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Abstract Fitness effects of mutations depend on environmental parameters. For example,9

mutations that increase fitness of bacteria at high antibiotic concentration often decrease fitness in10

the absence of antibiotic, exemplifying a tradeoff between adaptation to environmental extremes.11

We develop a mathematical model for fitness landscapes generated by such tradeoffs, based on12

experiments that determine the antibiotic dose-response curves of Escherichia coli strains, and13

previous observations on antibiotic resistance mutations. Our model generates a succession of14

landscapes with predictable properties as antibiotic concentration is varied. The landscape is15

nearly smooth at low and high concentrations, but the tradeoff induces a high ruggedness at16

intermediate antibiotic concentrations. Despite this high ruggedness, however, all the fitness17

maxima in the landscapes are evolutionarily accessible from the wild type. This implies that18

selection for antibiotic resistance in multiple mutational steps is relatively facile despite the19

complexity of the underlying landscape.20

21

Introduction22

Sewall Wright introduced the concept of fitness landscapes in 1932 (Wright, 1932), and for decades23

afterwards it persisted chiefly as a metaphor, due to lack of sufficient data. This has changed consid-24

erably in recent decades (de Visser and Krug, 2014; Hartl, 2014; Kondrashov and Kondrashov, 2015;25

Fragata et al., 2019). There are now a large number of experimental studies that have constructed26

fitness landscapes for combinatorial sets of mutations relevant to particular phenotypes, such as27

the resistance of microbial pathogens to antibiotics (Weinreich et al., 2006; DePristo et al., 2007;28

Marcusson et al., 2009; Lozovsky et al., 2009; Brown et al., 2010; Schenk et al., 2013; Goulart et al.,29

2013; Mira et al., 2015; Palmer et al., 2015; Knopp and Andersson, 2018), and the genomic scale30

of these investigations is rapidly growing (Wu et al., 2016; Bank et al., 2016; Domingo et al., 2018;31

Pokusaeva et al., 2019). Mathematical modeling of fitness landscapes has also seen a revival, moti-32

vated partly by the need to quantify and interpret the ruggedness of empirical fitness landscapes33

(Szendro et al., 2013; Weinreich et al., 2013; Neidhart et al., 2014; Ferretti et al., 2016; Blanquart34

and Bataillon, 2016; Crona et al., 2017; Hwang et al., 2018; Kaznatcheev, 2019; Crona, 2020). Con-35

ceptual breakthroughs, such as the notion of sign epistasis (where a mutation is beneficial in some36

genetic backgrounds but deleterious in others), have shed light on how ruggedness can constrain37

evolutionary trajectories (Weinreich et al., 2005; Poelwijk et al., 2007, 2011; Franke et al., 2011;38

Lobkovsky and Koonin, 2012; Zagorski et al., 2016).39

Despite this progress, a limitation of current studies of fitness landscapes is that they focus40
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mostly on G × G (gene-gene) interactions, and little on G × G × E (where E stands for environment)41

interactions, i.e on how changes in environment modify gene-gene interactions. A few recent42

studies have begun to address this question (Flynn et al., 2013; Taute et al., 2014; Gorter et al.,43

2018; de Vos et al., 2018). In the context of antibiotic resistance, it has been realized that the fitness44

landscape of resistance genes depends quite strongly on antibiotic concentration (Mira et al., 2015;45

Stiffler et al., 2015; Ogbunugafor et al., 2016). This is highly relevant to the clinical problem of46

resistance evolution, since concentration of antibiotics can vary widely in a patient’s body as well47

as in various non-clinical settings (Kolpin et al., 2004; Andersson and Hughes, 2014). Controlling48

the evolution of resistance mutants thus requires an understanding of fitness landscapes as a49

function of antibiotic concentration. Empirical investigations of such scenarios are still limited, and50

systematic theoretical work on this question is also lacking.51

In the present work, we aim to develop a theory of G × G × E interactions for a specific class of52

landscapes, with particular focus on applications to antibiotic resistance. The key feature of the53

landscapes we study is that every mutation comes with a tradeoff between adaptation to the two54

extremes of an environmental parameter. For example, it has been known for some time that55

antibiotic resistance often comes with a fitness cost, such that a bacterium that can tolerate high56

drug concentrations grows slowly in drug-free conditions (Andersson and Hughes, 2010; Melnyk57

et al., 2015). While such tradeoffs are not universal (Hughes and Andersson, 2017; Durão et al.,58

2018), they certainly occur for a large number of mutations and a variety of drugs.59

Tradeoffs can also arise in complex scenarios involving multiple drugs. It has been reported60

in Stiffler et al. (2015) that certain mutations in TEM-1 �-lactamase are neutral at low ampicillin61

concentration but deleterious at high concentration, and that a number of the latter mutations62

also confer resistance to cefotaxime. Therefore in a medium with cefotaxime and a moderately63

high concentration of ampicillin, it is possible that these mutations will be deleterious at low64

cefotaxime concentrations but beneficial at high cefotaxime concentration. Fitness landscapes65

with adaptational tradeoffs are therefore also of potential relevance to evolution in response to66

multi-drug combinations.67
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Figure 1. Schematic showing dose response
curves of a wild type and a mutant. To the left

of the intersection point A the wild type is

selected over the mutant, whereas to the right

of A the mutant is selected.

Our starting point for understanding these land-68

scapes is the knowledge of two phenotypes that are69

well studied – the drug-free growth rate (which we70

call the null-fitness) and the IC50 (the drug concen-71

tration that reduces growth rate by half), which is72

a measure of antibiotic resistance. These two phe-73

notypes correspond to the two extreme regimes of74

an environmental parameter, i.e zero and highly in-75

hibitory antibiotic concentrations. The function that76

describes the growth rate of a bacterium for antibi-77

otic concentrations between these two extremes78

is called the dose-response curve or the inhibition79

curve (Regoes et al., 2004). When tradeoffs are80

present, the dose-response curves of different mu-81

tants must intersect as the concentration is varied82

(Gullberg et al., 2011). This is schematically shown in83

Figure 1. The intersection of dose-response curves84

of the wild type and the mutant happen at point A,85

swapping the rank order between the two fitness values. The intersection point is known as the86

minimum selective concentration (MSC), and it defines the lower boundary of the mutant selection87

window (MSW) within which the resistance mutant has a selective advantage relative to the wild88

type (Khan et al., 2017; Alexander and MacLean, 2018).89

When there are several possible mutations and multiple combinatorial mutants, a large number90

of such intersections occur as the concentration of the antibiotic increases. This leads to a succes-91
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sion of different fitness landscapes defined over the space of genotype sequences (Maynard Smith,92

1970; Kauffman and Levin, 1987). Whenever the curves of two mutational neighbors (genotypes93

that differ by one mutation) intersect, there can be an alteration in the evolutionary trajectory94

towards resistance, whereby a forward (reverse) mutation now becomes more likely to fix in the95

population than the corresponding reverse (forward) mutation. These intersections change the96

ruggedness of landscapes and the accessibility of fitness maxima. In this way a rich and complex97

structure of selective constraints emerges in the MSW. To explore the evolutionary consequences98

of these constraints, we construct a theoretical model based on existing empirical studies as well99

as our own work on ciprofloxacin resistance in E. coli. Specifically, we address two fundamental100

questions: (i) How does the ruggedness of the fitness landscape vary as a function of antibiotic101

concentration? (ii) How accessible are the fitness optima as a function of antibiotic concentration?102

We find that even when the null-fitness and resistance values of the mutations combine in103

a simple, multiplicative manner, the intersections of the curves produce a highly epistatic land-104

scape at intermediate concentrations of the antibiotic. This is an example of a strong G × G × E105

interaction, where changes in the environmental variable drastically alter the interactions between106

genes. Despite the high ruggedness at intermediate concentrations, however, the topology of107

the landscapes is systematically different from the oft-studied random landscape models, such as108

the House-of-Cards model (Kauffman and Levin, 1987; Kingman, 1978), the Kauffman NK model109

(Kauffman and Weinberger, 1989; Hwang et al., 2018) or the Rough Mt. Fuji model (Neidhart et al.,110

2014). For example, most fitness maxima have similar numbers of mutations that depend logarith-111

mically on the antibiotic concentration. Importantly, all the fitness maxima remain highly accessible112

through adaptive paths with sequentially fixing mutations. In particular, any fitness maximum113

(including the global maximum) is accessible from the wild type as long as the wild type is viable. As114

a consequence, the evolution of high levels of antibiotic resistance by multiple mutations (Hughes115

and Andersson, 2017;Wistrand-Yuen et al., 2018; Rehman et al., 2019) is much less constrained by116

the tradeoff-induced epistatic interactions than might have been expected on the basis of existing117

models.118

Results119

Mathematical model of tradeoff-induced fitness landscapes120

The chief goal of this paper is to develop and explore a mathematical framework to study tradeoff-121

induced fitness landscapes. We consider a total of Lmutations, each of which increases antibiotic122

resistance. A fitness landscape is a real-valued function defined on the set of 2L genotypes made123

up of all combinations of these mutations. A genotype can be represented by a binary string of124

length L, where a 1 (0) at each position represents the presence (absence) of a specific mutation.125

Alternatively, any genotype is uniquely identified as a subset of the Lmutations (the wild type is the126

null subset, i.e the subset with no mutations).127

In this paper, unless mentioned otherwise, we define the fitness f as the exponential growth128

rate of a microbial population. The fitness is a function of antibiotic concentration. This function has129

two parameters of particular interest to us – the growth rate at zero concentration, which we refer130

to as the null-fitness and denote by r, and a measure of resistance such as IC50 which we denote131

by m. Each single mutation is described by the pair (ri, mi), where ri and mi are the null-fitness and132

resistance values respectively of the ith single mutant. We further rescale our units such that for133

the wild type, r = 1 and m = 1. We consider mutations that come with a fitness-resistance tradeoff,134

i.e a single mutant has an increased resistance (mi > 1) and a reduced null-fitness (ri < 1) compared135

to the wild type. To proceed we need to specify two things: (i) how the fitness of the wild type and136

the mutants depend on antibiotic concentration, and in particular if this dependence exhibits a137

pattern common to various mutant strains; (ii) how the r and m values of the combinatorial mutants138

depend on those of the individual mutations. To address these issues we take guidance from two139

empirical observations.140
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Figure 2. Dose-response curves for E. coli in the presence of ciprofloxacin. Each binary string corresponds to a
strain, where the presence (absence) of a specific mutation in the strain is indicated by a 1(0). The five
mutations in order from left to right are S83L (gyrA), D87N (gyrA), S80I (parC), ΔmarR, and ΔacrR. The names of
the strains are given in Table 1 in Materials and Methods. (A) Dose-response curves of the wild type, the five
single mutants and eight double mutants. Unlike the experiments reported inMarcusson et al. (2009), the
mutants were grown in isolation rather than in competition with the wild type. (B) The same curves, but scaled
with the null-fitness and IC50 of each individual genotype. The dashed black line is the Hill function

(

1 + x4
)−1
.

Scaling of dose-response curves141

Marcusson et al. (2009) have constructed a series of E. coli strains with single, double and triple142

mutations conferring resistance to the fluoroquinolone antibiotic ciprofloxacin (CIP), which inhibits143

DNA replication (Drlica et al., 2009). In their study they measured MIC (minimum inhibitory con-144

centration) values and null-fitness but did not report dose-response curves. Some of the present145

authors have recently shown that the dose-response curve of the wild-type E. coli (strain K-12146

MG1655) in the presence of ciprofloxacin can be fitted reasonably well by a Hill function (Ojkic et al.,147

2019).148

Here we expand on this work and determine dose-response curves for a range of single- and149

double-mutants with mutations restricted to five specific loci known to confer resistance to CIP150

(Marcusson et al., 2009) (see Materials and Methods). Figure 2A shows the measured curves for151

the wild type, the five single mutants, and eight double-mutant combinations. The genotypes are152

represented as binary strings, where a 1 or 0 at each position denotes respectively the presence or153

absence of a particular mutation. If we rescale the concentration c of CIP by IC50 of the corresponding154

strain, x = c∕IC50, and the growth rate by the null-fitness f (0), the curves collapse to a single curve155

w(x) that can be approximated by the Hill function (1 + x4)−1 (Figure 2B). The precise shape of the156

curve is not important for further analysis. However, the data collapse suggests that we can assume157

that the dose-response curve of a mutant with (relative) null-fitness r and (relative) resistance m is158

f (c) = rw(c∕m), (1)

i.e it has the same shape as the wild-type curve w except for a rescaling of the fitness and con-159

centration axes. Similar scaling relations have been reported previously byWood et al. (2014) and160

Chevereau et al. (2015). A good biological understanding of the conditions underlying this feature is161

presently lacking, but it seems intuitively plausible that the shape w(x) would be robust to changes162

that do not qualitatively alter the basic physiology of growth and resistance.163

Limited epistasis in r and m164

An interesting recent finding reported by Knopp and Andersson (2018) is that chromosomal re-165

sistance mutations in Salmonella typhimurium mostly alter the null-fitness as well as the MIC of166

various antibiotics in a non-epistatic, multiplicative manner, i.e. if a particular mutation increases167

(decreases) the resistance (null-fitness) by a factor k1, and another mutation does the same with168

a factor k2, then the mutations jointly alter these phenotypes roughly by a factor of k1k2 (with a169
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few exceptions). We have done a similar comparison for the data on the null-fitness and MIC for170

E. coli strains inMarcusson et al. (2009). We have analyzed a subset of 4mutations for which the171

complete data set for all combinatorial mutants is available fromMarcusson et al. (2009). The data172

are shown in Table 1. Out of 11multiple-mutants, only 2 show epistasis in r and 4 show epistasis173

in m. Moreover, in all cases where significant epistasis occurs it is negative, i.e. the effect of the174

multiple mutants is weaker than expected from the single mutation effects.175

Formulation of the model176

The above observations suggest a model where one assumes, as an approximation, that all the177

r and m values of individual mutations combine multiplicatively. A genotype with n mutations178

(r1, m1), (r2, m2),… , (rn, mn) has a null-fitness r and a resistance value m given by179

r =
n
∏

i=1
ri and m =

n
∏

i=1
mi. (2)

Moreover, the dose-response curves of the genotypes are taken to be of the scaling form (1),180

where the function w(x) does not depend on the genotype. As indicated before, and without any181

loss of generality, we choose units such that, for the wild type, r = 1 and m = 1. Therefore the182

dose-response curve of the wild type is w(x) with w(0) = 1, and choosing IC50 as a measure of183

resistance, we have w(1) = 1
2
. Henceforth, we refer to x simply as the concentration. We also recall184

that the condition of adaptational tradeoffmeans that ri < 1 and mi > 1 for all mutations.185

If the ri and mi values combine non-epistatically, and if the shape of the dose-response curve is186

known, it is thus possible to construct the entire concentration-dependent landscape of size 2L from187

just 2Lmeasurements (of the ri and mi values of the single mutants) instead of the measurement188

of 2L fitness values at every concentration. In practice we do not expect a complete lack of epistasis189

among all mutations of interest, and the dose-response curve is also an approximation obtained by190

fitting a curve through a finite set of fitness values known only with limited accuracy. However, the191

fitness rank order of genotypes, and related topographic features such as fitness peaks, are robust192

to a certain amount of error in fitness values (Crona et al., 2017), and our model may be used to193

construct these to a good approximation.194

Lastly, we require that the dose-response curves of the wild type and a mutant intersect at most195

once, which implies that the equation w(x) = rw
( x
m

)

with r > 1 and m < 1 has at most one solution.196

This then also implies that the curves of any genotype � and a proper superset of it (i.e. a genotype197

which contains all the mutations in � and some more) intersect at most once. This property holds198

for all functions that have been used to represent dose-response curves in the literature, such as199

the Hill function, the half-Gaussian or the exponential function, as well as for all concave function200

with negative second derivate (see Materials and Methods for details).201

Properties of tradeoff-induced fitness landscapes202

To understand the evolutionary implications of our model, we first describe how the fitness land-203

scape topography changes with the environmental parameter represented by the antibiotic concen-204

tration. Next we analyze the properties of mutational pathways leading to highly fit genotypes.205

Intersection of curves and changing landscapes206

We start with a simple example of L = 2mutations and a Hill-shaped dose-response curve w(x) =207

1
1+x2

(Figure 3). At x = 0, the rank ordering is determined by the null-fitness. The wild type has208

maximal fitness, and the double mutant is less fit than the single mutants. As x increases, the209

fitness curves start to intersect, and each intersection switches the rank of two genotypes. In the210

present example we find a total of six intersections and therefore seven different rank orders211

across the full range of x. This is actually the maximum number of rank orders that can be found212

by scanning through x for L = 2, see Materials and Methods. The final fitness rank order ( in the213

region G in Figure 3A) is the reverse of the original rank order at x = 0. Figure 3B depicts the214
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Figure 3. (A) An example of dose-response curves of four genotypes – the wild type (00), two single mutants (10
and 01), and the double mutant (11). The parameters of the two single mutants are r1 = 0.8, m1 = 1.3, r2 = 0.5,
m2 = 2.5. Null-fitness and resistance combine multiplicatively, which implies that the parameters of the double
mutant are r12 = r1r2 = 0.4 and m12 = m1m2 = 3.25. (B) Fitness graphs corresponding to antibiotic concentration
ranges from panel (A). The genotypes in red are the local fitness peaks. The purple arrows are the ones that
have changed direction at the beginning of each segment. All arrows eventually switch from the downward to

the upward direction.

concentration-dependent fitness landscape of the 2-locus system in the form of fitness graphs.215

A fitness graph represents a fitness landscape as a directed graph, where neighboring nodes are216

genotypes that differ by one mutation, and arrows point toward the genotypes with higher fitness217

(de Visser et al., 2009; Crona et al., 2013). A fitness graph does not uniquely specify the rank218

order in the landscape (Crona et al., 2017). For example, the three regions C, D and E have different219

rank orders but the same fitness graph. Because selection drives an evolving population towards220

higher fitness, a fitness graph can be viewed as a roadmap of possible evolutionary trajectories.221

In particular, a fitness peak (marked in red in Figure 3B) is identified from the fitness graph as222

a node with only incoming arrows. Fitness graphs also contain the complete information about223

the occurrences of sign epistasis. Sign epistasis with respect to a certain mutation occurs when224

the mutation is beneficial in some backgrounds but deleterious in others (Weinreich et al., 2005;225

Poelwijk et al., 2007). It is easy to read off sign epistasis for a mutation from the fact that parallel226

arrows (i.e. arrows corresponding to the gain or loss of the same mutation) in a fitness graph point227

in opposite directions.228

For example, in the graph for the region B there is sign epistasis in the first position, since the229

parallel arrows 00→ 10 and 01← 11 point in opposite directions. Notice that in the current example,230

we start with a smooth landscape at x = 0 (as seen in the fitness graph for region A), and the231

number of peaks and the degree of sign epistasis both reach a maximum in the intermediate region232

C+D+E. This fitness graph displays reciprocal sign epistasis, which is a necessary condition for the233

existence of multiple fitness peaks (Poelwijk et al., 2011). Beyond the region E, the landscape starts234

to become smooth again, with only one fitness maximum and a lower degree of sign epistasis. In235

the last region G, the landscape is smooth with only one peak (the double mutant 11) and no sign236

epistasis.237

These qualitative properties generalize to larger landscapes. To show this, we consider a238

statistical ensemble of landscapes with Lmutations, where the parameters ri, mi of single mutations239

are independently and identically distributed according to a joint probability density P (r, m). Figure 4240

shows the result of numerical simulations of these landscapes for L = 16. The mean number of241

fitness peaks with nmutations reaches a maximum at xmax(n) where to leading order log xmax(n) ∼242
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Figure 4. (A) Number of fitness peaks as a function of concentration for different numbers of mutations in the
peak, n, and L = 16. The dashed green curve is the total number of fitness peaks, summed over n. The peaks
were found by numerically generating an ensemble of landscapes with individual effects distributed according

to the joint distribution (8). For this distribution, ⟨logm⟩ = 1.19645. Inset: The maximal number of peaks for a
given value of n occurs at log xmax(n) = n⟨logm⟩, and grows exponentially with L. (B)Mean number of mutations
in a fitness peak as a function of concentration x for the same model. The black circles are the mean number of
mutations in the fittest genotype. The green dashed line is

log(x)
⟨logm⟩ , where ⟨logm⟩ = 1.19645 as before.

n⟨logm⟩, independent of any further details of the system, as argued in Materials and Methods.243

The asymptotic expression works well already for L = 16 (see inset of Figure 4A). Figure 4B shows244

the mean number of mutations in a fitness peak. This is well approximated by the curve n =245

log x
⟨logm⟩

, showing that the mean number of mutations in a fitness peak grows logarithmically in the246

concentration. This is consistent with what we would expect from the variation in the number of247

peaks with nmutations as shown in Figure 4A. The existence of a typical number of mutations in a248

fitness peak is one of the distinctive features of our landscape, a feature typically lacking in other249

well-studied random landscape models. This property arises from the existence of adaptational250

tradeoffs. Since a high number of mutations is beneficial at higher concentrations but deleterious251

at lower concentrations, it is clear that there must be an optimal number of mutations at some252

intermediate concentration.253

As another indicator of ruggedness, we consider the number of backgrounds in which amutation254

is beneficial as a function of x. At x = 0, any mutation is deleterious in all backgrounds, whereas at255

very large x it is beneficial in all backgrounds. Therefore there is no sign epistasis in either case.256

Sign epistasis is maximized when a mutation is beneficial in exactly 1∕2 of all backgrounds. Figure 5257

shows the mean number of backgrounds nb (with n mutations each) in which the occurrence a258

mutation is beneficial, for two different values of n. The curves have a sigmoidal shape, starting from259

zero and saturating at
(L
n

)

, which is the total number of backgrounds with nmutations. The blue260

curve shows the mean total number of backgrounds (with any n) in which a mutation is beneficial,261

which has a similar shape. Since every mutation in every background goes from being initially262

deleterious to eventually beneficial, there must be some x at which every mutation is beneficial in263

exactly half the backgrounds. The inset of Figure 5 shows that for backgrounds with nmutations,264

the average concentration at which a mutation is beneficial in 1∕2 the backgrounds is given by265

log x ≃ n⟨logm⟩, which is the same concentration at which the largest number of fitness peaks were266

found in Figure 4. A derivation of this relation is given in Materials and Methods. Similarly, when267

summed over all mutation numbers n, the fraction of beneficial backgrounds reaches 1∕2 around268

the same concentration at which the total number of fitness peaks is maximal. Since the number of269

backgrounds is largest at n = L∕2 for combinatorial reasons, this concentration is approximately270

given by log x ≃ L
2
⟨logm⟩.271

Complementary to these results about the background dependence of the sign of mutational272
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effects, it can be shown that any two distinct sets of mutations occurring in any genetic background273
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Figure 5. The mean number of genetic backgrounds nb
in which a mutation is beneficial depends on the

concentration. The numerically computed mean

number is shown in the blue curve. We also computed

the mean nb for genetic backgrounds with a fixed a
number n of mutations. The results for two of these
values, n = 5 and n = 8 are also shown. The inset shows
these values of mean nb as a fraction of the total
number of backgrounds with nmutations.

show sign epistasis at some value of x. This274

is a consequence of the rank ordering prop-275

erties of the landscapes that are described in276

the next subsection (see Materials and Meth-277

ods for a proof). A special case is that any278

two singlemutations occuring in the wild type279

background must exhibit pairwise sign epis-280

tasis at some concentration.281

Accessibility of fitness peaks282

Having shown that tradeoff-induced fitness283

landscapes display a large number of fitness284

peaks at intermediate concentrations, we285

now ask how these peaks affect the evolution-286

ary dynamics. We base the discussion on the287

concept of evolutionary accessibility, which288

effectively assumes a regime of weak muta-289

tion and strong selection (Gillespie, 1984). In290

this regime the evolutionary trajectory con-291

sists of a series of fixation events of benefi-292

cial single-step mutations represented by a293

directed path in the fitness graph of the land-294

scape (Weinreich et al., 2005, 2006; Franke295

et al., 2011). We say that a genotype is ac-296

cessible from another genotype if a directed297

path exists from the initial to the final genotype.298

The accessibility of peaks in a fitness landscape is determined by the rank ordering of the geno-299

types. We now show that the rank orders of tradeoff-induced fitness landscapes are constrained in300

a way that gives rise to unusually high accessibility. Consider two distinct sets of one or more muta-301

tions Ai and Aj that can occur on the genetic backgroundW , and the four genotypesW , W Ai, W Aj302

and WAiAj , where a concatenation of symbols represents the genotype which contains all the303

mutations referred to by the symbols. The ordering condition (derived in Materials and Methods)304

says that wheneverW is the fittest among these four genotypes,WAiAj must be the least fit, and305

wheneverWAiAj is the fittest, W must be the least fit. For the case of two single mutations this306

situation is illustrated by the fitness graphs in Figure 3B, where the background genotypeW = 00307

is the fittest in the first segment A and the genotypeWAiAj = 11 is the fittest in the last segment308

G. The ordering condition has the immediate consequence that at all environments x, the fittest309

genotype is always accessible from the background genotype W . If the fittest genotype is one310

of the single mutants (segments B, C, D and F), then it is of course accessible. If it is the double311

mutantWAiAj (segment G), then the background genotype must be the least fit genotype (from the312

ordering condition), and thereforeWAi andWAj should be fitter thanW . ThenWAiAj is accessible313

from the wild type through the pathW → WAi → WAiAj and the pathW → WAj → WAiAj .314

To fully exploit the consequences of the ordering property we need to introduce some notation.315

Let � be a genotype with nmutations. We define a subset of � as a genotype with l mutations, l ≤ n,316

which are all contained in � as well. Likewise, a superset of � is a genotype with lmutations, l ≥ n,317

that contains all the mutations in �. With this, the ordering condition can be seen to imply that318

the superset of a fitness peak is accessible from its own supersets. For example, ifW is the fittest319

genotype, thenWAi is a superset of it, and because of the ordering condition,WAi must be fitter320

than its superset WAiAj , and therefore accessible from it. Similarly, it is easy to show that the321

subset of a fitness peak is accessible from its own subsets. This property can be generalized and322

8 of 24

rallen2
Sticky Note
its hard to read the text on the axis labels in the inset

rallen2
Highlight
for

rallen2
Highlight
I find this "one or more" a bit confusing. If A has only one mutation then the discussion about accessibility is easy to follow. But if A has multiple mutations do we have to worry about the individual fitness of the individual mutations within A to know if WA is accessible from W for example?

rallen2
Highlight
this also implies that A is a single mutation

rallen2
Highlight
likewise



Manuscript submitted to eLife

constitutes our main result on accessibility of fitness peaks.323

Accessibility property: Any genotype Σ that is a superset of a local fitness peak � is accessible from324

all the superset genotypes of Σ. Similarly, any genotype Σ′ that is a subset of a local fitness peak � is325

accessible from all the subset genotypes of Σ′.326

The proof is given in Materials and Methods. Three particularly important consequences are327

• Any fitness peak is accessible from all its subset and superset genotypes.328

• Any fitness peak is accessible from the wild type. This is because the wild type is a subset329

of every genotype.330

• For the same reason, when the wild type is a fitness peak (e.g., at x = 0), it is accessible from331

every genotype, and is therefore also the only fitness peak in the landscape. The same holds332

for the all-mutant when x is sufficiently large, since it is a superset of every genotype.333

These properties are illustrated by the fitness graph in Figure 6. We assume in some environment x334

that the landscape has (at least) two peaks at the genotypes 1001 (marked in red) and 0111 (marked335

in blue). The colored arrows point towards mutational neighbors with higher fitness and are336

enforced by the accessibility property. The edges without arrowheads are not constrained by the337

accessibility property and the corresponding arrows (which are not shown in the figure) could point338

in either direction. Consider the genotype 0111 (marked in blue). It is accessible from all its subsets,339

namely 0000, 0010, 0010, 0001, 0110, 0101 and 0011, following the upward pointing blue arrows. These340

subsets are in turn accessible from their subsets. For example, 0011 is accessible from all its subsets341

– 0000, 0010, and 0001. The fitness peak is also accessible from its superset 1111. The same property342

holds for the other fitness peak. The subsets or supersets may access the fitness peaks using other343

(unmarked) paths as well, which would include one or more of the undirected lines in conjunction344

with some of the arrows. Moreover, other genotypes, which are neither supersets nor subsets, may345

also access these fitness peaks through paths that incorporate some of the undirected edges.346

 

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 01111011

1111

0000

Figure 6. A fitness graph of a landscape with L = 4
mutations, illustrating the accessibility property.

There are two fitness peaks, 1001 (red) and 0111

(blue). The fitness peaks are accessible from all their

subset and superset genotypes following the paths

marked by the arrows.

A fitness peak together with its subset and347

superset genotypes defines a sub-landscape348

with remarkable properties. It is a smooth349

landscape with only one peak which is accessi-350

ble from any genotype via all direct paths, i.e351

paths where the number of mutations mono-352

tonically increases or decreases. For exam-353

ple, the fitness peak 1001 is accessible from354

the all-mutant 1111 by the two direct paths –355

1111 → 1101 → 1001 and 1111 → 1011 → 1001.356

Likewise, the peak 0111 is accessible from its357

subset 0001 via the paths 0001 → 0101 → 0111358

and 0001 → 0011 → 0111. In general, a peak359

with n mutations is accessible from a subset360

genotype with m mutations by (n − m)! direct361

paths, and from a superset genotype with m362

mutations by (m − n)! direct paths. This gives a363

lower bound on the total number of paths by364

which a fitness peak is accessible from a subset365

or superset genotype.366

Importantly, the accessibility property for-367

mulated above holds under more general con-368

ditions than stipulated in the model. We show in Materials and Methods that it holds whenever369

the null fitness and resistance values of the mutations, r and m, do not show positive epistasis.370

This is a weaker requirement than our original assumption of a strict lack of epistasis in these two371

phenotypes.372
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In this context it should be noted that the rank orderings forbidden by the ordering condition all373

show positive epistasis for the fitness values, whereas all the allowed orderings can be constructed374

without positive epistasis. Therefore, any landscape where positive epistasis in fitness is absent will375

also display the accessibility property. However, whereas the lack of positive epistasis is a sufficient376

condition, it is not necessary. In particular, our model does allow for cases of positive epistasis in377

the fitness values.378

Reachability of the fittest and the most resistant genotype379

The preceding analyses have shown that within the mutant selection window, where mutants with380

higher fitness than the wild type exist, every fitness peak is accessible from the wild type. This381

includes in particular the fittest genotype at a given concentration. However, in general there will382

be many peaks in the fitness landscape, and it is not guaranteed that evolution will reach the fittest383

genotype. One can ask for the probability that the fittest genotype is actually accessed under the384

evolutionary dynamics, which we call its reachability. We assume that the dynamics is in the strong385

selection weak mutation (SSWM) regime, and the population is large enough such that the fixation386

probability of a mutant with selection coefficient s is 1 − e−2s for s > 0, and 0 for s ≤ 0 (Gillespie,387

1984). In our setting the selection coefficient is s = f1
f0
− 1, where f1 is the growth rate of a mutant388

appearing in a population of cells with growth rate f0.389

Figure 7 shows the numerically obtained reachability for L = 10, averaged over the distribution390

P (r, m) given in Eq. (8). The reachability of the highest peak is 1 at very low and very high concentra-391

tions, since there is only peak, the wild type or the all-mutant, at these extremes. The reachability is392

lower at intermediate concentrations, where there are multiple peaks, all of which are accessible393

from the wild type. The dashed blue line is the mean of the reciprocal of the total number of fitness394

peaks, and is therefore the mean reachability of fitness peaks. The reachability of the highest395

peak follows the qualitative behavior of the mean reachability, but remains higher than the mean396

reachability everywhere.397
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Figure 7. Reachability of fittest genotype and most
resistant genotype. The same model as in the previous

subsection has been used, with L = 10. Inset shows the
mean number of fitness peaks as a function of

concentration. Dotted horizontal lines show

comparisons to the HoC model and an NK model with

the same number of mutations. These models were

implemented using an exponential distribution of

fitness values.

The green curve is the reachability of the398

most resistant genotype, i.e the all-mutant.399

It is extremely low at low and moderate con-400

centrations and grows steeply and saturates401

quickly at a very large concentration. The all-402

mutant genotype is less-than-average reach-403

able everywhere except at very high concen-404

tration, when it is the only fitness peak and405

accessible from every other genotype.406

We have compared the reachability to two407

other widely studied landscape models. One408

is the House-of-Cards (HoC) model (Kauff-409

man and Levin, 1987; Kingman, 1978), where410

each genotype is independently assigned a411

fitness value drawn from a continuous distri-412

bution. The reachability is found to be around413

0.018, an order of magnitude smaller than414

the lowest reachability seen in the tradeoff-415

induced landscape. The mean number of416

fitness maxima in the HoC landscape is
2L

L+1
,417

which in this case is approximately 93.1, much418

higher than the maximummean number of419

peaks in the tradeoff-induced landscape (in-420

set of Figure 7). We would therefore naturally expect a smaller fraction of adaptive walks to421

terminate at the fittest peak. A more illuminating comparison is with the NK model (Kauffman and422
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Weinberger, 1989; Hwang et al., 2018). Here, once again, L = 10, and the mutations are divided423

into two blocks of 5 mutations each. As per the usual definition of the model, the fitness of a424

genotype is the sum over the contributions of each of the 10mutations, and the contribution of425

each mutation depends only the state of the block to which it belongs. The fitness contribution of426

each mutation for any state of the block is an independent random number. The mean number427

of fitness maxima here is ≃ 28.44 (Perelson and Macken, 1995; Schmiegelt and Krug, 2014), which428

is comparable to the maximum mean number in the tradeoff-induced landscapes (see inset of429

Figure 7). Nonetheless, the reachability of the fittest peak (dotted pink line) is found to be nearly 4430

times smaller than the lowest reachability in our landscape. We found that in a fraction of about431

0.64 of the landscapes, the fittest maximum is not reached in any of 32000 dynamical runs, indicating432

the absence of an accessible path in most of these cases (Schmiegelt and Krug, 2014; Hwang et al.,433

2018). In contrast, an evolutionary path always exists to any fitness peak in the tradeoff-induced434

landscapes, as we saw in the previous subsection. This endows the tradeoff-induced landscapes435

with the unusual property of being highly rugged and at the same time having a much higher436

evolutionary reachability of the global fitness maximum compared to other models with similar437

ruggedness.438

Discussion439

Fitness landscapes depend on the environment, and gene-gene-interactions can be modified440

by the environment. Systematic studies of such G × G × E interactions are rare, but they are441

clearly of relevance to scenarios such as the evolution of antibiotic resistance, where the antibiotic442

concentration can vary substantially in space and time. In this paper we have explored the structure443

of such landscapes in the presence of tradeoffs between fitness and resistance. We summarize the444

main findings of our work.445

• We have shown experimental evidence that the dose-response curves of various mutant446

strains of E. coli to the antibiotic ciprofloxacin have the same shape, except for a rescaling447

of the fitness and concentration values. If this shape is known, the fitness of a strain can be448

estimated at any antibiotic concentration simply by measuring its null-fitness and IC50 (or MIC).449

This makes it possible to construct empirical fitness landscapes at any antibiotic concentration450

from a limited set of data.451

• Under the assumptions of our model the degree of epistasis, particularly sign epistasis, is452

low for zero and high antibiotic concentrations, but it is nevertheless high in the intermediate453

concentration regime. The number of local fitness peaks scales exponentially in the number454

of mutations at these concentrations. Epistasis is often discussed as a property intrinsic455

to mutations and their genetic backgrounds, with limited consideration of environmental456

parameters. But in the landscapes studied here, the environmental parameter is of paramount457

importance, since changes in it can dramatically alter gene-gene interactions.458

• The expected number of mutations in a fitness peak increases logarithmically with the antibi-459

otic concentration. This implies that, at a given concentration, the highly fit genotypes that460

make up the fitness peaks carry an optimal number of mutations that arises from the tradeoff461

between fitness cost and resistance.462

• Despite the high ruggedness, the landscape displays strong non-random patterns. A rank463

ordering condition between sets of mutations holds at all concentrations. A remarkable and464

unexpected consequence of this is that any fitness peak is evolutionarily accessible from the465

wild type.466

• It is well known from experimental studies of antimicrobial resistance evolution that highly467

resistant genotypes often require multiple mutations which can be acquired along different468

evolutionary trajectories. Epistatic interactions constrain these trajectories and are generally469

expected to impede the evolution of high resistance. We find that strong and complex epistatic470

interactions inevitably arise in themutant selection window, but at the same time the evolution471
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Figure 8. Accessibility and ruggedness in different types of fitness landscapes: The first two landscapes
correspond to the typical cases of smooth and rugged landscapes. The third figure describes landscapes with

adaptational tradeoffs, where high ruggedness coexists with high accessibility.

of the most resistant genotype (the identity of which changes with concentration) remains472

facile and can occur along many different pathways.473

All of these conclusions follow from three basic assumptions that are readily generalizable474

beyond the context of antimicrobial resistance evolution: the existence of tradeoffs between two475

marginal phenotypes that govern the adaptation at extreme values of an environmental parameter;476

the scaling property of the shape of the tradeoff function; and the condition of limited epistasis477

for the marginal phenotypes. How generally these assumptions are valid is a matter of empirical478

investigation. We have shown that they hold for certain cases, and the interesting evolutionary479

implications of our results indicate that more empirical research in this direction will be useful.480

In the case of antimicrobial resistance, there can be fitness compensatory mutations (Levin481

et al., 2000; Brown et al., 2010; Durão et al., 2018) that do not exhibit any adaptational tradeoffs.482

These mutations are generally found in a population in the later stages of the evolution of antibiotic483

resistance, which implies that they emerge in a genetic background of mutations with adaptational484

tradeoffs. An understanding of tradeoff-induced landscapes is therefore a prerequisite for predict-485

ing the emergence of compensatory mutations. While compensatory mutations are expected to486

facilitate the evolution of high resistance (Hughes and Andersson, 2017), our study shows that the487

acquisition of multiple resistance mutations may readily occur even if compensatory mutations are488

absent.489

In the formulation of our model we have assumed for convenience that themarginal phenotypes490

combine multiplicatively, but this assumption is in fact not necessary for all our results. As shown491

in Materials and Methods, our key results on accessibility only require the absence of positive492

epistasis. These results therefore hold without exception for the combinatorially complete data set493

in Table 1, where epistasis is either absent or negative. More generally, our analysis remains valid in494

the presence of the commonly observed pattern of diminishing returns epistasis among beneficial495

mutations (Chou et al., 2011; Schoustra et al., 2016;Wünsche et al., 2017). We expect our results496

to hold approximately even when there is a small degree of epistasis (positive or negative) in r and497

m, but we do not explore that question quantitatively in this paper.498

A strict absence of epistasis, while certainly not universal, can be expected to occur under499

certain generic circumstances. Assuming that we deal with a single antibiotic that has a single500

target enzyme, we can think of two situations that could lead to a multiplicative behaviour of IC50:501

(i) Single mutations occur in different genes that affect the concentration of the antibiotic-target502

enzyme complex through independent mechanisms. (ii) Single mutations occur in the same gene503

but their effect is multiplicative due to the nature of antibiotic-enzyme molecular interactions.504

An example of scenario (i) would be a combination of mutations in the target gene (reduction of505

the binding affinity), its promoter (increase in expression), genes regulating the activity of efflux506

pumps and porins (decrease in intracellular concentration of the antibiotic), or genes controlling507

the level (increase in concentration) or activity of drug-degrading enzymes. These mechanisms are508

“orthogonal” to each other, in the sense that they modify independent pathways within the cell. If509

each of them affects the concentration of the antibiotic-target complex through first-order kinetics,510

12 of 24

rallen2
Sticky Note
the



Manuscript submitted to eLife

their cumulative effect will be multiplicative in terms of the IC50s of single mutations.511

In the case of ciprofloxacin and E. coli (Figure 2 and Table 1), we expect mutations in gyrA (target)512

to be orthogonal to mutations in acrR andmarR (efflux pumps). This is borne out by the observed513

multiplicativity of IC50 (Table 1). As for scenario (ii), the single mutations must affect different parts514

of the antibiotic-enzyme binding site independently. This is not the case for two different mutations515

in gyrA – S83L and D87N (see cases of epistasis in Table 1). An example for scenario (ii) are the516

two mutations P21L and A26T in the gene encoding the enzyme dihydrofolate reductase, which517

increase the resistance to trimethoprim in a multiplicative way in the absence of other mutations518

(Palmer et al., 2015). If the antibiotic has more than one target, multiplicativity would not generally519

hold. In particular, topoisomerase IV (gene parC) is a secondary target for ciprofloxacin with much520

weaker affinity than gyrase. Therefore, mutations in parC do not contribute to resistance unless521

there is already a mutation in gyrA.522

The co-existence of high ruggedness and high accessibility found in the tradeoff-induced land-523

scapes studied here is counterintuitive, and to the best of our knowledge fitness landscape models524

with this property have not been described previously. The situation is depicted schematically in525

Figure 8. The first landscape is smooth with a single peak that must be accessible from everywhere526

else. The second landscape is rugged, and each fitness peak is typically accessible from a few527

genotypes only. This is the typical picture of a rugged fitness landscape with limited accessibility, as528

it would be predicted by simple statistical models such as the HoC, NK or rough Mt. Fuji models529

(Szendro et al., 2013; Neidhart et al., 2014; Hwang et al., 2018). The landscapes we describe here530

belong to a third type, where a high number of peaks are accessible from a high number of geno-531

types, creating overlapping “valleys” from which a population may evolve towards different local532

fitness maxima. Moreover, not only are fitness peaks accessible from all their subset and superset533

genotypes, but there are many direct paths leading up to each peak. This appears contrary to534

the expectation that in landscapes with high epistasis, accessibility should be facilitated through535

mutational reversions, i.e indirect paths (DePristo et al., 2007; Palmer et al., 2015;Wu et al., 2016;536

Zagorski et al., 2016).537

We conclude with some possible directions for future work. Our model provides a principled538

framework for predicting how microbial fitness landscapes vary across different antibiotic concen-539

trations. This could be exploited to describe situations where the antibiotic concentration varies540

on a time scale comparable to the evolution of resistance, either due to the degradation of the541

drug or by an externally imposed treatment protocol (Marrec and Bitbol, 2018). In this context it542

would be of particular interest to include compensatory mutations that lack the tradeoff between543

growth and resistance, since such mutations are expected to strongly affect the extent to which544

resistance can be reversed (Andersson and Hughes, 2010). Significant extension of the theory is545

required if the drug concentration varies on a faster time scale comparable to the growth time of546

the microbial population, in which case the concept of a concentration-dependent fitness would547

need to be reconsidered.548

From the broader perspective of evolutionary systems with adaptational tradeoffs mediated by549

an environmental parameter, our study makes the important conceptual point that it is impossible550

to have non-epistatic fitness landscapes for all environments. Using the terminology of Gorter et al.551

(2016), the tradeoffs enforce reranking G × E interactions which in turn, as we have shown, induce552

sign-epistatic G × G interactions at intermediate values of the environmental parameter. Notably,553

this general conclusion does not depend on the scaling property of the tradeoff function. It would554

nevertheless be of great interest to identify instances of scaling for other types of adaptational555

tradeoffs, in which case the detailed predictions of our model could be applied as well.556
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Materials and Methods564

Experiments565

Bacterial strains566

We used strains from Marcusson et al. (2009) (courtesy of Douglas Huseby and Diarmaid Hughes).567

The strains are isogenic derivatives of MG1655, a K12 strain of the bacterium E. coli, with specific568

point mutations or gene deletions in five different loci: gyrA:S83L, gyrA:D87N, parC:S80I, ΔmarR, and569

ΔacrR. There are 32 possible combinations of these alleles, but we only used the wild type, single570

mutants (5 strains) and double mutants (8 strains of 10 possible combinations): LM179 (00000),571

LM378 (10000), LM534 (01000), LM792 (00100), LM202 (00010), LM351 (00001), LM625 (11000),572

LM862 (10100), LM421 (10010), LM647 (10001), LM1124 (01100), LM538 (01010), LM592 (01001),573

LM367 (00011). A binary sequence after the strain’s name represents the presence/absence of a574

particular mutated allele (order as in the above list of genetic alterations).575

Growth media and antibiotics576

LB growth medium was prepared according to Miller’s formulation (10g tryptone, 5g yeast extract,577

10g NaCl per litre). The pH was adjusted to 7.2 with NaOH,and autoclaved at 121°C for 20 min.578

Ciprofloxacin (CIP) solutions were prepared from a frozen stock (10mg/ml ciprofloxacin hydrochlo-579

ride, pharmaceutical grade, AppliChem, Darmstadt, in sterile, ultra-pure water) by diluting into LB580

to achieve the desired concentrations.581

Dose-response curves582

We incubated bacteria in 96-well clear flat bottommicro-plates (Corning Costar) inside a plate reader583

(BMG LABTECH FLUOstar Optima with a stacker) starting from two different initial cell densities (half584

a plate for each), and measured the optical density (OD) of each culture every 2-5 min to obtain585

growth curves. Plates were prepared automatically using a BMG LABTECH CLARIOstar plate reader586

equipped with two injectors connected to a bottle containing LB and a bottle with a solution of CIP587

in LB. The injectors were programmed to create different concentrations of CIP in each column of588

the 96 well plate. The injected volumes of the CIP solution were 0, 20, 25, 31, 39, 49, 62, 78, 98,589

124, 155, 195 �l, and an appropriate volume of LB was added to bring the total volume to 195 �l590

per well. Since different strains had MICs spanning almost two decades of CIP concentrations, we591

used a different maximum concentration of the CIP solution for each strain (approximately 1.5 - 2592

times the expected MIC). Bacteria were diluted from a thawed frozen stock 103 and 104 times in PBS593

(phosphate buffered saline buffer), and 5�l of the suspension was added to each well (103 dilution594

to rows A-D, 104 dilution to rows E-H). We used one strain per plate and up to 4 plates per strain595

(typically 1-2). After adding the suspension of bacteria to each well, the plates were immediately596

sealed with a transparent film to prevent evaporation, and put into a stacker (37°C, no shaking),597

from which they would be periodically fed into the FLUOstar Optima plate reader (37°C, orbital598

shaking at 200rpm for 10s prior to OD measurement). We then used the time shift methods to599

obtain exponential growth rates for each strain and different concentrations of CIP, see Ojkic et al.600

(2019) for further details.601

Mathematical Methods602

Rank orders and fitness graphs603

The total number of possible rank orders with Lmutations is 2L!, which is 24 for L = 2. Not all these604

rank orders, however, can be realized as one scans through x. Since any two curves intersect at605

most once, the maximum number of distinct rank orders that can be reached is the rank order at606
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x = 0 plus the total number of possible intersections, which is
(2L

2

)

= 2L−1(2L − 1). Thus the upper607

bound on the number of rank orders found by scanning through x is 2L−1(2L−1)+1, which is smaller608

than 2L! for L ≥ 2.609

It is also instructive to determine the number of fitness graphs that can be found by varying x for610

a system with Lmutations. This can be computed as follows: At x = 0 every mutation is deleterious,611

and every mutational neighbor with one less mutation is fitter; but due to the tradeoff condition, at612

sufficiently large x every mutation is beneficial and any mutational neighbor with one less mutation613

is less fit. In order for this reversal of fitness order to happen, the dose-response curves of any two614

mutational neighbors must intersect at some x. Therefore, the number of fitness graphs generated615

is equal to the number of distinct pairs of mutational neighbors, which is 2L−1L, and the number of616

distinct fitness graphs encountered is 2L−1L + 1 . For L = 2, this number is 5, as seen in the example617

in the main text.618

Condition for two dose-response curves to intersect at most once619

Consider two DR curves characterized by (r, m) and (r′, m′), where r < r′ and m > m′. We need to620

show that for the commonly observed cases, the curves rw( x
m
) and r′w( x

m′
) intersect at most once.621

First, notice that it is sufficient to prove this for the case r′ = 1, m′ = 1, because any rescaling of the622

x and w axes does not alter the number or ordering of intersection points. Therefore we require623

r < 1 and m > 1.624

Let us consider the case where the dose-response curve is of the form of a Hill function, i.e625

w(x) = 1
1+xa
, with a > 0. The intersection of curves happens at the solution of w(x) = rw( x

m
), which626

we denote by x∗(r, m). In this case the solution is given by627

x∗(r, m) =

(

1 − r
r − 1

ma

)
1
a

which is positive and unique if rma > 1; otherwise no solution with x∗ > 0 exists. It is similarly easy628

to show that at most one intersection point exists for exponentials, stretched exponentials, and629

half-Gaussians.630

The property also holds for any concave dose-response curve with w′′(x) < 0. We prove this as631

follows. Any intersection point x∗ is the solution of632

F (x∗) = r

where F (x) ≡ w(x)
w( xm )
. We will show that F (x) is monotonic and therefore the above equation has at633

most one solution. We have634

F ′(x) =
w′(x)w( x

M
) − 1

M
w(x)w′( x

M
)

w( x
M
)2

,

and F ′(x) has the same sign as the numerator  (x) = w′(x)w( x
M
) − 1

M
w(x)w′( x

M
). Since w(x) is a635

decreasing function and m > 1, w( x
m
) > w(x) > 1

m
w(x). When w′′(x) < 0, we also have w′(x) < w′( x

M
).636

Since w′(x) < 0, this implies |w′(x)| > |w′( x
m
)|, and  (x) < 0. Therefore F (x) is monotonically637

decreasing.638

Proof of the accessibility property639

To derive the ordering condition, let us start with the simplest case of two single mutations Ai, Aj640

occurring on the wild type background. There are correspondingly four different genotypes W ,641

WAi,WAj ,WAiAj , which are listed in decreasing order of fitness at x = 0. Let the intersection of642

the DR curves of two genotypes �1 and �2 occur at x = X�1 ,�2 . Then XW ,W Aj is given by the solution643

x∗(rj , mj) of644

w(x) = rjw(
x
mj
),
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and XWAi ,W AiAj is given by the solution of645

riw(
x
mi
) = rirjw(

x
mimj

).

This last equation can be re-written as646

w(x′) = rjw(
x′

mj
),

where x′ = x
mi
. Comparing this with the first equation above, we have647

XWAi ,W AiAj = miXW ,W Aj > XW ,W Aj . (3)

This equation tells us that whenever the double mutant is fitter than one of the single mutants, the648

wild type must be less fit than the other single mutant. Consequently, when the double mutant is649

fitter than both the single mutants, the WT must be less fit than both the single mutants. In other650

words, the number of single mutants fitter than the wild type cannot be less than the number of651

single mutants less fit than the double mutant. This is the ordering condition given in the main text.652

Any ordering that violates this condition is a forbidden ordering. For greater clarity, we list all the653

possible forbidden orderings (up to interchange of indices i and j).654

W > WAi > WAiAj > WAj

W > WAiAj > WAi > WAj

WAiAj > W > WAi > WAj

WAiAj > WAi > W > WAj (4)

Although we showed this for two single mutations in the wild type background, the same argu-655

ments hold for any two sets of mutations in any background, since the succession of orderings is656

independent of the rescalings of the fitness and concentration axes. To put it more precisely,W , Ai657

and Aj are any three non-overlapping sets of mutations, where Ai and Aj are non-empty sets.658

Next we use this to prove the accessibility property. Let � have nmutations. It is sufficient to659

prove that (i) any superset of � with m or fewer mutations is accessible from all its own supersets660

with m or fewer mutations, for all m ≥ n (the statement follows from the case m = L); and that (ii)661

any subset of � with m′ or more mutations is accessible from any of its own subsets with m′ or more662

mutations, for all m′ ≤ n (the statement corresponds to m′ = 0). We prove this by induction.663

Firstly, we notice that the case m = n is trivial, since � is of accessible from itself. For the case of664

supersets, our base case is m = n+1, and the assertion above holds because � is a local fitness peak,665

and therefore accessible from all its supersets with n + 1mutations, which are of course accessible666

from themselves.667

Now we prove the induction step. Assume that all supersets of � that have m or fewer mutations668

(where m ≥ n) are accessible from all their supersets with m or fewer mutations. Consider a superset669

Σ of � with mmutations, and denote it by Σ = �A, where A is the set of mutations in Σ not present670

in �. By assumption, � is accessible from Σ. In the following, we use the notation �1 > �2 to indicate671

that a genotype �1 is fitter than a genotype �2 (we use the “<” and “=” signs in a similar way).672

Therefore, we have � > Σ = �A.673

Now consider any superset of Σ with m + 1 mutations, where the additional mutation not674

contained in Σ is denoted B. Then this superset can be denoted by ΣB = �AB. We must have675

� > �B since � is a local fitness peak. We now have the relation � > �A, �B. Therefore we must have676

�AB < �A, �B, for otherwise we violate the ordering condition. Now since ΣB = �AB < �A = Σ, Σ677

must be accessible from ΣB, proving that any superset with mmutations is accessible from any of678

its supersets with m + 1mutations. This completes the proof of the induction step.679

The proof for the case of subsets is essentially the same, utilizing the symmetry between the680

wild type and the double mutant in the ordering condition.681
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The accessibility property follows entirely from the ordering condition, and hence any landscape682

that obeys the ordering condition will obey the theorem. The ordering condition follows from683

XW ,W Ai < XWAj ,W AiAj , as obtained in (3). However, this same inequality obtains under more general684

conditions. To see this, let us define the null-fitness of the double mutant WAiAj as rij , and the685

resistance of the double mutant as mij . The dose-response curves of W and WAj intersect at686

XW ,W Aj = x
∗(rj , mj), whereas the curves forWAi andWAiAj intersect at687

XWAi ,W AiAj = mix
∗(
rij
ri
,
mij
mi

)

.

Now it is easy to show that x∗(r, m) is a decreasing function of both r and m. Therefore XWAi ,W AiAj >688

XW ,W Aj holds if rij ≤ rirj and mij ≤ mimj .689

Number of local fitness peaks690

When dealing with complex fitness landscapes with parameters that can vary across species and691

environments, a useful strategy is to model the fitness effects as random variables that are chosen692

from a probability distribution (Kauffman and Levin, 1987; Szendro et al., 2013; Hwang et al., 2018).693

In the limit of large system size L, many properties emerge that are independent of the details of694

the system. In practice, even relatively small system sizes are often approximated well by results695

obtained in the asymptotic limit.696

The mean number of peaks with nmutations in the tradeoff-induced landscapes is697

Kn(x) =
(

L
n

)

Qn(x),

where
(L
n

)

is the total number of genotypes with n mutations, and Qn(x) is the probability that698

a genotype with n mutations is a fitness maximum at antibiotic concentration x. Then the total699

number of peaks at x is
∑

nKn(x). Let the resistance of a genotype � beM =
∏n

i=1 mi, and likewise its700

null-fitness be R =
∏n

i=1 ri. The genotype � is a local fitness maximum if it is fitter than all its subsets701

with n − 1mutations and all its supersets with n + 1mutations.702

To find the concentration at which the curves of � and its neighboring genotypes intersect, we703

start with the simplest case of the dose-response curves of the wild type and a single mutant (r, m).704

These curves intersect at the solution x∗(r, m) of w(x) = rw
( x
m

)

, which is a decreasing function of705

r and m. The wild type is fitter than the single mutant when x > x∗(r, m). Now the intersection of706

the DR curves of a genotype � with nmutations and a subset with n − 1mutations that lacks the707

mutation (ri, mi) occurs at the solution of708

w
( x
(M
mi
)

)

= riw
( x
(M
mi
)mi

)

which is read off as
M
mi
x∗(ri, mi). Likewise, the intersection of the DR curves of � and a superset with709

n + 1mutations that contains the additional mutation (rj , mj) occurs atMx∗(rj , mj). Therefore � is a710

fitness maximum if711

x∗(ri, mi)
mi

< x
M

< x∗(rj , mj) (5)

for all i and j with 1 ≤ i < n and n < j ≤ L. Alternatively,712

logmi − log x∗(ri, mi) > logM − log x > − log x∗(rj , mj). (6)

Let us consider the regime where L, n ≫ 1. Then logM ∼ n⟨logm⟩; if log x is smaller than O(n),713

it is clear that the second inequality is almost certainly satisfied whereas the probability of the714

first inequality is vanishingly small. Both the probabilities are finite if log x ∼ n⟨logm⟩. Thus the715

probability of � being a fitness peak is maximized when log x = log(M) + �, where � ∼ O(1) and716

depends on the details of the distribution P (r, m). Thus the mean number of fitness peaks with n717

mutations is maximal at xmax(n) where to leading order log xmax(n) ∼ n⟨logm⟩, independent of any718

further details of the system.719
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The total number of genotypes with nmutations is
(L
n

)

, and log
(L
n

)

≃ LH(�), where � = n
L
, and720

H(�) = −
[

� log � + (1 − �) log(1 − �)
]

. (7)

The mean number of fitness maxima can be found by multiplying this with Qn. One may expect Qn721

to be exponentially small in L, since a total of L inequalities (as indicated in (6)) need to be satisfied.722

However, this is complicated by the fact that the probabilities of the inequalities being satisfied are723

not independent. The correlations between the inequalities would depend on the distribution of724

P (r, m) and the dose-response curve. If the correlations are sufficiently weak, one might still expect725

to find an exponential scaling in large L. To leading order
(L
n

)

is itself exponential in L, and if the726

probability that a genotype is a fitness peak is exponentially small in L, we expect the mean number727

of peaks Kn to be exponential in L as well. This is supported by the scaling shown in the inset of728

Figure 4A.729

For the simulation results shown in the main text we chose a joint distribution of the form730

P (r, m) = P (r)P (m|r) = 6r(1 − r)
(

m − 1
√

r

)

e
−
(

m− 1
√

r

)

. (8)

The conditional distribution P (m|r) is a shifted gamma distribution. The shift ensures that the curves731

of a background genotype and a mutant intersect.732

Sign epistasis733

Sign epistasis with respect to a certain mutation occurs when the mutation is beneficial in one734

background but deleterious in another. We first show that any two distinct sets of mutations on735

any genetic background display sign epistasis at some value of the scaled concentration x. Consider736

a genetic backgroundW , and two distinct sets of mutations A1 and A2 (which share no mutations737

with each other orW ). At x = 0 we haveW > A1, A2 andWA1A2 < WA1, W A2. As x increases,W738

must become less fit than eitherWA1 orWA2 beforeWA1A2 becomes fitter than either of these (by739

the ordering condition). Without loss of generality, let us assume thatW becomes less fit thanWA1740

before it becomes less fit than WA2. At this point, we must have W < WA1 and WA2 > WA1A2.741

This means that, in the wildtype background, A1 in beneficial in the absence of A2 but deleterious in742

the presence of A2, indicating pairwise sign epistasis.743

To quantify the amount of sign epistasis for large L and n, we next ask for the number of744

backgrounds nb in which a mutation is beneficial at concentration x. If one considers only those745

backgrounds that have nmutations, then nb would depend both on n and x. In a statistical ensemble746

of landscapes, one may compute the probability Pb that a mutation is beneficial in a background747

with nmutations, and of course ⟨nb⟩ = Pb
(L
n

)

. In the limit of large L and n, Pb exhibits some universal748

properties to leading order. When log x > n⟨logm⟩, we are in the regime of high concentration relative749

to n, and we expect a mutation to be beneficial. We find that to leading order Pb(�, x) = 1, with750

corrections that are exponentially small in n. When log x < n⟨logm⟩, we are at concentrations that751

are too low to prefer additional mutations, and Pb is exponentially small in n. When log x = n⟨logm⟩,752

we are at the threshold concentration where a new mutation becomes beneficial. Here we find that753

Pb ≃
1
2
. For large L we therefore expect a steep transition from 0 to 1 as the concentration crosses754

the threshold value (see inset of Figure 5).755

Consider a mutation (r, m) in a background with nmutations (r1, m1), (r2, m2)… (rn, mn). The mutation756

is beneficial in this background if757

m1m2…mnx
∗(r, m) < x (9)

Taking logarithms, we have758

− log x∗(r, m) >
n
∑

i=1
logmi − log x. (10)

Define � = log x
L
and � = n

L
, and z = − log x∗(r, m). Then the above inequality becomes759

z
n
> 1
n

n
∑

i=1
logmi −

�
�
. (11)
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Let the distribution of z be P (z), and let Cz(z) = ∫ ∞
z Pz(x) dx. Define the random variable ! =760

1
n

∑n
i=1(logmi −

�
�
), and denote its distribution P (!). Then the probability that a mutation is beneficial761

in a background with nmutations is762

Pb(�, �) = ∫

∞

−∞
P (!) Cz(n!) d! (12)

(13)

The mean number of backgrounds with nmutations in which a mutation is beneficial is nb(�, �) =763

Pb(�, �)
(L
n

)

. Note that ⟨!⟩ = ⟨�⟩− �
�
where � = logm. When n ≫ 1, Cz(n !) ≃ 1 for ! < 0 and Cz(n !) ≃ 0764

for ! > 0, with a sharp transition from 1 to 0 that happens within a region of width ∼ O(1∕n) of the765

origin. Also for large n, P (!) is sharply peaked around ⟨!⟩ over a region of width O(1∕
√

n).766

When ⟨!⟩ < 0, Cz(n!) ≃ 1 over this entire region, as observed before. Thus to leading order,767

Pb(�, �) = 1. The mean number of backgrounds in which a mutation is beneficial is nb(�, �) =768

Pb(�, �)
( L
�L

)

.769

nb(�, �) ≃
√

2�
L

1
√

�(1 − �)
eLH(�) (14)

whereH(�) is defined in (7). Therefore770

log nb ≃ LH(�) (15)

to leading order.771

When ⟨!⟩ > 0, the dominant contribution to the integral in (12) comes from ! ≤ 0, since Cz(n!)772

quickly drops from 1 to zero for ! > 0. Further, since Cz(!) ≃ 1 for ! < 0 (except for a region of width773

O(1∕n) around ! = 0, as observed before), we can approximate logPb(�, �) simply by the probability774

that ! < 0. Then775

logPb(�, �) ≃ −nI
(

−
�
�
)

where I is the large deviation function of −�, and776

log nb(�, �) ≃ L
[

H(�) − �I
(

−
�
�
)

]

.

This implies that nb is reduced by a factor that is exponentially small in L compared to (15)), and777

therefore the fraction of backgrounds in which a mutation is beneficial is very small.778

Finally, when ⟨!⟩ = 0, i.e � = n
L
⟨�⟩, P (!) is centered at the origin and decays over a width O(1∕

√

n).779

For ! > 0, Cz(n!) is 0 except over a much smaller width O(1∕n) to the right of the origin, whereas780

for ! ≤ 0, it is 1 except for a small region of width O(1∕n) left of the origin. Thus the dominant781

contribution to the integral in (12) comes from ! ≤ 0, and as before, Pb can be approximated by the782

probability ! ≤ 0. Due to the central limit theorem, P (!) is approximately Gaussian and therefore783

symmetric around ! = 0, and therefore Pb ≃
1
2
. Consequently, we should have784

nb(�, �) ≃
1
2

√

2�
L

1
√

�(1 − �)
eLH(�),

which is
1
2
times the total number of backgrounds given by (14). This proves that the concentration785

where the mutation is beneficial in half of the backgrounds is given by ⟨!⟩ = 0 or log x = n⟨logm⟩ for786

large L and n.787
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Epistasis in null-fitness and MIC for E. coli in the presence of ciprofloxacin788

Primary data shown in Table 1 were obtained from Marcusson et al. (2009). In the third and789

fifth columns, the errors in the log(x) are calculated as |Δx|
x
, where |Δx| are the standard error as790

calculated from the standard deviations reported in the paper. The errors in columns four and791

six were estimated as
∑

i
|Δxi|
xi
where the sum is over the mutations present in the combinatorial792

mutants. The detectable cases of epistasis are marked in blue. Negative epistasis is found in all793

these cases. Also, all the cases with epistasis correspond to two or more mutations that affect the794

same chemical pathways.795

Strain String log null-fitness Non-epistatic log MIC Non-epistatic

MG1655 00000 0.00 (± .004) NA 0.00 (± .35) NA

LM378 10000 0.01 (± .016) NA 3.17 (± .70) NA

LM534 01000 -0.01 (± .018) NA 2.75 (± .70) NA

LM202 00010 -0.19 (± .020) NA 0.69 (± .70) NA

LM351 00001 -0.094 (± .014) NA 1.08 (± .70) NA

LM625 11000 -0.030 (± .011) 0.0 (± .038) 3.17 (± .70) 5.92 (± 1.1)

LM421 10010 -0.15 (± .019) -0.18 (±.040) 4.13 (± .70) 3.56 (± 1.1)

LM647 10001 -0.051 (± .013) -0.084 (± .034) 3.44 (± .70) 4.65 (± 1.1)

LM538 01010 -0.19 (± .020) -0.20 (± .042) 4.13 (± .70) 3.46 (± 1.1)

LM592 01001 -0.083 (± .015) -0.10 (± .036) 3.16 (± .70) 3.83 (± 1.1)

LM367 00011 -0.20 (± .026) -0.28 (± .038) 2.06 (± .70) 1.77 (± 1.1)

LM695 11010 -0.24 (± .017) -0.19 (± .058) 3.85 (±. 70) 6.61 (± 1.1)

LM691 11001 -0.073 (± .013) -0.094 (± .052) 3.85 (±. 70) 7.00 (± 1.4)

LM709 10011 -0.24 ( ± .027) -0.274 (± .054) 4.54 (±. 70) 4.94 (± 1.4)

LM595 01011 -0.51 (± .051) -0.294 (± .056) 4.54 (±. 70) 4.52 (± 1.4)

LM701 11011 -0.42 (± .037) -0.284 (±.072) 4.83 (±. 70) 7.69 (± 1.8)

Table 1. The names of the strains and values of null-fitness (in competition assays with the wild type) in the
third column and MIC (of ciprofloxacin) in the fifth column are obtained fromMarcusson et al. (2009). The
binary strings represent the same genotypes as given in the caption of Figure 2. The values in parentheses are

error estimates. The fourth and sixth columns are respectively the null-fitness and MIC values expected in the

absence of epistasis. NA denotes the cases where this is not applicable.
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