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Abstract
The use of observational analyses, such as classical epidemiological studies or randomised controlled trials
(RCTs), to infer causality in cancer may be problematic due to both ethical reasons and technical issues, such
as confounding variables and reverse causation. Mendelian randomisation (MR) is an epidemiological tech-
nique that uses genetic variants as proxies for exposures in an attempt to determine whether there is a causal
link between an exposure and an outcome. Given that genetic variants are randomly assigned during meiosis
according to Mendel’s first and second laws of heritability, MR may be thought of as a ‘natural’ RCT and is
therefore less vulnerable to the aforementioned problems. MR has the potential to help identify new, and
validate or disprove previously implicated, modifiable risk factors in cancer, but it is not without limitations.
This review provides a brief description of the history and principles of MR, as well as a guide to basic MR meth-
odology. The bulk of the review then examines various limitations of MR in more detail, discussing some of the
proposed solutions to these problems. The review ends with a brief section detailing the practical implementa-
tion of MR, with examples of its use in the study of cancer, and an assessment of its utility in identifying cancer
predisposition traits.
© 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great
Britain and Ireland.
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Introduction

One of the many difficulties facing those studying com-
plex diseases such as cancer is the determination of
causal risk factors. Cancer appears to be the result of
both inherited (genetic) and environmental factors, and
highlighting the true causes is critical for the develop-
ment of appropriate preventive and therapeutic agents.
The identification of genetic variants that increase the
risk of cancer is ongoing and has sped up greatly due
to advances in technologies such as next-generation
sequencing. However, the accurate identification of
non-genetic risk factors in cancer remains a challenge
for a number of reasons. Although many epidemiologi-
cal techniques may be used to identify associations
between traits and cancer, establishing causality is a
much more difficult task. Therefore, the development
of techniques that may be used to confirm causal links
between genetic variation and cancer is extremely
important.

For a long time, the gold standard method of inferring
causality, and hence suitability of disease interventions,
came from randomised controlled trials (RCTs). There
have been instances where the proposed cause for an
effect from observational studies has later been found
to be incorrect from follow-up RCTs, for example, the
formerly recommended beta-carotene in cancer preven-
tion [1–6]. However, RCTs may not be able detect expo-
sures that occur over a long period because they have
relatively short follow-up times. There may also be eth-
ical and financial reasons as to why RCTs are not a via-
ble means of determining causality [7].
Because genetic associations with cancer risk will not

suffer from problems of reverse causation and are
unlikely to be affected by other confounders, the use of
genetics to infer causality of non-genetic risk factors is
attractive and feasible if those risk factors have some
genetic basis. This is the rationale for using the tech-
nique of Mendelian randomisation (MR) to determine
risk factor causality.
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Mendelian randomisation (MR)

MR is an epidemiological technique that has been
developed as a means of not only avoiding the pitfalls
classically associated with RCTs, such as confounding
variables, but also examining causal factors for pheno-
types that would not be appropriate for RCTs, for
instance, height. It is based on the fact that genetic
variants—in practice mostly common polymorphisms—
are randomly assigned during meiosis according to
Mendel’s first and second laws of inheritance, thus
mitigating the problem of reverse causation.
An early example of the MR concept came from

Katan in 1986; he described the problem of determining
whether the association between low serum cholesterol
and cancer was actually causal, or resulted from the pres-
ence of confounding variables such as diet and smoking,
or from reverse causation. To solve this, he used the fact
that the apolipoprotein E (APOE) gene is polymorphic,
with the different alleles encoding isoforms with varying
potency with regard to clearing cholesterol from the
plasma. Katan concluded that if low serum cholesterol
did in fact cause cancer, members of the population with
the potent APOE isoforms ought to have a higher fre-
quency of cancer; a distribution that differs from the
aforementioned would imply that there is no relationship
between low serum cholesterol and cancer [8]. A study
performed in 2009 used MR in an attempt to evaluate
this relationship and found no increased risk of cancer
between groups of elderly patients categorised by APOE
genotype [9].
A similar proposal aiming to make an unbiased

assessment of allogeneic bone marrow transplants
(BMTs) came from Gray and Wheatley in 1991 and is
where the term ‘Mendelian randomisation’ originated.
Gray and Wheatley noted that a comparison between
allogeneic BMTs and chemotherapy in the treatment of
leukaemia was problematic; in cases where a human leu-
kocyte antigen (HLA)–matched donor was available, it
would be unethical to withhold BMT from a patient

[10]. Their solution was to compare the survival of
patients receiving BMTs from HLA-compatible siblings
against non–HLA-compatible siblings: Because HLA
status is assigned at conception, that is, before the onset
of disease, selection bias (discussed below) is avoided
[10]. Subsequent trials in patients with acute myeloid
leukaemia (AML) testing Gray andWheatley’s proposal
have indeed found that HLA compatibility in allogeneic
BMTs reduced relapse and may provide a survival
advantage [11,12].

MR involves the use of instrumental variables (IVs)
in the form of germline variants, usually single nucleo-
tide polymorphisms (SNPs). These are used as proxies
for exposures (or intermediate traits) in order to estab-
lish a causal link between an exposure and an outcome.
In Katan’s example, the APOE SNP is an IV, cholesterol
is the exposure, and cancer is the outcome. In its simplest
form, MR concludes that the exposure is causal if its
association with the outcome is statistically significant
and can be explained entirely by the genetic variant’s
two associations: (1) with the exposure and (2) with the
outcome. MR relies on a number of assumptions for it
to be accurate [6,7]. The rationale underlying MR and
the required IV assumptions may be visualised using a
directed acyclic graph (DAG) (Figure 1) and are as
follows:

i. The IVs (the SNPs being used) should be clearly and
quantifiably linked to the exposure(s) in question.

ii. The IVs should not be linked in any way to any con-
founding variables.

iii. The IVs should be linked to the outcome only
through the exposure(s) in question.

To estimate a causal effect with IV analysis, additional
assumptions are required; one such assumption is
that [13]:

iv. The associations are linear and not affected by statis-
tical interactions.

Figure 1. Directed acyclic graph (DAG) depicting MR principles and underlying IV assumptions (i–iii). Black arrows indicate causal links, and
red-dashed lines indicate potential violations of MR assumptions. Created using BioRender.com.

542 H Gala and I Tomlinson

© 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2020; 250: 541–554
www.thejournalofpathology.com

http://biorender.com
http://www.pathsoc.org
http://www.thejournalofpathology.com


Overview of MR methodology

The ‘traditional’ way of performing MR is the one-
sample method and involves the acquisition of SNPs,
exposures, and outcomes all from a single data
set [14]. However, very few data sets are large enough
for one-sample MR to be conducted with sufficient
power to infer causal relationships [7]. To increase statis-
tical power, and thereby ameliorate this issue, a method
called two-sample MR has more recently become preva-
lent; this involves obtaining SNP and exposure data from
one data set, and SNP and outcome data from another
data set, with the two data sets ideally being very similar
in terms of their risk factors for the outcome [15].

The initial step in MR involves the estimation of the
exposure using valid IVs; the effect size (or beta), stan-
dard error (SE), and effect/other alleles are needed for
each SNP, with analogous information for the outcome
also required [16]. For analysis that involves different
genomic regions (polygenic analysis), IVs may be cho-
sen using either a biological or a statistical approach.
The biological approach involves choosing IVs that have
been linked to the exposure from previous studies,
whereas the statistical approach involves the inclusion
of all IVs below a genome-wide significance threshold
(usually those with a P-value <5 × 10−8) [17]. The out-
come is then regressed on the exposure to give the causal
effect estimate [18]. The most common type ofMR anal-
ysis gives higher weighting to SNPs that have smaller
SEs in the IV-outcome regression and is called the
inverse-variance weighting (IVW) method [16,19].

The most straightforward way of performing MR is
called the ratio of coefficients or Wald method. Here,
the causal effect is triangulated by dividing the coeffi-
cients of regression of the outcome on the IV by the
regression of the exposure on the IV [20,21]. The ratio
of coefficients method may be performed using two-
sample MR and if the outcome is dichotomous (e.g. dis-
ease versus no disease), but requires that only one IV be
used [18,21]. This method requires only the IV-exposure
and IV-outcome regression coefficients and can there-
fore be performed using summary-level data, without
the need for individual-level data [21].

Another method of performing MR analysis is called
the two-stage least-squares (2SLS) method. 2SLS, as
the name implies, involves two stages of regression:
The first is from the IVs to the exposure, and the second
is from the exposure to the outcome [21]. These two
regressions are performed in the same model, and so
the covariation of the IVs and the exposure must be
taken into account to obtain an accurate SE [18]. How-
ever, this method requires individual-level data and
becomes biased when at least one invalid IV is used
[22]. The control function estimator is a suggested adap-
tation of the 2SLS approach, where the residuals of the
first-stage regression, which correspond to the effects
of confounding variables on the exposure-outcome coef-
ficient, are included in the second-stage regression;

[18,21]. This allows for the effects of any confounding
variables on the outcome to be controlled for.
The output for MR analysis gives (1) a P-value that

represents the probability that the trait being used as an
exposure is causal for an outcome, with a P-value
<0.05 generally considered to be statistically significant
and (2) odds ratios (ORs) that quantify the effect of an
exposure on the outcome (for example, OR = 1.10
means that the outcome is 10%more likely to occur with
the exposure compared to without it), as well as confi-
dence intervals usually set at 95%, with smaller intervals
indicative of greater OR precision [23]. For all of the
aforementioned methods, the estimate of the causal
effect may be thought of as the change in outcome per
unit change in exposure [21].
A technique called multivariable MR is an extension

of MR whereby multiple IVs that affect multiple expo-
sures are assessed for their causal effect on an outcome
simultaneously [24]. This method can account for mea-
sured horizontal pleiotropy (discussed below) and has
recently been adapted for high-throughput experiments
[25]. In the context of cancer, obtaining results from
MR that suggest there are modifiable causal risk factors
may allow for risk minimisation, if not prevention.

Limitations of MR

In spite of the fact that MR has been shown to be a useful
tool in epidemiology, particularly with regard to mitigat-
ing reverse causation and confounding variables, there
are several limitations to be considered:

Horizontal pleiotropy
Horizontal pleiotropy is the term used to describe when
an IV is linked to the outcome in a way that does not
involve the exposure, thus violating the third IV assump-
tion (Figure 2). The violation of this assumption, also
known as the ‘exclusion restriction criterion’, can
severely reduce the accuracy of MR, resulting in an
incorrect quantification of causality, reduced statistical
power, and type I errors [26].
The problem of horizontal pleiotropy appears to be

very difficult to circumvent, as it has been found to be
abundant in complex human diseases from genome-
wide association studies (GWAS) [27,28]. This has led
to conflicting opinions on the utility of MR, with one
critic suggesting that even a small number of pleiotropic
loci can result in false-positive results [29]. Also noted in
that article was the worrying observation that this effect
appears to increase with larger sample sizes. In a rebuttal
to the article, it was stated that horizontal pleiotropy has
always been known to impose some limits on MR, but
that there are now techniques (examples of which are
briefly discussed later in this section) that have been
developed to mitigate this problem [30]. A recent analy-
sis came to the conclusion that horizontal pleiotropy was
present in approximately 48% of causal links as deter-
mined by MR [26]. A concomitant study sought to use
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machine learning to predict an optimal MR method for
any specific analysis, in order to improve power and
lower false discovery rates; this study found that the pre-
ferred method of MR, as predicted by their machine
learning framework, involved some degree of horizontal
pleiotropy in 90% of tests [16]. From this the conclusion
was that horizontal pleiotropy is abundant and unavoid-
able, and therefore should be evaluated as standard prac-
tice when performing MR analysis, that is, choosing a
method that is more robust against the effects of horizon-
tal pleiotropy when high levels are detected [16,26].
A number of methods that serve as sensitivity ana-

lyses may be used to address the issue of horizontal plei-
otropy. One of these involves using multiple SNPs for
MR analysis of a single trait and then testing for hetero-
geneity between these SNPs (since the association
between exposure and outcome should be the same for
each SNP). Tests such as the between-instrument hetero-
geneity Q test have been found to work well, especially
when the data set is large and both the exposure and out-
come data come from the same data set (i.e. one-sample
MR), but do not indicate the origins of any heterogeneity
[31]. Another method that serves as a sensitivity analysis
is an adaptation of Egger regression called MR-Egger. It
can be used to detect bias that results from horizontal
pleiotropy based on the assumption that any pleiotropic
effects from IVs on the outcome are independent of the
exposure; this is known as the INstrument Strength Inde-
pendent of Direct Effect (InSIDE) assumption and is
considered to be a weaker version of the exclusion
restriction criterion [32]. This assumption allows for
pleiotropy in all IVs, but results in less precise analysis
of the effects of the exposure results due to reduced sta-
tistical power [33].
The Mendelian Randomisation Pleiotropy RESidual

Sum and Outlier (MR-PRESSO) test has been devel-
oped recently and involves the detection of pleiotropy
through comparing the observed distance of all variants
to the expected exposure-outcome regression line
under the assumption of no horizontal pleiotropy. It
uses this to determine outlier variants and then calcu-
lates the distortion by comparing causal estimates prior
to and following outlier removal [26]. It was found that
MR-PRESSO could minimise and correct for horizon-
tal pleiotropy in some cases, but only when the trait
responsible for the pleiotropy was known a priori
[26]. However, outlier detection techniques such as
MR-PRESSO also require at least 50% of IVs to be

valid (not horizontally pleiotropic), pleiotropy to be
balanced, and the InSIDE assumption to hold [26].

Removing outliers using the median (as opposed to
the mean conventionally used in MR-Egger) or mode-
based estimate (MBE) methods through the ZEro Modal
Pleiotropy Assumption (ZEMPA) of Wald ratio esti-
mates may also mitigate against pleiotropy in MR ana-
lyses [22,34]. The weighted median method gives
consistent results when at least 50% of the IVs are valid
and has been found to be as efficient as the IVWmethod
[22]. Under the ZEMPA, MBE methods can infer a
causal effect, even if the majority of IVs are invalid,
and can give less biased results than other methods, but
generally they have less power to detect causality
[34]. However, methods that involve removing outliers
should be used carefully, as they are essentially cherry
picking the data and potentially excluding SNPs that
are biologically relevant [35].

Linkage disequilibrium
Linkage disequilibrium (LD) is defined as the non-
random association of alleles at genetic loci that are close
to one another on a chromosome. Therefore, violation of
the assumptions underlyingMRmay occur if a SNP being
used as an IV is in LDwith a SNP that affects the outcome
via an independent exposure (Figure 3) [13].

Similarly to horizontal pleiotropy, LD is a common
occurrence and should be accounted for in MR analysis
through the selection or prioritising of appropriate SNPs
[35,36]. As well as setting amaximum pairwise LD thresh-
old for SNP inclusion, methods such as penalised logistic
regression have been described as a means of selecting
SNPs based on the knowledge of LD [37,38]. A Bayesian
test that may be used to determine whether associations are
the result of co-localised SNPs could also possibly reduce
bias from LD in MR analysis [39]. However, attempts to
mitigate LD in cases where it is strong are potentially irrel-
evant, as it may be impossible to determine which of the
IVs is responsible for the effects seen.

Population stratification
Another issue that may arise in MR analysis is popula-
tion stratification; this is defined as the systematic differ-
ence in allele frequencies between subgroups within a
population. In the context of genetic association studies
such as MR, this difference may serve as a confounding

Figure 2. DAG demonstrating horizontal pleiotropy inMR. The IV affects the Outcome through the intended exposure (Exposure 1) but also through
another unintended exposure (Exposure 2), thereby violating IV assumption iii (exclusion restriction criterion). Created using BioRender.com.
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variable and lead to spurious associations between SNPs
and the outcome [41]. Although some suggest that the
bias that could result from population stratification in
well-designed epidemiological studies of cancer is rela-
tively small [41], the total effect when combined with
bias resulting from other MR limitations may be enough
to skew results. One such example of population stratifi-
cation came from a recent study that found an associa-
tion between genetic variants and location of birth in
UK Biobank genetic data [42].

A number of solutions have been proposed to mitigate
the potential bias of population stratification. The seem-
ingly most straightforward solution would be to only use
individuals with a relatively homogeneous genetic
ancestry. However, another problem frequently seen in
MR analysis, low statistical power, is alleviated by using
large sample sizes from GWAS data sets. The use of
these larger data sets generally results in reduced genetic
homogeneity; therefore, it is necessary to find the correct
balance between these issues when performing MR.

Another technique that has been suggested involves
using principal components to correct for population strat-
ification [43]. Unfortunately, this too results in reduced sta-
tistical power. A method using linear mixed models
attempts to account for population stratification while
maintaining high statistical power through modelling
genotypemarkers together [44]. However, as with horizon-
tal pleiotropy and LD, these methods can only partially
address the issue of population stratification [42,45,46].

Trait heterogeneity
The fact that SNPs tend not to affect traits as a whole, but
rather certain aspects of traits, poses an issue inMR anal-
ysis [14]. It means that each IV may vary in terms of the
‘percentage’ of a phenotype that it accounts for, or only
be causal for a trait in the presence of other relevant
SNPs (Figure 4). The purpose of MR is to establish

causality, and so trait heterogeneity can make this very
difficult. The only current solution to this problem is to
attain a better understanding of the way SNPs affect bio-
logical pathways that are linked to the outcome. This
may then allow for a specific weighting to be given to
the causality of the SNP, as opposed to being able to only
infer causality [14]. However, achieving accurate cau-
sality weightings based on underlying biology may
prove extremely difficult in practice.

Complexity of association
Given that the pathways involved in biological processes
are so complex, results that are obtained from large
GWAS can often appear to be counterintuitive [14]. This
problem extends to MR analysis, and so misunderstand-
ing of the underlying biologymay result in incorrect inter-
pretation. One such example of this came from a study
investigating the relationship between alcohol consump-
tion and oesophageal cancer risk through examination
of genetic isoforms of aldehyde dehydrogenase
2 (ALDH2). Individuals who have ALDH2 isoforms that
result in an inactive protein are unable to process acetalde-
hyde, a metabolite of alcohol; they develop symptoms
such as dysphoria, nausea, and a flushing reaction in
response to alcohol consumption, and therefore tend to
consume very low levels [47,48]. MR analysis showed
that individuals who were homozygous for the inactive
protein had a lower risk of cancer, but also produced the
paradoxical finding that heterozygotes had a higher risk
than homozygotes for the active form [48,49]. The cause
of this erroneous finding was due to varied levels of self-
reported alcohol intake, with the results being skewed by
heterozygotes who were heavier drinkers than active
homozygotes [48]. As with trait heterogeneity, improved
understanding of biological pathways and further investi-
gation into paradoxical results are necessary to ensure that
the results of MR analysis are accurate.

Figure 3. Schematic and DAG demonstrating LD in MR. Instrumental Variables 1 and 2 are located in proximity to one another on a chromo-
some and are in strong LD (red-dashed double-headed arrow). They both affect the Outcome but are doing so independently through Expo-
sures 1 and 2 respectively, hence violating IV assumption iii. Created using BioRender.com.
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Dynastic effects
Dynastic effects may also limit the effectiveness of MR
analysis; these effects describe scenarios where the phe-
notype of the parents has a direct effect on the phenotype
of the offspring. In other words, the genotype of the par-
ents affects the outcome of the offspring via means
excluding the offspring genotype. This means that the
SNPs, exposures, and outcomes of the previous genera-
tion may act as confounding variables in the generation
of interest [50]. An example of this could be that well-
educated parents may not only be able to pass on genes
to their offspring that are conducive to higher intelli-
gence, but also create a superior learning environment,
for instance, by paying for access to better schools or
additional tutoring. Within-family methods using
individual-level or summary-data MR may remove
some of the bias resulting from dynastic effects [50].

Critical period effects
An issue may arise with MR analysis if the exposure only
induces the outcome during a specific period of time during
life. The MR analysis will detect this causal link but not be
able to distinguish the ‘critical period,’ unlike RCTs
[48]. This means that following MR analysis, any attempts
to clinically intervene on an exposure may only be success-
ful if undertaken during this critical period, and the possibil-
ity of underestimating the cumulative effects of a lifelong
exposure may also occur [48]. A potential solution to this
problem may be to use several different epidemiological

approaches to ‘triangulate’ on the periods of time where
presence of the exposure is most likely to lead to the out-
come, that is, cancer [48,51]. Another possible way to avoid
bias resulting from critical period effects would be to per-
form a negative control MR analysis; this is performed by
measuring the effects of the exposure on the outcome dur-
ing different hypothetical critical periods to determine
whether there is an actual critical period [48].

Weak instrument bias
Weak instrument bias describes a scenario where the IVs
appear not to be strongly linked to the exposure and, for
example, explain only a small part of the resulting pheno-
type [13,52]. This then leads to a bias towards the con-
founded observational association or the null hypothesis,
respectively, depending on whether one- or two-sample
MR was used [40,48,53]. The direction of bias in one-
sample MR becomes evident through examination of the
Wald ratio; the IV-outcome coefficient remains constant,
but the IV-exposure coefficient is lowered due to weak
instruments, meaning that the exposure-outcome coeffi-
cient is incorrectly overestimated (Figure 5). Therefore,
depending on the type of MR analysis performed, it may
be the case that causal risk factors are given a dispropor-
tionately high or low weighting. The first stage F-statistic
regression of the exposure on the IV is generally used to
define strength, with a score lower than 10 defining an
instrument as being weak [52,54,55].

One suggestedmethod to reduceweak instrument bias is
to increase the sample size, as the F-statistic is dependent

Figure 4. DAGs demonstrating (A) ‘simplistic’ and (B) ‘realistic’ conditions encountered in MR due to trait heterogeneity. In ‘simplistic’ con-
dition (A), Instrumental Variables 1–5 are assumed to have an equal effect on the Exposure and are independent of one another. In ‘realistic’
condition (B), Instrumental Variables 1–5 have varying effects on the Exposure (as signified by arrow thickness) and their effects on the
Exposure may be contingent upon other Instrumental Variables. As an example, in condition B, Instrumental Variable 5 will only act on
the Exposure if Instrumental Variable 4 acts on the Exposure (as signified by black arrow linking the variables to one another, orange box
and black-dashed arrow from Instrumental Variable 5 to the Exposure). Created using BioRender.com.
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on sample size [55]. Another technique based on increas-
ing the F-statistic involves more stringent selection of the
IVs used, that is, excluding IVs that explain very little of
the resulting phenotype [55]. The ‘sample size’ solution
appears to be easier to implement, as, for example, genetic
variants may explain as little as 1% of a phenotype; this
makes it difficult to be stringent with the number of IVs
used, while ensuring that as much of the phenotype as
possible is accounted for [14]. However, reliance on
increasing the F-statistic alone does not appear to be
useful in terms of reducing bias, as approaches where
studies with F-values lower than 10 have been excluded
from meta-analysis had no effect [55]. The same study
concluded that using tests to measure the strength of
IVs does not give a true indication of the variable
strength; attempts to omit ‘weak’ variables on the basis
of their F-statistic values were deemed to be overly
simplistic and may actually result in more bias, due to
the varying magnitude of effects depending on whether
the observed F-statistic was greater or less than the
expected F-value [55].

As mentioned previously, using fewer IVs may mini-
mise bias from weak instruments. This appears to be due
to a higher chance of imbalance of the confounding vari-
ables between subgroups defined by the IVs [55]. This
applies even to IVs that are biologically relevant; while
inclusion of these variables increases precision, it may
also increase bias [55].

Another potential mechanism of reducing weak
instrument bias involves adjusting the MR analysis
to include measured covariates; this has been found
to increase precision, especially when covariates
explain outcome variation, as well as lower weak
instrument bias [55]. The inclusion of covariates has
been found to increase the F-statistic and reduce
median bias from IV estimators, even for stronger
IVs. Similarly, use of allelic scores, which are single
variables that encompass multiple IVs associated
with a risk factor, provides a way to use fewer instru-
ments. This can reduce weak instrument bias while
ensuring that a larger proportion of the resulting
phenotype is accounted for [56].
Gaining a better understanding of the magnitude of

effect that a genotype has on a phenotype by utilising
information from different studies may also reduce weak
instrument bias in meta-analyses. It has been shown that
combining sub-studies within a meta-analysis, as
opposed to combining summary estimates, gives pooled
estimates with reduced bias. In addition, the assumption
of common genetic effects across studies appears to be
able to eradicate weak instrument bias [55].

Winner’s curse
The term ‘winner’s curse’ originated from the field of
economics and describes a scenario where an individual

Figure 5. DAGs demonstrating (A) ‘ideal’ and (B) ‘suboptimal’ conditions encountered in MR due to weak instrument bias. In ‘ideal’
condition A, Instrumental Variables 1–5 are strongly associated with the Exposure, resulting in the accurate quantification of the
Exposure-Outcome coefficient. In ‘suboptimal’ condition B, Instrumental Variables 1–5 are weak (signified by red boxes and thin arrows link-
ing them to the Exposure) resulting in an incorrect overestimation of the Exposure-Outcome coefficient (thick red arrow), while the Instru-
mental Variable-Outcome coefficient is constant in both conditions (curved black arrows). Created using BioRender.com.
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who places the winning bid at an auction will tend to be
‘cursed’, having been forced to overvalue the item in
order to win, and will therefore make a net loss
[57,58]. In the context of GWAS, winner’s curse refers
to an analogous occurrence that it is often only the lead
SNP with the smallest P-value that is reported, whereas
other significant SNPs may not even be mentioned
[14]. For one-sample MR analysis, this may result in
an overestimation of the lead SNP-exposure effect due
to chance correlation between instrumental and con-
founding variables during the discovery stage of the
GWAS [40,48].
The ratio of coefficients or Wald method describes a

means of determining the causal effect of an exposure
on an outcome and is calculated by dividing the IV-
outcome coefficient by the IV-exposure coefficient
[20,21]. Therefore, if the IV was discovered in data set
separate from the MR analysis data set, the presence of
winner’s curse will result in an inflated IV-exposure
coefficient and a reduced Wald ratio, that is, an underes-
timated causal effect [14,48]. In the instance where the
GWAS discovery and MR analysis data sets are the
same, both the IV-outcome coefficient and the IV-
exposure coefficient will be overestimated, also poten-
tially resulting in an incorrect Wald ratio, albeit most
likely a less incorrect one [14].
One suggested method to alleviate the issue of win-

ner’s curse is to perform two-sample MR analysis
[48,59]. Overestimation resulting from winner’s curse
will tend to mean that any effects from confounding vari-
ables are being underestimated. In cases where the out-
come is binary (e.g. disease causal versus non-causal),
bias may be avoided if only control participants are used
in the discovery data set, but if cases are used in addition
to controls, this will result in weak instrument bias
[60]. Determining the bias in MR analysis resulting from
overlapping data sets is difficult and so exercising cau-
tion before including IVs that lie close to the significance
threshold is recommended, as well as avoiding data-
driven approaches for acquiring IVs [60].

Low statistical power
Another inherent dilemma in MR analysis is low statis-
tical power; this is because the IVs or SNPs used will
usually explain only a fraction of the phenotype
[14]. Estimates for causality are also imprecise, which
results in larger confidence intervals, and makes deter-
mining a causal effect through MR analysis more diffi-
cult [40].
The solutions to low statistical power in MR analy-

sis mirror those used to resolve weak instrument bias.
One such method involves increasing the sample sizes
using large GWAS consortia and summary data
sets [14,40,48,61,62]. However, a study in 2014 con-
cluded that smaller sample sizes may not necessarily
prevent MR analyses from attaining sufficient power
[62]. Another approach involves combining individ-
ual IVs into an allelic score that serves as a single

IV; performing this allows for greater coverage of
the phenotype [14,56,63].

Collider/selection bias
In the context of MR analysis, a collider is a variable that
is causally downstream of both the exposure and the out-
come. Collider bias can occur when statistical adjust-
ments, or conditioning on the collider, are attempted
[40,64,65]. This means that sample selection may intro-
duce bias into MR analysis. For example, if a collider
influences participation in a study, then it is possible to
overestimate a spurious causal link between the IV and
the outcome [64]. One situation in which this could arise
is in the study of cancer progression; it is important to
take into consideration the selection bias that will occur
given that having the cancer in question will be a prereq-
uisite for entry into the MR study.

Collider bias may act either towards the association or
towards the null depending on the IV; if the variable is
involved in cancer incidence but not progression, only
focussing on cases will lead to an overestimation
[66]. Conversely, only studying cases for an IV respon-
sible for both cancer incidence and progression results
in collider bias towards the null [66].

Selection bias is considered to be a form of collider
bias and there are a number of scenarios whereby it is
likely to occur in MR analysis. One such example is per-
formingMR in the context of disease progression, where
in order to be included in a study, participants must have
been diagnosed previously with the disease in question.
In this situation, if the exposure is a risk factor for the
outcome (i.e. the disease), then participation in the study
is being affected by a collider and will therefore result in
bias [65]. Other forms of collider bias that may occur in
cancer MR analyses include survivor bias, which may
lead to an overestimation of the effect in the general pop-
ulation based on observations made in the elderly, and
subpopulation bias, which may occur following the
recruitment of hospitalised patients [65].

A number of methods have been suggested to mitigate
collider/selection bias. One such method involves using
any known parameters such as disease prevalence to
estimate the bias and using analytical formulae or
inverse probability weighting to correct for it [66–
68]. Inverse probability weighting involves taking into
account underrepresented cases in a data set and gives
them more weight in the analysis, making the assump-
tion that these cases are likely to be more prevalent in
the general population [65,67]. To prevent extremely
rare cases from being granted a very large weight in
the analysis, weights may be trimmed to a threshold post
hoc, although it is recommended that the initial genera-
tion of weights is performed accurately in order to avoid
trimming [65,69]. In simulations, inverse probability
weighting reduced selection bias when the model was
correctly specified and where there was a large selection
effect. However, it induced worse bias than the initial
selection bias when the selection effect was small and
the effects of trimming were only prevalent in extreme
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cases [65]. The authors concluded that moderate selec-
tion bias tends not to affect MR estimates too severely
relative to other biases, and that using inverse probability
weighting to rectify bias can be effective but only if the
magnitude of the bias is known beforehand [65].

Another suggested method is to check for associations
between genetic variants and the outcome in disease pro-
gression; any associations found between the same vari-
ants and disease incidence should be noted, as they may
imply potential collider bias [66]. Associations between
genetic variants and confounding variables that are
found within the chosen MR analysis data set(s) but
not in the general population may also suggest that both
are causally upstream of the disease and that there may
be collider bias [66].

Practical implementation of MR

There are several tools available for conducting MR
analysis. Packages in R such as MendelianRandomiza-
tion and TwoSampleMR may be used to perform two-
sample MR using GWAS-derived summary-level
data [70,71]. MendelianRandomization allows for the
implementation of methods such as MR-Egger and
weighted median, and provides a graphical output of
causal estimates for each method used [70].

MR-Base is a web application that integrates a data-
base of GWAS results with R packages (such as Two-
SampleMR) to automate two-sample MR and allows
for the performance of the entire MR workflow
[71]. First, appropriate IVs may be obtained from expo-
sure GWAS, and then the effects of these IVs on the out-
come may be assessed; the next step involves
harmonising the aforementioned data (ensuring that the
effect allele of the SNP is the same for both the exposure
and the outcome) prior to the performance of MR analy-
sis [71]. Post-MR, sensitivity analyses such as funnel
plots and leave-one-out analysis may be implemented
to identify limitations [71]. Funnel plots may be used
to visualise the relationship between the IV strength
and the causal estimate, thereby highlighting directional
pleiotropy in MR-Egger sensitivity analyses [32].
Leave-one-out analysis involves repeating the MR anal-
ysis with a different individual IV removed each time,
allowing for the identification of outliers that are poten-
tially skewing the data [40].

MR analyses with multiple IVs are typically per-
formed using the IVW method. Alternative robust
methods of MR may be used to detect pleiotropy and
therefore serve as a form of quality control (QC) for
the initial analysis [17]. For example, if MR-Egger anal-
ysis results in an effect estimate that differs greatly from
the original method chosen, it may indicate that many of
the IVs are not valid and the originally obtained causal
effect estimate is not robust [32,72]. AnMR-Egger inter-
cept that is far from 0 suggests that the IV-exposure and
IV-outcome relationships are not linear, and that there
may be directional pleiotropy and hence no genuine

causal effect [72]. Equally for median- and mode-based
methods, which are more robust against outliers than
MR-Egger, a causal estimate that is similar to the IVW
and MR-Egger is indicative of an accurate estimation
of causality [17,22,34]. Using MR-Egger, a median-
based approach and a mode-based approach have been
recommended as QC, given that they each require differ-
ent assumptions to hold, but differences in the estimates
from these analyses do not necessarily imply a lack of
causality [17]. In addition, a test for heterogeneity
among MR estimates such as the between-instrument
Q test is recommended [17,31]. Although some hetero-
geneity may be expected even if all IVs are valid, a large
degree of heterogeneity (Q test P-value <0.05) may
result in a less reliable causal effect estimate [31]. This
is particularly relevant when there are strong outliers,
which may represent pleiotropic IVs, or if the causal
effect is dependent on a small number of IVs [17]. The
I2 statistic may be used to check for weak instrument bias
in MR-Egger analysis; values closer to 1 suggest that
bias is not present, while values closer to 0 may be indic-
ative of weak instrument bias [72,73]. For some of the
limitations of MR analysis, QC exists and may be used
to identify and attempt to correct for biases. However,
other problems (e.g. complexity of association) are diffi-
cult to detect, and the unique nature of MR analyses
means that there may not be a singular right answer with
regard to the way QC is performed.
MR studies in cancer have now been performed

using exposures such as alcohol consumption, vitamin
D levels, and body mass index (BMI), among many
others (Figure 6) [74,75]. MR has been used to con-
clude that higher levels of alcohol consumption
increase risk in esophageal and head and neck cancer
[49,76]. However, for colorectal cancer, MR analyses
have been conflicted on whether there is a causal asso-
ciation [77,78]. MR studies attempting to establish
causal links between vitamin D levels and cancer have
also given mixed results. There is evidence from MR
both for and against a vitamin D causal association
for ovarian and prostate cancer [79–83], and no asso-
ciation was found for breast, colorectal, lung, neuro-
blastoma, and pancreatic cancers in MR studies
[80,81,83–86]. Differing results between cancer types
have also been found in MR analyses attempting to
relate BMI to cancer risk. Higher BMI has been asso-
ciated with increased colorectal, endometrial, gastric,
kidney, and ovarian cancer risk [87–95], but has been
found to decrease breast cancer risk [89,96–98]. MR
studies using increased BMI as an exposure have
found evidence both for and against a causal associa-
tion with lung cancer [89,92,99,100], as well as no
causal association with prostate cancer [89,101].
These studies demonstrate the complexity involved in

using MR to study cancer. Alongside some notably con-
sistent studies (Figure 6), many exposures have been
found to only be causal in some types of cancer, and
studies in a single cancer type have not consistently
shown a causal link, or even a consistent direction of
causality. In addition, some exposures have been
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deemed to cause cancer in only certain subpopulations
(e.g. women or elderly patients), only specific cancer
subtypes, or only when MR is conducted using certain
data sets. Whether these results reflect differences in
underlying biology is often unclear.

Conclusions

MR is an established epidemiological tool used to infer
causality that can provide both ethical and practical
advantages over alternatives such as RCTs. MR has
recently gained popularity alongside the rise in GWAS
for normal and disease traits. In the study of cancer, espe-
cially, using traditional RCTs to potentially expose a case
group to an entity that may increase the likelihood of
developing disease is not viable. MR also mitigates the
issues of reverse causation and confounding variables,
as germline variants are randomly distributed according
to Mendel’s laws of heritability. Tools have been devel-
oped that allow many of the basic MR analyses to be per-
formed efficiently by non-expert biostatisticians.
However, despite these advantages over other epidemio-
logical techniques, MR has many limitations of its own.
Many of the previously discussed limitations are due to

violation of the assumptions that underlieMRand a recur-
ring issue involves the accurate determination of IVs.

Valid IVs are important for accurateMR analysis and fail-
ure to use them may result in missed or spurious associa-
tions. Issues such as trait heterogeneity and population
stratification may also have major effects on MR, even
if these problems are not unique to MR. The suggestion
that they can be minimised with a greater understanding
of the biological pathways involved is something easier
said than done. Two-sample MR appears to be a more
practical approach than one-sampleMR, as it helps some-
what to address limitations such as low statistical power,
winner’s curse, andweak instrument bias; one straightfor-
ward way that two-sampleMR accomplishes this is that it
facilitates the acquisition of greater amounts of data.
Combining IVs to give allelic scores is useful for the
avoidance of weak instrument bias and increases the
probability that more of the phenotype of interest is being
accounted for. A number of sensitivity analyses and
inverse probability weighting may be used to attempt to
correct for bias post-MR. Unfortunately, these tech-
niques appear to only be truly effective if the magnitude
and direction of the bias are known a priori. Studies
using MR simulations are a useful tool that will help
those performing MR understand where limitations
such as selection/collider bias are more likely to occur,
but it is important to ensure that the simulations reflect
actual MR analysis as much as possible.

In summary, it appears that the limitations of MR
analysis currently mean that it must be used very

Figure 6. Exemplar results from MR studies to test for causal relationships between different phenotypic traits (exposures) and cancers (out-
comes). For cancers in red, MR results were consistent with causality of the phenotypic trait, whereas cancers in green were not deemed to be
caused by the phenotypic trait. Cancers in orange had conflicting results, that is, disagreement between MR studies on whether there was a
causal link, disagreement between MR studies on the direction of causality, or phenotypic trait examined in MR studies was found to only
cause (1) cancer in certain subpopulations (e.g. women/elderly patients), (2) specific cancer subtypes (e.g. ER-positive breast cancers), or
(3) cancer only when analysis was conducted using certain data sets. Created using BioRender.com.
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cautiously to determine causality in cancer, and this is
reflected in the conflicting results observed in many can-
cer MR studies. Many of the exposures used thus far in
cancer MR studies that are suggested to be causal fol-
lowing analysis are challenging, if not impossible, to
verify using clinical trials. Orthogonal evidence of cau-
sality is required but often not available, and it is difficult
to verify whether MR studies have been conducted with
enough power to infer causality. Confirming the causal-
ity of exposures that lend themselves to trials is arguably
a priority, and this could be used to infer the reliability of
MR studies generally. MR analysis has the potential to
be an effective tool in cancer research when it is com-
bined with other epidemiological techniques and
follow-up biological work.
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