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Summary

� Soil carbon (C) pools and plant community composition are regulated by nitrogen (N) and

phosphorus (P) availability. Atmospheric N deposition impacts ecosystem C storage, but the

direction of response varies between systems. Phosphorus limitation may constrain C storage

response to N, hence P application to increase plant productivity and thus C sequestration has

been suggested.
� We revisited a 23-yr-old field experiment where N and P had been applied to upland heath,

a widespread habitat supporting large soil C stocks. At 10 yr after the last nutrient application

we quantified long-term changes in vegetation composition and in soil and vegetation C and

P stocks.
� Nitrogen addition, particularly when combined with P, strongly influenced vegetation com-

position, favouring grasses over Calluna vulgaris, and led to a reduction in vegetation C

stocks. However, soil C stocks did not respond to nutrient treatments. We found 40% of the

added P had accumulated in the soil.
� This study showed persistent effects of N and N + P on vegetation composition, whereas

effects of P alone were small and showed recovery. We found no indication that P application

could mitigate the effects of N on vegetation or increase C sequestration in this system.

Introduction

Terrestrial ecosystems store vast amounts of carbon (C), esti-
mated to range between 1500–2000 Pg C for vegetation and soil
combined (Smith et al., 1993). The fate of this terrestrial bio-
sphere C stock will determine the rates of global change via C-cy-
cle climate feedbacks. The magnitude of the terrestrial C stock
reflects the balance between C sequestration via net primary pro-
duction and C losses, which are dominated by decomposition. In
systems with low temperatures, wet conditions and litter of poor
quality (high C : N), decomposition is slow, resulting in a build-
up of C in the soil. Terrestrial nutrient availability, especially
nitrogen (N) and phosphorus (P) strongly influences both vegeta-
tion productivity and decomposition processes and thus determi-
nes how these C stocks, and hence the global scale C-cycle,
respond to environmental change (Zaehle, 2013; Wieder et al.,
2015). Earth system models now include nutrient C-cycle inter-
actions (Goll et al., 2017) but there are still substantial gaps in
our knowledge, particularly around the interactive effect of N
and P availability on long-term C-cycle responses.

Plant productivity is dependent on nutrient availability, espe-
cially the availability of N and P (Vitousek & Howarth, 1991;

Vitousek et al., 2010). Anthropogenic pressures, such as atmo-
spheric N deposition, can change nutrient availability and thus
affect C sequestration (Smith et al., 2015). Elevated N deposition
usually increases plant productivity (Phoenix et al., 2012) and in
forests and heathlands, this has been shown to lead to increased
C sequestration (de Vries et al., 2009). In nutrient-poor systems
such as peatlands, alpine and arctic systems, however, increased
C sequestration does not always occur under elevated N (de Vries
et al., 2009; Street et al., 2017). The suggested mechanisms for
this is that N deposition can cause vegetation to shift from N lim-
itation to limitation by P or NP co-limitation, without increasing
productivity, as observed in Calluna vulgaris-dominated upland
heaths (Kirkham, 2001; Pilkington et al., 2005a), sand dune
grassland (Ford et al., 2016) and mosses within an acid grassland
(Arr�oniz-Crespo et al., 2008). As a result of this shift in limita-
tion, production rates saturate at lower rates of N deposition.

Carbon loss through decomposition can also be affected by
nutrient availability (G€usewell & Verhoeven, 2006), with
impacts differing between systems. The main mechanisms by
which nutrient availability could enhance decomposition are
through reduction in litter C : N ratio (Bragazza et al., 2012;
B€ahring et al., 2017; Britton et al., 2018), changes in production
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of recalcitrant litter and changes in litter quality and quantity
related to changes in vegetation composition. Conversely,
reduced N limitation of microbial communities could decrease
decomposition through the reduced need to mine recalcitrant
organic matter for N (Craine et al., 2007; Milcu et al., 2011). In
nutrient-poor systems, including the UK uplands, increased N
deposition and experimental N addition increased mass loss from
litter bags (Britton et al., 2018), increased CO2 emissions
(Bragazza et al., 2006; Kivim€aki et al., 2013) and decreased the
thickness of the litter layer (Armitage et al., 2012a; Street et al.,
2017) indicating enhanced rates of decomposition. When an
increase in decomposition exceeds the increase in productivity,
depletion of ecosystem C stocks will result. By contrast, addition
of ≥ 20 kg N ha�1 yr�1 in an upland C. vulgaris heath in Wales
increased the litter layer and thus C storage (Field et al., 2017),
and in a Scottish low-alpine heathland no effect of N addition on
decomposition was found (Papanikolaou et al., 2010).

One potential reason for differing responses of plant produc-
tivity and decomposition to high N inputs across ecosystems is
variation in P availability. Elevated N availability promotes
upregulation of plant P acquisition, demonstrated by increased
phosphatase activity in vascular (Johnson et al., 1999; Pilkington
et al., 2005b) and nonvascular plants (Arr�oniz-Crespo et al.,
2008; Phuyal et al., 2008) and in soil (Johnson et al., 1998). This
can delay the shift towards P limitation in plants when N is
applied (Marklein & Houlton, 2012), and hence explains why
elevated N deposition does not always affect plant N : P ratio
(Kirkham, 2001; Britton & Fisher, 2007), sometimes even show-
ing a decrease in N : P ratio with increasing N deposition (Rowe
et al., 2008). Increasing P acquisition may allow plants to
respond to high N inputs by increasing productivity and thus
maintain net C sequestration. Applying this mechanism, it has
been suggested that addition of P could be used as a means of
promoting C sequestration in ecosystems exposed to high N
deposition (Armitage et al., 2012b). The importance of including
P in C cycling studies is recognised (Goll et al., 2012), but the
role of P is much less studied than the role of N. Furthermore,
despite recognition of the importance of long-term experiments
for understanding mechanisms of ecosystem change (Silvertown
et al., 2010), there is a lack of long-term data on the effects of N
and P on C stocks.

The UK uplands, defined as areas lying above the altitudinal
limits of enclosed farmland (Ratcliffe & Thompson, 1988) are
an example of ecosystems containing large C stocks. These areas
experience a cool and wet climate and are dominated by heath-
lands, bogs and acid grasslands (Averis et al., 2004). Slow rates of
decomposition relative to vegetation productivity promote the
development and maintenance of large C stocks. The effects of N
and P on these upland C stocks have received relatively little
attention, however there have been some studies of impacts of
combined N and P addition on productivity, both in the UK
uplands and in analogous low nutrient ecosystems elsewhere.

Increased moss productivity is one mechanism by which com-
bined N and P addition may increase C stocks in low nutrient
ecosystems. Mosses allocate more C to recalcitrant tissue than
vascular plants (Woodin et al., 2009), resulting in low

decomposition rates (Lang et al., 2009). Increased moss produc-
tivity in response to combined N and P application has been
demonstrated to increase the depth of organic soil horizons, and
their C stocks, 20 yr after nutrient application in the Arctic
(Street et al., 2015, 2017). Armitage et al (2012) showed an
increase in moss productivity after P addition in a UK alpine
heath with high N deposition. Similarly, moss growth was stimu-
lated after combined N and P application in C. vulgaris heath
(Pilkington et al., 2007) and in Vaccinium myrtillus heath and
Festuca ovina grassland (Stiles et al., 2017). Sphagnum growth
increased in response to 2–3 yr N and P treatment in a Scottish
raised bog, (Carfrae et al., 2007), Irish raised bogs, Dutch fen
bogs (Limpens et al., 2004) and a Patagonian boreal bog (Fritz
et al., 2012). If mosses in UK upland plant communities respond
similarly to combined N and P application, this mechanism
could lead to increased C storage in upland habitats.

Increased vascular plant cover in response to N and P may also
increase ecosystem C stocks. In an Arctic heath tundra, combined
application of N and P was found to increase vascular plant
cover, stimulating photosynthetic activity by 500% and ecosys-
tem respiration by 250% (Arens et al., 2008), suggesting
increased C sequestration. However, in UK upland heath, com-
bined N and P addition has been observed to cause changes in
vegetation composition, favouring grasses over heather (Hartley
& Mitchell, 2005). This could result in reduced C storage, as
grass-dominated heath has been found to sequester less CO2 than
C. vulgaris-dominated heath (Quin et al., 2015) and to have a
lower soil C stock (Quin et al., 2014). Thus, although productiv-
ity could increase in response to P where N availability is high, a
change in plant species composition may also occur, which could
have positive or negative effects on C stocks.

These findings demonstrate the need to better understand the
mechanisms by which P interacts with N to affect C sequestra-
tion and turnover, particularly over decadal timescales. Such
knowledge is critical, not only to understand the basic ecology of
upland systems and the response of C stocks to environmental
change, but also to provide evidence on the use of P additions to
manage C stores. The aim of this study was therefore to assess the
long-term interactive effect of P and N on vegetation composi-
tion and C sequestration in an upland dry heath ecosystem. We
sampled a 23-yr-old experiment on an upland heath where N, P
and N + P treatments had been added for 14 yr. We described
vegetation composition and estimated soil and vegetation C
stocks, 10 yr after the last nutrient application. Given the sugges-
tion that P application might be used to increase C sequestration
(Armitage et al., 2012b), and the potential for such a manage-
ment practice to affect freshwaters if P has any mobility within
the system, we quantified the retention of applied P in soil and
vegetation within the treatment plots.

We hypothesised that: (1) vegetation composition would have
changed following combined N and P addition, favouring fast
growing species (e.g. grasses) over the initial dwarf-shrub-domi-
nated vegetation, with effects persisting after treatments ended;
(2) changes in vegetation composition would affect vegetation
and soil C stocks; (3) plots receiving N would have a smaller total
C stock than controls, whereas plots receiving both N and P
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would have larger total C stocks as a result of the alleviation of
N-induced P limitation of the vegetation; and (4) most of the
originally added P would have accumulated in the soil because P
is largely immobile.

Materials and Methods

Experimental setup

In 1993 a fertilisation experiment was set up at four upland sites
in north-east Scotland, on dry heath vegetation dominated by
C. vulgaris (UK National Vegetation Classification type H12
(Rodwell, 1991), EUNIS F4.2 (Strachan, 2017)). Two of the
sites were situated in Glen Clunie and two in Glenshee, the sites
within each valley being similar in soil properties and grazing
pressure (Table 1). The sites are at an elevation of c. 500 m above
sea level (asl), with an average rainfall of 890 mm and a mean
annual temperature of 6°C (Alonso et al., 2001). Total N deposi-
tion at these sites is currently c. 12.6 kg N ha�1 yr�1 (APIS,
2017). The vegetation is grazed by sheep and deer; in 1993 graz-
ing levels were classified as high in Glenshee (60% of C. vulgaris
shoots grazed) and moderately high in Glen Clunie (40–50%
grazed) (Hartley & Mitchell, 2005) but have subsequently
declined (R. J. Mitchell, pers. comm.). Soils in Glen Clunie are
higher in organic matter and soil moisture, and more acidic than
soils in Glenshee, where a more base-rich subsoil is present (Hart-
ley & Mitchell, 2005).

At each of the four sites, four 39 5 m plots were set up receiv-
ing either no fertiliser (control), N, P or both N and P (N + P).
The original experimental design also included grazing and K
addition treatments with 16 treatment combinations replicated
at each of the four sites giving 64 plots (Hartley & Mitchell,
2005). For our study we resampled only the grazed plots receiv-
ing either no fertiliser, N, P, or N + P. Each of these treatments
was replicated once at each of the four sites giving 16 plots across
all sites. Fertiliser was applied twice per year from April 1993
until 2006 (14 yr). Nitrogen was applied at a rate of
7.5 g Nm�2 yr�1 (i.e. 75 kg N ha�1 yr�1) in the form of
NH4NO3 and P was applied at a rate of 5 g P m�2 yr�1 (i.e.

50 kg P ha�1 yr�1) in the form of triple superphosphate (Ca
(H2PO4)2�H2O), both in solid form. At 10 yr after the last nutri-
ent application, we revisited the plots and sampled vegetation
composition and nutrient and carbon stocks.

Vegetation and soil sampling

In 1993 and 1996 cover of C. vulgaris and grasses (all species
combined) was estimated in three 19 1 m quadrats per plot
using point quadrats (Hartley & Mitchell, 2005). Additionally,
in 1996 and 1999 full vegetation composition was recorded in
these quadrats, and in 2000 one of the three quadrats was har-
vested for biomass estimation. No data had been collected on full
initial vegetation composition or at the time of cessation of the
nutrient treatments (2006). In July 2016 we recorded vegetation
composition in the two remaining quadrats used in the previous
vegetation surveys, and in a third quadrat adjacent to the quadrat
harvested in 2000. Vegetation composition was noted by record-
ing species identity and estimating cover to the nearest 5% (or to
the nearest 1% if below 10%). We then calculated cover-
weighted Ellenberg fertility (N) and pH (R) values per quadrat,
based on values in PLANTATT and BRYOATT (Hill et al.,
2004, 2007). Shannon species diversity (Shannon H) was also
calculated per quadrat.

In August 2016, to quantify aboveground biomass to the soil sur-
face (including moss and litter) and nutrient stocks in the vegeta-
tion, we harvested a 509 50 cm area in the middle of three
different, randomly selected, 19 1m quadrats per plot, excluding
quadrats already used in previous analyses. Samples were kept frozen
until sorting into five groups: shrubs, bryophytes and lichens,
graminoids (including grasses, sedges and rushes), herbs and litter.
Oven-dried biomass (48 h at 80°C) was determined per group per
quadrat. Material was ground (Retsch cross beater mill, 2 mm sieve
size) and subsampled for P analysis. For C and N analysis a subsam-
ple was steel ball milled (Retsch MM400; Retsch, Germany).

We sampled soil from the vegetation harvest area by taking
three soil cores per quadrat (diameter 5 cm, 15 cm deep). These
cores were split into organic and mineral soil horizons, dried (7 d,
30°C), sieved (2 mm sieve) and weighed to determine bulk den-
sity. Large roots that were removed by the sieve were weighed,
ground (cross beater mill, as for vegetation) and recombined with
the soil sample. Soil samples were then bulked per horizon per
quadrat and ball milled before nutrient analysis.

Carbon and N contents of soil and vegetation were determined
on the milled material using elemental analysis (NA 2500 Series
2; CE Instruments Ltd, Wigan, UK). Total P, including all
chemical forms of P, was determined using flow injection analysis
(FIAstar 5000; Foss Analystica AB, Hilleroed, Denmark), follow-
ing sulphuric acid–hydrogen peroxide digestion (Grimshaw,
1987). Soil pH was determined using a 1 : 2.5 ratio of dried soil
and deionised water. Phosphorus and C stocks were then calcu-
lated per m2, including the top 15 cm of the soil, aboveground
vegetation and litter.

In September 2017, we collected three additional soil samples
per plot for microbial P analysis (diameter 5 cm, 15 cm deep).
Fresh soils were sieved on a 4 mm sieve, removing roots and

Table 1 Location, climate, grazing and soil characteristics of the study site;
climate data and pH based on Alonso et al. (2001), soil and grazing char-
acteristics from Hartley & Mitchell (2005).

Glen Clunie Glenshee

Location 56°560N, 3°250W 56°490N, 3°260W
Grid references NO137821,

NO139820
NO123734,
NO125725

Elevation (m asl) 500 450–550
Mean T (°C) 6.0 5.7
Mean annual rainfall (mm) 857 1000
Grazing pressure (% C. vulgaris

shoots grazed)
40–50 60

pH 4.00 4.15
Organic matter content (%) 70 50
Moisture content (%) 65 30
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stones. Soils were kept at 4°C until analysis (undertaken within
8 wk) for microbial P following Brookes et al. (1982) using chlo-
roform fumigation, extraction by 0.5M NaHCO3 and colori-
metric analysis for phosphate (Murphy & Riley, 1962). As some
soils were very organic and yielded a coloured extract, 1 g of acti-
vated charcoal was added to all extracts to decolour them before
phosphate analysis. The estimate for microbial P was then calcu-
lated using the difference between the fumigated and nonfumi-
gated sample, correcting for the recovery efficiency in a third,
nonfumigated sample spiked with 250 µg of PO4-P (Brookes
et al., 1982; Voroney et al., 2007). One of the microbial biomass
P calculations yielded a negative result and therefore this sample
was excluded from the microbial biomass analysis.

Data analysis

Soil and vegetation P and C stocks, P concentrations, microbial
biomass P, pH, total vegetation biomass and biomass N : P ratios
were analysed using linear mixed effect models in R v.3.4.1,
package NLME (Pinheiro et al., 2017; R Core Team, 2017), with
treatment N, P and the interaction between N and P (N 9 P) as
factors. Change in cover of C. vulgaris and grasses relative to the
cover at the start of the experiment was analysed using repeated
measures ANOVA over four time points (1993, 1996, 1999 and
2016) with N addition, P addition and year as factors. Similarly,
species richness (number of species per quadrat) and diversity
were analysed for three time points: 1996, 1999 and 2016 using
N addition, P addition and year as factors. Due to the original
spatial layout of the plots, within each site, N and P plots, and
control and N + P plots were always located together in pairs; this
pairing was accounted for in models (defined as ‘block’). In all
models, a nested error term with the plot, block, site and valley
(1|valley/site/block/plot) was included. Additionally, when
analysing the changes over time, plot identity was included as a
random factor. Normal distribution of the residuals was checked
for all models, and response variables were sqrt, inverse sqrt or
loge transformed when necessary to meet normality assumptions.
For soil C stock and litter C : N ratio, nonparametric Kruskal–
Wallis tests were used to test treatment effects, as normality
assumptions could not be met.

For analysis of community composition, species per cent cover
data were averaged per plot and analysed using multivariate sta-
tistical methods in CANOCO 5 (ter Braak & �Smilauer, 2012) in
order to examine differences in species composition per treatment
and the change in species composition over time. Species with a
cover < 1% were set to 0.01% cover and species with occurrence
in less than three plots were removed from the analysis. Species
composition change over time was analysed using principal
response curves (PRC). In this analysis, species composition in
the control treatment was set as the baseline for all the years, and
all fertiliser treatments were compared with this baseline. Signifi-
cance of the resulting ordination axis was tested using Monte
Carlo permutation tests and individual species scores were calcu-
lated to show which species changed most in abundance along
this ordination axis. To study the resulting difference in species
composition between treatments in 2016 we used a partial

redundancy analysis (RDA), so that we could constrain the ordi-
nation by differences between the valleys.

Results

Vegetation composition

From 1996 to 2016 species richness increased across all treat-
ments, but there were no significant effects of N or P addition on
species richness (Fig. 1a; Table 2). In 1999, Shannon H increased
in all treatments except for the N + P treatment (Supporting
Information Table S1), but through time the treatment effects
converged (significant interaction between N, P and year; Fig. 1b;
Table 2). Consequently, species richness and Shannon H in 2016
were not significantly different between treatments (Table S1). In
2016, an average of 18 plant species were found per plot
(Fig. 1a), with the most common species being the shrubs
C. vulgaris and V. myrtillus, the graminoids Agrostis vinealis and
Nardus stricta, the herbs Potentilla erecta and Galium saxatile and
the mosses Hylocomium splendens, Pleurozium schreberi and
Rhytidiadelphus squarrosus. Cover-weighted Ellenberg N, an indi-
cator of fertility, increased in response to N addition and P addi-
tion (Fig. 1c; Table 2). Ellenberg R, an indicator of soil pH,
increased through time in all treatments, indicating a decrease in
acid-loving species, which was reinforced by both N addition and
P addition (Fig. 1d; Table 2). The main change in Ellenberg N
and R occurred between 1993 and 1999; by 2016 Ellenberg N
and R no longer differed significantly between treatments
(Tables 2, S1).

Calluna vulgaris cover decreased through time in all treat-
ments, from an average of 66% in 1993 to 28% in 2016. This
decrease in C. vulgaris cover was enhanced by addition of N alone
and N + P (Fig. 2a; both N and P were significant factors;
Table S2), with the lowest C. vulgaris cover in the N + P treat-
ment. Grass cover was higher with both N and N + P addition;
this was consistent in both 1996 and 1999 (Fig. 2b; both N and
P were significant factors; Tables S1, S2). In 2016, the resulting
grass cover was higher in all plots that had received N addition,
whereas C. vulgaris cover was lower in these plots (Fig. 2;
Table S1). Phosphorus addition alone had no effect on
C. vulgaris or grass cover in 2016, although P was a marginally
significant factor in the models, reflecting the large cover changes
in N + P treatments (Fig. 2; Table S1). Moss cover was signifi-
cantly lower under N addition and increased over the years in all
plots (Table 2).

PRC analysis also demonstrated that the effects of the treat-
ments on total vegetation community composition changed over
the years; the interaction between year and treatment explained
27% of the total variation in species composition (Table S3).
After correcting for year, treatments explained 66% of the varia-
tion in species composition on the first ordination axis (PRC.1,
Fig. 3; Monte Carlo significance test, pseudo-F = 9.6, P = 0.026;
Table S3). Abundance of the shrubs C. vulgaris and V. myrtillus
and the mosses H. splendens, P. schreberi and Sphagnum spp. were
negatively related to nutrient treatments, whereas abundance of
the grasses A. vinealis, F. ovina, N. stricta and the mosses
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Polytrichum commune and R. squarrosus were positively related to
nutrient treatments (Fig. 3). Change in vegetation composition
compared with the control was greatest in the N + P treatment
(higher score on the PRC axis) while the P only plots became
more similar to the control treatment over the years.

The strongest influence on species composition in 2016 was
the difference between sites (i.e. Glen Clunie and Glenshee).
After constraining the ordination for site differences, nutrient
treatment explained 36% of the remaining variation in plant

species composition (Fig. 4). Ordination of the 2016 data
showed a small difference in plant species composition between
the control and P only plots; the mosses H. splendens and
P. schreberi being more abundant in the P treated plots. Plots
receiving N only and N + P were more different from the control;
while control plots were strongly associated with C. vulgaris, in N
addition plots sedges (Carex sp.) and the herbs Viola riviniana
and Polygala serpyllifolia were more common, and in N + P addi-
tion plots the shrub Vaccinium vitis-idaea, the mosses

(a) (b)

(c) (d)

Fig. 1 (a) Species richness (b) Shannon
diversity (H) (c) Ellenberg N and (d) Ellenberg
R of the whole vegetation community over
time, 1993–2016. The arrow indicates the
last nutrient addition. C, no fertiliser, N, N
only addition, P, P only addition and
NP, addition of both N and P combined.
Values are means, error bars show� 1 SE,
n = 12, see Table 2 for statistical tests.

Table 2 Results of repeated measures ANOVA (P-values) testing changes in species richness, Shannon diversity, Ellenberg N and R and bryophyte cover
testing the factors nitrogen (N) addition, phosphorus (P) addition, Year and their interactions.

N P Year N9 P N9 Year P9 Year N9 P9 Year

Species richness 0.215 0.596 <0.001 0.090 0.066 0.157 0.633
Shannon H 0.756 0.093 0.010 0.056 0.005 0.144 0.013
Ellenberg N 0.033 0.027 0.189 0.705 0.444 0.390 0.044
Ellenberg R 0.050 0.023 <0.001 0.350 0.684 0.379 0.959
Bryophyte cover (%) 0.001 0.748 <0.001 0.197 0.138 0.306 0.074

Numbers in bold indicate significant differences, n = 12. Herb cover and bryophyte cover were sqrt transformed before analysis.

Fig. 2 Cover of (a) C. vulgaris (‘Calluna’) and (b) grass over time relative to 1993 (1993–2016) per nutrient addition treatment. The arrow indicates the last
nutrient addition. C, no fertiliser, N, N only addition, P, P only addition and NP, addition of both N and P combined. Values are means, error bars show� 1
SE, n = 12, see Supporting Information Table S3, for statistical tests.
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P. commune, R. squarrosus and Dicranum scoparium and the grass
Festuca vivipara were more abundant.

Carbon stock

Soil carbon stock in the top 15 cm of the soil was on average
9.4 kg Cm�2 and was not significantly affected by treatments
(Kruskal–Wallis v2 = 1.91, df = 3, P = 0.589; Fig. 5a). Vegetation
C stock was an order of magnitude smaller, on average
0.9 kg Cm�2, and tended to be lower under N addition,
although not significantly so (Fig. 5b; Table S1). This marginal
difference could be attributed to lower shrub biomass in the com-
bined N and P addition plots (173 g m�2 compared with
647 g m�2 in the control plots), making up a large part of the
vegetation C stocks (Fig. 5b). Litter fractions contributed most to
vegetation C stocks, followed by shrubs and bryophytes;
graminoid and herb C stock were much smaller. Carbon stocks
in each of the different vegetation fractions did not differ signifi-
cantly between treatments, except for higher herb biomass and
associated C stock with N addition (Table 3; Table S2). There
was no treatment effect on litter carbon pools, but litter C : N
ratio decreased with N addition (Table 3). There was no signifi-
cant effect of N or P addition on organic layer depth. As soil C
stock makes up the majority of the total C stock, there were no
effects of N or P addition on total C stock.

Fate of the added phosphorus

In total, 70 g P m�2 was added during the 14-yr experimental
period. Average total P stock in the top 15 cm of soil ranged from
58 g P m�2 in the control treatment to 94 g P m�2 in the P only
treatment and was significantly greater where P had been added

(mean increase 28 g P m�2 compared with plots without P addi-
tion, Tables 4, S1). Microbial P stock was on average 14.4 g P
m�2, which is 19% of the total soil P. Microbial P stock showed
a similar pattern to total soil P stock, being on average 9.2 g P
m�2 higher in P treated plots compared with plots not receiving
P (Table 4). Total vegetation P stock averaged 1.9 g P m�2, only
2.5% the size of the soil P stock, and was higher under P addition
(+ 0.6 g P m�2) and lower under N addition (�0.4 g P m�2),
with no interactive effect of N and P (Table 4). The differences

Fig. 3 Principal response curve for species composition over time, showing differences in species composition for the first ordination axis (PRC.1, P = 0.026)
between nutrient addition treatments. The arrow indicates the last nutrient addition. C, no fertiliser, N, N only addition, P, P only addition and NP, addition
of both N and P combined. Vegetation composition in the control plot is set at 0 along the PRC axis. The species score (right panel) depicts the direction
and the relative magnitude of species occurrence along the PRC axis compared to the control. Multiplying the exponent of the species score with the value
on the PRC axis for a specific treatment gives the approximate difference in abundance for that species compared to the control. A negative species score
indicates a reduction in occurrence of that species along the PRC axis, whereas a positive species score means an increase compared to the control.

Fig. 4 Partial RDA of the vegetation composition in 2016, corrected for
differences between valleys. Treatments are projected onto the species
composition ordination, C, no fertiliser, N, N only addition, P, P only
addition and NP, addition of both N and P combined. For clarity, only the
15 most strongly associated species are depicted in this ordination.
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in vegetation P stocks were not due to differences in biomass but
were mainly related to increases in tissue P concentration in
response to P and decreases in P concentration in response to N
in all functional groups (Tables 3, 4, S4). Tissue N : P ratio in
the vegetation was lower under P addition, due to increased P
concentration (Table 3).

Discussion

Our findings demonstrate that heathland plant communities
have a limited capacity for recovery at decadal timescales follow-
ing sustained (14 yr) mineral nutrient inputs, and that the com-
munity may have surpassed a critical ecological tipping point.
Despite these shifts in vegetation composition, we found that
heathland ecosystem C stocks were resilient to changes in nutri-
ent inputs, suggesting plant communities and soil processes have
limited connectivity, or respond at markedly different timescales,
as has been reported in other system using observational analyses
(e.g. Stark et al., 2019).

In line with our first hypothesis, vegetation composition ini-
tially changed most in response to N addition, and additionally
to combined N + P addition, favouring grasses over C. vulgaris
(Hartley & Mitchell, 2005). The shrub V. myrtillus showed a
similar pattern to C. vulgaris, decreasing with N and P addition.
Similar effects have been reported previously (e.g. Heil &
Diemont, 1983) where C. vulgaris was replaced by F. ovina after
12 yr of N addition, but did not change under P addition. In pot
experiments, N and P additions increased the competitiveness of
N. stricta over C. vulgaris (Hartley & Amos, 1999). Other work
suggests that the pioneer phase of heathland vegetation may be
the sensitive phase when dominance by grasses is able to occur
(Friedrich et al., 2011). However, our data show that over 23 yr,
both N addition alone and, to an even greater extent, N + P addi-
tion increased the cover of grasses and reduced the cover of
C. vulgaris, despite the vegetation being in a mature phase of
growth. The increase in grass cover in response to nutrient addi-
tion was exacerbated by an overall trend for C. vulgaris cover to
decrease in all plots, including the controls. This finding may be

(a) (b)

Fig. 5 Average (a) soil and (b) vegetation C stock per nutrient addition treatment. C, no fertiliser, N, N only addition, P, P only addition and NP, addition of
both N and P combined. Soil C stock is split in mineral (grey) and organic (black) layer. Vegetation C stock is split for each fraction. Values are means, error
bars show� 1 SE of total soil C stock and total vegetation C stock, n = 12, ns = not significant, see Supporting Information Table S1 for statistical tests.

Table 3 Plant functional group biomass, phosphorus concentration [P] and C:N ratio for litter per fertiliser treatment, including the significance of the
ANOVA model factors nitrogen (N), phosphorus (P) and the interaction between N and P (N9 P).

Treatments Significance

C N P NP N P N9 P

Shrub biomass g m�2 647� 134 671� 182 667� 115 173� 95
[P] mg P g�1 0.77� 0.06 0.63� 0.07 0.93� 0.11 1.26� 0.14 ** *
Bryophytes biomass g m�2 338� 70 240� 31 330� 45 380� 104
[P] mg P g�1 1.07� 0.09 0.92� 0.09 1.50� 0.14 1.54� 0.18 **
Graminoids biomass g m�2 158� 30 164� 27 146� 28 189� 26
[P] mg P g�1 1.15� 0.07 0.90� 0.07 1.89� 0.11 1.84� 0.18 **
Herb biomass g m�2 11� 1 16� 3 14� 3 22� 4 *
[P] mg P g�1 1.63� 0.14 1.20� 0.08 2.60� 0.12 2.52� 0.30 **
Litter biomass g m�2 876� 92 779� 41 883� 113 639� 78
[P] mg P g�1 0.96� 0.08 0.80� 0.08 1.28� 0.21 1.56� 0.17 *** **
C : N – 41.2� 3.2 33.8� 1.3 39.3� 2.3 37.0� 2.5 **

C, no fertiliser, N, N only addition, P, P only addition and NP, addition of both N and P combined. Significance values: *, P < 0.05; **, P < 0.01; and ***,
P < 0.001. Shrub, bryophyte and herb [P], graminoid and herb biomass were square root transformed, bryophyte biomass was loge transformed and litter
[P] and C : N were inverse square root transformed before analysis. For the litter biomass a nonparametric Kruskal–Wallis test was used. Values are
mean� 1 SE, n = 12.

� 2020 The Authors

New Phytologist� 2020 New Phytologist Trust
New Phytologist (2020)

www.newphytologist.com

New
Phytologist Research 7



related to the relatively high grazing pressure, as exclosures in the
same area showed an increase in C. vulgaris cover from 1993–
1999 (Hartley & Mitchell, 2005). Grazing has previously been
found to shift vegetation from C. vulgaris to grass domination
(Bokdam, 2001) and grazing in combination with N deposition
has been shown to decrease soil and vegetation C stock in upland
areas across the UK (Smith et al., 2015). A change from
C. vulgaris-dominated to grass-dominated heath can change soil
C stocks, decreasing the amount of recalcitrant C (Quin et al.,
2014).

The effects of N and combined N + P addition on vegetation
composition were persistent over time. However, vegetation
composition recovered in plots that had received P only, becom-
ing more similar to control over time. This could be a legacy of
N addition. Nitrogen stock data suggest that N has been largely
retained in the soil, but not in the vegetation (Fig. S1). It is likely
that the shift in vegetation composition in the N and N + P plots
is being maintained by competition between grasses and shrubs,
the system having passed a tipping point.

Mosses remain particularly sensitive to N inputs; their reduced
cover reflects responses to N inputs seen in other systems such as
Arctic and alpine heath (Armitage et al., 2012a; Street et al.,
2015), and both H. splendens and P. schreberi have been nega-
tively associated with high N deposition in the UK (Field et al.,
2014). Increased moss biomass in response to P addition with
high N (Pilkington et al., 2007; Armitage et al., 2012b; Stiles
et al., 2017) suggests that P addition may be able to alleviate
some of the negative impacts of N deposition on bryophyte cover
and biomass and thus on their C storage. Although we observed
some increases in nitrophilic mosses with combined N + P addi-
tion, we did not see any significant evidence for P alleviating neg-
ative effects of N on total moss biomass and C stock.

Shifts in vegetation composition did not translate into changes
in vegetation C stocks, contrary to our second hypothesis. The
decrease in C. vulgaris cover and biomass in the N + P treatment
tended to decrease the vegetation C stock (Fig. 5b), and increases
in grass cover only slightly offset this. Herb biomass and C stock
was slightly higher with N addition, but this fraction makes up a
very small proportion of total vegetation C stock (Fig. 5b). The
lack of differences in biomass with changing plant species compo-
sition could indicate that functional plant species composition

remained diverse enough to maintain productivity (Tilman et al.,
1997). We measured standing biomass, rather than productivity,
and it is possible that productivity may actually have been
increased by the more rapid turnover of graminoid material,
without changing standing biomass.

Contrary to our third hypothesis, and despite the changes in
vegetation composition, soil C stocks and the depth of the
organic layer did not respond to nutrient treatments. The most
likely mechanism behind this lack of response is equal change in
both of the components determining C stock, that is production
and decomposition, or no change in either. Productivity has been
found to generally increase with N deposition (Phoenix et al.,
2012) and, similarly, C outputs often respond positively to N
deposition (Bragazza et al., 2012; Kivim€aki et al., 2013; Britton
et al., 2018), although not in all studies (Papanikolaou et al.,
2010; Field et al., 2017). Vegetation in our study shifted towards
more productive, fast growing species (e.g. grasses) in response to
nutrient addition, especially to N + P treatment. Fast growing
species generally decompose faster; we observed a decrease in lit-
ter C : N under N addition, indicating more readily decompos-
able material. Thus, both productivity and decomposition may
have increased, resulting in no net changes in C stocks. Our find-
ings contrast with others that have shown both positive and nega-
tive responses of C stocks to N and P additions (Smith et al.,
2015; Field et al., 2017; Stiles et al., 2017; Street et al., 2017),
suggesting that these responses are context dependent. While
some ecosystem models currently assume positive effects of N
deposition on C stocks (e.g. Tipping et al., 2017), our findings
imply that this may not be ubiquitous.

Our findings highlight the continuing need to better under-
stand the mechanisms regulating P storage and turnover in
ecosystems, particularly given the scarcity of rock phosphate
(Scholz et al., 2013) and the linkage between global atmospheric
N deposition and P demand by plants (Johnson et al., 1999) and
soil microorganisms (Johnson et al., 1998). Confirming our
fourth hypothesis, the addition of P increased the P stock in both
vegetation and soil, reflecting the limited mobility of this element
in the soil (e.g. McGill & Cole, 1981). Few studies of N and P
addition have reported data on soil P stocks, although, over the
short term, added P has been found to be retained in vegetation
in alpine Racomitrium heath (Armitage et al., 2012), and in

Table 4 Soil, microbial and vegetation total phosphorus, vegetation biomass, depth of the organic (O) layer, pH of the organic and mineral (M) layer by
treatment for 2016, including the significance of the ANOVA model factors nitrogen (N), phosphorus (P) and the interaction between N and P (N9 P).

Treatments Significance of factors

C N P NP N P N9 P

Soil total P g P m�2 58.4� 7.8 63.6� 5.8 94.1� 6.8 84.1� 7.4 **
Microbial P g P m�2 10.4� 3.0 10.5� 2.9 19.5� 4.4 17.6� 4.5 *
Veg total P g P m�2 1.8� 0.2 1.4� 0.1 2.4� 0.2 2.0� 0.2 * *
Veg biomass g m�2 2030� 168 1871� 167 2040� 158 1404� 158
Depth O layer cm 7.1� 1.2 6.9� 1.3 6.3� 1.2 8.0� 1.2
pH O layer – 3.87� 0.08 4.12� 0.12 4.17� 0.11 4.03� 0.08
pH M layer – 3.93� 0.05 4.29� 0.09 4.20� 0.05 3.94� 0.08 *

C, no fertiliser, N, N only addition, P, P only addition and NP, addition of both N and P combined. Significance values: *, P < 0.05; **, P < 0.01; and ***,
P < 0.001. Tests are carried out on untransformed data. Values are mean� 1 SE, n = 12.
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Sphagnum bogs (Fritz et al., 2012). In our study, the difference in
soil P stocks between plots with and without P addition
accounted for 40% of the total added P (28.0/70 g P m�2

added), with a further 1% found in vegetation P stocks. This
means that 59% of the added P was unaccounted for.

Despite the small contribution of vegetation to total P stocks,
an important finding was that high N inputs reduced vegetation
P stocks. This could potentially be explained by reduced avail-
ability of P to vegetation as a result of N-induced soil acidifica-
tion, or by increased microbial demand for, and immobilisation
of, P when N is added (Pilkington et al., 2005). However, we did
not find any significant change in either soil pH in the organic
layer or soil microbial biomass P in N fertilised plots, suggesting
that neither of these explanations is correct. An alternative expla-
nation for the reduced vegetation P stock could be that N addi-
tion reduces mycorrhizal colonisation (Yesmin et al., 1996), thus
reducing the ability of plants to access soil P.

The apparent loss of 59% of added P from the system could
be explained by two potential mechanisms, namely biomass
removal by grazing and leaching of P beyond the 15 cm soil
depth sampled. Herbivore browsing in this system was estimated
to affect 40–70% of current years’ shoots (Hartley & Mitchell,
2005). If we make a conservative assumption (given that sheep
numbers have decreased since the start of the experiment) that
this equates to 20% of biomass, it would account for 10.1 g P
m�2 loss over 23 yr. Thus, grazing could only account for a small
proportion of the unaccounted P, and it is more likely that P was
retained at soil depths >15 cm. This would be expected to be due
to the immobile nature of P and because average soil depths at
both sites are 75–80 cm (Soil Information for Scottish Soils,
SIFSS). Tight retention of P is supported by the fact that in a pre-
liminary study (data not shown) we found no evidence of ele-
vated P in the top 15 cm of the soil just 1.5 m beyond the edge of
P treatment plots, suggesting limited lateral movement of P.

The amount of P not accounted for in the top 15 cm of soil in
our study may reflect treatment application rates. Although high,
the rates of N (75 kg ha�1 yr�1) and P (50 kg ha�1 yr�1) applica-
tion were comparable with the highest application rates in other
studies on bogs (20–64 and 4–64 kg P ha�1 yr�1) (Malmer et al.,
2003; Carfrae et al., 2007; Phuyal et al., 2008; Currey et al.,
2010; Larmola et al., 2013) and on tundra systems (50–100 and
5–50 kg P ha�1 yr�1) (Mack et al., 2004; Nowinski et al., 2008;
Sundqvist et al., 2014; Street et al., 2015). However, studies in
UK ecosystems similar to ours have utilised lower rates of addi-
tion, of 10–20 and 5–20 kg P ha�1 yr�1 (Pilkington et al., 2007;
Armitage et al., 2012b; Stiles et al., 2017). Despite more than
half the P added to our system not being retained in the top
15 cm of soil, 280 kg P ha�1 was retained. This suggests that if P
was added at lower rates, even with repeated additions over sev-
eral years, it would all be retained over decadal time scales, as
long as the maximum retention capacity of 280 kg P ha�1 was
not exceeded.

Our findings provide valuable insight into the legacy effects of
nutrient inputs and limitation in seminatural ecosystems. How
ecosystems respond to P limitation is a fundamental question
that remains unclear in many ecosystems, and which is only

beginning to be considered in land surface models (Reed et al.,
2015). Our findings contribute to recent calls for better under-
standing of how P limits plant productivity and soil C, N and P
pools (Jiang et al., 2019), and show that P limitation does not
control C accumulation in organic soils. The results also suggest
that addition of P to upland vegetation cannot mitigate the
effects of N or increase C sequestration. Our study illustrates
how shifts in biodiversity (e.g. substantial reduction in cover of
the dominant shrub) do not necessarily translate to belowground
function even over long timescales, and provide an empirical
demonstration of the uncertainty in linking biodiversity change
with ecosystem ecology (Adair et al., 2018).
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Fig. S1 Average (a) soil and (b) vegetation N stock for each nutri-
ent addition treatment.

Table S1 ANOVA table for soil and vegetation data in 2016 and
for vegetation data of 1996 and 1999 testing the factors nitrogen
(N) addition, phosphorus (P) addition and the interaction
between N and P addition (N9 P).
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Table S2 ANOVA table for plant functional group biomass and
tissue chemistry testing the factors nitrogen (N) addition, phos-
phorus (P) addition and the interaction between N and P addi-
tion (N9 P).

Table S3 ANOVA table for the changes in C. vulgaris and grass
cover over time testing the factors nitrogen (N) addition, phos-
phorus (P) addition, year and the interaction between these fac-
tors.
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