slightly, as discussed in Section 3.1.
In addition, a proportional controller adjusts the positions of the periodic boundaries based on the average stresses on
the assembly and a user-defined gain. The disparity between the forward- and reversed-time simulations depends on the
proportional gain: a larger gain reduces the disparity but instability would occur if too large a value were chosen.

4 SHEAR FORCES

Consider now the somewhat more realistic scenario in which shear forces are computed in the forward-time frame
using Equations (7),(8),(9),(10). Energy conservation is assumed, necessitating an effectively infinite interparticle friction
coefficient to allow the shear forces to be investigated independently of Coulomb friction.
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The three-step shear force remapping given by Equations (7),(8),(9) is time-reversible. So too is Equation (10) as long
as particles remain in contact, that is, as long as interparticle contacts are not lost during the forward-time simulation.
If f s

c,t+Δt is known at the start of a time step, f s
c,t can be recovered. However, this is never the case for all contacts in a

practical DEM simulation: particles are in constant motion and the contact network evolves continually, even in very
dense systems.24

The irreversibility arises because once particles separate in the forward-time frame, the shear force is set to zero irre-
spective of its magnitude prior to the loss of contact. Upon reversal, the magnitude of that shear force is unknowable. As a
simple demonstration, consider the two-particle collision shown in Section 3.2.1 with the addition of an infinite interpar-
ticle friction coefficient. Figure 5 shows the magnitudes of normal and shear force in the forward-time frame. The shear
force reaches a maximum magnitude of 66 mN over the course of the collision, decreasing to 35 mN at contact separation:
a non-negligible shear force that could not be recovered in a reversed-time frame.

Another source of irreversibility arises when periodic boundary conditions are adopted. Particles are remapped to the
deforming space whenever a periodic cell changes in size or shape. The strain rate of the deformation is considered when
computing the relative velocities used in the shear force calculation.21 The strain rates in the forward- and reversed-time
frames can differ by one time step, for example, if set by a servo controller rather than being fixed. This is a similar error
to the one discussed for the calculation of representative particle stresses (Equation (22)).

5 COMPLICATIONS OF THE BASIC DEM

5.1 Friction

In a DEM simulation, friction requires the computation of shear forces which are, in general, irreversible for the reasons
described in Section 4. However, frictional dissipation introduces an additional source of irreversibility. If at some time
t + Δt we have |f s

c,t+Δt| = 𝜇|f n
c,t+Δt|, a Coulomb friction criterion may have been applied. While f n

c,t is easily obtained in a
reversed-time frame, the first step in recovering f s

c,t is reversing the imposition of the Coulomb friction limit. The unscaled
shear force would have a magnitude of 𝛼|f s

c,t+Δt| where 1 ≤ 𝛼 ≤ 𝛼max and 𝛼max depends on 𝛿Us
c,t+Δt, the contact stiffness

and the shear force remapping that has taken place. The irreversibility arises because 𝛼 can take a range of possible values;
exactly which 𝛼 value is required to recover f s

c,t cannot be known.

5.2 Damping

Local and viscous damping are widely used and available in many commercial and open-source DEM codes. The expres-
sion implemented in LAMMPS for local damping of the net force is given in Section 3.1 as Equation (21). A similar
expression may also be applied to moment instead of force. Equation (21) is not time-reversible as can be seen from
Equations (17),(18),(19),(20). One would need to know fd

t+Δt and sgnvt+Δt
2

at the same time in order to recover the

predamping net force ft+Δt; in the reversed-time frame, fd
t+Δt would be concurrent with vt+ 3Δt

2
rather than vt+Δt

2
.
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Viscous damping acts at a contact, multiplying the relative velocity between particles by a scalar viscous damping
coefficient 𝛾v. As for local damping, there is a mismatch between forces and velocities. In the forward-time frame, fc,t+Δt
is concurrent with particle velocities at t + Δt

2
; in the reversed-time frame, fc,t+Δt is concurrent with particle velocities at

t + 3Δt
2

.
Neither local nor viscous damping is time-reversible using the conventional velocity-Verlet integration scheme

shown in Section 2. One practical solution may lie in the augmentation of the Verlet integrator with a time-reversible
velocity predictor.25 This approach has been applied successfully to extended Lagrangian methods that include a
velocity-dependent term in the equations of motion; the errors obtained for a Nosé–Hoover thermostat were acceptable.25

Assessing these time-reversible velocity predictors for the reversibility of various damping approaches in DEM is a subject
for future investigation.

The imposition of a drag force is a time-reversible means of dissipating energy from a DEM simulation that does not
require any modifications of the integration scheme. However, it is only reversible under specific and highly restrictive
conditions. A drag force can be incorporated into the forward-time algorithm presented in Section 3 by multiplying the
particle velocity vt+Δt

2
by 𝛾d before Equation (14) is computed to yield vd

t+Δt
2

. 𝛾d < 1 so that particle velocities reduce over

time and kinetic energy is lost from the simulation. Equations (13),(14),(15) are unchanged by the imposition of damping
during the first time step and precede Equation (25).

vd
t+Δt

2

= 𝛾dvt+Δt
2
. (25)

vd
t+Δt = vd

t+Δt
2

+ Δt
2m

ft+Δt. (26)

The reversed-time equivalent of this is the following:

vd
t+Δt

2

= vd
t+Δt −

Δt
2m

ft+Δt. (27)

vt+Δt
2
= 1

𝛾d
vd

t+Δt
2

. (28)

The computation of Equations (18),(19),(20) follow Equation (28) as in Section 3.
The results of this form of damping, and its limitations, are shown in Figure 6. In each of these three cases, a single

sphere of diameter 1 cm and density 1000 kg m−3 was dropped under gravity (g=−9.81 m s−2) onto a horizontal plane. The
particle was allocated a shear modulus of 2 MPa and Poisson’s ratio of 0.2 while the plane was assigned values of 1 GPa
and 0.2, respectively. The time step was 10 ns and 𝛾d was fixed at 0.99999. The three cases shown in Figure 6 differ in two
respects: the initial height of the particle above the plane, and the duration of the simulation in the forward/reversed-time
frame. Case A began with the particle 20 𝜇m from the plane and the total simulation duration was 50 ms. For case B, the
equivalent numbers were 20 𝜇m and 80 ms; for case C, 300 𝜇m and 80 ms.

Case A is clearly time-reversible whereas cases B and C are not. Case B is run for longer than case A, allowing the
particle to come fully to rest on the plane; some small oscillations are still present at 50 ms for case A although these
are imperceptible on Figure 6. Once the particle’s velocity reaches exactly zero, there is no way to recover a nonzero
velocity or net force upon time reversal. Case C demonstrates a related limitation of this damping approach. The particle
reaches its terminal velocity of gΔt

1−𝛾d
= −0.00981 m s−1 before colliding with the plane. The expected velocity is recovered

in the reversed-time frame until a constant terminal velocity has been reached. Thereafter it is impossible to know when
the velocity becomes less than the terminal velocity in magnitude. The premature deviation of the forward-time and
reversed-time plots on Figure 6C are due to the propagation of tiny numerical errors in the reversed-time frame.

5.3 Rotational resistance

Simulating nonspherical particles in DEM is significantly more computationally expensive than using spheres, regardless
of the approach chosen to model the nonspherical particles. A cheaper alternative which has sometimes been adopted is
to add an artificial moment term at each interparticle contact. These moments restrict rolling and/or twisting between
particles and hence capture some of the effect of incorporating nonspherical shapes on the bulk behavior of the particle
system. Many models have been proposed for rotational resistance.26 The more physically justifiable models, categorised



10 HANLEY

-0.02

-0.01

0

0.01

0.02

0 20 40 60 80

Time (ms)

P
a

rt
ic

le
 v

e
lo

c
it
y
 (

m
 s

-1
)

-0.02

-0.01

0

0.01

0.02

-0.02

-0.01

0

0.01

0.02

Forward-time frame

Reversed-time frame

(A)

(B)

(C)

Terminal velocity
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as Type C by Ai et al26 limit the moments that can be applied, for example,.27-29 The imposition of a limit introduces an
irreversibility similar to the one described for Coulomb friction in Section 5.1.

5.4 Particle crushing/bond breakage

There are two broad approaches by which particle crushing is simulated in DEM:30 either the fundamental particles
(spheres, polyhedra, etc.) are replaced with smaller fundamental particles when some failure criterion has been met, or
an agglomerate composed of unbreakable fundamental particles is assembled using bonds with finite strengths. Neither is
time-reversible for obvious reasons. In the first case, one would need to replace small particles at specific instants during
the reversed-time simulation with larger particles, regardless of the forces or stresses experienced by the small particles.
In the second case, fundamental particles would need to be connected by bonds as the reversed-time simulation proceeds.
There are infinitely many ways of accomplishing both.

5.5 Other complications

There are numerous other complications of the basic DEM scheme which introduce time irreversibility. Some normal
contact force models exist which cannot be reversed, for example, elastic–plastic models with distinct loading and unload-
ing curves.31 The coupling of DEM with another solver, for example, CFD, SPH, LBM, MPM, MBD, or FEM, is likely to
introduce some time irreversibility; elucidating the nature of these irreversibilities is outside the scope of this paper.

6 EXEMPLAR APPLICATION: CRITICAL-STATE SOIL MECHANICS

The general irreversibility of the energy dissipation mechanisms presented in Section 5 severely restrict the practical
applications of reversed-time DEM. For example, it would be interesting to introduce perturbations into the final state of a
frictionless system and then reverse time to explore the achievable range of initial states. It would be useful to reverse time
using a different loading protocol, resulting in two simulations which follow different paths but reach identical final states.
However, the large oscillations that would arise in the absence of energy dissipation make these potential applications
infeasible. Hence the main application of reversed-time DEM is its implications for existing theories of granular behavior.
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One potential application area is the packing and jamming of frictionless grains. This has been the subject of significant
research attention among the physics community in the last 20 years.32,33 Another application area, chosen here as an
exemplar, is a less idealized one: critical-state soil mechanics (CSSM). This is a framework for describing the behavior of
soil which was developed during the 1950s and 1960s.34,35 One of the key principles of CSSM is that once a soil has been
sheared to a sufficiently large strain, continued shearing no longer changes either the soil’s volume or stress state: the
soil attains a “critical state.” This is shown schematically in Figure 7 for two samples of the same soil, differing only in
terms of their initial void ratio (the volume of voids divided by the volume of solids). In soil mechanics terminology, the
black line is characteristic of a dense soil which dilates prior to critical state, while the grey line is characteristic of a loose
soil which contracts prior to critical state. Both samples become indistinguishable at critical state: not only do they have
the same void ratio and stress state but DEM simulations have demonstrated that the samples will also have the same
micro-scale measures such as coordination number and deviatoric fabric.

It is clear from Figure 7 that samples with very different initial states can reach the same critical state when subjected
to the same loading protocol. This has been proved by countless laboratory experiments and DEM simulations. Consider
one of the numerical samples on Figure 7 which has been sheared to a large strain, that is, is at the right-hand side
of Figure 7. A reversed-time simulation must be able to recover both the loose and dense paths shown on the figure
(and indeed the infinitely many other possible paths). The only way to recover a diverse range of initial states from a
reversed-time DEM simulation is the inclusion of time irreversibilities such as friction in the simulation. In the absence of
friction or other irreversibilities, there is a one-to-one relationship between the input and output states. In a frictionless,
energy-conserving system, it would be impossible for samples differing only in terms of their initial void ratios to converge
to the same critical state when following the same shearing protocol. The introduction of friction and shear forces vastly
expand the range of attainable states and enable the dense/loose behavior seen in Figure 7. This once again highlights
the importance of interparticle friction to CSSM.36

7 CONCLUSIONS

For the first time, an algorithm has been presented for DEM simulations in a reversed-time frame. This algorithm avoids
the requirement to apportion the net force on a particle to contacts, which cannot be done uniquely, by changing the
order in which the equations are computed compared to the forward-time frame. This algorithm is restricted to an
energy-conserving system of frictionless, spherical particles. Following its implementation in LAMMPS, the algorithm
was verified using three cases: a two-particle collision, a strain-controlled oedometric compression, and a stress-controlled
triaxial compression of a fcc assembly of monosized spheres.

Time irreversibility is inevitable once shear forces have been incorporated into a simulation: whenever particles sepa-
rate in the forward-time frame, the interparticle shear force is set to zero, so its magnitude before being zeroed cannot be
known upon time reversal. In addition, energy dissipation mechanisms such as frictional sliding, local/viscous damping,
rotational resistance, particle crushing or bond breakage are shown not to be time-reversible in general using a standard
velocity-Verlet integration scheme.

The absence of a practical, time-reversible mechanism for energy dissipation limits the applications of reversed-time
DEM. Its main value is likely to lie in extending theories of granular behaviour. The exemplar application considered in
this paper is CSSM. In the absence of friction or other irreversibilities, there is a one-to-one relationship between the input
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and output states. Hence the convergence of initially dense and loose samples, sheared in the same manner, to the same
critical state is possible only because of the presence of friction and shear forces within the soil system. This emphasises
the importance of interparticle friction to CSSM.
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