
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nascent transcript folding plays a major role in determining RNA
polymerase elongation rates

Citation for published version:
Turowski, T, Petfalski, E, Goddard, BD, French, SL, Helwak, A & Tollervey, D 2020, 'Nascent transcript
folding plays a major role in determining RNA polymerase elongation rates', Molecular Cell, vol. 79, no. 3,
pp. 488-503.e11. https://doi.org/10.1016/j.molcel.2020.06.002

Digital Object Identifier (DOI):
10.1016/j.molcel.2020.06.002

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Molecular Cell

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Sep. 2020

https://www.research.ed.ac.uk/portal/en/persons/tomasz-turowski(1cef6737-ddc1-42f2-8bf5-991be412e15f).html
https://www.research.ed.ac.uk/portal/en/persons/elisabeth-petfalski(a7842751-c333-4ec7-8762-d3f23b49f943).html
https://www.research.ed.ac.uk/portal/en/persons/benjamin-goddard(1a012e3b-7b4a-41c9-ab66-afded2ceca93).html
https://www.research.ed.ac.uk/portal/en/persons/aleksandra-helwak(656306e3-1314-4acb-bb3c-23678619e3f1).html
https://www.research.ed.ac.uk/portal/en/persons/david-tollervey(4e159fb6-1de3-4d59-b77e-6dc3cea221f6).html
https://www.research.ed.ac.uk/portal/en/publications/nascent-transcript-folding-plays-a-major-role-in-determining-rna-polymerase-elongation-rates(65582fcc-3e7e-4189-a971-1f6dca9d4dd5).html
https://www.research.ed.ac.uk/portal/en/publications/nascent-transcript-folding-plays-a-major-role-in-determining-rna-polymerase-elongation-rates(65582fcc-3e7e-4189-a971-1f6dca9d4dd5).html
https://doi.org/10.1016/j.molcel.2020.06.002
https://doi.org/10.1016/j.molcel.2020.06.002
https://www.research.ed.ac.uk/portal/en/publications/nascent-transcript-folding-plays-a-major-role-in-determining-rna-polymerase-elongation-rates(65582fcc-3e7e-4189-a971-1f6dca9d4dd5).html


Article
Nascent Transcript Foldin
g Plays a Major Role in
Determining RNA Polymerase Elongation Rates
Graphical Abstract
Highlights
d Structures in the nascent RNA correlate with rapid elongation

by RNAPI in vivo

d Stable RNA structures limit RNAPI backtracking in vitro

d GC content in the transcription bubble tunes transcription

elongation rate

d Nascent transcript folding modulates dynamics of all three

RNAPs in vivo
Turowski et al., 2020, Molecular Cell 79, 488–503
August 6, 2020 ª 2020 The Author(s). Published by Elsevier Inc.
https://doi.org/10.1016/j.molcel.2020.06.002
Authors

Tomasz W. Turowski,

Elisabeth Petfalski,

Benjamin D. Goddard, Sarah L. French,

Aleksandra Helwak, David Tollervey

Correspondence
t.turowski@ed.ac.uk (T.W.T.),
d.tollervey@ed.ac.uk (D.T.)

In Brief

Transcription elongation is a stochastic

process that can go backward as well as

forward. Here Turowski et al. report that

folding of the nascent transcript

immediately behind the polymerase

resists backtracking and promotes

forward movement. This results in faster

elongation relative to unstructured

sequences and is potentially important

for cotranscriptional processing.
ll

mailto:t.turowski@ed.ac.�uk
mailto:d.tollervey@ed.ac.�uk
https://doi.org/10.1016/j.molcel.2020.06.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molcel.2020.06.002&domain=pdf


OPEN ACCESS

ll
Article

Nascent Transcript Folding Plays a Major Role
in Determining RNA Polymerase Elongation Rates
Tomasz W. Turowski,1,* Elisabeth Petfalski,1 Benjamin D. Goddard,2 Sarah L. French,3 Aleksandra Helwak,1

and David Tollervey1,4,*
1Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK
2School of Mathematics and Maxwell Institute for Mathematical Sciences, The University of Edinburgh, Edinburgh, UK
3Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
4Lead Contact

*Correspondence: t.turowski@ed.ac.uk (T.W.T.), d.tollervey@ed.ac.uk (D.T.)

https://doi.org/10.1016/j.molcel.2020.06.002
SUMMARY
Transcription elongation rates influence RNA processing, but sequence-specific regulation is poorly under-
stood. We addressed this in vivo, analyzing RNAPI in S. cerevisiae. Mapping RNAPI by Miller chromatin
spreads or UV crosslinking revealed 50 enrichment and strikingly uneven local polymerase occupancy along
the rDNA, indicating substantial variation in transcription speed. Two features of the nascent transcript corre-
lated with RNAPI distribution: folding energy and GC content in the transcription bubble. In vitro experiments
confirmed that strong RNA structures close to the polymerase promote forward translocation and limit back-
tracking, whereas high GC in the transcription bubble slows elongation. A mathematical model for RNAPI
elongation confirmed the importance of nascent RNA folding in transcription. RNAPI from S. pombe was
similarly sensitive to transcript folding, as were S. cerevisiae RNAPII and RNAPIII. For RNAPII, unstructured
RNA, which favors slowed elongation, was associated with faster cotranscriptional splicing and proximal
splice site use, indicating regulatory significance for transcript folding.
INTRODUCTION

Transcription elongation is composed of many successive cy-

cles of nucleotide addition, in which the translocation step is

based on Brownian motion without input of external energy.

Themajor driver of transcription elongation is nucleotide addition

because pyrophosphate release is essentially irreversible, allow-

ing this step to act as a ratchet (Figure 1A). Dependence on this

‘‘Brownian ratchet’’ rather than an energy-driven processive

mechanism makes elongation prone to frequent backtracking

and potentially sensitive to inhibition or acceleration by quite

modest forces (Dangkulwanich et al., 2013; Guajardo and

Sousa, 1997). The rate of RNA polymerase (RNAP) elongation

can have marked effects on the fate of the newly transcribed

RNA; for example, changing RNA folding patterns or the

outcome of alternative splicing (Saldi et al., 2016, 2018). Deep

backtracking is relatively rare compared with the number of

nucleotide addition cycles but, in aggregate, is widespread in

the cell (Sheridan et al., 2019). Despite functional and structural

differences, the basic mechanism of transcription elongation has

remained the same throughout evolution.

Because of the double-stranded helical structure of DNA,

either the DNA or the polymerase must rotate by one complete

turn for every 10.5 nt transcribed. In yeast, each active rDNA

gene is typically transcribed by �50 RNAPI molecules, which
488 Molecular Cell 79, 488–503, August 6, 2020 ª 2020 The Author(s
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are associated with nascent pre-ribosomes up to several meg-

adaltons in size. With a transcription rate of �40 nt s–1 (Kos and

Tollervey, 2010), the transcribing polymerases are predicted to

spin the rDNA at �240 rpm. If all polymerases transcribe at the

same rate, there will be no steric strain between adjacent

RNAPI molecules. However, any change in the relative posi-

tions of transcribing RNAPI molecules generates substantial

torsional stress that can quickly exceed the stalling force of

the polymerases (Heberling et al., 2016; Ma et al., 2013; Tantale

et al., 2016). The polymerases are therefore torsionally en-

trained in their relative positions along the rDNA. At the 50

end, where RNAPI is associated with only a short nascent tran-

script, we anticipate that torsion can be at least partially

released by rotation of the polymerase around the DNA, allow-

ing increased freedom for changes in their relative positions.

We therefore predict a gradient of torsional entrainment over

the 50 region of the rDNA. Torsional stress can also be relieved

by the action of topoisomerases, Top1 and Top2, which are

particularly active on rDNA, reflecting the high transcription

rate (Brill et al., 1987; El Hage et al., 2010). However, topoiso-

merases can unwind a minimum of one complete turn of the

DNA, whereas a stalling force is generated by substantially

less overwinding for polymerases with spacing typical for the

rDNA (120 bp) (Heberling et al., 2016; Ma et al., 2013; Tantale

et al., 2016).
). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. RNAPI Distribution along rDNA

In Vivo

(A) Schematic of the Brownian ratchet during the

nucleotide addition cycle by the transcription

elongation complex (TEC). Translocation of RNAP

is driven by Brownian motion, which leads to for-

ward (green background) or backward (white

background) movement. RNAP pausing is most

frequently associated with the TECn,-1 position (i.e.,

position �1 relative to the 30 end of nascent RNA)

(Dangkulwanich et al., 2014). Directionality is

conferred by the ratchet step, where an irreversible

phosphodiester bond is formed. Elongation is

generated by successive ratchet steps.

(B) RNAPI distribution determined from chromatin

spreads. Top panel: illustrative Miller spread

(French et al., 2003). An arrow shows transcription

start and direction. Center panel: distribution of

polymerases along individual spreads with 30–70

RNAPI. Bottom panel: cumulative distribution

graph showing the sum of the polymerases in each

bin from the genes shown above. The first

observed RNAPI molecule is assigned to bin 1 and

the last to bin 100.

(C) Boxplot showing the distribution of RNAPI in

bins along the rDNA; derived from data in (B). The p

values were calculated using a Wilcoxon rank-sum

test (n = 60).

(D) Transcriptome-wide binding profiles for the

catalytic subunits of RNAPI (Rpa190), RNAPII

(Rpb1/Rpo21), and RNAPIII (Rpc160/Rpo31) from

replicate CRAC analyses.

(E) Rpa190 CRAC distribution over the RDN37

gene encoding the pre-rRNA. Top panel: sche-

matic representation of the pre-rRNA transcription

unit, including 18S (red), 5.8S (blue), and 25S (gray)

rRNA and external and internal transcribed spacers

(ETSs and ITSs, respectively). Bottom panel:

RNAPI CRAC profile presented as fractions of

reads. The solid green line marks the median for six

biological replicates, and orange indicates the

range between second and third quartiles. The

cartoon and graph are approximately aligned with the chromatin spreads in (B). Primary data are included in Table S4.

(F) RNAPI CRAC profiles across the first 1,000 nt of the transcription unit reveal an uneven distribution with apparently regular spacing of peaks.

(G) Cumulative plot of RNAPI distribution profiles forRDN37 obtained using CRACwith the second largest subunit (Rpa135-HTP), PAR-CRAC using Rpa190-HTP

(UVA), CRAC with Rpa190-HTP in a strain with only 25 rDNA copies (25 rDNA), and in the wild type (UVC).

See also Figure S1.
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In vivo distributions of RNAPI were initially analyzed using

Miller chromatin spreads visualized by electron microscopy (for

an example, see Osheim et al., 2009). Subsequently, polymerase

distributions have been mapped using techniques that include

chromatin immunoprecipitation (ChIP), native elongating tran-

script sequencing (NET-seq), and crosslinking and analysis of

cDNA (CRAC), whereas metabolic labeling approaches such

as transient transcriptome sequencing (TT-seq) provide comple-

mentary data on polymerase output (Booth et al., 2016;

Churchman and Weissman, 2011; Clarke et al., 2018; Drexler

et al., 2020; Mayer et al., 2015; Milligan et al., 2016; Nojima

et al., 2015; Schwalb et al., 2016; Turowski et al., 2016; Vinaya-

chandran et al., 2018). Commonly, DNA or RNA is recovered in

association with the polymerase and identified by sequencing.

The frequency of recovery correlates with the polymerase den-

sity at each position. Regions with high signals (peaks) are inter-
preted as having high polymerase occupancy and, therefore, a

low elongation rate because RNA transcription is processive.

Conversely, troughs reflect low polymerase occupancy and

rapid elongation. Notably, all methods that allow high spatial res-

olution showmarkedly uneven polymerase distributions along all

genes in yeast and human cells.

Mapping at nucleotide resolution should provide mecha-

nistic information on the process of polymerase elongation.

RNAPI is ideally suited for these analyses because it has a

high transcription rate, transcribes only the nucleosome-free

rDNA, and is not known to undergo regulatory phosphoryla-

tion (Wittner et al., 2011), facilitating deconvolution of the

experimental data. To better understand the mechanism of

RNAPI elongation, we mapped transcriptionally engaged

RNAPI using CRAC, a method optimized for high specificity

of the libraries.
Molecular Cell 79, 488–503, August 6, 2020 489



ll
OPEN ACCESS Article
RNAPI elongation rates were integrated with features in the

nascent transcript and torsional effects, and we incorporated

these results into a kinetic model of RNAPI transcription elonga-

tion. This provided mechanistic insights into eukaryotic tran-

scription in vivo.

RESULTS

RNAPI Distribution Is Uneven along the
Transcription Unit
We initially assessed the distribution of RNAPI along the rDNA

transcription units usingMiller spreads in a wild-type yeast strain

(BY4741) growing in YPDmedium, containing 2% glucose + 1 M

sorbitol at 30�C, as described previously (Osheim et al., 2009).

To analyze RNAPI distribution, we selected 60 spreads for which

the full-length rDNA could be unambiguously traced, with poly-

merases positioned at the 50 and 30 ends, and the number of

polymerases was around the average number of 50 (range,

30–70 per rDNA repeat) (see STAR Methods for RNAPI quantifi-

cation). The position of each polymerase along these 60 genes

was determined relative to normalized gene length, and the re-

sults were combined into 100 bins (1 bin z70 bp; Figure 1B).

The summary plot of RNAPI distribution showed an excess of

polymerase density over the 50 region of the rDNA (Figures 1B

and 1C). This indicated that the average rate of elongation was

lower over the 50 external transcribed spacer (ETS) region, in

which major early pre-rRNA assembly events take place (Phipps

et al., 2011; Turowski and Tollervey, 2015).

High spatial resolution is not readily obtained using Miller

spreads, and we therefore utilized CRAC, a high-resolution UV

crosslinking technique. To perform CRAC, the largest subunit

of RNAPI, Rpa190, was genomically tagged with hexahistidine

(His6)-tobacco etch virus (TEV) protease cleavage site-2xProtA

(HTP). Following growth in SD medium with 2% glucose at

30�C, nascent RNA was covalently crosslinked to RNAPI using

254-nm UV irradiation. After 3-step purification, including strin-

gent denaturing wash conditions, cDNA libraries were prepared

and sequenced using Illumina technology. The CRAC protocol

used exclusively recovers RNAs with 30 hydroxyl groups (STAR

Methods), expected to represent endogenous 30 ends of nascent
transcripts. Comparing CRAC data for RNAPI with RNAPII and

RNAPIII (Figures 1D and S1A) showed predominant recovery

of the expected species: rRNA for RNAPI, mRNAs for RNAPII,

and tRNAs for RNAPIII (Milligan et al., 2016; Turowski

et al., 2016).

Qualitative comparison of the CRAC data with Miller spreads

revealed a good match in the overall profile, confirming the 50

bias (Figures 1B, 1C, and 1E). The average RNAPI density was

higher within the first �1,500 nt, presumably reflecting slower

elongation and/or more frequent pausing. This was accompa-

nied by a strikingly uneven distribution of read density over this

region (Figure 1F), generating a series of peaks and troughs

with apparently regular spacing. Autocorrelation plots (Figures

S1B) confirmed a peak separation of around 80 nt, which was

very marked over the first 1,000 nt.

Highly uneven polymerase distribution has been observed

previously in datasets for RNAPII and RNAPIII (Churchman and

Weissman, 2011; Milligan et al., 2016; Turowski et al., 2016).
490 Molecular Cell 79, 488–503, August 6, 2020
However, the 50 bias in RNAPI distribution and the presence of

such distinct peaks were unexpected. We therefore performed

extensive validation of the RNAPI CRAC profile using different

crosslinking times, a different RNAPI subunit as bait (Rpa135-

HTP), developing photoactivated ribonucleotide (PAR) CRAC

based on UVA irradiation and 4-thiouracil labeling, and strains

with a decreased number of rDNA repeats (25 rDNA) (Figure S1;

see detailed description in STAR Methods). All of these analyses

yielded RNAPI distributions that were consistent with the results

of CRACwith Rpa190 (Figure 1G). Further analysis was based on

the median of six biological replicates, using Rpa190-HTP and

UVC (254 nm) crosslinking (Figure S1L).

The strong 50 peak of RNAPI density was centered around +36

(Figure 1F). The reported RNAPI footprint is �38 nt, so this is the

position expected for a polymerase immediately adjacent to

another RNAPI, initiating at +1. We speculate that the +36 peak

reflects RNAPI that remains in an initiation state (Engel et al.,

2017). Release into an elongation state is expected to increase

the elongation rate and might be associated with re-arrange-

ments within the polymerase. In subsequent analyses, we will

not consider the 50 peak, butwill focus on elongation steps during

RNAPI transcription. Notably, this prominent peak should in-

crease the accuracy of 50 end positioning in the Miller spreads.

RNAPI Density Correlates with Features in the Nascent
pre-rRNA
The �80 nt spacing of the 50 ETS peaks does not correspond to

the size of the polymerase itself. The footprint of RNAPI is 38 nt,

and the minimal spacing between the polymerases on the tran-

scription unit is only slightly longer, as determined by cryoelec-

tron microscopy (cryo-EM) and tomography (Engel et al., 2013;

Neyer et al., 2016; Tafur et al., 2016).

We considered that the distribution of RNAPI might be influ-

enced by chromatin structure, as found for RNAPII (Churchman

and Weissman, 2011; Milligan et al., 2016). The actively tran-

scribed rDNA repeats are not packaged into nucleosomes but

associated with the DNA binding protein Hmo1, which is related

to humanHMG1 (Hall et al., 2006;Merz et al., 2008;Wittner et al.,

2011). However, Rpa190 CRAC performed in an hmo1D strain

still showed a 50 bias and stable peaks over the 50 region of the

rDNA (Figures S2A and S2B).

High GC Content Moderates the Elongation Rate
of RNAPI
We next assessed whether features in the nascent pre-rRNA

could affect RNAPI elongation kinetics. A short RNA:DNA hybrid

is present in the transcription bubble in the RNAP elongation

complex (Figure 2A). For human RNAPII, stable RNA:DNA hy-

brids in the transcription bubble are more frequently associated

with paused or backtracked states (Luka�ci�sin et al., 2017;

Schwalb et al., 2016). We used a peak-calling algorithm to define

peaks and troughs in the RNAPI density (e.g., Figure S2C) and

then determined GC content around each feature (peak or

trough). Because the reads are 30 mapped, the read density indi-

cates the positions of 30 ends of nascent transcripts within

RNAPI. The 10-nt sequence immediately upstream corresponds

to the RNA:DNA hybrid forming the transcription bubble (see Fig-

ure S2D for a schematic). This 10-nt region showed a higher
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Figure 2. RNAPI Density Correlates with Features in the Nascent pre-rRNA

(A) Schematic representation of RNAPI transcription, including lengths of DNA and RNA elements hidden in the complex. An 8-bp RNA:DNA hybrid forms the

transcription bubble, 13 nt of RNA is buried in the RNAPI complex, and 38 bp of DNA is covered by RNAPI. Data were derived from the structure of the RNAPI

elongation complex (PDB: 5M5X; Tafur et al., 2016).

(B) GC content of RNA:DNA hybrids. Shown is a boxplot presenting the distribution of GC content among peaks (red) and troughs (blue) within RDN37 (peaks, n =

142; troughs, n = 147) or the 50 ETS (peaks, n = 14; troughs, n = 12). GC content is calculated for 10 nt upstream of each feature (transcription bubble) or 10 nt

upstream plus 10 nt downstream of each feature (control). The p values were calculated using a two-sided t test.

(C) Secondary structure of the 50 ETS and in silico prediction of the UNAfold package (http://unafold.rna.albany.edu/). The gray circle represents positions within

the 50 ETS, and red arches show predicted interactions between bases. Red numbers indicate the loop position for each hairpin. The structure of the 700-nt-long

50 ETS shows strong regular stems.

(D) RNAPI CRAC peak metaplot for the 50 ETS with the folding energy of nascent transcript. A folding energy (DG in kilocalories per mole) of 65 nt behind RNAPI

was predicted and offset by 15 nt. Stronger structures have lower DG.

(E) RNAPI CRAC trough metaplot for RDN37 without the 50 ETS, with folding energy of the nascent transcript. Folding energy as in (D). The area between dashed

gray lines was used as the window for the boxplots (F).

(F) Boxplots for (E), comparing distribution of folding energy; full 400-nt window (all), the 40-nt region between the dashed gray lines in (E) (window), or random 40

nt (random). The p values were calculated using a Wilcoxon rank-sum test (n = 90).

(G) Model. Structures forming in the nascent RNA promote transcription elongation by limiting back translocation.

See also Figure S2.
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percentage of GC for peaks than for troughs (transcription bub-

ble in Figure 2B), considering the entire rDNA (RDN37, p < 8 3

10�5) or the 50 ETS alone (p < 5 3 10�3). Unwinding of the tem-

plate DNA in front of the transcription bubble could potentially

be slowed by high GC content. However, the first 10 nt down-

stream of peaks and troughs showed no clear correlation with

GC for the 50 ETS (p >> 0.05) or even an opposing trend for

RDN37 (p = 53 10�4) (Figure S2E). The GC content for the com-

bined region 10 nt upstream plus 10 nt downstream of each peak

and trough (control in Figure 2B; p >> 0.05) showed no significant

differences.
The data indicate that elevated GC content in the RNA:DNA

hybrid in the transcription bubble is associated with increased

RNAPI occupancy, presumably reflecting slowed or transiently

paused RNAPI.

Folding of the Nascent RNA Promotes RNAPI Elongation
The yeast 50 ETS folds into 10 stable, extended hairpin structures

(Sun et al., 2017; Figure 2C). To examine the influence of RNA

structures forming just behind RNAPI, we initially calculated

the folding energy for a rolling window of 80 nt upstream of

each nucleotide position in the pre-rRNA, corresponding to the
Molecular Cell 79, 488–503, August 6, 2020 491
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average length of 50 ETS hairpins. Comparison with the RNAPI

CRAC peaks showed an apparent correlation with the predicted

folding energy across the 50 ETS (Figure S2F; Rspearman [Rsp] =

0.65; because a window of 80 nt is used, the folding energy

line commences at +80).

To more systematically compare folding with RNAPI density,

we used peak and trough metaplots (Figure S1F). The zero posi-

tion represents themaximum (Figures S2G andS2H) orminimum

(Figure S2I) for the sum of all peaks or troughs identified by the

peak-calling algorithm. This revealed a striking correlation where

peaks of RNAPI density were associated with weak structures in

the nascent pre-rRNA, especially over the 50 ETS (Figure S2G;

Rsp = 0.78; structures are plotted as DG, with lower values rep-

resenting greater stability). Conversely, regions of low RNAPI oc-

cupancy were correlated with stable structures in the nascent

transcript (Figure S2I). Each position on the x axis shows the

average folding energy for the nascent transcripts associated

with all polymerases located at that distance from the peak (or

trough).

To better understand the relationship between pre-rRNA

folding and elongation, the analysis was repeated using a range

of window sizes to calculate folding energy. In addition, an

‘‘offset’’ was added because the terminal�15 nt of the transcript

is located within the polymerase and unable to participate in

folding (Figures S2J). The best correlation was generated by us-

ing 65 nt of RNA to calculate folding with a 15-nt offset. The cor-

relation was most marked over the 50 ETS region (Figure 2D;

Rsp = 0.53) but was also observed when the RDN37 gene was

analyzed excluding the 50 ETS (Figures 2E and 2F; p < 10�7).

We conclude that weak structures in the nascent pre-rRNA

behind RNAPI coincide with sites of slowed elongation (high

RNAPI density), whereas strong pre-RNA structures correlate

with rapid elongation (low RNAPI density).

Because elongation is driven by Brownian motion, there is the

potential for backtracking prior to each nucleotide addition step

(Figure 1A). During backtracking, the newly synthesized region of

the nascent transcript must re-enter the exit channel of the poly-

merase. Backtracking should therefore be strongly opposed by

formation of a stable RNA structure in the nascent transcript.

Moreover, there is a decrease in free energy (i.e., an increase

in structure stability) as each additional base pair is formed in

extended stems, which might also favor elongation over back-

tracking. We therefore postulate that stable cotranscriptional

folding of nascent pre-rRNA strongly promotes transcription

elongation in vivo (Figure 2G). This conclusion is supported by

single-molecule in vitro transcription assays (Tadigotla et al.,

2006; Zamft et al., 2012).

The 50 ETS has very stable overall folding (DG �265 kilocalo-

ries (kcal) mol�1 over 700 nt) relative to the 50 region of the 18S

rRNA (DG �220 kcal mol�1 over the first 700 nt) despite having

low GC content. This suggests that structure in the 50 ETS may

have been selected to promote elongation.

RNA Structures Limit RNAPI Backtracking In Vitro

The effects of nascent RNA are expected to operate over 1–2 s

because of the fast elongation rate of RNAPI (�40 nt s�1), pre-

cluding their experimental determination. To validate the conclu-

sion that the structure in the nascent pre-rRNA limits backtrack-
492 Molecular Cell 79, 488–503, August 6, 2020
ing, we used an in vitro RNAPI transcription system (Pilsl et al.,

2016). In this, immobilized RNAPI binds an RNA:DNA scaffold,

which mimics the transcription bubble, and elongates the tran-

script following nucleotide addition. The products are gel sepa-

rated and visualized using a fluorescent label on the RNA primer

(Figure 3A). Within RNAPI, Rpa12 specifically stimulates endo-

nuclease cleavage of nascent RNA in the backtracked position

(Kuhn et al., 2007). Backtracking therefore leads to truncation

of previously elongated pre-rRNA transcripts.

RNAPI was purified via Rpa135-HTP and bound to immuno-

globulin G (IgG)-conjugated magnetic beads to allow rapid ex-

change of transcription buffer. Nascent transcripts are retained

on the beads in association with the polymerase. The template

DNA included a sequence that generates a stem-loop structure

in the RNA, close to the 50 end of the transcript. The transcript

lacked A residues other than a sequence of three adenines

(AAA) close to the 30 end of the template (Figures 3A and 3B).

Incubation for 5 min at 28�C in the presence of nucleotides

(GTP, UTP, and CTP) without ATP ([�ATP]) resulted in tran-

scription elongation and stalling at the AAA sequence

(‘‘stalled’’) (Figures 3B and 3C, lanes 1 and 2). Nucleotides

were washed out, and the elongation complex was incubated

for 15 min at 28�C to allow RNAPI backtracking (‘‘back-

tracked’’). This generated shorter products, observed as a

smear on the gel (Figure 3C, lanes 3 and 4). These are due to

Rpa12 cleavage of the backtracked transcript, as shown by

their absence when the same assay was performed using

RNAPI purified from a Rpa12DC strain (Lisica et al., 2016), in

which Rpa12 lacked the C-terminal domain required for cleav-

age (Figure S3A, lanes 8 and 9).

Cleavage by Rpa12 should reposition the 30 end of the nascent

transcript in the active site (Lisica et al., 2016; Prescott et al.,

2004). Consistent with this expectation, we were able to restart

transcription elongation by nucleotide re-addition. Addition of

buffer lacking only ATP ([�ATP]) regenerates the stall (stalled),

whereas addition of all four nucleotides ([all]) generates the full-

length transcript (‘‘runoff’’) (Figure 3C, lanes 5–7). The full-length

runoff product was released by RNAPI into the supernatant frac-

tion (Figure 3C, lane 7).

To compare sequences with different folding energy, we de-

signed in silico a construct with four random nucleotides (Fig-

ure 3D, top panel). The predicted folding energy of the stalled

nascent transcript was calculated, and we selected 10 se-

quences for experimental analysis, with a range of stabilities

(DG –5 to –15 kcal mol�1 at 28�C; lowDG corresponds to greater

stability). In the backtracking assay, samples were first incu-

bated in [�ATP] transcription buffer to induce stalling and then

washed and incubated without nucleotides ([none]) for 15 min

at 28�C to allow RNAPI backtracking (Figure 3D, bottom panel).

Among the 10 constructs tested, only three generated clear sta-

bilized cleavage products (Figure 3D, lanes 2, 3, and 5). Notably,

these correspond to nascent RNAs with the most stable struc-

tures (DG –12 to –15 kcal mol�1). We predict that this represents

the strength of RNA structure needed to efficiently block further

backtracking. Moreover, the cleavage product was more abun-

dant for the construct with DG –15 than for the constructs with

DG –12 or –13. These results confirm that stable structures in

nascent RNA limit backtracking by RNAPI.



A

B

C

E

D

F

G H

Figure 3. Strong Structures in the Nascent

RNA Limit RNAPI Backtracking and Pro-

mote Elongation In Vitro

(A) Sequence of the RNA-DNA-DNA scaffold and

schematic of the 60-nt RNA product with the

stalling sequence marked (AAA).

(B) Schematic of the in vitro assay, showing the

RNAPI elongation complex (yellow), DNA (light and

dark blue), and RNA (red) with the hairpin structure

highlighted (orange). [�ATP], transcription buffer

(TB) without ATP to induce stalling (stalled); [none],

incubation in TB without nucleotides to promote

backtracking and Rpa12-driven cleavage (back-

tracked); [all], TB supplemented with all NTPs to

generate runoff products (runoff).

(C) In vitro assay performed according to the

scheme in (B). T, total; S, supernatant only. The

experiment was performed in one tube, and ali-

quots were taken for each condition.

(D) In vitro assay of RNAPI backtracking. Top

panel: schematic of the 60-nt RNA product with

four variable nucleotides and stalling sequence

(AAA). Bottom panel: set of 10 scaffolds with

different folding energies of nascent RNA, tran-

scribed in TB without ATP to induce stalling,

washed, and incubated for 15 min at 28�C to allow

Rpa12-driven cleavage. Only sequences with the

highest stability limited RNAPI backtracking and

produced prominent bands.

(E–H) Effects of structured RNA in reducing back-

translocation in vitro, using four constructs with

different folding energies. The assay was per-

formed as in (D). Shown is quantification of stalled

peaks, backtracked peaks, and the sum of both.

Variable scaffold sequence, incubation tempera-

ture, and predicted folding energy are marked

above each plot. Predictions of nascent, extruded

RNA structure at the indicated temperature are

shown on the right of each plot. Error bars present

standard deviation (n = 3).

See also Figure S3.
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Weaker structures did not generate stable stalls at 28�C but

might still affect RNAPI back-translocation. To assess this, the

RNAPI backtracking assay was analyzed at short time points

and with reduced temperature (18�C) to slow the polymerase

(Figures 3E–3G).

For the strongest hairpin, CGGC (DG�15 at 28�C and DG�17

at 18�C), we observed very rapid backtracking even at 18�C (Fig-

ures 3E and S3B). By 2 min, nearly all RNAPI complexes were

lost from the stalled position and accumulated in backtracked

positions stabilized by the 50 terminal stem. These complexes

were then stable for at least 20 min of incubation.

We next tested two hairpins that did not generate stable prod-

ucts at 28�C: GGCG (DG �7 at 28�C and DG �9 at 18�C) and
GUGU (DG �5 at 28�C and DG �6 at 18�C). At 18�C, both tran-

scripts generated a clear but transient gel band corresponding to
backtracked RNAPI that wasmost prominent at 2min and desta-

bilized during longer incubation (Figures 3F, 3G, S3D, and S3E).

This was more persistent for the more stable GGCG transcript

than for GUGU. We also tested the GGCG transcript over a

time course at 28�C (Figures 3H and S3F). The backtracked

peak was reduced at 28�C but still observed after 10 min of incu-

bation and produced an RNA shortened to 6 nt (Figure S3G).

Altogether, these kinetic assays revealed that strong struc-

tures block backtracking, whereas weaker structures slow the

kinetics of back translocation proportional to their stability.

Mathematical Model of RNAPI Transcription

To better understand the contributions of the different compo-

nents to overall transcription, we developed a mathematical

model for RNAPI transcription. The model is based on simula-

tions of individual RNAPI molecules initiating and transcribing a
Molecular Cell 79, 488–503, August 6, 2020 493



Figure 4. Mathematical Model of RNAPI Transcription

(A) Schematic of polymerase convoys in which a group of RNAP complexesmoves along the rDNA transcription unit while DNA screws through the polymerases.

In this model, the distance between initially loaded RNAPmolecules is retained by the DNA helix, which behaves as an elastic rod and generates force when over-

or under-wound.

(B) Schematic representation of the low entrainment region (LER). RNAPI molecules are initially able to rotate around the DNA, allowing changes in their relative

positions without generating torsion. Grey line, degree of torsional entrainment; yellow line, ability of RNAPI to reduce torsion by rotation around the rDNA.

(legend continued on next page)
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7,000-nt RNA. The key parameters of the model include the (sto-

chastic) initiation frequency and the probability of forward or

reverse translocation. The latter is influenced by several factors:

(1) the effects of DNA torsion on the probability of elongation

versus backtracking, (2) the effects of structure in the nascent

transcript, and (3) the stability of RNA-DNA duplex in the tran-

scription bubble (Figures 4 and S4).

The parameters are very briefly described below and dis-

cussed in more detail in the STAR Methods. In this section,

‘‘RNAP’’ is used for statements universal to all RNAPs and

‘‘RNAPI’’ for features specific to RNAPI.

Starting Premises
Stochastic Initiation Events

Based on published data, we tested rates of stochastic initiation

over a range of 0.33–1.0 s�1, limited by the requirement that the

preceding RNAPI has cleared the initiation region. A mean sto-

chastic initiation rate of 0.8 s�1 generated RNAPI loading similar

to that observed with Miller spreads (�50 per rDNA unit)

(Figure S4I).

Stochastic Elongation

The reported average in vivo transcription rate across the entire

yeast 35S pre-rRNA is �40 nt s�1 (Kos and Tollervey, 2010),

generated by the sum of multiple stochastic events. Although

transcription elongation rates are often described as a velocity,

the polymerase does not have momentum, and the time delay

for each translocation event is independent and stochastic. At

each time step in the model, the probability of translocation is

random, chosen from a distribution derived from experimental

data. The sum of these discrete stochastic delays creates the

measured transcription rate. Together with stochastic initiation,

this generated a model for the distribution of RNAP termed ‘‘sto-

chastic elongation.’’

Effects of DNA Torsion

During transcription, the DNA or the RNAP plus the nascent tran-

script must rotate through 360� for each 10.5 nt incorporated

(Figure 4A). If all RNAP molecules move in synchrony, then the

torque from each will be equal, so no torsional stress will accu-

mulate between adjacent polymerases. However, alterations in

relative positions will result in positive supercoils between ap-

proaching polymerases and negative supercoils between sepa-

rating polymerases (Figure 4A). The torque generated by torsion

acts as an elastic rod, resulting in torsional entrainment of rela-

tive RNAP separation. The effect on elongation of this torque-as-
(C) Modeled RNAPI occupancy along the transcription unit using a model of sto

RNAPmolecules per transcription unit is indicated. The averageRNAPI occupanc

time points were collected (C–G).

(D) Modeled RNAPI occupancy for the DNA torsion model.

(E) Modeled RNAPI occupancy for the DNA torsion model, including a LER of 2,

(F) RNAPI occupancy for the model with RNA elements. Translocation is modified

negatively by the stability of the RNA:DNA hybrid within the transcription bubble

(G) Full model including DNA torsion, the LER, and RNA elements. This recapitul

experimental data are predicted to be affected by trans-acting factors binding c

(H) RNAPI CRAC peak and trough metaplots together with simulated data. Show

(I) Modeled RNAPI occupancy plot generated using the full model. Four datasets o

from interpolated profiles, generated as in G, and processed in the same way as

(J) Violin plot of factor contributions at each elongation step within the full mode

See also Figure S4.
sisted motion is included in the model as ‘‘DNA torsion.’’ The ef-

fects of DNA torque were implemented progressively, from 0 at

the initiation site, where the polymerase can rotate freely around

the DNA, to 100% at +2 kb (Figure 4B). In the model, this is the

‘‘low entrainment region’’ (LER). In this region, neighboring

RNAPI complexes can change relative positions without gener-

ating high torsional stress, potentially allowing more freedom

to respond to effects of the nascent transcript.

Effects of the Nascent Transcript Sequence

Folding of the nascent transcript was incorporated with high sta-

bility (low DG; calculated using a 65-nt rolling window plus 15-nt

offset) correlated with increased probability of rapid elongation

and decreased probability of backtracking. The correlation be-

tween RNAP density and stability of the RNA:DNA duplex in

the transcription bubble was incorporated with high stability

(low DG; calculated using an 8-nt rolling window) correlated

with decreased probability for rapid elongation. The effect of

each feature was calculated for every nucleotide position. For

ease of implementation, these were combined in the model as

‘‘RNA elements.’’

Modeling Indicates a Major Role of RNA Folding
We constructed a set of dynamic models that were run to

achieve equilibrium states (Figures 4C–4G).

Discrete stochastic elongation alone generated a uniform dis-

tribution along the rDNA because each polymerase moves inde-

pendently with a stochastic distribution of step times and vari-

ability generated by stochastic initiation (Figure 4C). A model

implementing DNA torsion alone gives a broadly similar, rela-

tively uniform profile (Figure 4D). All polymerases are constrained

to move as a single convoy, with DNA torsion effects between

polymerases accelerating and periodically stalling elongation.

Neither of these models closely matches the in vivo electron mi-

croscopy (EM) and CRAC data. Inclusion of a 50 low entrainment

region generated a distribution that more closely matched the

in vivo data because we now see a clear 50 bias in modeled

RNAPI density, with polymerases moving more slowly and

more closely positioned over the initial 2 kb (Figure 4E). The

model including only the RNA elements generated a highly un-

even polymerase distribution, reflecting differences in folding en-

ergy and base composition across the entire rDNA (Figure 4F).

Finally, incorporating all of these features into a single model

gave a distribution closely approximating the in vivo data (Fig-

ures 4G and 4I). This shows the 50 enrichment and relatively
chastic initiation and discrete, stochastic elongation. The average number of

y for 64 simulations is presented. Each simulation was run for 2,000 sec and 200

000 nt. DNA torsion is engaged linearly between positions 0 and 2,000.

positively by structure in the nascent RNA extruded from the polymerase and

.

ates experimental data to the greatest extent. Areas that do not correlate with

o-transcriptionally (Discussion).

n is a full model (gray) relative to CRAC data (green).

f 256 simulationswere used to generate profiles. In silico ‘‘reads’’ were sampled

RNAPI CRAC data.

l.
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discrete peaks observed in the EM and CRAC data. As a poten-

tial source of the 50 bias, we also considered premature termina-

tion of transcription. However, 30% reduced RNAP numbers per

gene were needed to match the observed 50 bias (Figures S4G

and S4H), and this was excluded as a key factor in the model.

Alignments of peak and trough locations from the model with

the experimentally derived peaks and troughs showed a clear

overlap (Figures 4H; modeled data in gray, CRAC data in green).

This confirmed that the model significantly recapitulates the

experimental data at high resolution. Major discrepancies are

speculated to reflect sites where backtracking is limited by sta-

ble binding of trans-acting factors rather than stem structures

(Discussion).

In the final model, the relative contribution of forces from

different elements is clearly dominated by RNA folding (Fig-

ure 4J), whereas DNA torsion has the weakest effect at each

elongation step. However, entrainment alters the elongation ki-

netics in the same direction over multiple steps to maintain rela-

tive RNAPI positions.

A striking conclusion from the model concerns the combined

effects of the different features on the probability of RNAPI back-

tracking and collisions (Figure 5). Stochastic elongation alone

generates a low frequency of backtracking but a high frequency

of collisions (Figures 5A and 5B). Inclusion of torque, generated

from DNA torsion, reverses this: increased probability of back-

tracking and reduced probability of collisions. Backtracking

and collisions are substantially suppressed by also including

RNA structure (RNA elements). The final model suggests that

RNAPI takes advantage of a low frequency of backtracking

because of RNA structure and a low level of collisions because

of DNA torsion.

The presence of a strongly folded 50 ETS region in the pre-

rRNA is conserved among eukaryotes. However, the primary

sequence and length of the 50 ETS are variable between species.

We therefore assessed how overall folding of the 50 ETS affects

transcriptional output by modeling a set of alternative structures

(Figure 5C) with (1) decreased DG over the 50 ETS region or (2)

altered spacing between the hairpins (Figures 5C–5F and S5A–

S5C). For this analysis, the effect of the transcription bubble

sequence was disregarded.

Consistent with the results in Figure 3, the decreased folding

energy of the 50 ETS region caused increased RNAP backtrack-

ing (Figure 5D), whereas collisions (Figure 5E) and the total num-

ber of RNAP particles (Figure S5B) remained unaffected. The

fraction of backtracked RNAP correlated with the average DG

over the 50 ETS (Figure 5F). Surprisingly, modification of spacing

between the 50 ETS hairpins (see overview in Figure S5C) did not

strongly affect output from the simulation (Figures S5D–S5F).

Together, these results indicate that strong secondary structures

in the 50 ETS are functionally important in reducing RNAP

backtracking.

The 50 proximal hairpin in the 50 ETS is distinct. Analysis of

structures and folding energy reveals very weak intermediate

structures in comparison with the full-length hairpin for

S. cerevisiae (Figure S5G), humans (Figure S5H), and other char-

acterized species (S. pombe andM. musculus). The RNAPI foot-

print was estimated at 38 bp by cryo-EM, so strong structures

within this region will potentially accelerate promoter clearance
496 Molecular Cell 79, 488–503, August 6, 2020
and increase rDNA loading. We analyzed a set of in silico con-

structs with the 50 ETS fixed to DG = �20 kcal mol�1 starting at

positions 0 nt, 10 nt, etc., up to 80 nt. The 50 ETS with structures

starting at early positions (0–30 nt) indeed increased effective

initiation and rDNA loading (Figure 5I), but this was associated

with increased backtracking and collisions (Figures 5G and

5H). We speculate that this lack of short stable 50 structures re-

duces overloading of the rDNA transcription unit.

Effects of RNA Folding Are Widespread and Have
Regulatory Potential
The key conclusions derived for RNAPI are expected to hold for

all other polymerases and species. We therefore assessed the

effects of nascent transcript structure for Schizosaccharomyces

pombe RNAPI and other RNAPs in budding yeast.

The S. pombe RNAPI CRAC profile revealed an uneven distri-

bution with a 50 bias (Figure 6A), similar to S. cerevisiae RNAPI

(Figure 1E). Metaplot analysis of troughs in RNAPI density versus

folding energy of the nascent transcript revealed a strong corre-

lation (Figure 6B; p = 3 3 10�4).

RNAPIII generally transcribes very short pre-tRNA transcripts.

However, the RNAPIII-transcribed SCR1 gene encodes the 522-

nt-long scR1 ncRNA component of the signal recognition parti-

cle. Previous RNAPIII CRACdata showed a very uneven distribu-

tionacrossSCR1 (Turowski et al., 2016). Apeak and troughmeta-

plot for RNAPIII density versus the folding energy of the nascent

scR1 RNA revealed a high degree of correlation (Figures 6C, 6D,

and S6A), similar to that observed for RNAPI; however, the num-

ber of features was too low to perform statistical analysis.

Published high-resolution analyses of RNAPII distribution by

NET-seq or CRAC, using the catalytic subunit Rbp1, also reveal

strikingly uneven density (Churchman and Weissman, 2011;

Milligan et al., 2016; Figure S6B). Independent biological repli-

cates for Rpb1 distribution in NET-seq and CRAC showed

good reproducibility across well-transcribed genes (Figure S6C),

indicating that the fluctuations represent genuine differences in

RNAPII density.

Some of the variation in RNAPII occupancy reflects nucleo-

some positioning, with maximal density (minimal RNAPII elonga-

tion rate) seen at the center of nucleosomes (Churchman and

Weissman, 2011; Milligan et al., 2016), which are generally well

positioned in yeast. To determine whether structure in nascent

transcripts also affects RNAPII occupancy, we used a peak-call-

ing algorithm to define peaks and troughs in the RNAPII density

across 50% of the most highly transcribed genes that are longer

than 300 nt (n = 1,073). We used NET-seq peaks to generate

metaplots because published RNAPII CRAC data were prepared

using a protocol that does not specifically recover the nascent 30

end. This showed a correlation between the RNAPII peaks

(n = 9,927) and troughs (n = 4,776) and the rolling average of pre-

dicted DG (shown for a 65-nt window with a 15-nt offset in

Figures 6E and 6F). RNAPII occupancy peaks were associated

with a clear peak of folding energy, whereas troughs, indicating

rapid elongation, were associated with stronger nascent

RNA structure (Figures 6E, p = 5 3 10�15, and 6F, p = 5 3

10�8, Wilcoxon signed-rank test, orange line).

To determine whether nascent RNA structure may have regu-

latory potential, we used pre-mRNA splicing as amodel process.
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Figure 5. Conclusions from the Model of RNAPI Transcription

(A) RNAP in backtracked state. Backtracking events were saved for each of the simulations (Figures 4C–4G). Percentages of RNAP found in the backtracked state

in different models were calculated and are presented as a boxplot.

(B) Frequency of colliding RNAP, calculated as in (A).

(C) Overview of the 50 ETS structure modifications: changing spacing between hairpins (top panel) or reducing strength of RNA structures (bottom panel).

(D) Frequency of RNAP backtracking in response to weaker 50 ETS structures. The 50 ETSwith RNA structures reduced to 75%, 50%, or 0% or fixed toDG=�15/

�20 kcal mol�1 was used.

(E) Frequency of colliding RNAP in response to weaker 50 ETS structures.

(F) Frequency of RNAP in the backtracked state is correlated with average stability of RNA structures. DG was calculated for the entire rDNA with a modified

50 ETS.
(G) Frequency of RNAP in backtracking in response to altered 50 hairpin positioning within the 50 ETS. The 50 ETS with fixed DG =�20 kcal mol�1 was used to test

the effect of changes in 50 structures.
(H) Frequency of colliding RNAP in response to the altered 50 hairpin positioning.

(I) Number of RNAPs per rDNA in response to the altered 50 hairpin positioning.

See also Figure S5.
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Figure 6. Effects of Transcript Folding Are Widespread and Have Regulatory Potential

(A) S. pombe RNAPI CRAC distribution over the rDNA gene encoding the pre-rRNA. Annotation are as in Figure 1E (n = 2).

(B) S. pombe RNAPI CRAC trough metaplot for the entire pre-rRNA with folding energy of the nascent transcript. The p value was calculated using a Wilcoxon

rank-sum test for a 400-nt window versus a 40-nt central window (n = 80).

(C) RNAPIII CRAC peak metaplot compared with predicted folding of nascent scR1 ncRNA. Folding energy (DG in kilocalories per mole) was calculated for a

rolling 65-nt window behind RNAPIII, offset by 15 nt (GEO: GSE77863).

(D) As (C), except that CRAC troughs were compared with folding of nascent scR1.

(legend continued on next page)
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The splicing machinery co-transcriptionally recognizes the 50

splice site (SS), branchpoint (BP), and the 30 SS (acceptor site).

We predicted that stronger structure in the nascent RNA would

reduce the time available for co-transcriptional selection of the

30 SS, disfavoring rapid cotranscriptional splicing. Analyses us-

ing extremely fast metabolic labeling previously ranked yeast

pre-mRNAs by splicing speed (Barrass et al., 2015; Figure S6D).

Consistent with our hypothesis, the fastest third of spliced genes

had less structure in the nascent RNA at the start of exon 2

compared with the slowest third of spliced genes (Figure 6G,

p = 0.05, Wilcoxon rank-sum test for n = 10).

The 30 SS consensus is notably weak, consisting of only two

bases (AG), suggesting a kinetic model for 30 SS selection based

on a ‘‘window of opportunity.’’ To assess the potential role of

nascent RNA folding as a decisive factor, we defined all yeast in-

trons de novo using previously described features (Figure 6H),

focusing on those with a predicted but unutilized 30 SS upstream

of the authentic site. Then we compared changes in folding en-

ergy of the nascent RNA downstream of the predicted and uti-

lized 30 SS (Figure 6I for DDG, p = 1.2 3 10�3, Wilcoxon rank-

sum test and Figure S6E for DG, p > 0.05). Nascent RNA

extruded after transcription of the utilized 30 SS maintained

RNA folding (DDG) on similar level, whereas predicted but unuti-

lized 30 SS RNAs are accompanied by stronger folding of

nascent RNA (DDG). Interestingly, this would suggest that rela-

tive folding energy (DDG) is more important for selection of the

30 SS because the overall stability of nascent RNAwas not signif-

icantly different (Figure S6E; p > 0.05). Stronger folding of the

nascent RNA may accelerate RNAPII and decrease the window

of opportunity for splicing to occur, potentially favoring skipping

of the unused, potential 30SS (Figure 6J). Notably, significant dif-

ferences were seen for folding energy of the nascent RNA, even

when the folding window did not include the 30SS, making it un-

likely that direct effects on the structure or accessibility of the

acceptor site are responsible for the observed correlations.

We conclude that stimulation of transcription elongation by

nascent RNA structure is a conserved feature of all three eukary-

otic polymerases and that regulation of co-transcriptional pro-

cesses is at least partially determined by local folding of nascent

RNA.

DISCUSSION

Analyses of eukaryotic transcription by multiple techniques

reveal uneven polymerase occupancy, reflecting variable elon-
(E) Metaplot showing peaks of NET-seq density for RNAPII (GEO: GSE25107). Pea

the folding energy of the nascent transcripts. Folding energy (DG in kilocalories pe

Each position on the x axis shows the average folding energy for the nascent tran

The p value was calculated using a Wilcoxon signed-rank test (n = 9,844).

(F) As (E) but showing troughs in NET-seq density (n = 4,749).

(G) Folding of nascent RNA around the 30 SS of pre-mRNA genes classified as fa

et al., 2015). The p value was calculated using a Wilcoxon rank-sum test (n = 10

(H) Conserved feature of yeast introns used for de novo prediction (top panel).

tom panel).

(I) Relative folding energy of nascent RNA around the utilized 30 SS versus the p

calculated using a Wilcoxon rank-sum test (n = 28).

(J) Suggested role of nascent RNA stability in selection of the 30 SS.
See also Figure S6.
gation rates. This is important because many RNA processing

factors act very quickly on the nascent transcript. For example,

splicing of pre-mRNA is strikingly speedy in yeast (Wallace and

Beggs, 2017) but more heterogeneous in metazoans (Alpert

et al., 2017; Drexler et al., 2020), potentially altering alternative

splicing (Saldi et al., 2016). Understanding the detailed kinetics

of transcription elongation in vivo will therefore be predictive of

processing decisions.

In eukaryotes, RNAPI is most amenable to these analyses

because it transcribes only a single product from the nucleo-

some-free rDNA. EM analyses of Miller chromatin spreads re-

vealed uneven distribution of RNAPI across the rDNA, with an

excess of polymerases in the 50 region. In an orthogonal

approach, we determined the distribution of RNAPI by CRAC

UV crosslinking. This confirmed the 50 enrichment for RNAPI

density but also revealed a strikingly uneven, local polymerase

distribution, most notably over the 50 ETS region of the pre-

rRNA (Figures 1E and 1F).

Analysis of features that correlate with peaks and troughs of

RNAPI density showed a modest correlation with the stability

of the RNA-DNA duplex in the transcription bubble but strong

correlation with the calculated folding energy of the nascent

pre-rRNA transcript close to the polymerase (Figure 2).

RNAPs operate as Brownian ratchets and are prone to back-

tracking, which serves as a proofreading step (Figure 1A).

During backtracking, the newly transcribed RNA must re-enter

the polymerase. However, the transcription bubble region of

RNAPI is only large enough for single-stranded RNA (Tafur

et al., 2016). Backtracking is therefore resisted by any RNA

structures that form sufficiently rapidly in the nascent tran-

script, as proposed previously for bacterial RNAP (Dangkul-

wanich et al., 2014).

Using RNAPI transcription in vitro, we confirmed that strong

structures in the nascent transcript effectively resist backtrack-

ing and defined the stability of stems that can block or slow

backtracking by RNAPI (Figure 3). Additionally, our genome-

wide data provide evidence that RNA structure substantially

modulates transcription elongation by RNAPII and RNAPIII

(Figure 6).

Any trans-acting factors that rapidly and stably bind the

nascent RNA are also predicted to resist backtracking. Support-

ing this conjecture, we note that there were fewer discrete 50 ETS
peaks in the model than in the CRAC data. The prominent CRAC

peak around +100 corresponds with the major binding site for

the UTP-A complex of early-binding ribosome synthesis factors
ks from the top 50%of RNAPII transcripts longer than 300 nt were overlaid with

r mole) was calculated for a rolling 65-nt window behind RNAPII, offset by 15 nt.

scripts associated with all polymerases located at that distance from the peak.

stest third and slowest third for spliced, non-ribosomal protein genes (Barrass

).

Genes containing a predicted but skipped 30 SS were analyzed (n = 28, bot-

redicted but skipped 30 SS relative to the 30 SS (position 0). The p value was
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(Hunziker et al., 2016; Sun et al., 2017), which have been impli-

cated previously in transcription and were designated t-Utps

(Gallagher et al., 2004). Similarly, a CRAC peak further 30 is close
to the major U3 small nucleolar RNA (snoRNA) binding site

at +470. We postulate that RNA packaging factors bound to

nascent transcripts also function as ratchets, favoring progres-

sive RNAPI elongation.

To better understand the contributions of different features to

the behavior of RNAPI in vivo, we developed a mathematical

model of rDNA transcription. Notably, themodel revealed that in-

clusion of the effects of torque reduced the numbers of colliding

RNAPI but increased the fraction of RNAPI in a backtracked po-

sition (Figures 5A and 5B). Addition of nascent transcript folding

reduced the frequency of backtracking while retaining the low

level of collisions. This underlined the positive contribution of

RNA structure to productive elongation.

The yeast 50 ETS is notably highly structured, which may

partly reflect selection of structures that promote efficient tran-

scription. Structures within the 50 ETS decreased the frequency

of RNAPI backtracking, and this effect correlated with the over-

all DG of the nascent RNAs. Notably, relatively sharp peaks of

RNAPI density correlated with the apexes of the extended

stem structures in the ETS. We speculate that this arises

because the lowest enhancement of elongation resulting from

RNA structure occurs at these sites. Weaker, transient struc-

tures will have formed during extrusion of the 50 sides of the

extended stems, giving some boost to elongation, but these

must be unfolded prior to refolding into the extended

final stems.

Our key findings regarding the effects of folding in the nascent

transcript on polymerase elongation may also be applicable to

RNAPI from S. pombe and RNAPII and RNAPIII from

S. cerevisiae and potentially RNAPs in many or all other systems.

Although folding energy of the nascent transcript emerged as a

the most significant feature in determining RNAPI elongation

rates, its role in RNAPII elongation is expected to be tempered

by many other factors affecting elongation (Gressel et al.,

2019). Despite this, an apparent correlation between RNA

folding and polymerase density was clearly seen by CRAC

crosslinking and in NET-seq data, which use orthogonal

approaches.

Signals within pre-mRNAs defining SSs have surprisingly lit-

tle information content relative to splicing fidelity, and multiple

additional features contribute to accurate SS selection. We

propose that unstructured RNA downstream of the intron fa-

vors slowed elongation of RNAPII, which facilitates splicing

by allowing more time for recognition of the 30 SS by splicing

factors associated with C-terminal domain of the polymerase.

In contrast, structured RNA may promote rapid elongation, fa-

voring distal SS use. Notably, the window of opportunity for 30

SS recognition is presumably substantially shorter than

the actual pre-mRNA splicing reaction, as assessed by tran-

script sequencing (Alpert et al., 2017; Drexler et al., 2020;

Neugebauer, 2019; Wachutka et al., 2019; Wallace and

Beggs, 2017). Finally, we note that similar considerations

potentially apply to other cotranscriptional events that depend

on RNAPII-associated recognition, including alternative

polyadenylation.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

TAP Tag Polyclonal Antibody Thermo Fisher Scientific Cat#CAB1001; RRID:AB_10709700

Bacterial and Virus Strains

Chemicals, Peptides, and Recombinant Proteins

-Trp synthetic dropout mix Formedium Cat#DCS0149

Guanidine hydrochloride Sigma Cat#G4505-1KG

HaloTEV Protease Promega Cat#G6601

Critical Commercial Assays

cOmplete EDTA-free protease inhibitor cocktail

tablets

Roche Cat#11873580001

Ni-NTA Superflow QIAGEN Cat#30410

Pierce spin columns snap cap Thermo Scientific Cat#69725

RNace-It Ribonuclease cocktail Agilent Cat#400720

RNasin Ribonuclease Inhibitor Promega Cat#N2115

Recombinant RNasin Ribonuclease Inhibitor Promega Cat#N2511

DNase RQ1 Promega Cat#M6101

T4 RNA Ligase 2, truncated K227Q NEB Cat#M0351

T4 RNA Ligase 1 NEB Cat#M0204L

T4 PNK NEB Cat#M0201L

Nitrocellulose membranes GE Healthcare Cat#10 439 196

MetaPhor agarose Lonza Cat#50180

NuPAGE 4-12% polyacrylamide Bis-Tris Gels Life Technologies Cat#NP0335

NuPAGE LDS 4x sample buffer Life Technologies Cat#NP0007

NuPAGE SDS-MOPS running buffer Life Technologies Cat#NP0001

NuPAGE Transfer Buffer Life Technologies Cat#NP00061

MinElute Gel Extraction kit QIAGEN Cat#28604

Proteinase K Roche Cat#03115836001

RNase H NEB Cat#M0297L

LA Taq Takara Cat#RR002M

Deposited Data

Raw data files from CRAC NCBI Gene expression omnibus GSE136056

Raw image files Mendeley https://doi.org/10.17632/m253kk9sm6.1

Experimental Models: Organisms/Strains

S. cerevisiae Strain background: BY4741 (MATa

his3D1 leu2D0 met15D0 ura3D0)

Longtine et al., 1998 yTWT001

S. cerevisiae Strain Rpa190HTP a his3D1 leu2D0

met15D0 ura3D0 RPA190-HTP::URA3MX

This study yTWT046

S. cerevisiae Strain Rpa135 HTP a his3D1 leu2D0

met15D0 ura3D0 RPA135-HTP::URA3MX

This study yTWT051

S. cerevisiae Strain Rpa135 HTP Rpa12DC

a his3D1 leu2D0 met15D0 ura3D0 RPA12(1-74aa

only) RPA135-HTP::URA3MX

This study yTWT232

S. cerevisiae Strain Rpa190 HTP 25 rDNA a ade2-1

ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100

fob1D::HIS3 RPA190-HTP::URA3MX

This study yTWT144

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

Table S3 This study N/A

Software and Algorithms

PyCRAC Webb et al., 2014 https://bitbucket.org/sgrann/pycrac

SAMtools v1.3.1 Li et al., 2009 http://www.htslib.org/; RRID:SCR_002105

Bedtools v2.25 Quinlan and Hall, 2010 https://github.com/arq5x/bedtools2;

RRID:SCR_006646

Prism 7 Graphpad https://www.graphpad.com/; RRID:SCR_002798

Integrative Genomics Viewer Broad Institute http://software.broadinstitute.org/software/igv/;

RRID:SCR_011793

Novoalign v2.07.00 Novocraft http://www.novocraft.com/products/novoalign/;

RRID:SCR_014818

UNAfold package v3.8 Markham and Zuker, 2008 http://unafold.rna.albany.edu/; RRID:SCR_001360
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RESCOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, David

Tollervey (d.tollervey@ed.ac.uk).

Materials Availability
All unique/stable reagents generated in this study are available from the Lead Contact without restriction.

Data and Code Availability
The accession number for the RNA sequencing data reported in this paper is GEO: [GSE136056]. Original data have been deposited

to Mendeley Data: [https://doi.org/10.17632/m253kk9sm6.1].

The full MATLAB code for the mathematical model has been submitted as a git repository: https://bitbucket.org/bdgoddard/

rnap_public/src/master/.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains
Yeast analyseswereperformed in strainsderived fromBY4741 (MATa;his3D1; leu2D0;met15D0;ura3D0), except for the25 rDNAstrain

whichderives fromNOY1071 (Cioci et al., 2003). ForCRACanalyses, cellsweregrown insyntheticmediumwith2%glucoseat30�C.For
Miller spreads, cells were grown in YPD medium + 1M sorbitol. Strains used are listed above. Oligonucleotides are listed in Table S3.

METHOD DETAILS

Miller Chromatin Spreads and Measurements of Polymerase Positions
Starter cultures of yeast strain BY4741 were diluted into YPD (yeast extract, peptone, glucose) medium + 1M sorbitol such that after

growth at 30�C for 6 h the culture reached a density of OD600 = 0.4. At that point 1 mL aliquots were harvested and Miller chromatin

spreads were prepared for electron microscopy as described (Osheim et al., 2009). In brief, pelleted cells were lysed using hypotonic

shock; cell contents were allowed to disperse with gentle swirling; and the resultant ‘‘spread’’ was centrifuged onto a carbon coated

EM grid. Staining with phosphotungstic acid and uranyl acetate enhanced the contrast of the spread material.

Chromatin spreads on multiple grids from several cultures were methodically examined, grid square by grid square, using a JEOL

100CX transmission electron microscope. Areas of dispersed chromatin containing 35S rRNA genes were photographed. In Miller

chromatin spreads, active rRNA genes are recognized as a consequence of their high transcription frequency. Themultiple Pol I mol-

ecules engaged in transcribing the genes lend electron density to the DNA template thus enhancing the visibility of the genes.

Micrographs of chromatin were examined and all 35S genes that could be unambiguously traced from 50 to 30 endswere scanned on

an Epson Perfection V750 Pro flatbed scanner. Polymerase positions were measured on these digital images using ImageJ software.

The position of the center of eachpolymerasewas recorded relative to the 50 end of the geneonwhich it was observed. These positions,

measured in pixels along theDNA strands, were then normalized by setting the position of the first polymerase to a value of 0 and that of

the last polymerase to a value of 100. While we cannot exactly determine if a first polymerase is at the promoter or occupies a spot a
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polymerase width or two downstream, we based our determination of ‘‘full length’’ genes on the distance between first and last poly-

merase and the relative distances between upstream and downstream 5S genes, neighboring 35S genes, together with the character-

istic features of polymerases and transcripts associated with initial and final positions (French et al., 2008; Osheim et al., 2004)

In-vivo RNA crosslinking
Strains for CRAC experiments were grown in synthetic dextrose (SD) medium with 2% glucose, lacking Trp to OD600 = 0.5. Actively

growing cells were cross-linked in culture media using megatron UVC cross-linker (Granneman et al., 2011) typically for 100 s or less

when indicated. For PAR-CRACmediumwas additionally supplemented with 4-thiouracil (4tU) using a UVA-box (Shchepachev et al.,

2019) for 40 s. 4tU was added to 1 mM final concentration for 30 min and cross-linked without washing or to 3.3 mM final concen-

tration for 15 min, washed with PBS and immediately cross-linked.

CRAC
Samples were processed as previously described (Turowski et al., 2016). However, phosphatase treatment was omitted, so

the 30-OH ends required for linker ligation are present only on nascent RNA transcripts. Cells were lysed in TNMC100 (50 mM

Tris-HCl pH 7.5, 150 mM NaCl, 0.1% NP-40, 5 mM MgCl2, 10 mM CaCl2, 5 mM b-mercaptoethanol, 50U of DNase RQ1 and a pro-

tease-inhibitor cocktail (1 tablet / 50mL) with zirconia beads in a 50mL conical. The cells were lysedwith five one-minute pulses, with

cooling on ice in between. The supernatant was spun for 20 minutes at 21,000 g. The cleared lysate was incubated with the IgG

Sepharose for two hours at 4�C, with nutating. Subsequently, the beads were washed three times with TMN600 (50 mM Tris-HCl

pH 7.5, 600 mM NaCl, 0.1% NP-40, 1.5 mM MgCl2) and two times TMN100 (50 mM Tris-HCl pH 7.5, 100 mM NaCl, 0.1% NP-40,

5 mM MgCl2). The eluate was transferred to a fresh tube containing 350 mL TMN100, 2.5U of RNace-IT was added and samples

were incubated for 5 minutes at 37�C to fragment protein-bound RNA.

Protein:RNA complexes were eluted by incubation with HaloTEV for 2h at 18�C with shaking. The supernatant was separated and

adjusted for nickel affinity purification with the addition of 400 mg guanidine hydrochloride, 45 mL NaCl (3M) and 7 mL imidazole (1 M)

and added to 50 mL of washed nickel beads.

Following 4h incubation, the nickel beads were washed three times with WBI (6.0 M guanidine hydrochloride, 50 mM Tris-HCl pH

7.5, 300mMNaCl, 0.1%NP-40, 10mM imidazole, 1.5 mMMgCl2 and 5mM b-mercaptoethanol), three times with PNK buffer (50mM

Tris-HCl pH 7.5, 50 mM NaCl, 1.5 mM MgCl2, 0.1% NP-40, and 5 mM b-mercaptoethanol) and transferred to a spin column. Sub-

sequent reactions (80 mL total volume for each) were performed in the columns, and afterward washed once withWBI and three times

with PNK buffer:

1. 30 linker ligation (1x PNK buffer(NEB), 10% PEG8000, 20U T4 RNA Ligase II truncated K227Q, 80U RNasIN, 80 pmol preade-

nylated 30 miRCat-33 linker (IDT); 16�C overnight).

2. 50 end phosphorylation and radiolabeling (1x PNK buffer (NEB), 40 U T4 PNK (NEB), 80U RNasIN, 40 mCi 32P-gATP; 37�C for

45 min, with addition of 100 nmol of ATP after 30 min).

3. 50 linker ligation (1x PNK buffer (NEB), 10%PEG8000, 40 U T4 RNA ligase I (NEB), 80 URNasIN, linker, 200 pmol 50 linker, 1mM

ATP; 22�C for 4h).

The beads were washed twice with WBI and three times with PNK buffer. Protein:RNA complexes were eluted in 200 mL of elution

buffer (50 mM Tris-HCl pH 7.5, 50 mM NaCl, 0.1% NP-40, 300 mM imidazole, and 5 mM b-mercaptoethanol) and acetone precip-

itated overnight. RNPs were pelleted at 21000 g for 20 minutes, and resuspended in 20 mL 1X NuPAGE sample loading buffer sup-

plemented with 8% b-mercaptoethanol. The sample was denatured by incubation at 65�C for 10 minutes, and run on a 4%–12%

Bis-tris NuPAGE gel at 130 V. The protein:RNA complexes were transferred to Hybond-C nitrocellulose membranes with NuPAGE

MOPS transfer buffer for 2 h at 100V.

Labeled RNA was detected by autoradiography. The appropriate region was excised from the membrane and treated with

0.2 mg/mL Proteinase K (50mMTris-HCl pH 7.5, 50mMNaCl, 0.1%NP-40, 10mM imidazole, 1%SDS, 5mMEDTA, and 5mM b-mer-

captoethanol; 2 hr 55�C with shaking) in a 500 mL reaction. The RNA component was isolated with a standard phenol:chloroform

extraction followed by ethanol precipitation with 1 mL of GlycoBlue. The RNA was reverse transcribed using Superscript III and

the miRCat-33 RT oligo (IDT) for 1 hr at 50�C in a 20 mL reaction. The resulting cDNA was amplified by PCR in 50 mL reactions using

La Taq (5 mL template, 21-26 cycles) PCR reactions were combined, precipitated in ethanol, and resolved on a 3% Metaphore

agarose gel. A region corresponding to 140 to 200 bp was excised from the gel and extracted using the Min-elute kit. Libraries

were measured with Qbit and sequenced using Illumina HiSeq with 50bp single-end reads or Illumina MiniSeq with 75bp single-

end reads.

Purification of RNA polymerase I and in vitro assay
The protein content of the supernatant was determined using the Bradford assay. Equal protein amounts (usually 1 ml cell extract,

20–30 mg) were incubated with 50–75 ml of immunoglobulin-G (rabbit IgG, I5006, Sigma) coupledmagnetic beads slurry (Dynabeads

M-270 Epoxy, 300 mg) for 1–2 h on a rotating wheel. The beads had previously been equilibrated with lysis buffer. The beads were

washed four times with 1 ml buffer B1500 (20 mMHEPES/KOH pH 7.8, 1.5 M KOAc, 1 mMMgCl2, 20% glycerol, 0.1% IGEPAL CA-
e3 Molecular Cell 79, 488–503.e1–e11, August 6, 2020
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630) and three timeswith 1 ml buffer B200 (20 mMHEPES/KOHpH 7.8, 200 mMKAc, 1 mMMgCl2, 20%glycerol). For elution, beads

were finally resuspended in 100 ml of buffer B200, supplemented with 3 ml TEV protease (HaloTEV, Promega G6602) and incubated

for 2 h at 16 �C in a thermomixer (1,000 rpm). The supernatant was collected and aliquots were stored at 4�C for short term or at

�80 �C for longer. For buffer exchange assays, TEV elution was skipped and aliquots were stored only for short term at 4�C.
10% of the purified fraction was analyzed via SDS–PAGE to monitor the purification success. Protein concentrations were

determined by comparing the intensity of Coomassie-stained RNA polymerase subunits to the defined amount of Coomassie-

stained HaloTEV protease used.

The in vitro RNA extension assay wasmodified from (Engel et al., 2013; Kuhn et al., 2007). For 1 reaction, 2 pmol of annealed RNA-

DNA-DNA scaffold was pre-incubated with�2 pmol of purified enzyme for 20 min at 20�C. Transcription was started by adding 6 mL

2x transcription buffer (TB). Elongation was performed in 1x TB (60mM (NH4)2SO4, 20mMHEPES/KOH pH 7.6, 8mMMgSO4, 10 mM

ZnCl2, 10% glycerol, 10 mM DTT) supplemented with 1 mM NTPs. The samples were incubated at 28�C for 5 min. For backtracking

assays, reaction tubes were placed on amagnetic rack, and supernatant was removed. Beadswere washedwith 200 mL buffer B200,

re-suspended in 12 mL 1x TB without NTPs and incubated at 28�C for 10 min. All reactions were stopped by addition of 2x RNA

loading dye (Thermo, R0641). Samples were heat denatured at 95�C for 5 min and resolved on 8 M urea 20% polyacrylamide

gels. Fluorescently labeled transcripts were visualized using a Fugi FLA-5100 phosphoImager and images were processed using

Multi Gauge software (Fuji).

Validation of RNAPI CRAC data
Two major aspects of the CRAC data were investigated: Contamination with mature rRNA or processed pre-rRNA and bias in

sequence recovery.

In total RNA, mature rRNAs (18S, 5.8S and 25S rRNA) are muchmore abundant than the spacer regions (50ETS, ITS1, ITS2, 30ETS)
present in the nascent transcript. However, the recovery of readsmapping to the rRNA sequences was not clearly elevated relative to

the spacers and therewas no accumulation at themature rRNA boundaries (Figure 1E). This shows that the RNAPI CRACdata are not

significantly contaminated by mature rRNAs.

During pre-rRNA transcription, the nascent transcript is cleaved at four sites; A0, A1, A2 and B0. Cleavages at A0-A2 are coupled

and predominately cleaved in the nascent transcript, but processing occurs when RNAPI has traveled�1.2Kb downstream of site A2

(Axt et al., 2014; Kos and Tollervey, 2010). Sequences terminating at sites A0, A1 and A2 were not elevated in the CRAC data (Figures

1E and S1C), confirming that the processed pre-rRNAs were not recovered. Mapped 30 ends from cDNAs are therefore expected to

represent the positions of bona fide 30 ends in nascent transcripts.

We also performed experiments to validate the Rpa190 CRAC data and detect potential bias in target recovery. Notably, all of

these analyses yielded RNAPI distributions that were consistent with the results of CRAC with Rpa190 (Figure 1F).

1: To reduce the possibility of non-specific cross-linking to Rpa190, we analyzed a range of shorter UVC cross-linking times.

These showed minimal changes (Figure S1D).

2: To exclude steric preferences in RNA cross-linking, we HTP-tagged the second largest subunit of RNAPI, Rpa135 (Figure S1E).

This showed a similar 50 bias to Rpa190, and substantial overlap at the level of individual peaks, as shown by a peak metaplot

(Figure S1E, embedded panel; see Figure S1F and STAR Methods for details on peak metaplot generation).

3:We performed a PAR-CRAC experiment, in which RNAwasmetabolically labeled with 4-thiouracil (4SU) and cross-linked using

UVA (Figure S1G). 4SU crosslinking involves different photochemistry andmay be less prone to recover non-specific crosslinking

relative to UVC (Shchepachev et al., 2019). The peak metaplot for PAR-CRAC was very similar to the CRAC data (Figure S1G).

However, some enrichment for U-rich sites was observed in PAR-CRAC, as expected (Figure S1H).

4: Wild-type yeast strains generally have �150-200 ribosomal repeats, of which around 50% are reported to be actively tran-

scribed, making it conceivable that the apparent 50 end bias (Figure 1E) arises from premature termination on ‘‘inactive’’ repeats.

To test this possibility, Rpa190 CRAC was performed in a yeast strain with only 25 rDNA repeats, all of which are highly tran-

scribed. The RNAPI profile in this strain was almost identical to the wild-type (Figure S1I).

5: We considered the possibility that RNA interacting with the outside of the polymerase might contribute to the signals, although

the requirement that recovered RNA has a 30 OH group made this unlikely. To test this, we considered only cDNA sequences

shorter than 20 nt, since this region will be almost entirely located within the transcription bubble and RNA exit channel. This anal-

ysis also revealed the distinctive peaks for RNAPI distribution (Figure S1J).

6: To address the possibility that periodic peakswith the 50 ETS are generated by ambiguousmapping to repetitive sequences, we

prepared a reference genomewith single copy of the rDNA.We then performed unambiguousmapping, which does not report any

sequences that map to more than one location. Unambiguous mapping returned a spiky profile, closely matching the results of

random mapping (Figure S1K), showing that mis-mapping does not make a major contribution.

7:We considered that the distribution of RNAPImight be influenced by chromatin structure. The actively transcribed rDNA repeats

are associated with the DNA binding protein Hmo1, which is related to human HMG1 (Hall et al., 2006; Merz et al., 2008; Wittner

et al., 2011). In addition, DNA torsion can also be relieved by writhe, whichmight be promoted by toroid formation, constrained by

DNA-binding proteins such as Hmo1. Rpa190 CRAC was performed in an hmo1D strain (Figures S2A and S2B) but still showed a

50 bias and stable peaks over the 50 region of the rDNA.
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8: Finally, we considered bias originating from the CRAC experimental protocol. Mainly the relationship between nascent RNA

recovery, RNA structure, UV crosslinking and adaptor ligation steps during library preparations. The arguments against this hy-

pothesis are as follows: (1) nascent RNA interacting with RNAP is buried inside the channel in its extended, unstructured form,

therefore, there should be no influence of structure on the UV crosslinking efficiency. (2) The CRAC protocol involves highly dena-

turing conditions to reduce the background. Following protein denaturation, the RNA could be susceptible to folding, potentially

sequestering RNA ends and hindering adaptor ligation. In such a case we would expect lower recovery of highly structured RNAs,

e.g., hairpin loop regions. However, this is in marked contrast to our results (Figure S2F).

From this validation we conclude that CRAC approximates the genuine distribution of RNAPI at most sites along the rDNA tran-

scription unit in vivo. All subsequent analysis was performed using the median of six biological replicates (Figure S1L). Moreover,

we generated randomized datasets and compared RNAPI CRAC with them using a Spearman test (Figure S1M). This revealed

that RNAPI CRAC data present a non-random distribution.

Development of Mathematical model for RNAPI transcription
The numerical model for elongation steps of RNAPI transcription kinetics, was developed using input data taken from biological ex-

periments wherever possible (Table S1).

Justification of parameters of the model

1. Quantification of molecules of RNA polymerases
To estimate total copy numbers for RNAPI, RNAPII and RNAPIII, we re-analyzed three independent studies: (Chong et al., 2015;

Ghaemmaghami et al., 2003; Kulak et al., 2014). An average and median for all subunits were calculated for each RNA polymerase

(Figure S4A). These calculations were repeated for all specific subunits for each RNA polymerase and presented similar trend. Data

expressed in arbitrary units (Chong et al., 2015) were used only to confirm ratios between RNA polymerases. Analysis of these data

indicated that RNAPI and II are present at similar levels of 5,000 - 6,000molecules per cell, whereas RNAPIII is present in 2,500-3,000

copies.

2. Transcription initiation rate
Rapidly dividing yeast cells produce �200,000 ribosomes per generation (�100 min), corresponding to �2,000 ribosomes min-1.

There are�150-200 rDNA repeats, of which�50% are transcriptionally active (Dammann et al., 1993). Each transcription unit should

therefore release �20-27 completed pre-rRNA transcripts per minute (1 transcript every 2.2 - 3 s). The transcription initiation rate

cannot therefore be less than 1 initiation per 2.2 - 3 s, but might be greater if the processivity of RNAPI is less than 100% or the elon-

gation rate is non-uniform.

Transcription initiation by RNAPI has undoubtedly evolved to be extremely efficient. We postulate that polymerase may be re-

cruited to the rDNA promoter faster than the time needed for the previous polymerase to clear the initiation site, making promoter

clearance rate limiting. Therefore, we modeled RNAPI transcription initiation as a stochastic process with a success probability be-

tween 0.33 and 1.0 s-1. We tested rates of stochastic initiation over this range, limited by the requirement that the preceding RNAPI

has cleared the initiation region. A mean stochastic initiation rate of 0.8 s-1 generated RNAPI loading consistent with data fromMiller

spreads (�50 per rDNA unit) (Figure S4I).

3. RNAPI number per rDNA transcription unit and RNAPI spacing
The maximum average number of RNAPI molecules per rDNA transcription unit can be estimated from the number of RNAPI in the

cell (5,000-6,000 molecules) and rDNA repeats (75-100), giving a range of 50-60. This figure is in good agreement with quantification

of RNAPI complexes from Miller chromatin spreads (�50; Table S1). The number of RNAPI molecules on the 7 Kb long rDNA tran-

scription unit gives an average RNAPI spacing of 120-140 nt.

spacing =
7000 nt�

RNAPI molecules
active rDNA repeats

�

This value is in good agreement to independent calculations derived from metabolic labeling experiment (Kos and Tollervey, 2010).

The average velocity of RNAPI (40 nt sec-1) and transcript release rate (1 per 3 s; from initial calculations above) predicts a spacing of

120 bp. Measurements of the relative positions of RNAPI in Miller spreads by tomography, indicated minimal center to center sep-

aration of 15 nm (Neyer et al., 2016), which is estimated to reflect a 44 bp. This figure may therefore represent a minimal spacing

between RNAPI molecules in vivo.

4. Elongation rate of RNAP in the discrete model
The velocities of RNA polymerases have been determined in vivo and in vitro many times and some examples were summarized in

Table S2. Interestingly in vitro measurements are systematically lower than in vivo.
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Approximate RNAPI elongation rates can be also obtained from number of ribosomes produced per generation (200,000), yeast

doubling time (100 min), pre-rRNA length (�7000 nt) and number of transcribing RNAPI molecules (5000 - 6000).

VRNAPI =
200 000 ribosomes $7000 nt

6000 seconds $RNAPI molecules

Based on the published data,�40 nt$sec-1 is expected to be the overall average velocity of transcribing RNAPI. However, pause-free

elongation is very unlikely in vivo. Therefore, we used 50 nt sec-1 as the intrinsic, average RNAPI elongation rate (VInt) in our model.

Analysis of elongation in vitro determined the distribution of nucleotide incorporation (elongation) rates at a nucleotide level in

E. coli using single-molecule measurements (Adelman et al., 2002). These rates directly reflect the range of time delays before elon-

gation or backtracking. It is described by two Gaussian functions: The first function, comprising 7.8% of the area, represents the

paused state and is centered at 0.9 nt sec-1 (Figure S4B, red line). The second function reflects active elongation and centered at

12.8 nt sec-1 (Figure S4B, green line). We adopted this function for RNAPI, using an in vivo elongation velocity centered at 50 nt

sec-1 (Figure S4B’).

RNA polymerase elongation is based on a Brownian ratchet mechanism, in which each step of elongation and catalysis is discrete

and independent from other steps. Classical mechanics andmomentum do not apply to molecular processes, and we therefore con-

structed a stochastic and discrete model. At each time step, there is a probability of moving 0, +1 or�1 nucleotides according to the

distribution presented in Figure S4B’.

VElongation = N
�
VInt; ðs$VIntÞ2

�
;where VInt = 50 and s= 0:4
VPaused = N
�
VPaused;sPaused

2
�
;where VPaused = 0:9 and sPaused = 1:5

For each particle, with probability p = 0:078, VRandom is drawn from the Vpaused distribution, and otherwise from the

Velongationdistribution.

Having computed the velocity VRandom for a given time step of length dt, the corresponding probability of jumping in that time step is

given by p = jV j$dt. This is essentially the expected distance moved in one time-step. With probability p, the RNAP jumps in the di-

rection of V in that time step.

This probability can be modified by following factors:

(a) DNA torsion

(b) Promotion of RNAP elongation by nascent structure forming behind the polymerase

(c) Decrease of RNAP elongation by a strong RNA:DNA hybrid within the transcription bubble.
5. RNAP convoys imply DNA torsion effects
RNAP elongation along a DNA helix requires two types of movement: forward and rotary. In principal, either the DNA or polymerase

can rotate with a frequency of�240 rpm. However, the combined mass of all polymerases plus nascent pre-ribosomes is very much

greater than that of the rDNA. The rDNA is nucleosome-free and loaded with multiple RNAPI complexes (�50 at 0.5 MDa each), each

associated with up to 7 Kb of pre-rRNA transcript (up to 2.3 MDa) and a multi-megadalton pre-ribosome (6 MDa for the SSU proc-

essome alone) containingmany assembly factors (Turowski and Tollervey, 2015). The difficulty of moving these very large complexes

through the highly viscous nucleolus environment (Bormuth et al., 2009), and steric problems that would be entailed by rapid rotation

of the pre-rRNA around the DNA, make it very likely that the rDNA is rotated through an array of polymerases, in agreement with the

model of immobilized RNAP (Iborra et al., 1996).

If a group of RNAPI complexesmove along theDNA together, this will not result in over- or under-winding of the DNA. This suggests

that the RNAPI array on the rDNA acts cooperatively to rotate the DNA template. DNA topoisomerases I and II (Top1 and Top2) can

relax positive or negative supercoils and are necessary to maintain transcription of the rDNA (Brill et al., 1987; El Hage et al., 2010).

However, the abundance of Top1 is estimated to be very much lower than the RNA polymerases. Quantification reported by SGD

(https://www.yeastgenome.org) based on multiple analyses: Top1; 4130 ± 2517 molecules per cell. Sum of the largest subunits of

all three RNA polymerases; 33674 ± 12715. Moreover, topoisomerases can unwind a minimum of one complete turn of the DNA,

whereas a stalling force is generated by substantially less overwinding for polymerases with spacing typical for the rDNA (120 bp)

(Heberling et al., 2016; Ma et al., 2013; Tantale et al., 2016).

We therefore propose that RNAPI complexes move as a group along single rDNA transcription unit while DNA rotates through the

polymerases. Notably, similar models have been proposed for highly transcribed RNAPII genes associated with ‘‘convoys’’ of RNA

polymerases resulting from transcriptional bursting (Lesne et al., 2018; Tantale et al., 2016), and for bacterial polymerase (Heberling

et al., 2016; Kim et al., 2019). Finally, DNA rotation during transcription was observed directly in E. coli RNAP (Harada et al., 2001).
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In the model for RNAP convoys, the distance between initially loaded RNAP molecules is maintained by torsion in the DNA helix.

Transcription elongation of RNAP includes a translocation step based on Brownian motion. Only this step is assumed to be force

sensitive (Dangkulwanich et al., 2013). Single-molecule elongation of bacterial RNAP can be stopped in vitro by application of a stall-

ing force of 15-25 pN (Bustamante et al., 2004).

Overwinding and underwinding of DNA (s) generates force. s= 0:00 (0%) when DNA is relaxed (1 turn / 10.5 bp, 10 turns / 105 bp)

and s= 0:10 (10%) when DNA is 10% overwound (1.1 turn / 10.5 bp, 11 turns / 105 bp). When all polymerases within the convoy are

moving along DNAwith the same velocity (relative velocity vrel = 0) the force generated by DNA torsion equals 0. However, when one

polymerase moves faster than its neighbors (vrel > 0), this results in DNA overwinding in front of RNAP and underwinding behind it

(Figure 4A). Both of these effects will favor slowing of the middle RNAP.

A DNA torque t = 11 nm$pN was reported to stall bacterial RNAP in vitro (Ma et al., 2013). [Note that DNA torque and stalling force

have different units.] An elegant solution was proposed to calculate a relationship between DNA torque t and DNA overwind s (Fig-

ure S4C; Heberling et al., 2016).

t =
mp2r4

10:5

�
ln

�
xPInit

dxP

�
� ln

�
xMInit

dxM

�	
;

Where m= 300 pN=nm2 is the shear modulus for DNA, r = 1 nm is the radius of DNA, 10.5 is number of bases per turn. s is relationship

between loading distance xPInit or xMInit and current distance dxP or dxM. The current distance is calculated as dxP= xn+ 1 � xn and

dxM= xn � xn�1 (Figure 4A).

The force F acting on the RNAP is calculated from DNA torque t as previously described (Ma et al., 2013; Figure S4D).

F = ðt $q =dÞ, where q represents angular rotation of RNAP after 1 bp translocation 0.6 radian or 34�, converted from 10.5 bp per

turn. d is the contour length of DNA per bp (�0.34 nm).

It is notable that the value of sigma s causing RNAP stalling will be higher in vivo due to following reasons: (1) We assumed that

highly packed and viscous environment of the nucleolus causes RNAPI to transcribe as a convoy. However, in vivo the ability of

RNAPI to rotate around the rDNA will be greater than zero. Therefore, an increased limit of sigma s includes this capacity to spin

around the rDNA without introducing an additional parameter. (2) The average velocities of bacterial RNAP or RNAPI in vivo are

R 2 fold higher than in vitro (Table S2). The previously developed function describing bacterial RNAP velocity in relation to DNA tor-

que t is based on in vitro data, hence we assume that RNAPI stalling force in vivo is higher and decided to increase sigma s

appropriately.

We therefore used s= ±0:05 as a parameter in our model. Much higher values are unlikely since s= ±0:20 can lead to phase tran-

sition (Sarkar et al., 2001) and very low negative torque t may lead to DNA melting.

In the model, DNA torsion modifies VRandom as follows:

VRandom+Torque = VRandom + c

�
1� xPInit � b

dxP� b

�
� c

�
1� xMInit � b

dxM� b

�

Where xPInit or xMInit are initial distances between polymerases when initiated (engaged on the DNA), dxP or dxM are current dis-

tances between polymerases, b is the length of the transcription bubble (11 nt for RNAPI, PDB: 5M5X (Tafur et al., 2016)) and c is

a constant describing DNA stiffness. In the basic model for RNAP convoys, the initial separation of RNAP is established by the initi-

ation rate, and then maintained by DNA torque.

6. Range of DNA stiffness constant c
The VRandom+Torque equation allows calculation of the DNA stiffness constant c in relation to DNA overwind s. We use a simplified sys-

tem of three RNAPs with an initial separation of 100 nt (as Figure 4A). Then we solved the equation, in which a given value for c should

be strong enough to stop RNAP transcribing with average velocity VInt when % of DNA overwind s is equal to r:

c =
�VInt

100

100+ r
� 100

100� r

VInt is the intrinsic velocity of RNAPI and equals 50 nt$sec-1. This gives values of DNA stiffness constant c for a given velocity VInt

(Figure S4E). Based on these calculations the model used a DNA constant of c = 500.

7. Low Entrainment Region
The RNAP convoy model is justified by the energetic cost of spinning the DNA, friction, and the ratio between topoisomerases and all

three eukaryotic RNAPs. Theoretically, only two flanking topoisomerases might be sufficient act as swivels to release torsion gener-

ated from DNA rotation by an entire convoy of RNAP. Notably, experimental data demonstrated that depletion of both topoiso-

merases causes severe perturbation in rDNA transcription when RNAPI is around 2 Kb into the transcription unit (El Hage et al.,

2010). This was shown using a range of methods including northern hybridization, ChIP and chromatin spreads. Decreased Top1

activity is accompanied by an increased number of R-loops, as also observed in the human rDNA (Manzo et al., 2018).
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We interpret this observation as showing that RNAPI molecules are initially able to spin around the DNA, allowing changes in their

relative positions without generating torsion, but become locked by torsion at around +2 Kb. To incorporate this mechanism into the

model, we progressively engaged torsion within RNAP convoys over the initial 2 Kb of the rDNA. We used a linear engagement

scheme, where at position 0 RNAP moves according to discrete stochastic elongation, at position 1000 DNA torque was applied

in 50% and becomes fully engaged at position 2000 and later. This Low Entrainment Region was implemented as three elements:

(1) Decreased DNA stiffness constant c. (2) Reset of xInit position. (3) A small decrease in the intrinsic RNAPI velocity (%20%) tomimic

the cost of friction. All three elements were applied progressively.

8. Role of nascent RNA in transcription elongation
Finally, we introduced our findings on the effects of sequence in the RNA:DNA hybrid within the transcription bubble and the structure

of the extruded RNA into the model.

Nascent RNA interacts with template strand of DNA within transcription bubble. Stronger hybrids usually have a higher G+C con-

tent, particularly with G in the DNA sequence, and this correlates with slower RNAP translocation. We calculated the DG of RNA:DNA

hybrids over an 8 nt rolling window (dGRNA:DNA) along the rDNA as previously described (see El Hage et al., 2014; Turowski

et al., 2016).

The folding energy of nascent RNA was calculated using a 65 nt rolling window, offset by 15 nt (dGStructure), as described in Ma-

terials and Methods. Stronger structures limit translocation backward and promote translocation forward. Hence, RNA structures

adjacent to RNAPI would act on elongation rate positively. On the basis of the backtracking assay (Figure 3) we applied this param-

eter only for structureswith folding energy below the threshold value (DG%�11 kcal$mol-1). This excluded an artificial situationwhen

long, but very weak structures would apparently have a sufficiently low DG to promote translocation.

Both values were incorporated into a model as modifiers of RNAP jump probability as follows:

V = VRandom+Torque +dGStructure
Strength $dG

Structure � dGRNA:DNA
Strength $dGRNA:DNA

Values of strengths were fitted. Further details are in the model optimization section.

9. Optional elements of the model
A number of additional factors were considered during development of the model:

a) Topoisomerase activity and DNA looping

In our model topoisomerases induce single-strand cuts to spin DNA when a convoy of RNAP generates sufficient rotating force. The

canonical role of topoisomerases is associated with resolving DNA supercoiling and we tested this possibility. Top1 can unwind a

minimum of one complete turn of DNA. Therefore, we applied Top1 activity as a probability function of resolving a complete turn

when distance between adjacent RNAP particles was greater than 25 nt. As demonstrated on Figure S4F Top1 activity has minor

effect on the overall profile.

Notably, implementation of DNA looping into the model would be numerically similar to topoisomerase. We therefore predict that

incorporation of DNA looping would have effects similar to Top1 activity.

b) Premature termination

A potential explanation for the 50 bias in the RNAPI CRAC profile was premature termination. RNAPII is known to undergo transition

from initiation state to elongation state that is associated with changes of phosphorylation status of C-terminal (Milligan et al., 2016).

We considered that RNAPI might undergo a similar transition, with the region of the 50 bias reflecting a region in which RNAP has an

elevated probability to terminate. Application of premature termination recapitulates the overall shape of the profile but greatly re-

duces the total number of RNAP per transcription unit (Figures S4G and S4H). We were unable to find a probability where both

criteria, (i) overall profile and (ii) number of RNAP molecules per rDNA, were satisfied. Matching the 50 bias was accompanied by

a 30% lower number of RNAPI molecules per rDNA than observed using Miller spreads. Nevertheless, cannot exclude premature

termination of RNAPI or at least partially playing role in establishing the 50 bias. However, from our modeling, it does not appear

to be a key factor.

c) R-loops

R-loops arise when nascent RNA hybridizes with melted DNA helix and constrain progression of RNAP. To include r-loops as a

parameter of transcription elongation model their length and position would have to be established. The distribution of RNA-DNA

hybrids has been mapped, genome-wide by methods using anti-RNA:DNA antibody (El Hage et al., 2014; Wahba et al., 2016).

The median length of r-loop prone genomic regions in yeast was reported to be 500 nt (Wahba et al., 2016), but is unlikely to be

the length of actual DNA:RNA hybrids within the rDNA region. Nascent pre-rRNA is co-transcriptionally bound and processed by

a multi-protein complex, so called small subunit processome (Turowski and Tollervey, 2015). Only short fragments of free, nascent

pre-rRNA are expected to be available for potential RNA:DNA hybrid formation, making the availability of single stranded, nascent

RNA rate-limiting. This availability will be anti-correlated to folding energy of nascent RNA extruded from the RNAP; i.e., hairpins

within the 50ETS region should also reduce formation of r-loops. In consequence, the potential for r-loop formation is indirectly im-

plemented into the model by a RNA folding element and there is no need to introduce an additional factor.
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Numerical convergence of the model
The stochastic model contains three numerical parameters: the time step, the total time for each independent simulation and the

number of independent simulations to be averaged.

The principle constraint on the time step is that the distance moved in a single time step should be 0, 1 or �1 (since only single

nucleotide jumps are permitted). As an estimate, we note from Figure S4B’ that the probability of sampling a velocity larger than

120 nt$sec-1 is very small. We hence take an initial time step estimate of 1/120 �0.008. We performed test simulations at this and

half the time step (0.004) and noted that there were no significant differences. All remaining simulations were performed with this

time step.

We determined the total time necessary to run the model by monitoring expected values, such as the number of particles and

the mean separation, requiring that these had reached equilibria. The main purpose of this was to remove bias caused by initiation

of the RNAPmolecules along the transcription unit. We found no significant differences when the total time was between 1500 s and

3000 s.

Increasing the number of independent simulations decreases the statistical noise in the final result. This can also be achieved by

increasing the total time of each simulation, but due to parallelization, it is more efficient to increase the number of simulations. We

performed convergence studies for a range of parameters and determined that there is no significant difference between results with

256, 512, and 1024 independent simulations. For the parameter studies below, due to the large number of parameter combinations,

we used 256 simulations, whereas for the single chosen parameter set we used 1,024.

Model optimization
Themodel was optimized toward twomajor criteria: (1) The number of RNAPI molecules present on the transcription unit (Figure S4I).

(2) The general shape of the occupancy plot relative to that obtained with CRAC (Figure 1E).

Given the constraints on the parameters discussed above, we tested all parameter combinations with transcription initiation (add-

Prob) = {0.7,0.8,0.9}11, DNA stiffness constant c = {400,500,600}, dGStructure
Strength = {1,1.25,1.5}, dGRNA:DNA

Strength which was represented as a

ratio to dGStructure
Strength , with ratio = {0.32,0.48,0.64}, threshold value of folding energy (structure2consider) = {-10,-11,-12}. This gave us a

total of 35 = 243 sets of parameters, with each varying approximately 10%–20% from the chosen value. Figure S4J demonstrates that

themain features of the results (shape and position of peaks, general profile, number of particles), are robust under these variations in

the parameters. We also demonstrate that the chosen parameters give a representative dataset, lying approximately in the middle of

the set of simulations over all parameters.

Data sampling
In order to mimic the experimental measurement process, we applied a smooth cutoff function to the data, essentially reducing the

measurement of RNAPI in areas of low density/high velocity. The cutoff function is given by

rhoExp = cutOff$rho
cutOff = 0:5

�
1 + erf

�ðrho� rho0

s

�	

where rho0 and s are parameters that determine the cutOff position and range. We note that the in silico density profiles are normal-

ized so that they have unit area; they are probability distributions. Tomaintain this, the ‘experimental’ densities are renormalized after

the cutOff .

Relative contribution of model elements
To calculate the relative contributions of different forces to the modeled elongation, absolute values were used. RNA structures al-

ways act positively, RNA:DNA hybrids act negatively, whereas DNA Torsion can act both, positively or negatively. All three modifiers

were summed for each nucleotide position and their relative contributions were calculated as a percent of that sum.

QUANTIFICATION AND STATISTICAL ANALYSIS

Pre-processing and data alignment
Illumina sequencing data were demultiplexed using in-line barcodes and in this formwere submitted toGEO. First quality control step

was performed using FastQC software (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) considering specificity of

CRAC data. Raw reads were collapsed to remove PCR duplicates using FASTX-collapser v0.0.14 (http://hannonlab.cshl.edu/

fastx_toolkit/) then inline barcodes were removed using pyBarcodeFilter.py script from pyCRAC package v3.0 (Webb et al.,

2014). The 30 adaptor were removed using flexbar v3.4.0 (Dodt et al., 2012) with parameters -at 1 -ao 4 –u 3, and filtered to retain

only reads containing the 30 adaptor.
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All datasets were aligned to the yeast genome using Novoalign v2.07.00 (http://www.novocraft.com) with –r random and saved in

novo or sam file format. Second quality control step was performed using pyReadCounters script (pyCRAC package) which calcu-

lates overlaps between aligned cDNAs and yeast genomic features. The 30 end or the 50end of reads were selected using in-house

awk script and 1 nt resolution BigWig files were generated using bamCoverage v3.1.3 script from deepTools package (Ramı́rez et al.,

2016). Sam file operations were performed using SAMtools v1.9 (Li et al., 2009).

RNA polymerase I profile
Downstream analyses were performed using python 2.7 Jupiter notebooks, python libraries (pandas v0.19.2, numpy v1.16.0, scipy

v1.2.0, matplotlib v2.2.3) and in-house scripts submitted as an update of gwide toolkit v0.5.27 (https://github.com/tturowski/gwide;

Turowski et al., 2016). All reads mapping to the gene encoding pre-rRNA (RDN37 gene with 300 nt overhangs) were summed up to

1 and fraction of reads was used further, adding 10�7 pseudo count. There are two copies of the RDN37 gene in the reference

genome; RDN37-1 and RDN37-2. Subsequent analyses used the RDN37-1 gene. For simplicity, this is referred to as RDN37 in

the text.

The data at 1 nt resolution were quite noisy and we therefore smoothed them with centered Blackman function (window 10).

CRAC profiles were presented similar to boxplots of six biological replicates (Figure S1L): median as a solid line, range between

second and third quartile with darker color and range between minimum and maximum as lighter color. The basic profile of RNAPI

CRAC was established on the basis of six independent biological and technical replicates performed by two different researchers

(TWT and EP).

The data were randomized to compare obtained profile with random distribution of similar data, especially within part of

25S rRNA. To generate random data raw reads were shuffled using random functions (shuffled - numpy.random.permutation,

choice - numpy.random.choice) and post-processed (calculating fraction of reads, smoothing). Spearman correlations for indepen-

dent generation of randomized datasets confirmed that distribution is non-random (Figure S1M).

Profile analysis: peak/trough calling and metaplots
Peak/trough calling was performed using argrelextrema function from signal processing library scipy.signal (v1.3.0) using order value

most appropriate to applications: 50 for comparison between experiments, 35 for comparison with folding energy and 20 for analysis

of GC-richness. To generate peak/trough metaplot for each peak or trough two sided window around the feature was superimposed

with all other peaks. Mean for all windows were calculated and data for each dataset were presented as peak/trough metaplot

(Figure S1F).

For RNAPII analysis, due to different length of transcripts, reads were additionally normalized to fraction of reads in the window

followed by calculation of mean. For each position an average of folding energy was calculated for a 40 nt window around each

feature. Wilcoxon signed rank test was applied.

CRAC versus PAR-CRAC comparison
To investigate differences between CRAC and PAR-CRAC their normalized RDN37 profiles were subtracted from each other and

regions where the difference was R 0.0005 were treated as specific for UVA (PAR-CRAC) or UVC (CRAC). For all specific positions

an average frequency of nucleotides in a short (1 to 15 nt) window was calculated and two tailed student test was applied. p value <

0.005 was found for windows 1 to 3 nt.

Analysis of G+C-richness
Content of guanine (G) or cytosine (C) bases in a given window is called G+C-richness. A given peaks or troughs G+C-richness was

calculated depending on application using window: 10 nt upstream, 10 nt downstream or 10 nt upstream plus 10 nt downstream. P

values were calculated using two-sided t test.

Folding of nascent RNA
Each sequence was divided into segments using a rolling window of w nt, where w was the length of RNA considered to form struc-

ture (chosen 65 nt, tested range 10-80 nt). The folding energy at 30�Cwas calculated using hybrid-ss-min fromUNAfold package v3.8

(Markham and Zuker, 2008). Folding energies were associated with the position of last nucleotide in the sequence and off set was

applied (chosen 15 nt, tested range 0-80 nt). The offset aimed to exclude the 30 end of the nascent RNA immersed in the RNAP com-

plex and calculate folding energy only for the extruded RNA. The folding energy for each position was converted to BigWig files. The

data for the 65 nt window are provided as Data S1. The BigWig files for all other windows tested (10 – 80 nt at 5 nt intervals) are avail-

able from the authors.

Analysis of splicing
Analysis of splicing speed-ranked genes used published data (Barrass et al., 2015). Genes were selected as previously described.

Non-ribosomal, protein coding genes were sorted according to their AUC value and 1/3 of fastest (fast) and 1/3 of slowest (slow)

genes were selected.
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For analysis of the 30 SS selection in yeast the features of known introns were extracted as described (Pleiss et al., 2007) using

the MEME suite (Bailey, 2011; Machanick and Bailey, 2011). The following algorithm was implemented to predict introns de

novo: (1) find all branch points (BP), (2) for each BP find the 50 SS, upstream to the BP and non-overlapping with it, (3) find

the 30 SS at least 4 nt away from the last nucleotide of the BP. This approach was able to predict correctly positions of 236

of 256 annotated yeast introns. For some genes an additional, consensus 30 SS was predicted but skipped in the spliced prod-

uct. Only genes where the predicted but skipped 30SS and the utilized 30 SS were separated by at least 40 nt were selected for

this analysis. Folding energy is presented, normalized to the 30 SS, to highlight changes in folding as the polymerase moves

downstream of this position. P values were calculated using Wilcoxon rank-sum test for ± 10 nt around the position 60 nt down-

stream of each potential 30 SS.

Statistical analyses
All plots and statistical analyses of this work were performed using python 2.7 Jupiter notebooks and python library scipy v1.2.0.

Wilcoxon rank-sum test was used unless stated otherwise. t test was used for G+C richness analysis (Figures 2B and S2E) and Wil-

coxon signed-rank test was used for Figures 6E and 6F. Statistical details can be found in the figure legends, including the statistical

tests used, exact value of n and p value.

Boxplots present 2nd and 3rd quartile, line marks median and whiskers range between 5th and 95th percentile.
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