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ABSTRACT

The chase procedure is a fundamental algorithmic tool in database

theory with a variety of applications. A key problem concerning

the chase procedure is all-instances termination: for a given set

of tuple-generating dependencies (TGDs), is it the case that the

chase terminates for every input database? In view of the fact that

this problem is undecidable, it is natural to ask whether known

well-behaved classes of TGDs ensure decidability. We consider here

the main paradigms that led to robust TGD-based formalisms, that

is, guardedness and stickiness. Although all-instances termination

is well-understood for the oblivious version of the chase, the more

subtle case of the restricted (a.k.a. the standard) chase is rather

unexplored.We show that all-instances restricted chase termination

for guarded and sticky single-head TGDs is decidable.
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1 INTRODUCTION

The chase procedure (or simply chase) is a fundamental algorithmic

tool that has been applied to several database problems such as

computing data exchange solutions [13], and query answering and

containment under constraints [1, 7], to name a few. The chase

takes as input a database D and a set T of constraints – which,

for this work, are tuple-generating dependencies (TGDs) of the

form ∀x̄∀ȳ (ϕ(x̄ , ȳ) → ∃z̄ψ (x̄ , z̄)) with ϕ andψ being conjunctions

of atoms – and, if it terminates, its result is a finite instance DT

that is a universal model of D and T , i.e., a model that can be homo-

morphically embedded into every other model of D and T . This is

the reason for the ubiquity of the chase as discussed in [11]. Indeed,

many central database problems, which involve reasoning with

TGDs, can be solved by simply exhibiting a universal model. And

this is not only in theory. Despite the fact that the instance con-

structed by the chase can be very large, efficient implementations

of the chase procedure have been successfully applied during the

last few years in many different contexts [4, 19, 23, 24].

The Chase In a Nutshell. Roughly speaking, the chase adds new

tuples to the database D (possibly involving null values that act as
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witnesses for the existentially quantified variables), as dictated by

the TGDs of T , and it keeps doing this until all the TGDs of T are

satisfied. There are, in principle, two different ways for formaliz-

ing this simple idea, which lead to different versions of the chase

procedure. The first one, which gives rise to the oblivious chase, is
as follows: for each pair t̄ , ū of tuples of terms from the instance

I constructed so far, trigger a TGD ∀x̄∀ȳ (ϕ(x̄ , ȳ) → ∃z̄ψ (x̄ , z̄)) if
ϕ(t̄ , ū) ⊆ I , and add to I the set of atomsψ (t̄ , v̄), where v̄ is a tuple

of new terms not occurring in I . The second way, which leads to the
restricted (a.k.a. standard) chase, is a refinement of the above with

the additional condition that, for a pair t̄ , ū of tuples of terms, a TGD

∀x̄∀ȳ (ϕ(x̄ , ȳ) → ∃z̄ψ (x̄ , z̄)) is triggered not only if ϕ(t̄ , ū) ⊆ I , but
also if there is no tuple v̄ of terms from I such thatψ (t̄ , v̄) ⊆ I , i.e.,
if the TGD is not already satisfied. Thus, the key difference between

the oblivious and restricted versions of the chase is that the former

triggers a TGD whenever the left-hand side of the implication is

satisfied, while the latter triggers a TGD only if it is violated.

It should be clear that the restricted chase, in general, buildsmuch

smaller instances than the oblivious one. Actually, it is very easy to

devise an example where, according to the restricted chase, none of

the TGDs should be triggered, while the oblivious chase builds an

infinite instance. Consider, e.g., the database D = {R(a,b)} and the

TGD ∀x∀y(R(x ,y) → ∃z R(x , z)). The restricted chase will detect

that the database already satisfies the TGD, while the oblivious

chase will build the infinite instance {R(a,b),R(a,ν1),R(a,ν2), . . .},

where ν1,ν2, . . . are (labeled) nulls. Consequently, the restricted

chase has a clear advantage over the oblivious chase when it comes

to the size of the result. But, of course, this advantage does not come

for free: at each step, the restricted chase has to check that there

is no way to satisfy the right-hand side of the TGD at hand, and

this is costly. However, as it has been recently observed, the benefit

from producing much smaller instances can justify the effort of

checking whether a TGD is already satisfied; see, e.g., [4, 19].

1.1 The Challenge of Non-termination

As said above, there are nowadays efficient implementations of the

restricted chase that allows us to solve central database problems

by adopting a materialization-based approach [4, 19, 23, 24]. But,

of course, for this to be feasible in practice we need a guarantee

that the restricted chase terminates, which is not always the case.

This fact motivated a long line of research on identifying fragments

of TGDs that ensure the termination of the restricted chase, for

every input database. A prime example is the class of weakly-acyclic
TGDs [13], which is the standard language for data exchange pur-

poses. A similar formalism, called constraints with stratified-witness,
has been proposed in [12]. Many other sufficient conditions for the

termination of the restricted chase can be found in the literature;

see, e.g., [11, 12, 16, 18, 21, 22] – this list is by no means exhaustive,

and we refer the reader to [17] for a comprehensive survey.
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With so much effort spent on identifying sufficient conditions

for the termination of the restricted chase, the question that comes

up is whether a sufficient condition that is also necessary exists. In

other words, given a set T of TGDs, is it possible to decide whether,

for every database D, the restricted chase on D and T terminates?

This has been addressed in [14], where it is shown that the answer

is negative, even for the oblivious chase.

The undecidability proof in [14] constructs a sophisticated set of

TGDs that goes beyond existing well-behaved classes of TGDs that

enjoy certain syntactic properties, which in turn ensure favorable

model-theoretic properties. Such well-behaved classes of TGDs

have been proposed in the context of ontological reasoning. The two

main paradigms that led to robust TGD-based formalisms, without

forcing the restricted chase to terminate, are guardedness [2, 7, 8]
and stickiness [9]. A TGD is guarded if the left-hand side of the

implication, known as the body of the TGD, has an atom that

contains (or “guards”) all the universally quantified variables. On

the other hand, sticky sets of TGDs are inherently unguarded, and

their main goal is to express joins among relations that cannot be

expressed via guarded TGDs (details are given in Section 2).

The fact that the set of TGDs given in the undecidability proof

of [14] is far from being guarded or sticky brings us to the following

question: is the restricted chase termination problem, as described

above, decidable for guarded or sticky TGDs? This question is rather

well-understood for the oblivious chase. In the case of guarded

TGDs, the problem is 2EXPTIME-complete, and becomes PSPACE-

complete for linear (one body-atom) TGDs [5]. The sticky case has

been recently addressed in [6], where it is shown that the problem

is PSPACE-complete. However, despite its clear advantage over the

oblivious chase, we know very little about the restricted chase. It

has been shown, independently of our work, that the problem is

decidable for single-head (one atom in the head) linear TGDs [20].

However, nothing so far was known about guarded or sticky TGDs.

1.2 Research Challenges

We concentrate on guarded and sticky TGDs (in fact, single-head

TGDs), and study the restricted chase termination problem. More

precisely, we study the following: given a set T of single-head

guarded or sticky TGDs, is it the case that for every databaseD, every
restricted chase derivation ofD w.r.t.T is finite? It might be the case

that some derivations are finite and some others are not, depending

on the order that TGDs are triggered, which is not the case for the

oblivious chase. The reason for this non-deterministic behavior is

the fact that the restricted chase applies a TGD only if it is necessary

(recall the restricted vs. oblivious chase discussion above). On the

other hand, the oblivious chase applies TGDs whenever the body

is satisfied, which ensures a deterministic behavior. Our ultimate

goal is to show that the problem in question is decidable. Towards

this direction, one has to overcome a couple of non-trivial technical

issues, which were not so difficult in the case of the oblivious chase.

Dealing with Fairness. The fairness condition is crucial in the

definition of the chase in order to ensure that the result is indeed

a model of the input database and set of TGDs. It states that each

TGD that is violated at some point of the execution of the chase

eventually will be satisfied. One of the main difficulties underlying

our problem is to ensure fairness. In other words, focussing on

the complement of our problem, it is not enough to simply check

whether there exists a database that leads to an infinite derivation

w.r.t. the set of TGDs, but we have to ensure that it is also fair.

As shown in [5], for the oblivious chase, the existence of a (pos-

sibly unfair) infinite chase derivation implies the existence of a

fair one, which in turn implies that we can completely neglect the

fairness condition. The question that comes up is whether we can

establish the same for the restricted chase, which will crucially

simplify our task. Actually, this question has been already posed

by Jan Van den Bussche some years ago in a different context [10].

Showing such a result for the restricted chase is significantly more

difficult than showing it for the oblivious chase. Note that the re-

cent work [20], which considers the restricted chase, establishes

such a result, but only for single-head linear TGDs. Generalizing

this to single-head guarded or sticky TGDs, or ideally to arbitrary

single-head TGDs, is a non-trivial task. As we shall see, here is the

place where we need the TGDs to be single-head.

Existence of a Critical Database. It would be extremely useful

to have a special database D∗
in place, let us call it critical, of a very

simple form, that ensures the following: given a set T of TGDs, if

there is a database that leads to an infinite chase derivation w.r.t. T ,

then already D∗
does. With such a critical database in place, one

can focus on the complement of our problem, and check whether

D∗
leads to an infinite chase derivation w.r.t. the given TGDs.

For the oblivious chase such a critical database exists: it simply

collects all the atoms of the form R(c, . . . , c), where R is a relation

that occurs in the given set of TGDs [21], and c an arbitrary constant.
All the known decidability results about the oblivious chase heavily

rely on the critical databaseD∗
[5, 6]. It is an easy exercise, however,

to show that D∗
, as defined above, does not serve as a critical

database in the case of the restricted chase. This brings us to the

other technical challenge that we need to overcome, that is, the

lack of an obvious database that can serve as a critical database.

Let us say that [20], which considers the restricted chase, follows

the critical database approach. However, it is easy to see that for

single-head linear TGDs (the main concern of [20]) such a critical

database is simply a database consisting of a single atom. This is

far from being true for single-head guarded or sticky TGDs.

1.3 Summary of Contributions

Our main results (Theorem 5.1 and Theorem 6.1) state that, for a

set T of single-head guarded or sticky TGDs, checking whether,

for every database D, every restricted chase derivation of D w.r.t. T

is finite, is decidable in elementary time. To show these results, we

had to establish a series of auxiliary results, related to the technical

challenges discussed above. Our main contributions follow:

In Section 4, we establish the Fairness Theorem, which essentially

states that, for single-head (not necessarily guarded or sticky) TGDs,

we can neglect the fairness condition. This overcomes the first

challenge raised in the previous subsection. Let us stress that this

result does not hold once we go beyond single-head TGDs, which

means that our decision to focus on single-head TGDs is not for

simplicity, but it might be crucial for the validity of our main results.

This has been also observed, independently of our work, in [20].

In Section 5, we focus on guarded TGDs.We first characterize the

existence of an infinite (possibly unfair) restricted chase derivation



of a databaseD w.r.t. a setT of single-head (not necessarily guarded)

TGDs via the existence of an infinite subset S , called chaseable, of the
instance CD,T constructed by applying a variant of the oblivious

chase onD using T . Such a chaseable set S enjoys certain properties
that allow us to convert it into an infinite restricted chase derivation

of D w.r.t.T . We then show that, for a set T of single-head guarded

TGDs, the problem of deciding whether there is a database D such

that an infinite chaseable subset ofCD,T exists can be reduced to the

satisfiability problem of Monadic Second-Order Logic (MSOL) over

infinite trees of bounded degree. The correctness of this reduction

relies on another key result of independent interest: if there is a

database that leads to a (possibly unfair) infinite chase derivation

w.r.t. T , then there is an acyclic one with the same property.

Finally, in Section 6, we concentrate on sticky TGDs. Given a

set T of sticky TGDs, we reduce the problem of deciding whether

there exists a database D such that an infinite (possibly unfair)

restricted chase derivation of D w.r.t. T exists to the emptiness

problem of deterministic Büchi automata. This reduction relies on

another key result of independent interest: there exists a databaseD
such that an infinite (possibly unfair) restricted chase derivation of

D w.r.t. T exists iff a so-called finitary caterpillar for T exists. The

latter is essentially an infinite “path-like” restricted chase derivation

of some database w.r.t. T , and is precisely the existence of such an

object that we check via a deterministic Büchi automaton.

2 PRELIMINARIES

We consider the disjoint countably infinite sets C, N, and V of

constants, (labeled) nulls, and variables (used in dependencies), re-

spectively. We refer to constants, nulls and variables as terms. For
an integer n > 0, we may write [n] for the set {1, . . . ,n}.

Relational Databases. A schema S is a finite set of relation sym-

bols (or predicates) with associated arity. We write R/n to denote

that R has arity n > 0; we may also write ar(R) for n. A position of S
is a pair (R, i), where R/n ∈ S and i ∈ [n], that essentially identifies

the i-th argument of R. An atom over S is an expression of the

form R(t̄), where R/n ∈ S and t̄ is an n-tuple of terms. A fact is an
atom whose arguments consist only of constants. We write R(t̄)[i]
for the term of R(t̄) at position (R, i), i.e., the i-th element of t̄ . For
brevity, we may refer to the position (R, i) in R(t̄) simply as the i-th
position of R(t̄) and write (R(t̄), i). Moreover, for a variable x in t̄ ,
let pos(R(t̄),x) = {(R, i) : R(t̄)[i] = x}, i.e., is the set of positions at
which x occurs according to R(t̄). An instance over S is a (possibly
infinite) set of atoms over S that contain constants and nulls, while

a database over S is a finite set of facts over S. The active domain of

an instance I , denoted dom(I ), is the set of all terms in I .

Substitutions and Homomorphisms. A substitution from a set

of terms T to a set of terms T ′
is a function h : T → T ′

defined as

follows: ∅ is a substitution, and if h is a substitution, then h ∪ {t 7→
t ′}, where t ∈ T and t ′ ∈ T ′

, is a substitution. The restriction of h
to S ⊆ T is denoted h |S . A homomorphism from a set of atoms A to

a set of atoms B is a substitution h from the terms of A to the terms

of B such that (i) t ∈ C implies h(t) = t , and (ii) R(t1, . . . , tn ) ∈ A
implies h(R(t1, . . . , tn )) = R(h(t1), . . . ,h(tn )) ∈ B.

Single-Head Tuple-Generating Dependencies. A single-head
tuple-generating dependency σ is a constant-free first-order sentence

∀x̄∀ȳ (ϕ(x̄ , ȳ) → ∃z̄ R(x̄ , z̄)), where x̄ , ȳ, z̄ are tuples of variables of
V, ϕ(x̄ , ȳ) is a conjunction of atoms, and R(x̄ , z̄) is a single atom.

For brevity, we write σ as ϕ(x̄ , ȳ) → ∃z̄ R(x̄ , z̄), and use comma

instead of ∧ for joining atoms. We refer to ϕ(x̄ , ȳ) and R(x̄ , z̄) as
the body and head of σ , denoted body(σ ) and head(σ ), respectively.
Henceforth, we simply say tuple-generating dependency (TGD)

instead of single-head TGD. The frontier of the TGD σ , denoted
fr(σ ), is the set of variables x̄ , i.e., the variables that appear both in

the body and the head of σ . The schema of a set T of TGDs, denoted

sch(T ), is the set of predicates in T , and we write ar(T ) for the

maximum arity over all those predicates. An instance I satisfies
a TGD σ as the one above, written I |= σ , if the following holds:

whenever there exists a homomorphism h such that h(ϕ(x̄ , ȳ)) ⊆ I ,
then there exists h′ ⊇ h |x̄ such that h′(R(x̄ , z̄)) ∈ I . Note that, by
abuse of notation, we sometimes treat a tuple of variables as a set of

variables, and a conjunction of atoms as a set of atoms. The instance

I satisfies a set T of TGDs, written I |= T , if I |= σ for each σ ∈ T .

Guardedness. A TGD σ is guarded if there exists an atom α in its

body that contains all the variables occurring in body(σ ) [7]. The
atom α is the guard of σ . In case there are more than one atoms that

can serve as the guard of σ , then we fix the left-most such atom in

body(σ ) as the guard. We write guard(σ ) for the guard of σ . The
class of guarded TGDs, denoted G, is defined as the family of all

possible finite sets of guarded single-head TGDs.

Stickiness. The goal of stickiness is to capture joins that are not

expressible via guarded TGDs [9]. The key property is that vari-

ables occurring more than once in the body of a TGD should be

inductively propagated (or “stick”) to the head-atom as follows

× 
  T(x,y,z)  → ∃w  S(y,w)

    R(x,y), P(y,z) → ∃w  T(x,y,w)

  T(x,y,z)  → ∃w  S(x,w)

    R(x,y), P(y,z) → ∃w  T(x,y,w)

where the first set of TGDs is sticky, while the second is not. The

formal definition is based on an inductive procedure that marks the

variables that may violate the above property. Roughly, the base

step marks a body-variable that does occur in the head. Then, the

marking is inductively propagated from head to body as follows

  T(x,yyyy,z)  → ∃w  S(x,w)

    R(x,yyyy), P(yyyy,z) → ∃w        T(x,y,w)

Stickiness requires every marked variable to appear only once in

the body of a TGD. The formal definition follows.

Consider a set T of single-head TGDs; we assume, w.l.o.g., that

the TGDs in T do not share variables. Let σ ∈ T and x a variable

in body(σ ). We inductively define when x is marked in T :

(1) if x does not occur in head(σ ), then x is marked in T , and

(2) assuming that head(σ ) = R(t̄) and x ∈ t̄ , if there is σ ′ ∈ T

with R(t̄ ′) in its body, and each variable in R(t̄ ′) at a position
of pos(R(t̄),x) is marked in T , then x is marked in T .

The set T is sticky if there is no TGD with two occurrences of a

variable that is marked in T . Let S be the corresponding class.



3 THE CHASE PROCEDURE

The chase procedure accepts as input a database D and a set T of

TGDs, and constructs an instance that contains D and satisfies T .

Central notions in this context are the notion of trigger, and the

notion of trigger application (see, e.g., [15]).

Definition 3.1. A trigger for a set T of TGDs on an instance I is a
pair (σ ,h), where σ ∈ T andh is a homomorphism from body(σ ) to
I . We call (σ ,h) active if there is no extension h′ of h |fr(σ ) such that

h′(head(σ )) ∈ I . We denote by result(σ ,h) the atom v(head(σ )),
where v is a mapping from the variables of head(σ ) to N defined as

v(x) =


h(x) if x ∈ fr(σ ),

cxσ ,h otherwise.

An application of (σ ,h) to I returns the instance

J = I ∪ {result(σ ,h)},

and such an application is denoted as I ⟨σ ,h⟩J .

In the definition of result(σ ,h), each existentially quantified vari-

able x occurring in head(σ ) is mapped by v to a “fresh” null value

of N whose name is uniquely determined by the trigger (σ ,h) and
x itself. Thus, given a trigger (σ ,h), we can unambiguously write

down the atom result(σ ,h). In our analysis, it would be useful to be

able to refer to the terms in result(σ ,h) that have been propagated

(not invented) during the application of (σ ,h). Formally, the frontier
of result(σ ,h), denoted fr(result(σ ,h)), are the terms of result(σ ,h)
that occur at the positions of

⋃
x ∈fr(σ ) pos(head(σ ),x).

3.1 The Real Oblivious Chase

Although this work is about the termination of the restricted chase,

we use a variant of the oblivious chase, which we introduce below,

as an auxiliary tool. The oblivious chase of a database D w.r.t. a set

T of TGDs is essentially the ⊆-minimal instance ID,T that contains

D and is closed under trigger applications, i.e., for every trigger

(σ ,h) for T on ID,T , result(σ ,h) ∈ ID,T . It is well-known that

it can be realized by starting from the database D, and applying

(active or non-active) triggers, which have not been applied before,

for the given set T of TGDs on the instance constructed so far, and

keep doing this until a fixpoint is reached. It is also well-known

that ID,T is unique since it does not depend on the order in which

we apply the triggers; for more details see, e.g., [6, 15].

Our intention is to use the (unique) oblivious chase of D w.r.t. T

as a predefined instance in which all the restricted chase derivations

live (the formal definition of the restricted chase is given below).

Thus, our task will be essentially to search in this instance for an

infinite restricted chase derivation of D w.r.t. T . To this end, we

need the parent relation over the oblivious chase, which essentially

gives us the atoms that were involved in the trigger application

that produced a certain atom. However, as the following simple

example shows, this relation is, in general, not unique:

Example 3.2. Consider the set T of TGDs consisting of:

σ1 : P(x ,y) → R(x ,y) σ3 : R(x ,y) → S(x)

σ2 : P(x ,y) → S(x) σ4 : S(x) → ∃y R(x ,y).

The oblivious chase of D = {P(a,b)} w.r.t. T is the instance

{P(a,b),R(a,b), S(a),R(a, c)},

where c is a null. However, its atoms could have been produced in

different ways: by applying σ1,σ2,σ4, or by applying σ1,σ3,σ4. In

the first case, the parent of S(a) is P(a,b), while, in the second case,

is the atom R(a,b). Thus, although the oblivious chase is unique,

its ambiguous which atom is the parent of S(a).

As the above example illustrates, if we want to know in an

unambiguous way who are the parents of a certain atom by simply

inspecting the oblivious chase, we need to rely on a more refined

structure. This is the purpose of the so-called real oblivious chase.

Definition 3.3. The real oblivious chase of a database D w.r.t. a set

T of TGDs is the smallest labeled directed graph ochase(D,T) =

⟨V ,≺p , λ,τ ⟩, where λ and τ assign atoms over sch(T ) and TGD-

mapping pairs (including the empty pair ⊥) to nodes, such that:

• For each atom α ∈ D, there is a node v ∈ V with λ(v) = α ,
τ (v) = ⊥, and, for each u ≺p w ,w , v .

• For each TGD σ ∈ T , with body(σ ) = {γ1, . . . ,γm }, for each

mapping h from the variables in body(σ ) to C ∪ N, and for

each (v1, . . .vm ) ∈ Vm
, ifh(γ1) = λ(v1), . . . ,h(γm ) = λ(vm ),

then there exists v ∈ V such that v1 ≺p v, . . . ,vm ≺p v ,
λ(v) = result(σ ,h), and τ (v) = (σ ,h).

The elements of {λ(v) : v ∈ V } are the atoms of ochase(D,T), and

the relation ≺p is the parent relation of ochase(D,T).

Here is a simple example that illustrates the real oblivious chase:

Example 3.4. Let D and T be the database and the set of TGDs

from Example 3.2. Then, ochase(D,T) is the following directed

graph (for clarity, the homomorphisms are omitted)

 P(a,b)  ⊥  
 R(a,b)  (σ1,⋅ )   S(a)  (σ3,⋅ )   R(a,c)  (σ4,⋅ )  ⋯ 
 S(a)  (σ2,⋅ )   R(a,c)  (σ4,⋅ )   S(a)  (σ3,⋅ )  ⋯ 

where c is the null determined by the trigger (σ4, {x 7→ a}).

Strictly speaking, ≺p is a relation over the node set of the real

oblivious chase of D w.r.t. T . However, for notational convenience,

from now on we will usually identify ochase(D,T) with its atoms,

which clearly form a multiset, and we will see ≺p as a relation over

this multiset of atoms. Let us also clarify that, although the real

oblivious chase may generate several copies of the same atom, it

will never produce an atom that is not generated by the oblivious

chase, i.e., the oblivious chase coincides with the set consisting of

the atoms of the real oblivious chase. The advantage of the real

oblivious chase is that it provides a unique multiset instance where

all the different restricted chase derivations live, and at the same

time we can unambiguously refer to the parents of a certain atom.

Remark. The name “real oblivious” reflects the fact that an atom

is generated and added to the instance under construction even if

its already present. On the other hand, the oblivious chase, since

it builds a set (not a multiset) of atoms, it implicitly checks, before

applying a trigger (σ ,h), whether the atom result(σ ,h) is already
present. This somehow tells us that what we normally call oblivious

chase is not completely oblivious, unlike the real oblivious one,

which generates an atom no matter if it has been generated before.



Stop Relation. Before we proceed further, let us introduce one

more basic relation, in addition to the parent relation, which will

be heavily used throughout the paper. This is the “stop” relation ≺s
over ochase(D,T). Intuitively, α ≺s β means that in the presence

of α the atom β is superfluous in the sense that the trigger (σ ,h)
for T on an instance that contains α , with β = result(σ ,h), is not
active due to the presence of α . Formally, given two vertices v,u
of ochase(D,T) such that τ (u) = (σ ,h), we say that λ(v) stops λ(u),
denoted λ(v) ≺s λ(u), if there exists a homomorphism h′ such that

(i) h′(λ(u)) = λ(v), and (ii) h′(h(x)) = h(x) for every x ∈ fr(σ ).
Notice that two copies of the same atom in the real oblivious chase

always stop each other. It is also easy to verify that the following

holds, which relates the notion of active trigger with ≺s :

Fact 3.5. Let I ⊆ ochase(D,T), and (σ ,h) a trigger for T on I .
Then, (σ ,h) is active iff there is no α ∈ I such that α ≺s result(σ ,h).

3.2 The Restricted Chase

We now come to the main object of our study, that is, the restricted

(a.k.a. standard) chase. Similarly to the oblivious chase, the main

idea of the restricted chase is, starting from a database D, to apply

triggers for the given set T of TGDs on the instance constructed

so far, and keep doing this until a fixpoint is reached. However,

unlike the oblivious chase, it only applies active triggers. This is

formalized as follows. Consider a database D and a set T of TGDs.

We distinguish the two cases where the chase is terminating or not:

• A finite sequence (Ii )0≤i≤n of instances, with D = I0 and

n ≥ 0, is a restricted chase derivation of D w.r.t. T if: for each

0 ≤ i < n, there is an active trigger (σ ,h) for T on Ii with
Ii ⟨σ ,h⟩Ii+1, and there is no active trigger (σ ,h) for T on In .

• An infinite sequence (Ii )i≥0 of instances, with D = I0, is a
restricted chase derivation of D w.r.t. T if, for each i ≥ 0,

there exists an active trigger (σ ,h) for T on Ii such that

Ii ⟨σ ,h⟩Ii+1. Moreover, (Ii )i≥0 is called fair if, for each i ≥ 0,

and every active trigger (σ ,h) for T on Ii , there exists j > i
such that (σ ,h) is a non-active trigger for T on Ij . Notice
that in a fair derivation all the active triggers will eventually

be deactivated, which is not true for unfair derivations.

A restricted chase derivation is called valid if it is finite, or infinite
and fair. Infinite but unfair restricted chase derivations are not valid

since they do not serve the main purpose of the chase procedure,

i.e., build an instance that satisfies the given set of TGDs.

Restricted Chase Termination Problem

It is well-known that even for simple databases and sets of TGDs,

we may have infinite chase derivations. The key question is, given a

set T of TGDs, can we check whether, for every database D, every
valid chase derivation of D w.r.t. T is finite? Before formalizing this

problem, let us recall a central class of TGDs:

CTres∀∀ =

T :

for every database D,
every valid restricted chase derivation

of D w.r.t. T is finite.


The superscript res in CTres∀∀ indicates that we concentrate on re-

stricted chase derivations. The main problem tackled in this work

is defined as follows, where C is a class of TGDs:

PROBLEM : CTres∀∀(C)
INPUT : A set T ∈ C of TGDs.

QUESTION : Is it the case that T ∈ CTres∀∀?

The above decision problem is, in general, undecidable. In fact,

assuming that TGD is the class of arbitrary (single-head) TGDs:

Theorem 3.6 ([14]). CTres∀∀(TGD) is undecidable, even if we focus
on binary and ternary predicates.

But what about CTres∀∀(G) and CTres∀∀(S)? These are non-trivial
problems, and showing that are decidable is our main contribution.

4 THE FAIRNESS THEOREM

As one might expect, to establish the decidability of the problem

CTres∀∀(C), for C ∈ {G,S}, we focus on its complement and show

that, for a set T ∈ C of TGDs, we can decide whether there is a

database D such that there exists a fair infinite chase derivation of

D w.r.t. T . However, as observed in [5], where the same problem

for the simpler case of the oblivious chase is studied, one of the

main difficulties is to ensure fairness. For the oblivious chase, the

existence of an (unfair) infinite chase derivation ofD w.r.t.T implies

the existence of a fair one [5]. Does the same hold for the restricted

chase? This is a non-trivial question that is affirmatively answered

by the following result dubbed Fairness Theorem:

Theorem 4.1 (Fairness). Consider a database D and a set T of
single-head TGDs. If there exists an infinite restricted chase derivation
of D w.r.t. T , then there exists a fair one.

Note that, to our surprise, the above theorem does not hold for

multi-head TGDs, i.e., TGDs where the head is an arbitrary con-

junction of atoms; a counterexample can be found in the appendix.
1

This reveals the subtlety of the restricted chase, and explains that

our decision to focus on single-head TGDs is not just for simplicity,

but it is crucial for our results. The decidability status of CTres∀∀(G)
and CTres∀∃(S) for multi-head TGDs are challenging open problems.

We now proceed to show the Fairness Theorem. By hypothe-

sis, there exists an infinite restricted chase derivation (Ii )i≥0 of D
w.r.t. T . By exploiting (Ii )i≥0, we are going to construct an infinite

sequence sD,T = ((I
j
i )i≥0)j≥0 of chase derivations of D w.r.t. T

such that (I ii )i≥0 is fair. In other words, sD,T can be seen as an infi-

nite matrixM , where the j-th row is the chase derivation (I
j
i )i≥0,

while the diagonal is a fair chase derivation of D w.r.t. T .

The Diagonal Property.We start by first exposing a crucial prop-

erty that sD,T should enjoy:

Definition 4.2. A sequence ((J
j
i )i≥0)j≥0 of infinite restricted

chase derivations of D w.r.t. T enjoys the diagonal property if, for

each i, j,k ≥ 0, i ≤ j and i ≤ k implies that J
j
i = J

k
i .

In other words, by saying that the sequence sD,T enjoys the

diagonal property, we simply mean that on the i-th column of the

matrixM , all instances below the diagonal element I ii coincide with

I ii (hence the name diagonal property). This allows us to show that

the diagonal gives rise to an infinite chase derivation of D w.r.t. T :

1
This has been also observed, independently of our work, in the recent paper [20] that

concentrates on single-head linear TGDs.



Lemma 4.3. Consider a sequence ((J ji )i≥0)j≥0 of infinite restricted
chase derivations ofD w.r.t. T that enjoys the diagonal property. Then,
(J ii )i≥0 is a restricted chase derivation of D w.r.t. T

Of course, the diagonal property alone does not guarantee that

the chase derivation (I ii )i≥0 is fair. Thus, our main task is to con-

struct sD,T = ((I
j
i )i≥0)j≥0 in such a way that (i) it enjoys the

diagonal property, and (ii) (I ii )i≥0 is a fair chase derivation.

The Construction of sD,T . The high-level idea is as follows. The

sequence (I0

i )i≥0 is defined as (Ii )i≥0, which exists by hypothesis.

Now, our intention is to obtain (In+1

i )i≥0 from (Ini )i≥0. To this

end, we carefully choose a large enough index ℓ > 0 and (i) we

define (In+1

i )
0≤i≤ℓ as (Ini )0≤i≤ℓ , i.e., by simply copying the first

ℓ + 1 instances of (Ini )i≥0, (ii) we obtain In+1

ℓ+1
from In+1

ℓ
= In

ℓ
by

deactivating one of the early active triggers due to which (Ini )i≥0

is not fair, and (iii) we obtain (In+1

i )i≥ℓ+2
by mimicking (Ini )i≥ℓ+1

.

The formal construction of sD,T follows.

As said above, (I0

i )i≥0 is defined as (Ii )i≥0. Assume now that

(Ini )i≥0 has been defined for some n ≥ 0. We are going to define

(In+1

i )i≥0. Letm ≥ 0 be the smallest index such that there exists

an active trigger (σ ,h) for T on Inm that remains active forever in

(Ini )i≥0. (Notice that if such anm ≥ 0 does not exist, then (Ini )i≥0

is fair and we are done.) Assume that Ini+1
is obtained from Ini via

the trigger (σi ,hi ). Let A = {i ≥ 0 : result(σ ,h) ≺s result(σi ,hi )}.
By exploiting the properties of ≺s , it is not difficult to show that:

Lemma 4.4. The set A is finite.

Let ℓ be an integer greater than all the elements of {n,m} ∪A,
which exists by Lemma 4.4. We define:

In+1

i =


Ini 0 ≤ i ≤ ℓ

Ini−1
∪ {result(σ ,h)} i > ℓ

We can show the following; the proof is in the appendix:

Lemma 4.5. (In+1

i )i≥0 is a restricted chase derivation of D w.r.t. T .

Finalizing the Proof. Lemma 4.5 implies that indeed sD,T =

((I
j
i )i≥0)j≥0 is an infinite sequence of chase derivations ofD w.r.t.T .

The fact that in the definition of (In+1

i )i≥0 above we choose the

integer ℓ to be greater than n ensures that sD,T enjoys the diagonal

property. Therefore, by Lemma 4.3, we conclude that (I ii )i≥0 is an

infinite chase derivation of D w.r.t. T . Moreover, since there are

only finitely many active triggers for T on an instance I
j
i since I

j
i

is finite, it follows from the construction of sD,T that (I ii )i≥0 is fair.

Hence, (I ii )i≥0 is a fair infinite chase derivation of D w.r.t. T .

5 CHASE TERMINATION & GUARDEDNESS

We now concentrate on guarded TGDs, and show that:

Theorem 5.1. CTres∀∀(G) is decidable in elementary time.

By Theorem 4.1, to establish the above result it suffices to show

that, for a set T ∈ G of TGDs, we can decide in elementary time

whether there is a database D such that there exists an infinite

(possibly unfair) restricted chase derivation of D w.r.t. T . To this

end, we first characterize the existence of an infinite (possibly un-

fair) restricted chase derivation of D w.r.t. T via the existence of

an infinite subset of ochase(D,T), called chaseable, that enjoys

certain properties. We then show that the problem of deciding

whether there is a database D such that an infinite chaseable subset

of ochase(D,T) exists can be reduced to the satisfiability problem of

Monadic Second-Order Logic (MSOL) over infinite trees of bounded

degree, which in turn implies that CTres∀∀(G) is decidable. At first
glance, such a reduction looks unfeasible since the above statement

talks about arbitrary databases D, and thus ochase(D,T) can be

structurally very complex, i.e., not close to a tree. Nevertheless,

we can show that it suffices to concentrate on acyclic databases D,
which in turn implies (due to the fact that we consider single-head

guarded TGDs) that ochase(D,T) is acyclic.

5.1 Non-Termination via Chaseable Sets

We proceed to introduce the notion of chaseable set for a database

D and a set T of TGDs. The key idea is to isolate certain properties

of an infinite subset of ochase(D,T) that allow us to convert it into

an infinite restricted chase derivation of D w.r.t. T . To this end,

we need the “before” relation ≺b over ochase(D,T). Intuitively,

α ≺b β means that, if the atoms α and β have been generated by

some restricted chase derivation δ , then necessarily α has been

generated before β ; otherwise, δ is not a restricted chase derivation.

Given a sequence of instances I0, I1, . . ., where each Ii is a subset
of ochase(D,T), there are essentially three reasons why it is not,

or it cannot be converted (by merging some of the initial instances)

into a restricted chase derivation of D w.r.t. T : there are atoms

α ∈ Ii \ Ii−1 and β ∈ Ij \ Ij−1 such that:

(1) α ∈ D, β < D and j < i , i.e., α is generated after β .
(2) α ≺p β but j < i , i.e., the parent of β is generated after β .
(3) α ≺s β but i < j, i.e., β is generated after α , while α stops β .

The goal of the relation ≺b is to ensure that none of the above holds.

Having the parent relation ≺p , and the stop relation ≺s (together

with Fact 3.5), it should be clear that the before relation ≺b is

{⟨α , β⟩ : α ∈ D and β ∈ ochase(D,T) \ D} ∪ ≺p ∪ ≺−1

s ,

where ≺−1

s refers to the inverse relation of ≺s . We write ≺+b for the

transitive closure of ≺b . The notion of chaseable set follows.

Definition 5.2. Consider a database D, and a set T of TGDs. A

set A ⊆ ochase(D,T) is called chaseable if the following hold:
(1) For each α ∈ A, the set {β ∈ A : β ≺+b α } is finite.

(2) For each α ∈ A and β ∈ ochase(D,T), β ≺p α implies β ∈ A.
(3) {⟨α , β⟩ : α , β ∈ A and α ≺b β} is a directed acyclic graph,

i.e., there are no cycles in the relation ≺b over A.

The first condition states that, for each α ∈ A, only finitely many

atoms ofA should come beforeα . The second condition says that the
parent of an atom α ∈ A should be in A. Finally, the third condition

states that, for every pair of distinct atoms α , β ∈ A, either α should

come before β , or β should come before α . It is not difficult to show

that indeed the existence of an infinite chaseable set characterizes

the existence of an infinite restricted chase derivation.

Theorem 5.3. Consider a database D and a set T of TGDs. The
following are equivalent:

(1) There exists an infinite restricted chase derivation of D w.r.t. T .
(2) There exists an infinite setA ⊆ ochase(D,T) that is chaseable.



Let us clarify that Theorem 5.3 holds for arbitrary, not necessarily

guarded TGDs. The importance of guardedness is revealed in the

next section, where we show that we can focus on acyclic databases.

5.2 The Treeification Theorem

We first need to recall the standard notion of acyclicity for instances.

Intuitively, an instance I is acyclic if its atoms can be rearranged

in a tree T in such a way that, for each term t ∈ dom(I ), the set of
atoms that mention t induces a connected subtree of T .

Definition 5.4. A join tree of an instance I is a pair (T , λ), where
T = (V ,E) is a tree, and λ is the labeling function V → I , such that:

(1) For each α ∈ I , there exists v ∈ V with λ(v) = α .
(2) For each term t ∈ dom(I ), the set {v ∈ V : t occurs in λ(v)}

induces a connected subtree of T .

We say that I is acyclic if it admits a joint tree.

We then show the following result dubbed Treeification Theorem:

Theorem 5.5 (Treeification). Let T ∈ G. If there exists a
database D such that there is an infinite restricted chase derivation of
D w.r.t. T , then there is an acyclic database with the same property.

This is a rather involved result and its proof can be found in the

appendix. In what follows, we give the high-level idea underlying

the construction of the desired acyclic database. By hypothesis,

there exists an infinite restricted chase derivation (Ii )i≥0 of some

database D w.r.t. T . From ochase(D,T) = (V ,≺p , λ,τ ) we can

naturally obtain the guard-parent (resp., side-parent) relation ≺gp
(resp., ≺sp) over V as the subrelation of ≺p by keeping only the

pairs of nodes (v,u) where v corresponds to the guard atom (resp.,

to a side atom, i.e., an atom other than the guard) of the TGD in

τ (u). Let ≺+gp be the transitive closure of ≺gp . Observe that, due to

guardedness, ochase(D,T) can be seen as a forest w.r.t. ≺gp , where

the nodes of V labeled with atoms of D are the roots of the trees,

and all the other nodes are the non-root nodes. As with ≺p , for

convenience, we will usually see ≺gp and ≺sp as relations over the

multiset consisting of the atoms of ochase(D,T).

Let I =
⋃
i≥0

Ii . For an atom β ∈ I, we define Iβ as the set

{α ∈ I : β ≺+gp α }. Since D is finite, while I is infinite, we can

conclude that there exists an atom α∞ ∈ D such that the set Iα∞

is infinite. At this point, one may think that the desired acyclic

database consists of the atom α∞ together with the atoms of D that

can serve as its side atoms, i.e., the database

{α∞} ∪ {R(t1, . . . , tn ) ∈ D : t1, . . . , tn occur in α∞}.

Unfortunately, as shown below, this is not the case:

Example 5.6. Assume that T consists of the TGDs

σ1 : S(x ,y) → T (x)

σ2 : R(x ,y),T (y) → P(x ,y)

σ3 : P(x ,y) → ∃z P(y, z).
It is clear that there exists an infinite restricted chase derivation

of {R(a,b), S(b, c)} w.r.t. T : first apply σ1 and obtain T (b), then
apply σ2 and obtain P(a,b), and then apply σ3 infinitely many

times. Observe that the key atom α∞ is R(a,b). However, there is
no infinite restricted chase derivation of {R(a,b)} w.r.t T . In fact,

there are no active triggers for T on {R(a,b)}

As it can be seen from the above example, the reason why α∞,

together with its potential side atoms from D, do not give rise to

an infinite restricted chase derivation is the need of what we call

here remote side-parents. In particular, referring to Example 5.6,

we have an infinite restricted chase derivation of {R(a,b), S(b, c)}
w.r.t. T due to the atom P(a,b), which has as a guard-parent the

atom α∞ = R(a,b), and as a side-parent the atom T (b). However,
T (b) is not a database atom, but is obtained due to the database atom

S(b, c), which cannot serve as a side atom of R(a,b). So, somehow,

the atom S(b, c) is a remote side-parent of P(a,b). This situation
can be formalized as follows.

Definition 5.7. Consider two distinct atoms α , β ∈ D, and two

atoms α ′, β ′ ∈ I. The tuple ⟨α ,α ′, β , β ′⟩ is a remote-side-parent
situation if the following hold: α ≺+gp α

′
, β ≺+gp β

′
, and β ′ ≺sp α

′
.

If this is the case, then we say that α longs for β .

It is now not difficult to show that there exists a natural number

ℓ∞ such that, if ⟨α∞,α ′, β , β ′⟩ is a remote-side-parent situation,

then β ′ ∈ Iℓ∞ . In fact, if ⟨α∞,α ′, β , β ′⟩ is a remote-side-parent situ-

ation, then, due to guardedness, all the terms occurring in β ′ occur
also in α∞ and β . This implies that there are only finitely many

pairs of atoms (β , β ′), where β ∈ D and β ′ ∈ I, such that, for some

α ′ ∈ I with α∞ ≺+gp α
′
, ⟨α∞,α ′, β, β ′⟩ is a remote-side-parent sit-

uation. The latter implies the existence of ℓ∞ claimed above, which

is crucial in the construction of the desired acyclic database. We

can now give the intuition underlying this construction.

Our intention is to explicitly construct from D a join tree (Tac, λ),
whereTac = (V ,E), and the desired acyclic database Dac will be the

set of atoms {λ(v) : v ∈ V }. ImagineD as a directed multigraph: the

atoms of D are the vertices of this graph, while the edge-relation is

“longs for”. Now, Tac is the set of all directed paths in this directed

graph, starting from α∞, of length at most ℓ∞. There is a natural

tree ordering on such a set of paths, and this is exactly the ordering

E of Tac . Every path is labelled with an isomorphic copy of the

atom being its end-point, but in a particular way: if x and y are two

vertices of Tac , with (x ,y) ∈ E, which means that x comes from

some α ∈ D and y comes from some β ∈ D such that α longs for β ,
then, if α , β share a term, then λ(x) and λ(y) share the respective
terms. Thanks to that, we are able to show that (the offspring of)

λ(y) can offer to (the offspring of) λ(x) the same service in Dac as

(the offspring of) β provides to (the offspring of) α in D.

5.3 Deciding CTres∀∀(G) via MSOL

By Theorems 4.1,5.3 and 5.5, given a set T ∈ G, deciding whether
T < CTres∀∀ is equivalent to the problem of checking whether there

is an acyclic database D such that an infinite chaseable subset of

ochase(D,T) exists. Our goal is to reduce the latter to the satisfia-

bility problem of Monadic Second-Order Logic (MSOL) over infinite

trees of bounded degree, which is decidable in k-ExpTime, where

k is the number of quantifier alternations.

We need to devise an MSOL sentence ϕT such that the following

statements are equivalent:

(1) There is an acyclic databaseD such that an infinite chaseable

subset of ochase(D,T) exists.

(2) ϕT is satisfiable over ΛT -labeled infinite trees of bounded

degree, where ΛT is a finite alphabet that depends on T .



Abstract Join Trees

Whenever T consists of single-head guarded TGDs andD is acyclic,

then ochase(D,T) is also acyclic, which means that it has a join

tree [3]. Thus, onemay think that this join tree is a natural candidate

for a tree that our MSOL formula could talk about. But this is

not going to work for the simple reason that the codomain of the

labeling function λ of such a join tree is infinite. We therefore

need to invent something similar to a join tree, i.e., a structure that

encodes an instance as a labeled tree, but much more parsimonious

with respect to the labeling function. This is precisely the purpose

of what we call abstract join trees.

We define the finite alphabet ΛT as a set of triples

ΛT = sch(T ) × ({F } ∪ T ) × EQT

that encode atoms. Here is the idea underlying this encoding:

• The first element of each triple is a predicate; it simply tells

us the predicate of the atom in question.

• Concerning the second element, F stands for “database fact”,

and indicates that the encoded atom is an atom from the

original database. If an atom does not come from the data-

base, then the second element of the triple tells us which

TGD of T was used to generate it.

• Concerning the third element, we define EQT as the set of

all equivalence relations on { f ,m} × {1, 2, . . . ar(T )}, where

f and m stand for “father” and “me”. The idea is that, for

example, the pair [[m, i], [m, j]] says that the encoded atom

has the same term at its i-th and j-th position, while the pair

[[m, i], [f , j]] says that the term at the i-th position in the

atom in question equals to the term at the j-th position of

its father (with respect to the tree relation).

In what follows, for brevity, given a node v that is labeled by the

triple ⟨x ,y, z⟩, we write pr(v) for the predicate x , org(v) for y, i.e.,
the origin of the encoded atom, and eq(v) for the equivalence re-
lation z. Recall also that, for an atom α , we write α[i] for its i-th
term. We are now ready to formally define abstract join trees.

Definition 5.8. An abstract join tree for a set T ∈ G of TGDs is a

(finite or infinite) ΛT -labeled rooted tree T = ⟨V ,�⟩, of degree at
most max{ar(T ), |T |}, that satisfies the following conditions:

(1) The set {x ∈ V : org(x) = F } is non-empty but finite.

(2) If x � y and org(y) = F , then org(x) = F .
(3) If x�y and org(y) = σ , then pr(x) is the predicate of guard(σ )

and pr(y) is the predicate of head(σ ).
(4) If x � y, then [[m, i], [m, j]] ∈ eq(x) iff [[f , i], [f , j]] ∈ eq(y).
(5) If x � y and org(y) = σ , for some σ ∈ T with α = guard(σ )

and β = head(σ ), then:
(a) α[i] = β[j] implies [[f , i], [m, j]] ∈ eq(y),
(b) α[i] = α[j] implies [[f , i], [f , j]] ∈ eq(y), and
(c) if β[j] is an existentially quantified variable in σ , then

[[m, i], [m, j]] ∈ eq(y) iff β[j] = β[i].

We now need to explain how an abstract join tree is transformed

into an instance. Consider an abstract join tree T = ⟨V ,�⟩ for a set
T ∈ G. We define EqT ⊆ (V ×{1, . . . , ar(T )})×(V ×{1, . . . , ar(T )})

as the smallest equivalence relation such that, for every edge

x � y, if [[m, i], [m, j]] ∈ eq(x) then [[x , i], [x , j]] ∈ EqT , and if

[[f , i], [m, j]] ∈ eq(y) then [[x , i], [y, j]] ∈ EqT . The instance ∆(T )

is defined as the set of atoms {δ (x) : x ∈ V }, where (i) for each

x ∈ V , the predicate of δ (x) is pr(x), and (ii) for each x ,y ∈ V ,
δ (x)[i] = δ (y)[j] iff [[x , i], [y, j]] ∈ EqT .

For an abstract join tree T , we write T |F for the restriction of T
to its nodes that are labeled with a label of the form ⟨·, F , ·⟩. Then,
it is not hard to see that the following equivalence holds:

Lemma 5.9. For a set T ∈ G, and an acyclic database D, the
following are equivalent:

(1) There exists an infinite chaseable subset of ochase(D,T).
(2) There exists an abstract join tree T such that ∆(T |F ) and D

are isomorphic, and ∆(T ) is an infinite and chaseable subset
of ochase(∆(T |F ),T).

Therefore, in order to prove Theorem 5.1, it is now enough to

construct, for a given T , an MSOL formula ϕT such that, for any

abstract join tree T , it holds that: T |= ϕT iff (⋆) ∆(T ) is an infinite

and chaseable subset of ochase(∆(T |F ),T).

Chaseable Abstract Join Trees

Our MSOL formula ϕT (under construction) is supposed to express

some property of ∆(T ), for a given abstract join tree T , namely the

property (⋆). But, it does not see ∆(T ). It can only talk about T .
Moreover, talking about nodes, let say x and y, of T , and relations

between these nodes, it must actually mean the atoms δ (x) and δ (y),
and relations among those atoms. Thus, it will be convenient to

have a language to talk about the nodes of T but to mean atoms of

∆(T ). We now define such a language, allowing ourselves to slightly

abuse the notation and overload the symbols ≺p , ≺s and ≺b .

First, we need a way to say that an atom α ∈ ∆(T ) can act as

a side atom for some other atom β ∈ ∆(T ), and also to specify

which terms of β occur in α and at which positions. This can be

achieved via the notion of sideatom type. A sideatom type π (w.r.t T )

is a triple ⟨P ,m, ξ ⟩, where P/n ∈ sch(T ),m ≤ ar(T ) is a natural

number, called the arity of π , and ξ : [n] → [m]. Given two atoms

α and β , we say that α is a π -sideatom of β , denoted α ⊆π β , if the
predicate of α is P , the predicate of β has aritym, and α[i] = β(ξ (i))
for each i ∈ [n]. For example, the atom α = P(a,b, c) is a π -sideatom
of β = R(a,d, c,b) with π = ⟨P , 4, {1 7→ 1, 2 7→ 4, 3 7→ 3}⟩. In what

follows, it would be convenient to represent a guarded body by

directly using sideatom types. More precisely, for a guarded TGD σ ,
where body(σ ) = γ ,γ1, . . . ,γm with γ = guard(σ ), its body can be

represented in the obvious way as γ ,π1, . . . πm , where π1, . . . ,πm
are sideatom types of arity equal to the arity of the predicate of γ .

Parent Relation. Consider an abstract join tree T = ⟨V ,�⟩ for a
set T of guarded TGDs. The parent relation is defined as follows:

• Given an edge x � y in T , with org(y) = σ , for some σ ∈ T

such that body(σ ) = γ ,π1, . . . ,πm , we say that a node z ∈ V
is a πi -side-parent of y, denoted z ≺

πi
sp y, if δ (z) ⊆πi δ (x).

• Given two nodes x ,y ∈ V , x is a parent of y, denoted x ≺p y,
if x � y, or x ≺πsp y for some sideatom type π .

Stop Relation. Consider two nodes x ,y ∈ V , with org(y) = σ . We

say that x stops y, denoted x ≺s y, if there exists a homomorphism

h such that h(δ (y)) = δ (x), and, for each term t in δ (y) that occurs
at a position of

⋃
x ∈fr(σ ) pos(head(σ ),x), h(t) = t .



Before Relation. The before relation is defined as expected:

≺b = {⟨x ,y⟩ : x ,y ∈ V , org(x) = F and org(y) , F } ∪ ≺p ∪ ≺−1

s .

We write ≺+b for the transitive closure of ≺b .

Having the above relations in place, we can now define the notion

of chaseable abstract join tree:

Definition 5.10. Consider an abstract join tree T = ⟨V ,�⟩ for a
set T ∈ G. We say that T is chaseable if the following hold:

(1) For each x ∈ V , the set {y ∈ V : y ≺+b x} is finite.

(2) For each edge x � y, where org(y) = σ for some σ ∈ T

with body(σ ) = γ ,π1, . . . ,πm , there exists z ∈ V such that

z ≺
πi
sp y for each i ∈ [m].

(3) {⟨x ,y⟩ : x ,y ∈ V and x ≺b y} is a directed acyclic graph,

i.e., there are no cycles in the relation ≺b over V .

It follows, by construction, that for a set T of guarded TGDs, and

an abstract join tree T for T , ∆(T ) is an infinite chaseable subset

of ochase(∆(T |F ),T) iff there exists an infinite chaseable abstract

join tree T̂ for T such that ∆(T |F ) is isomorphic to ∆(T̂ |F ). Then:

Lemma 5.11. For a set T ∈ G, the following are equivalent:
(1) There exists an abstract join tree T for T such that ∆(T ) is an

infinite chaseable subset of ochase(∆(T |F ),T).
(2) There exists an infinite chaseable abstract join tree for T .

Chaseable Abstract Join Trees are MSOL-definable

The last task is to show the following:

Lemma 5.12. Consider a set T ∈ G. There is an MSOL sentence ϕT
such that, for a ΛT -labeled treeT of degree at most max{ar(T ), |T |},
it holds that T |= ϕT iff T is a chaseable abstract join tree for T .

The sentence ϕT has to check whether a tree is an abstract join

tree, and also whether the three conditions of Definition 5.10 are

satisfied. Since, given an abstract join treeT = ⟨V ,�⟩, for each term

t in ∆(T ), {x ∈ V : t occurs in δ (x)} induces a connected subtree

of T , it should be evident that indeed the above conditions can be

checked via an MSOL sentence. More details concerning the MSOL

sentence ϕT can be found in the appendix.

Having Lemmas 5.9, 5.11 and 5.12, we get that CTres∀∀(G) is decid-
able in elementary time, and Theorem 5.1 follows.

6 CHASE TERMINATION & STICKINESS

We now concentrate on sticky sets of TGDs, and show that:

Theorem 6.1. CTres∀∀(S) is decidable in elementary time.

As in the case of guarded TGDs, to establish the above result

we are going to show that the complement of CTres∀∀(S) is decid-
able in elementary time. In fact, our ultimate goal is to reduce the

complement of CTres∀∀(S) to the emptiness problem of deterministic

Büchi automata, which is feasible in linear time in the size of the

automaton. To this end, given a set T ∈ S, we characterize the

existence of a database D such that there is an infinite restricted

chase derivation of D w.r.t. T via the existence of a finitary caterpil-

lar for T . The latter is essentially an infinite “path-like” restricted

chase derivation of some database w.r.t. T , and, as we shall see, its

existence can be checked via a deterministic Büchi automaton.

6.1 Non-Termination via Caterpillars

To formally introduce the notion of finitary caterpillar, we first

need the notion of proto-caterpillar.

Definition 6.2. Consider a set T of TGDs. A proto-caterpillar for
T is a tuple ♦ = (L♦,B♦,T ♦,G♦), where:

• L♦ is a (possibly infinite) instance over sch(T ), the legs of ♦,
• B♦ = (α♦i )i≥0 is a sequence of atoms over sch(T ) with con-

stants and nulls (no variables), the body of ♦,2

• T ♦ = (σ♦i ,h
♦
i )i>0 is a sequence of TGD-mapping pairs where

h♦i maps the variables in body(σ♦i ) to C ∪ N, and
• G♦ = (γ ♦i )i>0 is a sequence of atoms with γ ♦i ∈ body(σ♦i ),

such that, for each i ≥ 0, the following holds:

(1) (σ♦i+1
,h♦i+1

) is a trigger for T on L♦ ∪ {α♦i };

(2) α♦i = h
♦
i+1

(γ ♦i+1
);

(3) α♦i+1
= result(σ♦i+1

,h♦i+1
).

It should not be difficult to see that a proto-caterpillar ♦ for T

as above encodes a “path-like” oblivious chase derivation (modulo

repetition of triggers) of the (possibly infinite) instance L♦ ∪ {α♦
0
}

w.r.t. T . Indeed, each atom α♦i , for i > 0, of the sequence B♦ can be

derived from L♦ ∪ {α♦i−1
}, i.e., the previous atom on the sequence

and atoms of L♦, via the trigger (σ♦i ,h
♦
i ). In other words, the infinite

sequence of instances (Ii )i≥0, where I0 = L♦ ∪ {α♦
0
} and, for i > 0,

Ii = Ii−1∪{α♦i }, is an oblivious chase derivation (modulo repetition

of triggers) of I0 w.r.t. T . But, even if we remove the repeated

triggers, there is no guarantee that it is a restricted chase derivation

for the following two reasons: an atom from L♦ may stop an atomα♦i
for i > 0, or an atom α♦i may stop an atom α♦j for j > i . This brings

us to the notion of caterpillar, which is essentially a proto-caterpillar

with the guarantee that the above two cases are excluded.

Definition 6.3. Consider a set T of TGDs. A caterpillar for T is a

proto-caterpillar ♦ = (L♦, (α♦i )i≥0, ·, ·) for T such that:

(1) for each β ∈ L♦ and i > 0, β ̸≺s α
♦
i , and

(2) for each 0 ≤ i < j, α♦i ̸≺s α
♦
j .

It is an easy task to verify that a caterpillar ♦ for T as above

encodes a “path-like” restricted chase derivation of the (possibly

infinite) instance L♦ ∪ {α♦
0
} w.r.t. T . However, it should not be

forgotten that we are interested on finite databases. This brings us

to the central notion of finitary caterpillar.

Definition 6.4. Consider a set T of TGDs. A finitary caterpillar
for T is a caterpillar (L♦, ·, ·, ·) for T such that L♦ is finite.

Our goal is to characterize the existence of a database that gives

rise to an infinite restricted chase derivation w.r.t. a sticky set T of

TGDs via the existence of a finitary caterpillar for it.

Theorem 6.5. Let T ∈ S. The following are equivalent:
(1) There exists a databaseD such that there is an infinite restricted

chase derivation of D w.r.t. T .
(2) There exists a finitary caterpillar for T .

The fact that (2) ⇒ (1) follows by definition, and holds for every

set of TGDs, not necessarily sticky. The interesting direction is

2
By abuse of notation, we may sometimes treat B♦

as the set of atoms {α ♦
i }i≥0 .



(1) ⇒ (2), which relies on stickiness. To this end, we are going

to introduce refined variants of caterpillars, which will eventually

lead to finitary caterpillars. In particular, we are going to introduce

the notions of (uniformly) connected caterpillar, and free caterpillar,
and establish the following chain of implications:

there exists a database D such that there is an infinite re-

stricted chase derivation of D w.r.t. T

⇒ there exists a free connected caterpillar for T

⇒ there exists a free uniformly connected caterpillar for T

⇒ there exists a finitary caterpillar for T ,

which shows that indeed (1) ⇒ (2). In the rest of the section, let

T be a sticky set of single-head TGDs. For brevity, we will usually

say (proto-)caterpillar meaning (proto-)caterpillar for T .

Variants of Caterpillars

We first need some auxiliary terminology. Let α ∈ ochase(D,T), for

some databaseD, and assume that α = result(σ ,h). Letγ be an atom

of body(σ ), which means that h(γ ) ∈ ochase(D,T) with h(γ ) ≺p α .
We say that the i-th position of h(γ ) and the j-th position of α are

related, denoted as (h(γ ), i) ≃ (α , j), if γ [i] = head(σ )[j]. Moreover,

the i-th and j-th positions of α are related, written as (α , i) ≃ (α , j),
if head(σ )[i] = head(σ )[j]. Now, for an instance I ⊆ ochase(D,T),

let Π(I) = {(R(t̄), i) : R(t̄) ∈ I and 1 ≤ i ≤ ar(R)}. We denote by

≃∗
I
the smallest equivalence relation that contains (Π(I))2 ∩ (≃).

Intuitively, (α , i) ≃∗
I

(β , j), for some atoms α , β ∈ ochase(D,T),

means that the terms α[i] and β[j] are provably equal via a proof

that uses only atoms of I. Notice that (α , i) ≃∗
I
(β , j) implies α[i] =

β[j], but the opposite implication is not always true.

We also need the notion of the “birth atom” of a null value.

Consider a parent-closed instance I ⊆ ochase(D,T), and let c ∈

dom(I) be a null. We write βB (c) (which reads “the birth atom of

c”) for the atom of I such that: (1) c occurs in βB (c), and (2) for

every α ∈ I with α ≺p β
B (c), c does not occur in α . It is clear that

there is only one birth atom of c . Notice also that for an atom β ∈ I

such that β[j] = c , it holds that β is the birth atom of c iff for each

parent α of β and each position i of α , (α , i) ; (β , j).
We finally need to introduce the notion of immortal position,

which relies on the marking procedure used in the definition of

stickiness; see Section 2. Let α ∈ ochase(D,T), for some database

D, with α = result(σ ,h). The i-th position of α is immortal (w.r.t. T )

if the variable at the i-th position of head(σ ) is not marked in T .

The name “immortal” reflects the fact that α[i] will be propagated
forever, i.e., for every β such that α ≺p β , α[i] ∈ fr(β).

We are now ready to introduce the first variant of caterpillars.

Definition 6.6. A caterpillar (or proto-caterpillar) ♦ = (·,B♦, ·, ·),
where B♦ = (α♦i )i≥0, is connected if there exist an infinite sequence

(ci )i≥0 of terms, called the relay terms of ♦, an infinite sequence

(bi )i>0 of integerswithb1 < b2 < b3 < · · · , called the pass-on points
of ♦, and infinite sequences (pi )i>0 and (mi )i≥0 (p for “parent” and

m for “me”) of integers from [ar(T )], such that, for each k ≥ 0:

(1) c0 occurs in α♦
0
;

(2) α♦bk
= βB (ck );

(3) ck = α
♦
bk
[mk ] and

(
α♦bk
,mk

)
≃∗
B♦

(
α♦bk+1

,pk+1

)
;

(4) α♦j [i] = ck , for i > 0, j ≥ 0, implies

(
α♦j , i

)
is not immortal.

The above definition is indeed a bit technical. Intuitively, we can

imagine the sequence of terms c0, c1, c2, . . . as an infinite relay race,

where the ci ’s are mortal runners, and their birth atoms are the

batton passing points. In other words, connectedness ensures the

continuous propagation of a new null in the underlying “path-like”

chase derivation. However, the distance between two consecutive

pass-on points can be arbitrarily large, i.e., there is no uniform

bound. As we shall see later, having such a uniform bound is crucial

for going from connected caterpillars to finitary caterpillars. This

brings us to the next refined variant of caterpillars.

Definition 6.7. A caterpillar ♦ is uniformly connected if it is con-
nected and, with (bi )i>0 being its pass-on points, there exists an

integer d ≥ 0 such that, for each k ≥ 0, bk+1
− bk < d .

Let us now introduce the last variant of caterpillars that we

need, namely free caterpillars. Recall that (α , i) ≃∗
L♦∪B♦ (β , j), for

α , β ∈ ochase(L♦ ∪ B♦,T), means that α[i] and β[j] are provably
equal via a proof that uses only atoms of L♦ ∪ B♦. It would be very

useful to ensure that also the other direction holds.

Definition 6.8. A (proto-)caterpillar ♦ = (L♦,B♦, ·, ·) is free if, for
each (α , i), (β , j) ∈ Π(L♦ ∪ B♦), α[i] = β[j] iff (α , i) ≃∗

L♦∪B♦ (β, j).

6.2 Implication 1: Extracting a Free Connected

Caterpillar

We are now ready to establish the chain of implications discussed

above, immediately after Theorem 6.5. We first focus on the first

implication that states the following: if there exists a database D
such that there is an infinite restricted chase derivation ofD w.r.t. T ,

then there exists a free connected caterpillar for T . Suppose (Ii )i≥0

is an infinite restricted chase derivation of some databaseD w.r.t. T ,

and let I =
⋃
i≥0

Ii . We are going to extract from (Ii )i≥0 a free

connected caterpillar. The construction proceeds in three steps:

(1) First, we are going to construct a proto-caterpillar ♣.

(2) Then, we will convert ♣ into a connected proto-caterpillar ♠.

(3) Finally, from ♠ we will get a free connected caterpillar ♥.

Step 1: Construct a Proto-Caterpillar

We proceed to extract from (Ii )i≥0 a proto-caterpillar ♣ that is

“almost connected”. Given a term (constant or null) c and a null

c ′, both in dom(I), we say that c is a parent term of c ′ (w.r.t. I),
denoted c ≺t

p c ′, if c occurs in fr(βB (c ′)). Notice that, for c to be a

parent term of c ′ it is not enough to be in one of the parent atoms

of the birth atom of c ′, but it needs to be propagated, via a frontier

variable, during the application of the trigger that generates the

birth atom of c ′. Now, for each term c occurring inI, we inductively
define the rank of c (w.r.t. I) as follows:

rank(c) =


0 if c ∈ dom(D),

1 +max{rank(c ′) : c ′ ≺t
p c} otherwise.

For a term c ∈ dom(I) with rank(c) > 0, select a term c ′ ∈ dom(I)

such that rank(c ′) = rank(c)−1 and c ′ ≺t
p c . We call c ′ the favourite

parent of c , and we write c ′ ≺t
fp c .

3

3
We assume that there exists some fixed mechanism that selects c ′. For example, c ′ can
be the lexicographically first element of {c ′′ : rank(c ′′) = rank(c) − 1 and c ′′ ≺t

p c }.



It should be clear that the binary relation ≺t
fp over dom(I) forms

an infinite forest F consisting of a finite number of trees, where

the roots are terms from dom(D) of rank 0. But what about the out-

degree of each node of F? We can show that, for each i ≥ 0, the set

{c ∈ dom(I) : rank(c) = i} is finite. This can be shown by induction
on i ≥ 0, while the key fact is that only finitely many triggers can

be formed due to which a null with rank i + 1 is generated (since,

by induction hypothesis, the set of terms with rank at most i is
finite). Thus, the nodes of F have finite out-degree. By applying

König’s Lemma
4
on F , we get that F contains an infinite simple

path starting from a root node; let c0, c1, c2, . . . be such a path.

By construction, for each i ≥ 0, ci occurs in the birth atom of ci+1.

Moreover, there exists a sequence of atoms βi
0
, βi

1
, βi

2
, . . . , βimi

=

βB (ci+1), where β
i
0
∈ D if i = 0 and βi

0
= βB (ci ) if i > 0, such

that βik ≺p βik+1
, for each 0 ≤ k < mi , and there are positions j

in βB (ci ) and j ′ in βB (ci+1) such that (βB (ci ), j) ≃
∗
Pi

(βB (ci+1), j
′),

where Pi is the set of atoms {βi
0
, βi

1
, . . . βimi

}.

We are now ready to define ♣. For brevity, let P be the infinite

set of atoms

⋃
i≥0

Pi . Let ♣ = (L♣,B♣,T♣,G♣), where

• L♣ = {α ∈ I \ P : there is β ∈ P such that α ≺p β},

• B♣ = (α♣i )i≥0 with α♣
0
,α♣

1
,α♣

2
, . . . being the enumeration of

the atoms of P such that α♣i ≺p α
♣
i+1

, for each i ≥ 0,

• T♣ = (σ♣i ,h
♣
i )i>0 with (σ♣i ,h

♣
i ), for i > 0, being the trigger

for T on B♣ ∪ {α♣i−1
} such that α♣i = result(σ♣i ,h

♣
i ), and

• G♣ = (γ♣i )i>0 with γ♣i ∈ body(σ♣i ) and α
♣
i−1
= h♣i (γ

♣
i ).

It should be clear, from the above construction, that the sequence

of triggers (σ♣i ,h
♣
i )i>0 exists, and thus, ♣ is well-defined. Then:

Lemma 6.9. ♣ is a proto-caterpillar for T .

As said at the beginning of Step 1, the goal was to extract from

(Ii )i≥0 a proto-caterpillar that is “almost connected”. It is easy to

verify that the proto-caterpillar ♣ is “almost connected” in the sense

that all the conditions of Definition 6.6 are satisfied, with c0, c1, . . .

playing the role of the relay terms, apart from (4). Indeed, there

is no guarantee that c0, c1, . . . do not occur at immortal positions.

Can we convert ♣ into a connected proto-caterpillar that satisfies

also condition (4)? This is the goal of the next step.

Step 2: Construct a Connected Proto-Caterpillar

It is clear that if a term ci , for i ≥ 0, occurs in an immortal position

in some atom α♣j , then it occurs in every α♣k for k > j. Since ar(T )

is finite, we can have only finitely many integers i ≥ 0 such that the

term ci occurs at an immortal position. Let i0 be an integer greater

than all such numbers i , which means that ci0 , ci0+1, ci0+2, . . . do

not occur at immortal positions. Let n be such that α♣n = β
B (ci0 ),

i.e., is the birth atom of ci0 . It should be now clear how ♣ can be

converted into a connected proto-caterpillar ♠. For brevity, let P be

the set of atoms

{
α♣k+n : k ≥ 0

}
. Let ♠ = (L♠,B♠,T ♠,G♠), where

• L♠ = {α ∈ I \ P : there is β ∈ P such that α ≺p β},

• B♠ = (α♠i )i≥0 with α♠i = α
♣
i+n for each i ≥ 0,

• T ♠ = (σ♠i ,h
♠
i )i>0 with (σ♠i ,h

♠
i ) = (σ♣i+n ,h

♣
i+n ) for i > 0, and

• G♠ = (γ ♠i )i>0 with γ ♠i = γ
♣
i+n for each i > 0.

4
König’s Lemma is a well-known result from graph theory: for an infinite directed

rooted graph, if every node is reachable from the root, and every node has finite

out-degree, then there exists an infinite directed simple path from the root.

Since, by Lemma 6.9, ♣ is a proto-caterpillar for T , we can conclude

that ♠ is also a proto-caterpillar. It also follows by construction that

♠ is connected with ci0 , ci0+1, ci0+2, . . . being its relay terms. Then:

Lemma 6.10. ♠ is a connected proto-caterpillar for T .

Observe that there is no guarantee that ♠ is a caterpillar since

the two conditions in Definition 6.3 might be violated. Moreover,

there is no guarantee that ♠ is free, or, equivalently, that, for each

(α , i), (β, j) ∈ Π(L♠ ∪ B♠), α[i] = β[j] implies (α , i) ≃∗
L♠∪B♠ (β, j);

recall that the other direction holds trivially. Can we convert ♠ into

a free connected caterpillar? This is the goal of the next step.

Step 3: Construct a Free Connected Caterpillar

To achieve our goal, we are going to carefully replace each term

occurring in L♠ ∪ B♠ at a certain position π ∈ Π(L♠ ∪ B♠) with
a new constant that only depends on the equivalence class of π
w.r.t. the equivalence relation ≃∗

L♠∪B♠ . As usual, we write [π ]≃∗

L♠∪B♠

for the equivalence class of π w.r.t. ≃∗
L♠∪B♠ . Let

¯h be a function that

maps each atom α = R(t1, . . . , tn ) ∈ L♠ ∪ B♠ to the atom

R

(
c[(α,1)]≃∗

L♠∪B♠
, . . . , c[(α,n)]≃∗

L♠∪B♠

)
,

where, for each 1 ≤ i ≤ n, c[(α,i)]≃∗
L♠∪B♠

is a constant from C.

Having the function
¯h in place, it is not difficult to see how ♠

can be converted into the desired free connected caterpillar ♥. In

particular, ♥ = (L♥,B♥,T♥,G♥), where

• L♥ = { ¯h(α) : α ∈ L♠},
• B♥ = (α♥i )i≥0 with α♥i =

¯h(α♠i ) for each i ≥ 0,

• T♥ = (σ♥i ,h
♥
i )i>0 with σ♥i = σ

♠
i and h♥i =

¯h ◦ h♠i , for i > 0,

• G♥ = (γ♥i )i>0 with γ♥i = γ
♠
i for each i > 0.

Stickiness allows us to show the following, which concludes the

proof of the first implication; for the details see the appendix:

Lemma 6.11. ♥ is a free connected caterpillar for T .

6.3 Implication 2: From a Free Connected

Caterpillar to a Uniformly Connected One

Let us now concentrate on the second implication. The proof relies

on the fact that we can check whether a free connected caterpil-

lar exists via a deterministic Büchi automaton. As usual, for an

automaton A, we write L(A) for its language. Then:

Lemma 6.12. We can construct a deterministic Büchi automaton
AT where L(AT ) , ∅ iff there is a free connected caterpillar for T .

Let us stress that the purpose of the automaton AT provided by

Lemma 6.12 is twofold: it is used here, together with a pumping

argument, for establishing the second implication, and it will be

also used in Section 6.5 for showing that the problem of deciding

whether a finitary caterpillar exists is decidable in elementary time.

We proceed to give some details concerning AT that allow us to

intuitively explain how we get the second implication, while the

detailed construction can be found in the appendix. It should not

be surprising that this is the place where freeness plays a role.

The automaton AT operates on what we call caterpillar words

over a finite alphabet ΛT consisting of triples of the form (σ ,γ , P),
where σ ∈ T , γ ∈ body(σ ), and, with R being the predicate of



head(σ ), P ⊆ [ar(R)]. Intuitively, a caterpillar word w = w1w2, · · · ,

with wi = (σi ,γi , Pi ), is a candidate symbolic representation of a

free connected caterpillar, wherewi marks a pass-on point iff Pi is
non-empty. In fact, Pi indicates at which positions of head(σi ) the
new relay term appears. Roughly, AT accepts w iff w encodes a

free connected caterpillar, while it enters an accepting state only

when it reads a symbolwi that marks a pass-on point.

We get the second implication from the following observation,

which can be shown by an obvious pumping argument:

Observation 1. Let A be a deterministic Büchi automaton with
nA states. If L(A) , ∅, then there is w ∈ L(A) s.t. among each nA
consecutive states visited by A on input w, at least one is accepting.

Suppose now that there exists a free connected caterpillar. By

Lemma 6.12, L(AT ) , ∅. By applying the above observation to the

automaton AT , we get a word w that encodes a free connected

caterpillar ♦ such that the distance between two consecutive pass-

on points is bounded by the number of states of AT . Thus, ♦ is a

free uniformly connected caterpillar, as needed.

6.4 Implication 3: From a Free Uniformly

Connected Caterpillar to a Finitary One

Wenow proceedwith the last implication. Consider a free uniformly

connected caterpillar ♦ = (L♦,B♦,T ♦,G♦), where B♦ = (α♦i )i≥0,

T ♦ = (σ♦i ,h
♦
i )i>0, and G♦ = (γ ♦i )i>0). Our intention is to obtain

from ♦ a finitary caterpillar by unifying some terms of dom(L♦) in
order to make L♦ finite, while the rest remains a valid caterpillar.

This can be done via what we call a unifying function.

A unifying function for ♦ is a function h : V→ T, where V ⊆

dom(L♦), and T a set of new terms not occurring in L♦ ∪ B♦; it
is called unifying since it essentially unifies the terms of V. Let

h(♦) =
(
h(L♦), (h(α♦i ))i≥0, (σi ,h ◦ h♦i )i>0, (γ

♦
i )i>0

)
. Then:

Lemma 6.13. There exists a unifying function h for ♦ such that
h(♦) is a finitary caterpillar for T .

It is not difficult to show that no matter how a unifying function

h for ♦ is defined, h(♦) is a proto-caterpillar that satisfies condition
(1) of Definition 6.3. The non-trivial task is to define h is such a way

that h(L♦) is finite, and h(♦) satisfies condition (2) of Definition 6.3.

The key here is, by exploiting uniformity, which provides a bound

on the distance between two consecutive pass-on points, to define

a sufficiently large finite set of new terms to which infinitely many

carefully chosen terms of dom(L♦) are mapped to; the details can

be found in the appendix. This completes the proof of Theorem 6.5.

6.5 Deciding CTres∀∀(S) via Büchi Automata

By Theorems 4.1 and 6.5, given a set T ∈ S, deciding whether

T < CTres∀∀ is equivalent to the problem of checking whether there

exists a finitary caterpillar forT . By exploiting the Büchi automaton

provided by Lemma 6.12, we can easily show that:

Lemma 6.14. The problem of deciding whether there exists a fini-
tary caterpillar for T is decidable in elementary time.

Since the emptiness problem of deterministic Büchi automata is

feasible in linear time in the size of the automaton, and since the au-

tomaton provided by Lemma 6.12 can be constructed in elementary

time, checking whether a free connected caterpillar for T exists is

feasible in elementary time. Now, observe that the three implica-

tions established above, together with the (2) ⇒ (1) direction of

Theorem 6.5, imply that there exists a free connected caterpillar iff

there exists a finitary caterpillar, and Lemma 6.14 follows.

7 FUTUREWORK

Here are some non-trivial questions that beg for an answer: (1)

What about the exact complexity of our problems? (2) What about

restricted chase termination for guarded or sticky sets of multi-head

TGDs? (3) What about the more liberal version of the problem that

asks whether there is a finite restricted chase derivation?
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A ADDITIONAL NOTIONS

An equality type over a schema S is a pair (R,E), where R ∈ S
and E is a partition of {1, . . . , ar(R)} (which we see as a set of

subsets of {1, . . . , ar(R)}). Let etypes(S) be the set of all possible
equality types over S, which is clearly finite. Given an atom α =
R(t1, . . . , tn ) over S, its equality type, denoted et(α), is the equality
type (R,E) ∈ etypes(S) such that ti = tj iff i, j coexist in a set of

E. A homomorphism from a set of atoms A to a set of atoms B
is an isomorphism from A to B if it is 1-1, and its inverse h−1

is a

homomorphism from B to A.

B PROOFS FROM SECTION 4

B.1 Fairness Theorem and Multi-head TGDs

Here is an example showing that the Fairness Theorem (Theo-

rem 4.1) does not hold for multi-head TGDs:

Example B.1. Consider the set T of TGDs consisting of

R(x ,y,y) → ∃z R(x , z,y),R(z,y,y) R(x ,y, z) → R(z, z, z).

It should be clear that there exists an infinite restricted chase deriva-

tion of {R(a,b,b)}w.r.t.T ; apply only the first TGD. However, every

valid restricted chase derivation of {R(a,b,b)} w.r.t. T is finite.

Let us say that the recent paper [20], which studies the restricted

chase termination problem for linear TGDs, provides an example

that refutes Theorem 4.1 even if we use only binary predicates.

B.2 Proof of Lemma 4.3

Clearly, J0

0
= D since (J0

i )i≥0 is a chase derivation of D w.r.t. T . It

remains to show that, for k ≥ 0, there is an active trigger (σ ,h)

for T on Jkk such that Jkk ⟨σ ,h⟩J
k+1

k+1
. Note that Jkk = Jk+1

k by the

diagonal property. Thus, it suffices to show that there exists an

active trigger (σ ,h) for T on Jk+1

k such that Jk+1

k ⟨σ ,h⟩Jk+1

k+1
. This

holds since (Jk+1

i )i≥0 is a chase derivation of D w.r.t. T .

B.3 Proof of Lemma 4.4

Let In =
⋃
i≥0

Ini . Since T is finite, it suffices to show that, for

each TGD σ̂ ∈ T , the set of atoms Bσ̂ that collects all the atoms of

In
that are stopped by result(σ ,h) and are generated by a trigger

that involves σ̂ , is finite. Indeed, Bσ̂ is finite implies A is finite,

since the cardinality of Bσ̂ coincides with the cardinality of {i ≥ 0 :

result(σ ,h) ≺s result(σi ,hi ) and σi = σ̂ }.
Since all the atoms of Bσ̂ have been created by the same TGD,

and they are all stopped by result(σ ,h), we can conclude that they

are equal when restricted to their frontier. Towards a contradiction,

assume that two atoms α , β ∈ Bσ̂ have the same equality type. This

implies that α ≺s β and β ≺s α , which contradicts the fact that α
and β belong to the result of a restricted chase derivation. Thus,

for every two distinct atoms α , β ∈ Bσ̂ , α and β have different

equality types. Since there are only finitely many equality types

over sch(T ), we conclude that Bσ̂ is finite, as needed.

B.4 Proof of Lemma 4.5

By construction, In+1

0
= In

0
= D. It remains to show that, for

i ≥ 0, there is an active trigger (σi ,hi ) for T on In+1

i such that

In+1

i ⟨σi ,hi ⟩I
n+1

i+1
. We proceed by considering the following cases:

Case 1. For 0 ≤ i ≤ ℓ, the claim is trivial since (In+1

i )
0≤i≤ℓ =

(Ini )0≤i≤ℓ , while (I
n
i )i≥0 is a chase derivation of D w.r.t. T .

Case 2. For i = ℓ + 1, the claim holds since (σ ,h) is an active

trigger for T on In
ℓ
= In+1

ℓ
and In+1

i = In+1

i−1
∪ {result(σ ,h)}.

Case 3. Finally, assume that i ≥ ℓ + 2. Recall that Ini−1
is ob-

tained from Ini−2
by applying the active trigger (σi−2,hi−2). We are

going to show that In+1

i−1
⟨σi−2,hi−2⟩I

n+1

i . Clearly, In+1

i = In+1

i−1
∪

{result(σi−2,hi−2)} since I
n
i−1
= Ini−2

∪{result(σi−2,hi−2)}. It is also

clear that (σi−2,hi−2) is a trigger for T on In+1

i−1
. It remains to show

that it is also active. Assume that this is not the case. Fact 3.5 implies

that there is an atom α ∈ In+1

i−1
such that α ≺s result(σi−2,hi−2). Re-

call that In+1

i−1
= Ini−2

∪ {result(σ ,h)}. Since (σi−2,hi−2) is an active

trigger forT on Ini−2
, we conclude thatα < Ini−2

. Moreover, since i−2

is greater that all the elements ofA, we get that result(σ ,h) does not
stop result(σi−2,hi−1), which implies that α , result(σi−2,hi−1).

Hence, α < In+1

i−1
, which is a contradiction.

C PROOFS FROM SECTION 5

C.1 Proof of Theorem 5.3

The fact that (1) ⇒ (2) is easy: simply define A as the set

⋃
i≥0

Ii ,
where (Ii )i≥0 is the infinite restricted chase derivation of D w.r.t.T

that exists by hypothesis. For the other direction, by exploiting A,
we are going to inductively construct an infinite restricted chase

derivation (Ii )i≥0 of D w.r.t T . Clearly, I0 is defined as D. Suppose
that we have already constructed (Ii )1≤i≤n−1, for some natural

number n > 1. Due to condition (1) of Definition 5.2, there exists an

atom α ∈ A \B, where B =
⋃

0≤i<n Ii , that is minimal w.r.t. ≺b , i.e.,

for every β ∈ A \B, α ≺b β . We define In as the instance B ∪ {α }. It
remains to show that there exists an active trigger (σ ,h) for T on B
such that α = result(σ ,h). By condition (2) of Definition 5.2, we get

that all the parents of α occur in B, and thus (σ ,h) is a trigger for
T on B. To show that (σ ,h) is active, by Fact 3.5, we need to show

that there is no β ∈ B such that β ≺s α . Towards a contradiction,
assume that such β exists. This implies that α ≺b β (recall that

≺−1

s ⊆≺b ). But this implies that ≺b over B contains a cycle, which

is a contradiction due to the third condition of Definition 5.2, and

the claim follows.

C.2 Proof of Theorem 5.5

In the rest of the subsection, let T be a set of single-head guarded

TGDs. As it is common when studying guarded TGDs, we need a

refined version of the parent relation over the real oblivious chase

that distinguishes between guard- and side-parents.

Guard- and Side-Parent Relation. Consider the real oblivious

chase ochase(D,T) = ⟨V ,≺p , λ,τ ⟩ of a database D w.r.t. T . We

can naturally define the guard-parent relation ≺gp over V as the

subrelation of ≺p by keeping only the pairs of nodes (v,u) where
v corresponds to the guard atom of the TGD in τ (u). Formally, the

guard-parent relation ≺gp (over V ) is defined as

{⟨v,u⟩ : v ≺p u and, with τ (u) = (σ ,h), h(guard(σ )) = λ(v)}.

For a nodeu, we maywrite gp(u) for its guard-parent, i.e., ifv ≺gp u,
then gp(u) = v . We denote by ≺+gp the transitive closure of ≺gp .

Observe that, due to guardedness, ochase(D,T) can be seen as a

forest w.r.t. ≺gp , with the nodes ofV labeled with atoms of D being



the roots of the trees, and all the other nodes are the non-root nodes.

It would be conceptually useful to have this forest in mind.

Regarding the side-parents, it is not enough to simply keep the

pairs v ≺p u where v corresponds to a side atom (i.e., an atom

different than the guard) of the TGD in τ (u). In addition, we need to

know which terms of the atom λ(gp(u)) occur in λ(v) and at which

positions.
5
This can be achieved via the notion of sideatom type.

6
A

sideatom type π (w.r.t T ) is a triple ⟨P ,m, ξ ⟩, where P/n ∈ sch(T ),

m ≤ ar(T ) is a natural number, called the arity of π , and ξ : [n] →
[m]. Given two atoms β and γ , we say that β is a π -sideatom of

γ , denoted β ⊆π γ , if the predicate of β is P , the predicate of γ
has aritym, and β[i] = γ (ξ (i)) for each i ∈ [n]. For example, the

atom β = P(a,b, c) is a π -sideatom of γ = R(a,d, c,b) with π =
⟨P , 4, {1 7→ 1, 2 7→ 4, 3 7→ 3}⟩. Consider now a node u ∈ V such

that v ≺p u, v1 ≺p u, . . . , vm ≺p u, τ (u) = (σ ,h), where body(σ ) =
γ ,γ1, . . . ,γm with γ = guard(σ ), and h(γ ) = λ(v), h(γ1) = λ(v1),

. . . , h(γm ) = λ(vm ). Let π1, . . . ,πm be sideatom types such that, for

each i ∈ [m], λ(vi ) ⊆πi λ(v) (or λ(vi ) ⊆πi λ(gp(u))). Then, for each
i ∈ [m], we say that vi is a πi -side-parent of u, written vi ≺

πi
sp u.

As for the relation ≺p , notice that, strictly speaking, ≺gp and

≺πsp , for some sideatom type π , are relations over the node set V of

ochase(D,T). However, for convenience, we will usually see these

relations as relations over the set multiset consisting of the atoms

of ochase(D,T). Thus, we will directly refer to the guard-parent of

an atom α of ochase(D,T) and write gp(α).

Let us now proceed with the proof of Theorem 5.5. By hypothe-

sis, there exists an infinite restricted chase derivation (Ii )i≥0 of D
w.r.t. T . The proof proceeds in three main steps:

(1) We first construct fromD an acyclic databaseDac . In fact, we

explicitly construct a join tree (Tac, λ), where Tac = (V ,E),
and the database Dac is defined as {λ(v) : v ∈ V }.

(2) We then show that there is an auxiliary infinite sequence of

instances (Ki )i≥0, where K0 = Dac , which somehow mimics

the infinite restricted chase derivation (Ii )i≥0 of D w.r.t. T .

(3) Finally, by exploiting the sequence (Ki )i≥0, we construct an

infinite restricted chase derivation (Ji )i≥0 of Dac w.r.t. T .

We proceed to give more details for each of the above steps.

But first we need to fix some notation. Let I =
⋃
i≥0

Ii . We write

(σ I
i ,h

I
i ) for the trigger such that Ii ⟨σ

I
i ,h

I
i ⟩Ii+1. For brevity, we

write βIi for the atom result(σ I
i ,h

I
i ), and γ

I
i for guard(σ I

i ). Given

an atom β ∈ I, we define Iβ as the set {α ∈ I : β ≺+gp α }.

Step 1: The Acyclic Database Dac

Since D is finite, while I is infinite, we can conclude that there

exists an atom α∞ ∈ D such that the set Iα∞ is infinite. One may

think that the acyclic databaseDac consists of the atom α∞ together

with the atoms ofD that can serve as its side atoms, i.e., the database

{α∞} ∪ {β ∈ D : β ⊆π α∞ for some sideatom type π }.

However, as explained in the main body of the paper (see Exam-

ple 5.6), this is not the case due to what we call remote side-parents:

5
For the discussion in the main body of the paper, the simple side-parent relation ≺sp
was enough. However, for the formal proof we need this additional information.

6
Note that this notion has been also introduced and used in Section 5.3 where we talk

about chaseable abstract join trees. We repeat it here for the sake of readability.

Definition C.1. Consider two distinct atoms α , β ∈ D, and two

atoms α ′, β ′ ∈ I. The tuple ⟨α ,α ′, β , β ′⟩ is a remote-side-parent
situation if α ≺+gp α

′
, β ≺+gp β

′
, and β ′ ≺πsp α

′
for some sideatom

type π . If this is the case, then we say that α longs for β .

The following easy lemma collects a couple of useful facts about

the notion of remote-side-parent situation, which would be crucial

for the construction of the acyclic database Dac .

Lemma C.2. (1) If ⟨α ,α ′, β , β ′⟩ is a remote-side-parent situa-
tion, then β ′ ⊆π α and β ′ ⊆π ′ β for some types π and π ′.

(2) There exists a natural number ℓ∞ such that, if ⟨α∞,α ′, β , β ′⟩
is a remote-side-parent situation, then β ′ ∈ Iℓ∞ .

Proof. It is easy to verify that claim (1) holds due to guardedness.

For claim (2) it suffices to observe that the following holds, which is

a consequence of (1): for an atomα ∈ D, there are only finitely many

pairs of atoms β, β ′ such that, for some atom α ′
with α ≺+gp α ′

,

⟨α ,α ′, β , β ′⟩ is a remote-side-parent situation.

The Construction of Dac . Let us now formally define the acyclic

database Dac . We will construct, via simultaneous induction:

(1) A labeled tree (Tac, λ), whereTac = (V ,E) and λ is a labeling

function from V to {R([t1]v , . . . , [tn ]v ) : R/n ∈ sch(T ), ti ∈
dom(D) and v ∈ V }, i.e., the set of atoms that can be formed

using predicates of sch(T ) and constants from the set {[t]v :

t ∈ dom(D) and v ∈ V }.

(2) A mapping hac from {λ(v) : v ∈ V } to D.
(3) A function depth from {λ(v) : v ∈ V } to N.

The constants of the form [t]v used above provide us with a sim-

ple mechanism for uniformly renaming a constant t ∈ dom(D) into
a fresh constant, while this renaming step is performed with respect

to a certain node v of Tac . This allows us to break the connection

among occurrences of the same constant that are semantically dif-

ferent; this will be made clear in a while. The construction follows:

Base Case. Let v ∈ V be the root node of Tac . Then, λ(v) = α∞,

hac(λ(v)) = α
∞
, and depth(λ(v)) = 0.

Inductive Step. Assume that v ∈ V is such that hac(λ(v)) = α , for

some α ∈ D, with depth(λ(v)) < ℓ∞. Then, for each β ∈ D such

that α longs for β , we add a new node u to V , and the edge (v,u)
to E, in such a way that:

• the atom λ(u) is of the following form:

– it has the same predicate as the atom β ,
– λ(u)[i] = λ(u)[j] iff β[i] = β[j],
– λ(u)[i] = λ(v)[j] iff β[i] = α[j],
– if λ(u)[i] does not occur in λ(v), then λ(u)[i] = [β[i]]u .

• hac(λ(u)) = β , and
• depth(λ(u)) = depth(λ(v)) + 1.

This completes the construction of (Tac, λ), hac and depth. Having
(Tac, λ) in place, we define Dac as {λ(v) : v ∈ V }.

Before we proceed any further, it is important to observe that

different nodes v,u of Tac (possibly of different depths) may have

the same label, i.e. it may happen that λ(v) = λ(u). In this case,

we treat them as two different atoms since, although syntactically

the same, they are present in Tac for different reasons. Therefore,
strictly speaking, Dac is a multiset database, i.e., it can hold many

occurrences of the same atom, which are treated as different atoms.



Let us clarify that the notion of acyclicity given in Definition 5.4

can be directly applied to multiset instances, i.e., a multiset instance

is acyclic iff it admits a join tree.

Lemma C.3. (1) Dac is an acyclic multiset database.
(2) The mapping hac is a homomorphism from Dac to D.
(3) For each two vertices u,v ∈ Tac , the mapping hac is an isomor-

phism from {λ(u), λ(v)} to {hac(λ(u)),hac(λ(v))}

Proof. For (1) it suffices to show that Tac is finite, and that it

enjoys the connectedness condition (condition (2) of Definition 5.4).

By Lemma C.2(1), for α ∈ D, there are only finitely many pairs of

atoms β , β ′ such that ⟨α ,α ′, β , β ′⟩ is a remote-side-parent situation

for some α ′
. Thus, by construction, the branching degree of Tac

is finite. Since the depth of Tac is bounded by ℓ∞, Tac is finite.

The fact that Tac enjoys the connectedness condition follows by

construction; here, the renaming of the constants t of dom(D) to
[t]v is crucial. Claims (2) and (3) also follow by construction.

It remains to show that there exists an infinite restricted chase

derivation of Dac w.r.t. T . Indeed, by showing the latter statement

for the multiset database Dac , we can conclude that there exists an

infinite restricted chase derivation of the acyclic database obtained

from Dac by keeping only one occurrence of each atom w.r.t. T .

Step 2: An Auxiliary Infinite Sequence of Instances

As we already explained, Dac consists of several (slightly modified)

copies of atoms of D. It is like seeing the atoms of D through

several distorting mirrors, where the mirror images are atoms of

Dac . Imagine now that we watch the restricted chase derivation

(Ii )i≥0 through those mirrors. Although during a restricted chase

step only one atom, let us say α , is generated, in the mirrors we see

the generation of several atoms, which are the distorted images of

α . In order to formalize this phenomenon, we define a variant of

the restricted chase, called weakly restricted chase.

Weakly Restricted Chase. Our intention is to define a variant of

chase that allows us to apply several active triggers at the same

time, and operates onmultiset instances, i.e., multisets of atoms. The

reason why we need to consider multisets is because two different

mirror images may be syntactically the same.

Definition C.4. Consider a multiset instance K , and let S be a

set of active triggers for T on K . An application of S to K , called
weakly restricted chase step, returns the multiset instance

K ′ = K ∪ {result(σ ,h) : (σ ,h) ∈ S},

and is denoted asK ⟨S⟩K ′
. A sequence of multiset instances (Ki )i≥0,

where K0 is the database D ′
, is a weakly restricted chase derivation

of D ′
w.r.t. T if, for each i ≥ 0, there exists a set S of active triggers

for T on Ki such that Ki ⟨S⟩Ki+1.

The auxiliary infinite sequence of instances that we are look-

ing for, which will eventually lead to an infinite restricted chase

derivation of Dac w.r.t. T , is an infinite weakly restricted chase

derivation of Dac w.r.t. T . This is essentially (modulo some condi-

tion, called the depth condition, given below) the infinite restricted

chase derivation (Ii )i≥0 seen through the mirrors discussed above.

The Auxiliary Sequence (Ki )i≥0. We now inductively construct

a sequence of multiset instances (Ki )i≥0, together with a mapping

¯h from

⋃
i≥0

Ki to I:

Base Case. LetK0 = Dac , and for each α ∈ K0,
¯h(α) = hac(α). Recall

that hac is the mapping from Dac to D provided by Lemma C.3.

Inductive Step. Suppose now that Ki and ¯h : Ki → I have been

already defined, for i > 0. Let Si be the set of all active triggers for

T on Ki of the form (σ I
i ,h), i.e., they use the same TGD σ I

i that

has been used in (Ii )i≥0 to generate the atom βIi , such that:

(1)
¯h(h(γ Ii )) = gp(βIi ), which simply states that the atom of Ki
that is now about to become a guard-parent must be a mirror

image of the guard-parent of the atom βIi in I.

(2) (Depth Condition) α ≺+gp h(γ Ii ), for some atom α ∈ Dac
such that α = α∞, or depth(α) < ℓ∞ − i .

We define Ki+1 as the multiset instance

Ki ∪ {result(σ I
i ,h) : (σ I

i ,h) ∈ Si },

i.e., Ki ⟨Si ⟩Ki+1. Furthermore, for each α ∈ Ki+1 \Ki , let ¯h(α) = βIi .

This completes the definition of (Ki )i≥0.

The Structure of the Auxiliary Sequence. By construction,

(Ki )i≥0 is a weakly restricted chase derivation ofDac w.r.t. T . What

is not immediately clear is that (Ki )i≥0 is infinite. Our goal, in the

rest of this subsection, is to understand how K =
⋃
i≥0

Ki relates
to I. This analysis will give us useful information about the struc-

ture of K , which will be crucial later, and also it will allow us to

conclude that K is infinite.

For an atom β ∈ K , we define Kβ as the set {α ∈ K : β ≺+gp α }.
The main technical lemma that we need to show follows:

Lemma C.5. For each i ≥ 0, the following statements hold:

(1) For each α ∈ Dac such that α , α∞, ¯h is an isomorphism from
Kα ∩ Ki to I¯h(α ) ∩ Ik , where k = min{i, ℓ∞ − depth(α)}.

(2) The mapping ¯h is an isomorphism fromKα∞ ∩Ki to Iα∞ ∩ Ii .

Proof. For α ∈ Dac , we define T
K
i (α) = Kα ∩ Ki and T

I
i (α) =

I¯h(α ) ∩ Ik , where k = min{i, ℓ∞ − depth(α)} if depth(α) > 0, and

k = i otherwise. Let also α Ii be an atom of D such that α Ii ≺+дp β
I
i .

The lemma says that, for i ≥ 0 and α ∈ Dac , ¯h is an isomorphism

from TK
i (α) to T I

i (α). We proceed by induction on i . The lemma

holds for i = 0, since I0 = D and K0 = Dac . Assume now that it is

also true for some i ≥ 0.

First observe that, if depth(α) > 0 and depth(α) ≥ ℓ∞−i , for α ∈

Dac , thenT
K
i (α) = TK

i+1
(α) (this follows from the Depth Condition),

and T I
i (α) = T

I
i+1

(α). Thus, for such α , the claim directly follows

from the hypothesis.

It of course follows from the hypothesis (the part where it tells us

something about
¯h) that, if β ≺+дp β

′
, for some β, β ′ ∈ Ki , then also

¯h(β) ≺+дp
¯h(β ′). In other words, if β ∈ TK

i (α), then ¯h(β) ∈ TK
i (¯h(α)).

This means that, if
¯h(α) , α Ii , then T

K
i (α) = TK

i+1
(α). In this case,

we also have that T I
i (α) = T I

i+1
(α). Hence, again, for such α our

claim directly follows from the hypothesis.

Let us now concentrate on the only interesting case, where α
is not too deep and is a mirror image of α Ii (and, therefore, Kα



is a mirror image of Iα Ii
), which, formally speaking, means that

¯h(α) = α Ii and depth(α) = 0 or depth(α) < ℓ∞ − i .
Clearly, for such α , there exists exactly one atom which is in

T I
i+1

(α) but not in T I
i (α). This atom is β Ii . It is also easy to see that

дp(β Ii ) (or, βдp , for short) is somewhere inT I
i (α), and, by hypothesis,

there is an atom κдp somewhere in TK
i (α) such that

¯h(κдp ) = βдp .

Now, suppose there is an active trigger (σ Ii ,h) on Ki such that

h(γi ) = κдp . Then the atom, call it κnew , will appear in Ki+1 as the

result of this trigger, with
¯h(κnew ) = β Ii , and it is an easy exercise

to verify that the new function
¯h will be indeed an isomorphism

between TK
i+1

(α) and T I
i+1

(α).
Thus, the only thing that remains to be shown is that such an

active trigger indeed exists. For that we need to show:

(A) All the sideatoms of κдp required by σ I
i occur in Ki .

(B) The trigger (σ I
i ,h) for T on Ki is active.

For (A), suppose that π is a sideatom type of γ Ii required by σ I
i .

We know that there is βπ ∈ Ii such that βπ ≺πsp βдp . If β
π ∈ Iα Ii

=

I¯h(α ), then, by induction hypothesis, there is κπ ∈ Kα ∩ Ki such

that κπ ≺πsp κ. But what if β
π
is a remote side-parent?

Here is where the essence of the construction of Dac , and of

the Depth Condition, reveals itself. If βπ < Iα Ii
, then there exists

α ′ ∈ D such that ⟨α Ii , β
I
i ,α

′, βπ ⟩ is a remote-side-parent situation,

and βπ = βIj for some j < i . Thus, in (Tac, λ) there is an edge (v,u)

such that λ(v) = α and λ(u) = κ ′, for some κ ′ with ¯h(κ ′) = α ′
, as

postulated in the Inductive Step of the construction of Dac .

We know that either depth(α) ≤ ℓ∞− i or depth(α) > ℓ∞− i but
α = α∞. In both cases, by induction hypothesis,

¯h is an isomorphism

from TK
i (κ ′) to T I

i (κ
′). Let now κπ be an element of TK

i (κ ′) such

that
¯h(κπ ) = βπ . It follows from the fact that

¯h is an isomorphism

from TK
i (α) and T I

i (α), and from Lemma C.3(3), that
¯h is also an

isomorphism from TK
i (α) ∪TK

i (κ ′) to T I
i (α) ∪T I

i (κ
′) (notice that

guardedness is crucial here). Hence, κπ ≺πsp κдp .

For (B), assume that the trigger (σ I
i ,h) for T on Ki is not active.

Thus, there is αbad ∈ Ki such that αbad ≺s result(σ I
i ,h). We can

then conclude that
¯h(αbad ) ≺s ¯h(result(σ I

i ,h)). This follows from

the fact that, by claim (2) of Lemma C.3,
¯h is a homomorphism from

K to I, and thus, if terms are equal in αbad and result(σ I
i ,h), then

they are not less equal in
¯h(αbad ) and ¯h(result(σ I

i ,h)). But then

(σ I
i ,h) for T on Ii is not active due to the atom ¯h(αbad ) ∈ Ii , which

is a contradiction. This concludes the proof of Lemma C.5.

Let us try to intuitively explain the above complicated lemma.

Clearly, both I andK are forests (with ≺gp being the tree relation).

The roots of the trees in I are atoms of D, while the roots of the
trees inK are atoms of Dac . Each atom in Dac has its original atom

in D, and ¯h tells us which is this atom. Now, the second claim of the

lemma (which looks simpler) states the following: at every stage of

the construction of K , the tree that has been constructed up to this

point over the root α∞ ∈ Dac , it is isomorphic to the tree that has

been built over α∞ up to the same point of the construction of I.

This is actually expected since the construction of K is exactly the

construction of I, but seen in a room full of distorting mirrors, and

imagining that α∞ is the only element of Dac that is not a mirror

image, but the real atom. Regarding the first claim, as long as i is
small enough, the situation is similar to the one in (2). The tree

constructed in K , until stage i , over the root α ∈ Dac is isomorphic

to the tree constructed in I until the same point in time over

the root
¯h(α) ∈ D. For some time we can see a faithful image of

the construction, despite the fact that many mirror reflections are

needed. But, when i is too large (compared to depth(α)) we can no

longer see anything new. Notice that, in particular, if depth(α) = ℓ∞,

the lemma states that no tree at all will be built over the root α .
Let us now state a useful corollary, which directly follows from

Lemma C.5; for the proof of claim (2) recall that Iα∞ is infinite,

while the proof of claim (5) uses claims (3) and (4).

Corollary C.6. (1) ¯h is an isomorphism from Kα∞ to Iα∞ .
(2) The weakly restricted chase derivation (Ki )i≥0 is infinite.
(3) For each atom α ∈ Dac such that α , α∞, the mapping ¯h is

an isomorphism from Kα to I¯h(α ) ∩ Iℓ∞−depth(α ).
(4) For α ,α ′ ∈ Dac with ¯h(α) = ¯h(α ′) and depth(α) ≤ depth(α ′),

there is a 1-1 homomorphism д fromKα ′ toKα and д(α) = α ′.
(5) Let β , β ′ ∈ Dac such that depth(β) ≤ depth(β ′). For each

α ∈ Kβ and α ′ ∈ Kβ ′ such that ¯h(α) = ¯h(α ′), there exists a
1-1 homomorphism д from Kα ′ to Kα and д(α) = α ′.

Step 3: An Infinite Restricted Chase Derivation

In this last step of the proof of the Treeification Theorem, our task is

to extract from the infinite weakly restricted chase derivation ofDac
w.r.t. T constructed above, an infinite restricted chase derivation

(Ji )i≥0 of Dac w.r.t. T . For this, we first need to a fix a notation

allowing us to directly address the atoms of K .

Let N be the set of pairs of natural numbers defined as

{(i, j) : i ≥ 0 and 0 ≤ j < |Ki+1 \ Ki |}.

By ≤ and < we denote the lexicographic ordering on N . Note

that ⟨N , <⟩ and ⟨N, <⟩ are isomorphic. Now, let (κw )w ∈N be an

enumeration of all the atoms of K such that:

• κ[i, j] ∈ Ki+1 \ Ki , and
• if κ[i, j] ∈ Kα and κ[i, j′] ∈ Kβ , for some j ≤ j ′ and α , β ∈

Dac , then depth(α) ≤ depth(β).

We now present a simple (not necessarily terminating) procedure,

dubbed Extract(K,T), that extracts from K an infinite restricted

chase derivation (Ji )i≥0 of Dac w.r.t. T . This algorithm is depicted

in the box above. It is clear that each time the while-loop is entered

it holds that Jm = Born. It also follows by construction that:

Lemma C.7. The sequence of instances (Ji )i≥0 produced by
Extract(K,T) is a restricted chase derivation of Dac w.r.t. T .

The crucial question is whether this sequence is infinite. A posi-

tive answer to this question will conclude the proof of the treeifica-

tion theorem. The rest of the section is devoted to showing that:

Lemma C.8. The sequence of instances (Ji )i≥0 produced by
Extract(K,T) is infinite.

We first show the following loop invariant lemma, that intuitively
states the following: at each point of the execution of our iterative

procedure, if an atom is not stopped, then there is a whole tuple of

candidates that can act as its side-parents that are also not stopped.



Pending := K \ K0;

Born := K0;

Stopped := ∅;

m := 0;

J0 := K0;

while Pending , ∅ do

let κ be the ≤-smallest element of Pending;
Pending := Pending \ {κ};
if there is an active trigger (σ ,h) for T on Jm such that

κ = result(σ ,h) then
Born := Born ∪ {κ};
Jm+1 := Jm ∪ {κ};
m :=m + 1;

else

Stopped := Stopped ∪ {κ};
foreach β ∈ Pending such that κ ≺+gp β do

Pending := Pending \ {β};
Stopped := Stopped ∪ {β};

return (Ji )i≥0.

Lemma C.9 (Loop Invariant). Consider two atoms α , β ∈ K

such that β ≺πsp α , for some sideatom type π . If α ∈ Born ∪ Pending,
then there exists β ′ ∈ Born ∪ Pending such that β ′ ≺πsp α .

Proof. We proceed by induction on the number of iterations of

Extract(K,T). Clearly, the loop invariant holds at the beginning

of the execution. Suppose now that it holds at some point of the

execution when we enter the while-loop. Let κ[i, j] be the current
atom, i.e., the ≤-smallest atom of the set Pending.

It is easy to see that the guard-parent of κ[i, j] necessarily belongs
to Born: it cannot be in Pending because then κ[i, j] would not be

minimal in Pending, and it cannot be in Stopped because in such a

case κ[i, j] would be in Stopped too. It is clear that, if there exists

an active trigger for T on Jm that produces κ[i, j], then the set

Born∪ Pending remains unchanged since the algorithm will simply

remove κ[i, j] from Pending and add it to Born. Thus, in this case

the loop invariant holds.

Assume now that there is no such an active trigger. There are

only two cases in which this can happen:

Case 1. Some of the side-parents κ[i, j] needs are not in Born.
Assume that π ′

is a sideatom type required by the TGD σ I
i , due

to which κ[i, j] has been generated in K , and let κ[i′, j′] be any

candidate from K such that κ[i′, j′] ≺π
′

sp κ[i, j]. It should be clear

that i ′ < i . By construction, κ[i′, j′] ∈ Born ∪ Stopped (since κ[i, j]
is minimal in Pending). By induction hypothesis, there is, among

these candidates, at least one that belongs to Born∪Pending. Hence,
there must be at least one of those candidates in Born. This implies

that this first case does not apply.

Case 2. There is an atom κ[i′, j′] ∈ Jm such that κ[i′, j′] ≺s κ[i, j].
By an argument similar to that for statement (B) in the proof of

Lemma C.5 above, we can show that in such a case it would be

¯h(κ[i′, j′]) ≺s ¯h(κ[i, j]). Since (Ii )i≥0 is a restricted chase derivation,

we get that i ′ ≥ i . But sinceκ[i′, j′] ∈ Jm , we get that i ′ = i , and thus,

j ′ < j. This means that
¯h(κ[i, j]) = ¯h(κ[i′, j′]), and κ[i, j] ∈ Kβ and

κ[i′, j′] ∈ Kβ ′ for some β, β ′ ∈ Dac such that depth(β ′) ≤ depth(β).
By Corollary C.6, Kκ[i, j ] is isomorphic to a subset of Kκ[i′, j′] via

an isomorphism, let us say д, such that д(κ[i, j]) = κ[i′, j′]. Assume

now that there are κ,κπ ∈ Born ∪ Pending such that κπ ≺πsp κ. We

need to show that, after κ[i, j] gets stopped, together with all its

≺+gp-descendants, the loop invariant will still hold. Observe that if

κπ < Kκ[i, j ] , then it is not affected by the removal of atoms ofKκ[i, j ] .

Moreover, if κ ∈ Kκ[i, j ] , then it gets stopped, and there is nothing

to show about its side-parents. Thus, the only case that we need to

worry about is when κ < Kκ[i, j ] and κπ ∈ Kκ[i, j ] . In this case all the

terms in κπ occur in fr(κ[i, j]). Furthermore, since κ[i′, j′] ≺s κ[i, j],
fr(κ[i, j]) = fr(κ[i′, j′]). Hence, the atom д(κπ ), which is in Kκ[i, j ] ,

and thus in Born ∪ Pending after the current iteration, is such that

д(κπ ) ≺
π
sp κ, and the claim follows.

In order to understand the meaning of this lemma, recall that K ,

since it was produced by a weakly restricted chase, is a multiset,

and there can be many atoms β ∈ K such that β ≺πsp α . This is a

phenomenon that never happens in a normal restricted chase. By

exploiting the loop invariant lemma, we can show that none of the

atoms of Kα∞ is stopped during our iterative procedure.

Lemma C.10. For each α ∈ K , if α ∈ Kα∞ , then α occurs in an
instance of the sequence (Ji )i≥0 produced by Extract(K,T).

Proof. We need to show that α < Stopped for any α ∈ Kα∞ . As-

sume that there exists an atom ofKα∞ that belongs to Stopped; let α̂
be the <-smallest such atom. The loop invariant lemma (LemmaC.9)

ensures that α̂ belongs to Stopped not because some of its side-

parents are missing, but for a different reason; in fact, for one of

the following two reasons:

(1) There exists an atom β ∈ Stopped such that β ≺+gp α̂ . Clearly,

β ∈ Kα∞ and also β < α̂ . But this contradicts the fact that α̂
is the <-smallest atom of Kα∞ that has been stopped. Thus,

this reason does not apply.

(2) There is β ∈ Born, with β < α̂ and β ≺s α̂ . Let β = κ[i′, j′]
and α̂ = κ[i,0]; it follows from the definition of (κw )w ∈N that

κ[i, j] ∈ Kα∞ implies j = 0. Clearly, [i ′, j ′] < [i, 0]. However,
since κ[i′, j′] ≺s κ[i,0], we get that i

′ ≥ i . Thus, j < 0, which

is not possible. Hence, also this reason does not apply.

Since none of the above cases apply, the claim follows.

Having Lemma C.10, it is clear that Lemma C.8 follows. Indeed,

since Kα∞ is infinite (Corollary C.6), and since each restricted

chase step generates just one atom, we immediately get that the

sequence (Ji )i≥0 of instances produced by Extract(K,T) is infinite.

Therefore, (Ji )i≥0 is an infinite restricted chase derivation of Dac
w.r.t. T . This completes the proof of the Treeification Theorem.

C.3 Proof of Lemma 5.12

Let us assume, for the moment, that we have available the follow-

ing auxiliary MSOL formulas (more details are given below); as

usual, we use lower-case letters x ,y, . . . for first-order variables,



and upper-case letters A,B, . . . for second-order variables:

ϕfin(A) ≡ A is finite

ϕπ (x ,y) ≡ x ≺πsp y, for the sideatom type π

ϕb (x ,y) ≡ x ≺+b y.

By exploiting the above formulas, we can easily define ϕT as the

conjunction of the following four sentences:

(1) ϕjt checks whether T is an abstract join tree. It is easy to

verify that all the conditions in the definition of abstract join

trees (see Definition 5.8) are first-order expressible, apart

from the first one, which states that the set {x ∈ V : org(x) =
F } is finite. For this check we exploit the MSOL formula ϕfin.

(2) ϕ1 checks for the first condition of Definition 5.10 as follows:

∀x∀A (∀y (ϕb (y,x) ↔ y ∈ A) → ϕfin(A))

(3) ϕ2 checks for the second condition; in what follows, we

assume that σ has body α ,π1, . . . ,πk :

∀x∀y ©«x � y ∧ org(y) = σ →
∧

i ∈{1, ...,k }

∃z ϕπi (z,y)ª®¬
Notice that org(y) = σ is an abbreviation of a big disjunction

that checks, via monadic predicates Mτ , where τ ∈ ΛT ,

whether the label of y is of the form ⟨·,σ , ·⟩.
(4) ϕ3 checks for the third condition as follows:

∀x ¬ϕb (x ,x)
We proceed to give more details about the auxiliary formulas

used in ϕT . The formal definitions are omitted since they are long

and tedious, but we give enough evidence that the formulas are

indeed expressible in MSOL. Note that the following discussion

heavily relies on the obvious fact below, which we will silently use:

Fact C.11. LetT = ⟨V ,�⟩ be an abstract join tree. For each term t
in ∆(T ), {x ∈ V : t occurs in δ (x)} induces a connected subtree of T .

Formula ϕfin(A). This formula comes from the general MSOL tool-

box. It states that every infinite directed path B in T , starting from

the root node of T , has an infinite directed sub-path, starting from

some non-root element of B, which is disjoint with A.

Formula ϕ
i, j
= (x ,y), for each i, j ∈ {1, . . . , ar(T )}. Notice that

these formulas have not been explicitly used above. However, they

are needed for defining ϕπ and ϕb . The formula ϕ
i, j
= (x ,y) says that

the term in δ (x) at position i is equal to the term in δ (y) at position j .
This can be expressed in MSOL as follows: there is a setA ⊆ V such

that (i) A is a path with x and y being its ends, i.e., A is finite, x ,y
have exactly one neighbor inA, and any other node inA has exactly

two neighbors, and (ii) A is a disjoint union of A1, . . . ,Aar(T) such

that x ∈ Ai , y ∈ Aj , and, for all pairs z,w ∈ A such that z � w ,

z ∈ Ak ,w ∈ Aℓ it holds that [[f ,k], [m, ℓ]] ∈ eq(w).

Formula ϕπ (x ,y). The formula says that δ (x) ⊆π δ (y). It should
be clear that it can be easily expressed by exploiting the formulas

ϕ
i, j
= given above for checking whether terms in atoms are equal.

Formula ϕb (x ,y). We first devise a formulaψb (x ,y), which states

that x ≺b y. Such a formula can be defined by using ϕπ above, and

also the formula ϕs (x ,y) ≡ x ≺s y, which can be in turn defined

by exploiting the formulas ϕ
i, j
= (x ,y), for i, j ∈ {1, . . . , ar(T )}.

Having ψb we can then devise a formula ϕcl(A), which states

that A is ≺b -downward closed, i.e., for each x ,y ∈ V , with x ≺b y
and y ∈ A there is also x ∈ A.

Finally, ϕb (x ,y) simply says that, for every ≺b -downward closed

set A it holds that y ∈ A implies x ∈ A.

D PROOFS FROM SECTION 6

D.1 Proof of Lemma 6.11

Let us first establish an auxiliary claim, which essentially states that

every free connected proto-caterpillar trivially satisfies condition

(2) of Definition 6.3:

Lemma D.1. Consider a free connected proto-caterpillar ♦ =

(L♦, (α♦i )i≥0, (σ
♦
i ,h

♦
i )i>0, (γ

♦
i )i>0). For β ∈ L♦ and i > 0, β ̸≺s α

♦
i .

Proof. Towards a contradiction, assume that there exists β ∈ L♦

and i > 0 such that β ≺s α
♦
i . This implies that there exists a relay

term c of ♥ occurring in fr(α♦i ) that occurs also in β . Let α♦j , for

j < i , be the birth atom of c. In the special case where c is the first

relay term of ♦, then j = 0. Assuming that c′ is the next relay term

of ♦ after c, let k > i be such that α♦k is the birth atom of c′. By

connectedness, c occurs in fr(α♦
ℓ
) for every j < ℓ ≤ k . Moreover, we

know that there exists j ≤ ℓ ≤ k such that β ≺p α
♦
ℓ
. Since β , α♦

ℓ−1

and ♦ is free, we can conclude that the TGD σ♦
ℓ
(recall that the

trigger (σ♦
ℓ
,h♦

ℓ
) generates α♦

ℓ
), apart from the atom γ ♦

ℓ
, which is

mapped by h♦
ℓ
to α♦

ℓ−1
, has another atom in its body that is mapped

by h♦
ℓ
to β , while it shares a variable x with γ ♦

ℓ
and h♦

ℓ
(x) = c. Since

T is a sticky set of TGDs, we conclude that c occurs at an immortal

position, which contradicts the fact that ♦ is connected.

We are now ready to give the proof of Lemma 6.11.

Proof of Lemma 6.11. The fact that ♥ is a connected proto-

caterpillar follows from the fact that ♠ is a connected proto-

caterpillar (Lemma 6.10). In particular, by applying
¯h on the atoms

occurring in ♠, there is no way to violate the conditions (1) - (3)

of Definition 6.2, or the connectedness condition as defined in

Definition 6.6. Moreover, it follows by construction that, for each

(α , i), (β, j) ∈ Π(L♥ ∪ B♥), α[i] = β[j] implies (α , i) ≃∗
L♥∪B♥ (β, j),

and thus, ♥ is free. It remains to show that ♥ enjoys the two condi-

tions of Definition 6.3, which we recall here:

(1) for each β ∈ L♥ and i > 0, β ̸≺s α
♥
i , and

(2) for each 0 ≤ i < j, α♥i ̸≺s α
♥
j .

Since ♥ is a free conected proto-caterpillar, (1) immediately fol-

lows from Lemma D.1.

For (2), towards a contradiction, assume that α♥i ≺s α
♥
j for some

0 ≤ i < j. Since we know that, if a term in α♥i is equal to a term

in α♥j , then the terms at the same positions in α♠i and α♠j are also

equal, we get that α♠i ≺s α
♠
j . This implies that α♣i+n ≺s α

♣
j+n ; recall,

from the construction of ♠, that n is such that α♣n is the birth atom

of the relay term ci0 . Therefore, there are atoms β, β ′ ∈ I such that

β ≺+p β ′ and β ≺s β ′. But this contradicts the fact that β ̸≺s β ′

since (Ii )i≥0 is a restricted chase derivation.



D.2 Proof of Lemma 6.12

The high-level idea of the construction is as follows. We first show

that for an equality type e = (R,E) from etypes(sch(T )), and a

set of positions Π ⊆ {1, . . . , ar(R)}, we can build a deterministic

Büchi automaton Ae,Π such that L(Ae,Π) , ∅ iff there exists a

free connected caterpillar such that its body starts with an atom

of equality type e , and its first relay term occurs at positions Π of

this atom. This means that a word w (which we will call caterpillar

word and its over a finite alphabet ΛT ) accepted byAe,Π is actually

a symbolic representation of a free connected caterpillar as the

one above. Observe now that there are finitely many pairs (e,Π),
where e = (R,E) is an equality type of etypes(sch(T )), and Π ⊆

{1, . . . , ar(R)}; let etpT be the set of all such pairs. Since Büchi

automata are closed under union, i.e., given two Büchi automata

A1 andA2, we can construct a Büchi automaton, denotedA1∪A2,

that recognizes the language L(A1)∪L(A2), the desired automaton

is defined as the deterministic Büchi automaton

AT =
⋃

(e,Π) ∈ etpT

Ae,Π .

Thus, our main task in the remainder of the section is, for a pair

(e,Π) ∈ etpT , to construct the Büchi automaton Ae,Π .

Caterpillar Words and Automata

It is easy to see that a free proto-caterpillar is fully described (up to

isomorphism, of course) by the equality type of the first atom α0

of its body, and an infinite sequence of TGD-atom pairs (σi ,γi )i>0,

which tells us which TGD of T should be used to produce the

next atom of the proto-caterpillar’s body, and which atom of the

body of this TGD must match with the previous atom of the proto-

caterpillar’s body. The remaining atoms of the body of the TGD

tell us which are the leg atoms of the proto-caterpillar.
7
Of course,

not each such sequence translates to a free proto-caterpillar (as it

may happen that some γi+1 does not match with the i-the atom
according to α0 and the sequence (σ1,γ1), (σ2,γ2), . . . , (σi ,γi )), but
if it does then the free proto-caterpillar is unique. However, there is

no guarantee that this unique free proto-caterpillar is a connected

caterpillar. In order to fully describe a free connected caterpillar we

also need somehow to mark the pass-on points. This brings us to

the notion of the caterpillar word (for T ).

We first define the finite alphabet ΛT , which consists of triples

of the form (σ ,γ , P), where σ ∈ T ,γ ∈ body(σ ), and, assuming that

R is the predicate of head(σ ), P ⊆ {1, . . . , ar(R)} is such that P , ∅

implies there exists i ∈ {1, . . . , ar(R)} with head(σ )[i] < fr(σ ) and
P = {j : head(σ )[i] = head(σ )[j]}. Then:

Definition D.2. A caterpillar word (for T ) is an infinite word

w = w1w2 · · · such that, for each i ≥ 1,wi ∈ ΛT .

Intuitively, a caterpillar word w = w1w2, · · · , with wi =

(σi ,γi , Pi ), is a candidate symbolic representation of a free con-

nected caterpillar, where wi marks a pass-on point iff Pi is non-
empty. In fact, Pi indicates at which positions of head(σi ) the new
relay term appears. Now, given a pair (e0,Π0) ∈ etpT , we say that

w encodes a free connected caterpillar starting at (e0,Π0)
8
if the

7
Notice that here we silently assume, w.l.o.g., that the proto-caterpillar is minimal in

the sense that all the leg atoms participate in the generation of a body atom.

8
We keep this definition semi-formal as the formal one is very tedious and it does not

add any technical value to the proof.

sequence of TGD-atom pairs (σi ,γi )i>0 translates to a free con-

nected caterpillar ♦ = (L♦, (α♦i )i≥0, (σ
♦
i ,h

♦
i )i>0, (γ

♦
i )i>0), where (i)

et(α♦
0
) = e0, and the first relay term of ♦ occurs in α♦

0
at positions

Π0, (ii) σi = σ
♦
i and γi = γ

♦
i , for each i > 0, and (iii) assuming that

b1 < b2 < · · · are the pass-on points of ♦, Pi , ∅ iff i ∈ {b1,b2, . . .},

and the k-th relay term of ♦ occurs in α♦bk
at positions Pk .

Recall that our goal is to construct a deterministic Büchi au-

tomaton Ae0,Π0
, with ΛT being its alphabet, such that L(Ae0,Π0

)

is exactly the set of caterpillar words that encode a free connected

caterpillar starting at (e0,Π0). The automaton Ae0,Π0
is defined as

the (almost) cartesian product of three automata:

• Apc that checks whether a caterpillar word w encodes a

free proto-caterpillar such that e0 is the equality type of the

first atom of its body. Note that the set Π0 does not play any

role here. In fact, this automaton will only read the first two

elements of each letter of w.

• Aqc that checks whether a caterpillar wordw that encodes a

free proto-caterpillar ♦ is such that ♦ is a quasi-caterpillar, i.e.,
it satisfies condition (2) of Definition 6.3, that is, assuming

that (α♦i )i≥0 is the body of ♦, α♦i ̸≺s α
♦
j for each 0 ≤ i < j.

This automaton is quite involved, and as Apc above, it will

read only the first two elements of each letter of w.

• Acc that checks whether a caterpillar word w that encodes

a free quasi-caterpillar ♦ is such that ♦ is connected. Since,

by Lemma D.1, a free connected quasi-caterpillar is a cater-

pillar, Acc essentially checks whether ♦ is a free connected

caterpillar, i.e., condition (1) of Definition 6.3 comes for free.

By “almost cartesian product” we mean that the states of Ae0,Π0

will be triples, consisting of the states of Apc , Aqc , and Acc . The

transition functions ofApc andAcc will only depend on the current

symbol of the word w and of the current state of the respective

automaton. However, the transition function of Aqc will also use

the current state of Apc as part of its argument. Regarding the

acceptance, each of the three automata will have a designated reject
state. If any of them is ever encountered, then we assume that

Ae0,Π0
immediately rejects the input wordw. Apart from the reject

state, Acc will have an accepting state. The automaton Ae0,Π0
,

which, as we said, is a Büchi automaton, will accept if Acc will

encounter this accepting state infinitely many times while reading

the word w. We can now describe the three automata in question.

The Automaton Apc

Since we are building a finite automaton, and there are infinitely

many atoms in a caterpillar’s body, there is no hope the automaton,

after reading the symbol wi of the input caterpillar word w =
w1w2 · · · , could “know” the i-th atom of the body of the proto-

caterpillar encoded by w. But it can know its equality type. We

define the function δet : etypes(sch(T ))×ΛT → etypes(sch(T ))∪

{reject} as follows: for each e ∈ etypes(sch(T )) and (σ ,γ , ·) ∈ ΛT ,

• if there is a homomorphism h that maps γ to R(⋆1, . . . ,⋆n ),

with⋆i = ⋆j iff i, j coexist in a set of E, then δet(e, (σ ,γ , ·)) =

et(¯h(head(σ ))), where ¯h is an extension of h that maps each

existentially quantified variable in σ to a distinct symbol;

• otherwise, δet(e, (σ ,γ , ·)) = reject.
Let Apc be a Büchi automaton with

• etypes(sch(T )) ∪ {reject} its set of states,



• ΛT its alphabet,

• δet its transition function, and

• e0 its initial state.

Clearly, for a caterpillar wordw,Apc does not rejectw iffw encodes

a free proto-caterpillar ♦ = (·, (α♦i )i≥0, ·, ·) such that et(α♦
0
) = e0;

and if it does, then δet(et(α♦i−1
),wi ) = et(α♦i ), for each i > 0.

The Automaton Aqc

From now on we assume that an input caterpillar word w encodes

a free proto-caterpillar ♦ = (·, (α♦i )i≥0, ·, ·) such that the first atom

of its body has equality type e0 (in case it does not encode such a

free proto-caterpillar,Apc will take care of it), and proceed towards

checking whether ♦ is a quasi-caterpillar, i.e., whether it satisfies

condition (2) of Definition 6.3, that is, α♦i ̸≺s α
♦
j for each 0 ≤ i < j.

Given a finite set T of terms, a T-equality type over a schema S
is essentially an equality type (R,E) over Swhere, in addition, some

of the sets of E are labeled with distinct terms of T indicating that a

term t ∈ T should occur at certain positions. Formally, a T-equality
type over S is a triple (R,E, λ), where (R,E) ∈ etypes(S), and λ is

a partial injective function from E to T. It is clear that there are

only finitely many T-equality types over S. The T-equality type

of an atom α , denoted etT(α), as well as the canonical atom of a

T-equality type e , denoted can(e), are defined in the expected way.

Now, for brevity, let Tj be the set of terms occurring in α♦j . We

can easily show the following useful lemma:

Lemma D.3. Suppose i < j < k for some i, j,k ≥ 0. It holds that
α♦i ≺s α

♦
k iff can(etTj (α

♦
i )) ≺s α

♦
k .

Proof. First, for each set of terms T that contains all the terms

occurring both in α♦i and α♦k , it is easy to show that α♦i ≺s α
♦
k iff

can(etT(α♦i )) ≺s α
♦
k . Now, since ♦ is free, if some term occurs in α♦i

and α♦k , then it must also occur in α♦j . This implies that Tj contains

all the terms occurring both in α♦i and α♦k , and the claim follows.

For each j ≥ 0, let Θj = {etT(α♦i ) : 0 ≤ i ≤ j}. Of course, Θj is

a finite set, for each j ≥ 0. Moreover, if we just know et(α♦j ), then
the number of possible candidates for Θj is finite, and uniformly

bounded, so Θj can be seen as a finite piece of information, or as

(part of) a state of a finite automaton. It is possible to construct

Θj+1 only knowing Θj , et(α♦j ) and the (j + 1)-th symbol w j+1 of

w. Furthermore, knowing Θj and et(α♦j ), we can check whether

there is 0 ≤ i < j such that α♦i ≺s α
♦
j ; the latter is a consequence

of Lemma D.3. Thus, we can define a function δΘ such that:

δΘ

(
(Θj , et(α♦j )), (σj+1,γj+1, ·)

)
=


reject if α♦i ≺s α

♦
j for some i < j,

(Θj+1, et(α♦j+1
)) otherwise.

Let Aqc be a Büchi automaton with

• its set of states consisting of pairs of the form (Θ, e) as above,
and the reject state,

• ΛT its alphabet,

• δΘ its transition function, and

• (∅, e0) its initial state.

By construction, for a caterpillar word w, Aqc does not reject w iff

w encodes a free proto-caterpillar ♦ that satisfies condition (2) of

Definition 6.3, i.e., ♦ is a quasi-caterpillar.

The Automaton Acc

First, we need to define a function δpos that will let the automa-

ton remember some terms. Given Π ⊆ {1, . . . , ar(T )} and w =
(σ ,γ , P) ∈ ΛT , let δpos(Π,w) be the set of integers

{i ∈ {1, . . . , ar(T )} : there is j ∈ Π such that γ [j] = head(σ )[i]}.

The purpose of δpos will be made clear in a while.

The states of Acc will be tuples (Π1,Π2,q), where Π1,Π2 ⊆

{1, . . . ar(T )} and q ∈ {⊤,⊥}. Roughly, Π1 will remember the posi-

tions where the current relay term appears (we need this informa-

tion since we must make sure that the current relay term survives

until the next pass-on point), and Π2 will remember the positions

where all the relay terms, current and older ones, live at the given

moment (we need this to make sure that they will never appear at

an immortal position).

We proceed to define the function δcc as follows: given a state-

symbol pair (s,w) with s = (Π1,Π2,q) andw = (σ ,γ , P):

• if δpos(Π1,w) = ∅, or there exists i ∈ δpos(Π2,w) such that

head(σ )[i] is not marked in T , then δcc(s,w) = reject;
• otherwise, δcc (s,w) = (δpos(Π1,w),δpos(Π2,w),⊥) if P = ∅,

and δcc(s,w) = (P ,δpos(Π1,w) ∪ δpos(Π2,w),⊤) if P , ∅.

Intuitively, this means that if we are not at a pass-on point (P = ∅),

then keep track of the positions occupied by the current and the

old relay terms. On the other hand, if we are at a pass-on point

(P , ∅), then forget the positions occupied by the old relay terms

and remember the positions at which the new one occurs. But do

not forget them completely; simply add them to the set of positions

where all the relay terms appear.

Let Acc be a Büchi automaton with

• its set of states consisting of triples as described above, and

the reject state,
• ΛT its alphabet,

• δcc its transition function,

• (Π0, ∅, e0) its initial state, and

• all the states of the form (·, ·,⊤) being accepting.

D.3 Proof of Lemma 6.13

Let ♦ = (L♦,B♦,T ♦,G♦) be a free uniformly connected caterpillar,

where B♦ = (α♦i )i≥0, T
♦ = (σ♦i ,h

♦
i )i>0, and G♦ = (γ ♦i )i>0). Let

c0, c1, . . . be the relay terms of ♦. Moreover, assuming that (bi )i>0

are the pass-on points of ♦, let d ≥ 0 be such that bk+1
−bk < d , for

each k ≥ 0. Our goal is to define a unifying function h for ♦ such

that h(♦) is a finitary caterpillar, which means that h(L♦) is finite.
We first observe that no matter how a unifying function h for ♦

is defined, h(♦) is a proto-caterpillar that satisfies condition (1) of

Definition 6.3. This is what the next lemma tells us:

Lemma D.4. Consider a unifying function h for ♦. Then:

(1) h(♦) is a proto-caterpillar, and
(2) for each β ∈ h(L♦) and i > 0, β ̸≺s h(α

♦
i ).



Proof. It is clear that there is no way to violate the conditions

given in Definition 6.2 by unifying terms in the legs of a proto-

caterpillar. Since, by hypothesis, ♦ is a proto-caterpillar, we get that

h(♦) is a proto-caterpillar, and (1) follows.

Concerning (2), the claim follows by the fact that none of the

relay terms c0, c1, . . . of ♦ occurs in L♦. This implies that none of

the terms c0, c1, . . . occurs in h(L
♦), while, for each i ≥ 0, fr(h(α♦i ))

contains a term from c0, c1, . . .. Therefore, none of the atoms of

h(L♦) can stop an atom of (h(α♦i ))i>0, and the claim follows.

Having the above lemma in place, it is clear that to establish

Lemma 6.13 it remains to construct a unifying function h for ♦ such

that h(L♦) is finite, and h(♦) satisfies condition (2) of Definition 6.3.

The rest of the section is devoted to constructing such a function.

We first define the domain of the desired function as the set of

terms V ⊆ dom(L♦) that occur at a position (α , i), for some atom

α ∈ L♦, that is not related to any immortal position (β , j), where
β ∈ B♦. Notice that none of the relay terms of ♦ occur inV. It would

be useful to be able to refer to the terms of V that participate in

the generation of the atoms between the first body atom and the

first pass-on point, as well as the atoms between two consecutive

pass-on points. Let B♦
0
= {α♦j : 0 < j ≤ b1} ⊆ B♦, that is, the set

of atoms between α♦
0
and the birth atom of c1. Moreover, for each

i > 0, let B♦i = {α♦j : bi < j ≤ bi+1} ⊆ B♦, that is, the set of atoms

between the birth atom of ci and the birth atom of ci+1. We also

define, for each i ≥ 0, L♦i as the set of atoms{
α ∈ L♦ : there exists j > 0 such that

result(σ♦j ,h
♦
j ) ∈ B♦i , and α ∈ h♦j (body(σ

♦
j ))

}
,

which are essentially the atoms that are needed to generate B♦i .

Then, we let Vi = V ∩ dom(L♦i ).
For the codomain we need a sufficiently large finite set of new

terms. Letm0 ≥ 0 be greater than the maximal number of variables

in a TGD of T andm = (d + 1) ·m0; recall that d is the uniform

distance between two consecutive pass-on points of ♦. We define

T, which will be the codomain of the desired function, as a set of

terms such that |T | = 2m and T∩dom(L♦ ∪B♦) = ∅, i.e., T collects

m new terms that do not occur in L♦ ∪ B♦. We can then show the

following key technical lemma:

Lemma D.5. There exists a unifying function ~ : V→ T such that,
for each i ≥ 0, the unifying function ~ |Vi is 1-1.

Proof. We first observe that:

(*) for each i ≥ 0, |Vi | ≤ m – this is a consequence of the

definition ofm;

(**) for each i > 0, Vi ∩
⋃
j<i Vj ⊆ Vi−1 – since all the terms

that occur both in

⋃
j<i Vj and inVi must also occur in α♦bi

.

We are going to build an ascending sequence (~i )i≥0 of functions,

where ~i :

⋃
j≤i Vj → T, such that, for each i ≥ 0, the function

~i |Vi is 1-1. Then, ~ will be defined as

⋃
i≥0
~i .

Let ~0 be an 1-1 function of the formV0 → T. Notice that such a

function exists since, by definition, T is sufficiently large. Suppose

now that ~i−1, as specified above, has been defined. In order to

define ~i we need to extend ~i−1 to the terms in Vi \
⋃
j<i Vj in

such a way that the newly defined function is 1-1 on Vi . From

(**) we know that Vi \
⋃
j<i Vj = Vi \Vi−1, and, by assumption,

~i−1 |Vi−1
is 1-1. This means that on the subset of Vi where ~i is

already defined (since ~i−1 is defined) it is 1-1. Now, to be able to

extend it to an 1-1 function on the entire set Vi we need to have

enough terms in the codomain, which is guaranteed by (*).

Let ~ be the unifying function for ♦ provided by Lemma D.5. We

proceed to show that:

Lemma D.6. (1) The instance ~(L♦) is finite.
(2) For each 0 ≤ i < j, ~(α♦i ) ̸≺s ~(α

♦
j ).

Proof. For (1), since V collects all the terms of dom(L♦) that
occur at a position (α , i), for some α ∈ L♦, that is not related to

any immortal position (β , j), where β ∈ B♦, we can conclude that

dom(L♦) \V is finite. Therefore, dom(~(L♦)) is finite, which in turn

implies that ~(L♦) is finite, as needed.
For (2), we proceed by considering the following two cases:

• i ≤ bk < j for some k > 0. In this case, there exists ℓ ≥ k

such that the relay term cℓ occurs in fr(α♦j ) but not in fr(α♦i ).
Since none of the relay terms of ♦ occurs in the domain or

the codomain of ~, we conclude that cℓ occurs in fr(~(α♦j ))
but not in fr(~(α♦i )), which implies that ~(α♦i ) ̸≺s ~(α

♦
j ).

• bk ≤ i < j ≤ bk+1
for some k ≥ 0 (with b0 = 0.) Since, by

hypothesis, ♦ is a caterpillar, we get that α♦i ̸≺s α♦j . The

fact that ~ is an 1-1 function over Vk allows us to con-

clude that {α♦i ,α
♦
j } is isomorphic to {~(α♦i ), ~(α

♦
j )}. There-

fore, ~(α♦i ) ̸≺s ~(α
♦
j ), and the claim follows.

This completes the proof of the lemma.

By Lemma D.4 and D.6, we immediately get Lemma 6.13.
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