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Abstract

This paper is on Bayesian inference for para-
metric statistical models that are defined by a
stochastic simulator which specifies how data
is generated. Exact sampling is then possi-
ble but evaluating the likelihood function is
typically prohibitively expensive. Approxi-
mate Bayesian Computation (ABC) is a frame-
work to perform approximate inference in such
situations. While basic ABC algorithms are
widely applicable, they are notoriously slow
and much research has focused on increas-
ing their efficiency. Optimisation Monte Carlo
(OMC) has recently been proposed as an effi-
cient and embarrassingly parallel method that
leverages optimisation to accelerate the infer-
ence. In this paper, we demonstrate an impor-
tant previously unrecognised failure mode of
OMC: It generates strongly overconfident ap-
proximations by collapsing regions of similar
or near-constant likelihood into a single point.
We propose an efficient, robust generalisation
of OMC that corrects this. It makes fewer as-
sumptions, retains the main benefits of OMC,
and can be performed either as post-processing
to OMC or as a stand-alone computation. We
demonstrate the effectiveness of the proposed
Robust OMC on toy examples and tasks in
inverse-graphics where we perform Bayesian
inference with a complex image renderer.

1 Introduction

Simulator-based models can describe many complex
processes that occur in nature, such as the evolution of
genomes (Marttinen et al., 2015) or the dynamics of gene
regulation (Toni et al., 2009). Learning their parameters,
in particular when done in a Bayesian framework, allows
us to make predictions or take decisions based on incom-

plete information. However, learning the parameters or
obtaining their posterior distribution is typically compu-
tationally very demanding as their likelihood functions
are intractable. Likelihood-Free Inference (LFI) meth-
ods have thus emerged that perform inference when the
likelihood function is not available in closed form but
sampling from the model is possible.

A prominent instance of LFI is Approximate Bayesian
Computation (ABC); for recent reviews, see for exam-
ple (Sisson et al., 2018; Lintusaari et al., 2017). Other
instances of LFI are the synthetic likelihood approach
by Wood (2010) and its generalisations (Thomas et al.,
2016; Price et al., 2017; Fasiolo et al., 2018). This pa-
per focuses on ABC where the basic idea is to identify
the parameter values which generate synthetic data that
is close to the observed data under some chosen discrep-
ancy measure. This measure can be the Euclidean dis-
tance between suitably chosen summary statistics, but
other measures are possible too (e.g. Gutmann et al.,
2014; Bernton et al., 2018). Generally, there are two
main avenues of research for ABC — one focuses on
improving the distance metric and/or the summary statis-
tics used (e.g. Aeschbacher et al., 2012; Fearnhead and
Prangle, 2012), while the other concentrates on computa-
tional efficiency (e.g. Beaumont et al., 2002; Blum et al.,
2013; Meeds and Welling, 2015; Gutmann and Corander,
2016; Papamakarios and Murray, 2016). This paper fo-
cuses on the latter, and as such we assume the distance
and summary statistics are given.

The primary focus of this paper is Optimisation Monte
Carlo (OMC) — an ABC method developed by Meeds
and Welling (2015) and also independently by Forneron
and Ng (2016, 2018) under the name of “the reverse
sampler”. It uses optimisation to efficiently produce
weighted posterior samples in a fully parallelisable man-
ner, which makes it a desirable ABC method.

A weight produced by OMC represents the volume of the
parameter region around a posterior sample which con-
tains points that are as good as the sample. These points
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should thus be considered to be samples from the pos-
terior too. However, if this region is particularly big, it
is no longer appropriate to approximate the entire region
with a single point and, as a result, OMC produces an
overly confident posterior. Figure 1 illustrates this failure
case for a simple 1D scenario. We can see that OMC fails
to characterise the posterior uncertainty and collapses re-
gions of similar likelihood into a single point.

Figure 1: An example where OMC fails to approximate the true
posterior, collapsing a region of similar likelihood into a single
point. Heuristic OMC is a simple heuristic that (unsuccess-
fully) attempts to solve this issue. Robust OMC is the approach
proposed in this paper. See Subsection 4.1 for details.

We propose Robust OMC (ROMC) which efficiently
identifies the regions of acceptable points themselves and
samples from them directly. These regions are charac-
terised by the set of all parameters which generate data
whose distance to the observed data is less than a certain
threshold. Instead of approximating a possibly very large
region with a single point, we draw samples from the re-
gion which then replace the original OMC sample along
with its weight. The main improvements of ROMC over
OMC are:

• It handles likelihoods that are (nearly) flat on sig-
nificant regions in parameter space. All our experi-
ments confirm this.

• It can be applied as post-processing to an original
OMC run (see experiment 2), or as part of stand-
alone run (see experiment 3).

• OMC requires that the derivatives of the simulator
can be computed or reasonably approximated, while
ROMC does not (see experiment 3).

2 Background
We here present the basics of Approximate Bayesian
Computation (ABC), review the OMC algorithm by
Meeds and Welling (2015), and discuss when it collapses
regions of similar likelihood into a single point.

2.1 Rejection ABC

ABC methods produce samples from an approximate
posterior (see e.g. Lintusaari et al., 2017). They gen-
erally make minimal assumptions about the model and
only assume black-box access to the simulator g(θ,u).
The target parameters θ, which we wish to infer, are used
as input to the simulator which then stochastically pro-
duces synthetic data by drawing u using a random num-
ber generator. These u correspond to nuisance variables
since we do not aim to find a distribution over them.

The simplest ABC method is Rejection ABC. In each it-
eration, data xi is simulated using the generative model
g(θ,ui) for some setting ui of the nuisance variables
and with parameter values sampled from the prior. The
distance between the simulated and observed data di =
d(xi,x

0) is then computed and stored. After a suffi-
ciently large amount of samples has been generated, the
algorithm accepts those having the n lowest di as sam-
ples from the approximate posterior. See Algorithm 4 in
the appendix for pseudo-code.

While simple and robust, Rejection ABC is known to
be computationally inefficient, especially when the prior
space is large (e.g. Lintusaari et al., 2017). In most cases,
more sophisticated methods are necessary.

2.2 Optimisation Monte Carlo

We start our brief review of Optimisation Monte Carlo
(OMC) by noting that ABC algorithms in general im-
plicitly approximate the likelihood function by the prob-
ability Pr(d(g(θ,u),x0) ≤ ε) that the generated data
is within distance ε of the observed data (e.g. Lintusaari
et al., 2017). ABC algorithms thus produce samples from
the following approximate posterior

p∗ε (θ|x0) ∝ p(θ) Pr(d(g(θ,u),x0) ≤ ε|θ) (1)

∝ p(θ)

∫
p(u)1Cε(θ,u) du, (2)

where p(u) is the density of the nuisance variables u,
Cε = {(θ,u) : d(g(θ,u),x0) ≤ ε} is the set of points
(θ,u) for which the distance is below the threshold, and
1Cε(θ,u) is an indicator function that equals one only
if (θ,u) ∈ Cε. While this formulation uses the indica-
tor function (boxcar kernel), more general kernels can be
used as well.

The integral over u corresponds to an expectation with
respect to p(u) and can thus be approximated as a sample
average so that we obtain the approximation

pε(θ|x0) ∝ p(θ)
1

n

n∑
i=1

1Cε(θ,ui), (3)



where the ui are sampled from p(u). Importantly, this
formulation essentially removes the randomness from
the simulator: g(θ,ui), which occurs in each 1Cε(θ,ui)
by definition of Cε, is a deterministic function of θ be-
cause ui is held fixed.

OMC exploits the fact that g(θ,ui) is a deterministic
function in order to accelerate the sampling from the pos-
terior in (3). For each ui, OMC finds a value θ∗i for
which g(θ∗i ,ui) and x0 are within distance ε. Impor-
tantly, this is done by minimising the deterministic cost
function d(g(θ,ui),x

0) with respect to θ. Note that set-
tings of ui for which no θ∗i has distance below ε are ex-
cluded from the sum and thus do not affect the posterior.

Meeds and Welling (2015) consider the case where the
distance d(g(θ,u),x0)) is the Euclidean distance be-
tween some summary statistics Φ of the generated and
observed data. We denote the summary statistics of the
observed data by y0 = Φ(x0) and we further absorb the
computation of the summary statistics into the simulator
so that we obtain f(θ,u) = Φ(g(θ,u)), which can be
regarded as a generative model on the level of the sum-
mary statistics. With this notation, OMC considers the
distance d(g(θ,u),x0) = ||f(θ,u)− y0||.

OMC approximates the posterior p∗ε in the limit of ε→ 0
as a mixture of weighted point masses centred at the
minimisers θ∗i : p(θ|x0) ∝

∑n
i=1 wiδ(θ − θ∗i ). The

value wi is a weight that reflects the local behaviour of
the distance function and hence f(θ,ui) around θ∗i . As
shown by Meeds and Welling (2015), it equals p(θ∗i ) ∗
det(Ji

>
Ji)
−1/2 where Ji is the Jacobian matrix with

columns ∂f(θ∗i ,ui)/∂θk with θk denoting the k-th ele-
ment of θ. Algorithm 1 summarises the OMC algorithm.
For further details, we refer the reader to the original pa-
per by Meeds and Welling (2015).

Algorithm 1 Optimisation Monte Carlo. Generates n in-
dependent samples θ∗i with weights wi from the approx-
imate posterior.

1: for i← 1 to n do
2: ui ∼ p(u) . Draw nuisance parameters ui.
3: θ∗i = arg min

θ
||f(θ,ui)− y0|| . Optimisation.

4: Compute Ji with columns ∂f(θ∗i ,ui)/∂θk
5: Compute wi = p(θ∗i ) ∗ (det(Ji

>
Ji))

−1/2

6: Accept θ∗i as posterior sample with weight wi.

As can readily be seen from Algorithm 1, ill-conditioned
matrices Ji

>
Ji produce very large weights for the cor-

responding θ∗i , possibly completely overshadowing the
remaining samples and creating an approximate poste-
rior density that is spiked at a single location (as in Fig-
ure 1). One may think that this issue can be easily fixed
by regularising Ji

>
Ji before computing the determinant.

However, the issue goes deeper: ill-conditioned matrices
Ji

>
Ji occur when a large parameter region around the

optimum θ∗i produces data with small distances. These
regions are poorly approximated by point masses or in-
finitesimally small ellipsoids.1 This means that if large
parameter regions are a solution to ||f(θ,ui)−y0|| ≤ ε,
the likelihood function is nearly-constant around θ∗i and
cannot be approximated with a point mass, and amend-
ing the value of the weight cannot correct for this.

3 Robust Optimisation Monte Carlo

We here develop a framework and concrete algorithms
that have the benefits of OMC but do not collapse areas
of similar likelihood into a point-mass.

3.1 The Robust OMC Framework

We start from the basic characterisation of the finite sam-
ple version of the ABC posterior in Equation (3) which
holds irrespective of OMC. Under this approximation,
the expectation of an arbitrary function h(θ) under the
posterior pε(θ|x0) is

E[h(θ)|x0] =

∫
h(θ)p(θ) 1

n

∑n
i=1 1Cε(θ,ui) dθ∫

p(θ) 1
n

∑n
i=1 1Cε(θ,ui) dθ

(4)

=

∑n
i=1

∫
h(θ)p(θ)1Ciε(θ) dθ∑n

i=1

∫
p(θ)1Ciε(θ) dθ

, (5)

where Ciε = {θ : d(g(θ,ui),x
0) ≤ ε} is the set of

parameters where, for a particular random seed or reali-
sation of ui, the simulated data is within distance ε from
the observed data. Equation (5) features n integrals Ii in
the numerator,

Ii =

∫
h(θ)p(θ)1Ciε(θ) dθ, (6)

and similar ones in the denominator. The integrals are
generally intractable but since they correspond to an ex-
pectation with respect to the prior p(θ), they could be
approximated by a sample-based average because sam-
pling from the prior is typically possible in likelihood-
free inference problems. However, this would be ineffi-
cient in the case of a broad prior as most samples would
give 1Ciε(θ) = 0, i.e. they would essentially get rejected
much like in rejection ABC. It is more efficient to sample
from a proposal distribution qi(θ) that only has support
on the acceptance regionCiε. We will discuss how to con-
struct such qi(θ) in Subsection 3.3. Assuming we have a

1As pointed out in the original paper as a limitation of
OMC, this happens if there are fewer summary statistics than
parameters. But as shown here, this failure mode is more gen-
eral. The proposed robust method provides a solution.



suitable qi(θ), the integrals Ii can be approximated as

Ii =

∫
h(θ)1Ciε(θ)

p(θ)

qi(θ)
qi(θ) dθ (7)

≈ 1

m

m∑
j=1

h(θij)1Ciε(θij)
p(θij)

qi(θij)
, (8)

where θij ∼ qi(θ), and equivalently for the integral in
the denominator. Replacing the integrals in (5) with their
sample-based approximations, we obtain

E[h(θ)|x0] ≈
∑n
i=1

∑m
j=1 h(θij)1Ciε(θij)

p(θij)
qi(θij)∑n

i=1

∑m
j=1 1Ciε(θij)

p(θij)
qi(θij)

. (9)

This expression corresponds to a weighted sample aver-
age of h(θ). Denoting E[h(θ)|x0] by h̄, we have

h̄ ≈
∑
ij wijh(θij)∑

ij wij
, wij =1Ciε(θij)

p(θij)

qi(θij)
, (10)

where the wij are the (unnormalised) weights and the
samples θij are drawn from qi(θ). Since our test func-
tion h(θ) has been arbitrary, this means that to obtain
samples from the approximate posterior, we first draw n
samples ui,2 thus defining the acceptance region Ciε, and
thenm samples θij from the corresponding proposal dis-
tribution qi(θ). This process is what we refer to as the
Robust OMC approach.

Before discussing the construction of the proposal distri-
butions qi(θ), we show how OMC is obtained from (9)
by making additional assumptions. Some of the assump-
tions can be easily violated in practice, which then leads
to the failure mode pointed out above and illustrated in
Figure 1.

3.2 Connection to OMC

We present here the assumptions under which the pro-
posed Robust OMC (ROMC) approach becomes stan-
dard OMC. It shows that ROMC is both more general
and more robust than standard OMC.

Theorem 3.1 Under the below assumptions, ROMC be-
comes equivalent to standard OMC.

Assumption 1. The distance d(g(θ,u),x0) is given
by the Euclidean distance between summary statistics
||f(θ,u)− y0||.

Assumption 2. The proposal distribution qi(θ) is the uni-
form distribution on Ciε.

Assumption 3. The acceptance regions Ciε are approx-
imated by the ellipsoid Ciε = {θ : (θ − θ∗i )

>
Ji

>
Ji(θ −

2In practice, this is done by fixing the seeds of the simulator.

θ∗i ) ≤ ε} where Ji is the Jacobian matrix with columns
∂f(θ∗i ,ui)/∂θk.

Assumption 4. The matrix square root Ai of Ji
>
Ji is full

rank, i.e. rank(Ai) = dim(θ).

Assumption 5. The prior is constant on the acceptance
regions Ciε, i.e. p(θ) = p(θ∗i ) for all i.

The proof of Theorem 3.1 is given in the appendix.

Assumptions 1 and 2 are of technical nature, but As-
sumption 1 highlights that ROMC can also use distances
other than Euclidean ones. Assumption 3 and 4 show
that OMC relies on Ciε being well approximated by an
ellipsoid of finite volume whose shape is determined by
the local behaviour of f(θ,ui) at θ∗i . The failure case
described in Subsection 2.2 and illustrated in Figure 1 is
caused by a violation of these two assumptions. Assump-
tion 5 is also important because it shows that e.g. strong
smoothing of the empirical distribution defined by the
weighted samples in OMC would ignore that the prior
distribution may not be constant on the corresponding
finite-sized ellipsoid.

3.3 Robust OMC Algorithms

The Robust OMC (ROMC) framework has three key in-
gredients: the optimisation procedure as in OMC, the
specification of the ε-threshold as usual in ABC, and
the proposal distribution. We here consider two sets of
choices for these ingredients, resulting in Algorithms 2
and 3 detailed below. The former algorithm assumes
access to (approximate) simulator gradients and can be
run as post-processing to standard OMC, and the latter
is gradient-free. The two algorithms show that the pro-
posed ROMC framework is versatile and that it can be
used to exploit specific properties of the model.

3.3.1 Optimisation Step

To obtain the optimisation end point θ∗i , any optimisa-
tion algorithm can be used as long as it can minimise the
distance with respect to θ.

Algorithm 2: If gradients of the simulator are available,
standard gradient-based optimisers are applicable.

Algorithm 3: If the simulator gradients are not avail-
able, we propose using Bayesian optimisation, which is
a powerful optimisation scheme for objective functions
that can be evaluated but whose gradients are not avail-
able (see e.g. Shahriari et al., 2016). In the simulations
below, we use standard Bayesian optimisation (GPyOpt
with the default settings) that builds a Gaussian Process
surrogate model d̂i for each distance d(g(θ,ui),x

0) that
needs to be minimised. The main purpose of the surro-



Algorithm 2 Boxed Robust OMC. Requires simulator
gradients, possible as post-processing to standard OMC.

1: for i← 1 to n do
2: Obtain optimisation end point θ∗i .
3: Use curvature of Ji

>
Ji to create a bounding box

with volume V as described in Subsection 3.3.3.
4: Define a uniform distribution qi(θ) over the box.
5: for j ← 1 to m do
6: θij ∼ qi(θ)
7: Accept θij as posterior sample with weight

wij = 1Ciε(θij) ∗ p(θij) ∗ V

gate model in Bayesian optimisation is to decide at which
θ to evaluate the distance next. This also applies to our
situation but for ROMC, there are two further uses of the
surrogate model: 1) it can be used to greatly speed up
the acceptance check 1Ciε(θij) in Equation (10) by using
the surrogate distance rather than the true distance (see
experiment 3); and 2) it can facilitate the construction of
the proposal distribution qi(θ) as discussed below.

3.3.2 Threshold

Algorithms 2 and 3: ROMC requires a value for the
threshold ε that occurs in the term 1Ciε(θij). This re-
quirement to set a threshold is similar to most ABC al-
gorithms where it is typically chosen as a small quan-
tile of the observed distances (for other solutions see e.g.
the work by Beaumont et al. (2002); Blum and Fran-
cois (2010); Papamakarios and Murray (2016); Chen and
Gutmann (2019); Simola et al. (2019)). We take a simi-
lar approach but base the value of ε on the distances d∗i
at the optimisation end points, d∗i = d(g(θ∗i ,ui),x

0).
Since the d∗i are the minimal distances obtained in the
optimisation step, their values are much smaller than the
distances that one would see in other ABC algorithms,
and we can choose a large quantile. In our simulations
we chose the 90% quantile of the d∗i in order to be ro-
bust against bad optimisation instances. Since all θij are
saved, the exact value for ε can be changed later by the
user without incurring any overheads.

3.3.3 Proposal Distribution

We here describe two methods to construct the proposal
distributions qi(θ). We assume that the optimisation step
has given us a sample θ∗i that is within Ciε.

Algorithm 2: If simulator gradients are available, then
it is possible to compute the matrix Ji

>
Ji. Its eigenvec-

tors are orthogonal directions of highest curvature, along
which we scan until we reach a point whose resulting
distance no longer falls under the threshold. Doing so in
each dimension specifies a box, and defining a uniform

Algorithm 3 Ellipsoidal Robust OMC. Does not require
simulator gradients.

1: for i← 1 to n do
2: Obtain optimisation end point θ∗i and GP model

distance d̂i(θ) using Bayesian optimisation.
3: Construct ellipse with volume V using d̂i(θ) as

described in Subsection 3.3.3.
4: Define a uniform distribution qi(θ) over ellipse.
5: for j ← 1 to m do
6: θij ∼ qi(θ)
7: Accept θij as posterior sample with weight

wij = 1Ciε(θij) ∗ p(θij) ∗ V

distribution on this box gives us the proposal distribution
qi(θ). Since Ji

>
Ji is computed by standard OMC, this

approach can be done entirely as post-processing to it.

Algorithm 3: We construct a box around the optimisa-
tion end point as above when we have simulator gradi-
ents, except that we use the Hessian of the GP model
instead of Ji

>
Ji. To robustify the approach against e.g.

inaccuracies in the GP model and hence estimation of
the curvature, we sample parameter values from inside
the box and compute their distance to the observed data
using the posterior mean of the GP model. This incurs
practically no overhead and is considerably faster than
using the true distances if the simulator is expensive.
These parameter-distance pairs are then used to train a
quadratic regression model of the distance. The contour
for which the distance is equal to a threshold defines an
ellipsoid, and we use the uniform distribution on it as
proposal distribution qi(θ). Figure 2 visualises the con-
struction and further details are provided in the appendix.

Figure 2: Algorithm 3, example proposal distribution qi(θ).
The contours show the GP model distance, the green dots vi-
sualise the true acceptance region Ciε, and qi(θ) is the uniform
distribution on the red ellipse which well approximates Ciε.



4 Experiments

We assess Robust OMC (ROMC) on three tasks and
compare its performance to standard OMC. As reference,
we use posteriors obtained by expensive Rejection ABC
runs. In the appendix we further show comparison re-
sults to the exact posteriors when tractable. The accu-
racy is measured using the Jensen-Shannon divergence.
We also contrast effective samples sizes, which are given
by ESS = (

∑n
i=1 wi)

2/
∑n
i=1 w

2
i . Note that we did not

perform additional comparisons to other ABC methods
because such comparisons were already performed by
Meeds and Welling (2015) with OMC showing clear im-
provements (about a factor of 10 fewer calls to the simu-
lator per accepted sample). These advantages are inher-
ited by ROMC.

We further compared the performance of ROMC to that
of two simple heuristic fixes of OMC. In the first fix, we
ignored a percentage of the smallest eigenvalues of the
Ji

>
Ji matrices when computing the determinants, hence

reducing the magnitude of the biggest weights. This is
similar to using pseudo-determinants. For the second
fix, we stabilised the Ji

>
Ji matrices by adding a constant

value to the diagonals before computing the determinant.
This stabiliser value was chosen by picking a given per-
centile of the magnitudes of the diagonal elements of all
matrices.

4.1 Experiment 1: ROMC Resolves OMC Failure

We first consider a simple simulator to illustrate that
ROMC resolves the identified issue of standard OMC,
namely that it collapses regions of similar likelihood into
a single point. The simulator is defined such that the like-
lihood function is flat in the area around x0 and linear
otherwise:

p(x|θ) ∼

{
θ4 + u if θ ∈ [−0.5, 0.5]

θ − c+ u otherwise
(11)

The parameter of interest is θ and u ∼ N(0, 1) is a nui-
sance parameter and the only source of randomness. The
term c = (0.5 − 0.54) makes sure the function is con-
tinuous. Figure 8 in the appendix shows the simulator
output for specific values of u. For posterior inference,
we assume that the observed data is x0 = 0. We used
Algorithm 2 but exploited the fact that the box can be
constructed analytically in this simple example.

Figure 1 in the introduction shows example posteriors.
Despite generating samples which span the entire range
of the prior, OMC assigns much higher weights to the
samples in the middle of the flat region, resulting in a
posterior that is overly confident at that point. Con-

Figure 3: Experiment 1. Comparing OMC, two heuristic fixes
to OMC, and Robust OMC. Smaller divergences are better.

versely, ROMC can nearly perfectly reproduce the ref-
erence posterior. For OMC, the effective sample size di-
vided by the number of total samples is ESS/n ≈ 0.5,
while for ROMC, ESS/n ≈ 0.95.

Figure 3 shows how well OMC, ROMC, and the two
discussed heuristic fixes of OMC can match the refer-
ence posterior at varying computational budgets. ROMC
clearly outperforms OMC and both heuristics whatever
the computation time. Additionally, we see that the
two heuristic OMC methods perform similarly, with the
pseudo-determinant version reaching a lower divergence.
We will thus only consider that heuristic from now on.

4.2 Experiment 2: ROMC as Post-processing

This experiment showcases that Robust OMC can be per-
formed as post-processing to standard OMC. We assume
that we can compute simulator gradients (which is re-
quired in OMC), and hence we use Algorithm 2. We con-
sider the case were the summary statistics are not com-
pletely informative about the parameters, which is a sce-
nario that comes up often when using ABC in real-world
problems (e.g. Aeschbacher et al., 2012). As a prototypi-
cal example of this scenario, we infer the mean and vari-
ance of a normal distribution with only the sample av-
erage available as a summary statistic (see appendix for
details). Since there is no direct information on the vari-
ance, the optimisation surfaces will be completely flat in
one direction.

Figure 4 compares the methods for different run times
against the reference Rejection ABC posterior. Heuris-
tic OMC refers to the version based on pseudo-
determinants, and we use the hyper-parameter value that
produced the best result. As before, ROMC outperforms
the alternatives. Figures of the posteriors themselves
are shown in Figure 11 in the appendix, and Heuristic
OMC performance as a function of its hyper-parameter
is shown in Figure 13 in the appendix.



Figure 4: Experiment 2. Comparing OMC, heuristic OMC, and
Robust OMC. Smaller divergences are better.

(a) Gray teapot with red light. (b) Red teapot with white light.

Figure 5: Example teapots (brightened for clarity). We use (a)
as the observed data, but (b) is another possible explanation.

4.3 Experiment 3: Gradient-free ROMC

Here, we do not make use of the simulator gradients, and
use Algorithm 3. This example is about inverse-graphics.
It involves a considerably more complicated simulator
that takes as input a set of 20 parameters and determinis-
tically renders an image of a object (in this case, a teapot)
on a uniform background. This is based on the genera-
tive model used by Moreno et al. (2016). We focus on the
task of learning the posterior distribution of two colour
parameters in a setting where there are two possible ex-
planations for the observed image and thus the posterior
is expected to be bi-modal. The remaining 18 parame-
ters are used as nuisance parameters. They control the
illumination, shape, pose and other aspects of the objects
(see appendix).

The five illumination parameters are the most relevant
ones among the nuisance variables for the task consid-
ered. The first four parameters specify the global illumi-
nation strength, the directional light strength, and the di-
rectional light angle. The fifth one allows the directional
lighting to be in one of two modes: either white or red.
This is what causes the bi-modality of the posterior — if
the observed image depicts a red teapot, it is both possi-
ble that it could be a grey teapot with red lighting, or a
red teapot with white lighting (see Figure 5). We use the
former case as the observed image in our experiments.

The generative model was implemented using Open Dif-
ferential Renderer (OpenDR, Loper and Black, 2014).
While this renderer does allow us to compute the simula-
tor gradients, we did not use them for any of our pre-
sented results. To compute the distance d(xi,x

0) be-
tween a simulated image xi = g(θ,ui) and the observed
image x0, we use a recognition model that predicts the
target parameters θ for an input image x and then com-
pute the Euclidean distance between the two images’ pre-
dicted parameters, so that

d(xi,x
0) =

√√√√ |θ|∑
n=1

(rn(xi)− rn(x0))2, (12)

where rn(·) is the prediction of the n-th parameter. The
parameter estimates can thus be viewed as summary
statistics. We implemented the recognition model as a
neural network that was pre-trained on data generated
from the simulator using a broad prior on the nuisance
variables under daylight (white illumination). For details
about the neural network’s architecture, training proce-
dure, and performance, as well as for examples of the
training data, see the appendix.

Obtaining a single optimisation end point θ∗i , i.e. min-
imising the distance d(xi,x

0) with respect to the
colour parameters, took approximately 2 minutes. We
ran all simulations on a single computer only, and
did not exploit the possibility to parallelise the infer-
ence. We based our posterior approximation on 250
optimisation end points. For ROMC, we generated 100
new samples per original optimisation end point.

The OMC and ROMC posteriors are shown in Figure 6,
along with a Rejection ABC reference posterior and the
predictions by the recognition network (see the appendix
for results with the pseudo-determinant heuristic). First
of all, we see that the recognition network prediction is
off even though the network was well trained (see Figure
16 in the appendix). This is because red lightning condi-
tions were not part of the training data and the recogni-
tion network does not well generalise towards this condi-
tion. Indeed, while still not accurate, the network favours
the solution in Figure 5(b), which is closer to images typ-
ically seen during training. Among the Bayesian meth-
ods, OMC is overly confident at a single location, with
an effective sample size of 1.2 (out of 250 total samples).
What is more, its posterior is not centred on a viable
solution. On the other hand, ROMC produces two dis-
tinct posterior modes that contain the two possible solu-
tions as we would want in this scenario, and it generally
matches the reference posterior. Remarkably, these re-
sults were obtained despite using a biased recognition
network, which points to a general ability of ABC in
dealing with systematic biases in recognition networks.



Figure 6: Experiment 3 posteriors. Left: Reference posterior, obtained after running Rejection ABC with a high number of samples.
Middle: Standard OMC. ESS/n ≈ 0.005. Right: ROMC with Algorithm 3: ESS/n ≈ 0.97.

Figure 7: Experiment 3. Comparison between OMC and
ROMC. For ROMC, we used Algorithm 3 without (red cross)
and with (green square) GP acceleration.

Figure 7 compares the trade-off between accuracy and
compute time for OMC (black) and ROMC (red and
green). We see that ROMC as implemented in Algo-
rithm 3 (red) is much more accurate than OMC but that
it incurs an extra cost. This extra cost is due to the ad-
ditional runs of the simulator that are needed for the ac-
ceptance check 1Ciε(θij) in step 7 of the algorithm. This
cost could be reduced by parallelising the runs (which
we did not do). Alternatively, we can use the GP model
of the distance rather than the true distance in the accep-
tance check, which does not require additional runs of the
simulator. We call this approach GP-ROMC. The figure
shows that GP-ROMC (green) has almost the same accu-
racy as ROMC, but that it is much faster and only incurs a
tiny overhead compared to OMC. The posterior for GP-
ROMC is shown in Figure 12 in the appendix. In line
with the numerical result, the posterior is very close to
one obtained with exact acceptance checks.

5 Conclusions

This paper dealt with the task of performing Bayesian
inference for parametric models in the case where the
likelihood is intractable but sampling from the model
is possible. We considered Optimisation Monte Carlo

(OMC) which has been shown to be a promising tool
to efficiently sample from an approximate posterior.
While efficient, we showed that OMC has the important
shortcoming that it collapses regions of similar or near-
constant likelihood into a single point. This matters be-
cause OMC samples might thus severely under-represent
the uncertainty in the posterior and hence produce overly
confident predictions.

We addressed this issue by introducing the more gen-
eral framework of Robust Optimisation Monte Carlo
(ROMC) and two concrete algorithms implementing it.
The ROMC framework can be considered to be a form
of ABC where we use optimisation to automatically con-
struct suitable and localised proposal distributions. The
first algorithm can be run as a form of post-processing
after standard OMC to correct for the identified pathol-
ogy. The second algorithm, unlike OMC, can be used
when (approximate) gradients are not available. It uses
a surrogate model of the distance and we have seen that
this approach can be used to almost entirely eliminate
the extra cost of ROMC compared to OMC. It is hence
reasonable to also use a surrogate model in the first algo-
rithm if reducing compute cost is necessary.

We tested the proposed framework and algorithms on
both prototypical toy examples and complex inference
tasks from inverse-graphics, and found that the proposed
ROMC approach did accurately estimate the posteriors
while OMC did not.
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Appendix

A Rejection ABC Algorithm

Algorithm 4 Rejection ABC. Generates n independent
samples θi of the approximate posterior. Needs black-
box simulator g(θ,u), observed data x0, computational
budget N , and number of accepted samples n.

1: for i← 1 to N do
2: θi ∼ p(θ) . Draw parameters θi from prior.
3: xi ∼ g(θi, ·) . Simulate synthetic data using θi.
4: di = d(xi,x

0) . Compute distance to x0.
5: Accept the n samples θi with the lowest distance di

as samples from the posterior.

A standard variant of Rejection ABC accepts only those
samples whose distance falls under a threshold ε speci-
fied by the user.

B Proof of Theorem 3.1

As a reminder, the assumptions under which ROMC be-
comes standard OMC are:

Assumption 1. The distance d(g(θ,u),x0) is given
by the Euclidean distance between summary statistics
||f(θ,u)− y0||.

Assumption 2. The proposal distribution qi(θ) is the
uniform distribution on Ciε.

Assumption 3. The acceptance regions Ciε are approx-
imated by the ellipsoid Ciε = {θ : (θ − θ∗i )

>
Ji

>
Ji(θ −

θ∗i ) ≤ ε} where Ji is the Jacobian matrix with columns
∂f(θ∗i ,ui)/∂θk.

Assumption 4. The matrix square root Ai of Ji
>
Ji is full

rank, i.e. rank(Ai) = dim(θ).

Assumption 5. The prior is constant on the acceptance
regions Ciε, i.e. p(θ) = p(θ∗i ) for all i.

Since settings of ui that result in empty sets Ciε (i.e. no
θ∗i exists such that the resulting distance is below ε) are
excluded from affecting the approximate posterior (both
in ROMC and in standard OMC), we here consider only
the case of non-empty sets Ciε.

We start from Equation (9) using for qi(θ) — as per As-
sumption 2 — the uniform distribution on Ciε with den-
sity U iε(θ),

U iε(θ) =
1

vol(Ciε)
1Ciε(θ). (13)

Since the proposal distribution qi(θ) is zero outside Ciε,

we have 1Ciε(θij) = 1 for all θij and hence

E[h(θ)|x0] ≈
∑n
i=1

∑m
j=1 h(θij)vol(Ciε)p(θij)∑n

i=1

∑m
j=1 vol(Ciε)p(θij)

. (14)

By Assumption 3, Ciε is an ellipsoid with volume de-
termined by the matrix square root A of Ji

>
Ji, as well

as the value of ε. It is possible to split the volume into
a term determined by the shape of the ellipsoid and a
term determined by ε. With the change of variables
w = Ai(θ − θ∗i ), we have:

vol(Ciε) =

∫
Ciε

dθ =

∫
w:||w||2≤ε

|det(Ai)|−1 dw

(15)

= |det(Ai)|−1vol(Bε), (16)

where Bε denotes an ε-ball in Euclidean space. By As-
sumption 4, |det(Ai)|−1 is finite. Low-rank matrices
Ai would correspond to ellipsoids that extend without
bound into one (or more) directions. We thus obtain

E[h(θ)|x0] ≈
∑n
i=1

∑m
j=1 h(θij)

vol(Bε)
| det(Ai)|p(θij)∑n

i=1

∑m
j=1

vol(Bε)
| det(Ai)|p(θij)

(17)

≈
∑n
i=1 |det(Ai)|−1

∑m
j=1 h(θij)p(θij)∑n

i=1 |det(Ai)|−1
∑m
j=1 p(θij)

(18)

where we cancelled vol(Bε) so that only the term
|det(Ai)|−1 reflecting the geometry of the ellipsoid re-
mains. Note that |det(Ai)|−1 can also be written as
|det(Ai)|−1 = (detJi

>
Ji)
−1/2. By Assumption 5,

p(θij) = p(θ∗i ), so that we have

E[h(θ)|x0] ≈
∑n
i=1(detJi

>
Ji)
− 1

2 p(θ∗i )
∑m
j=1 h(θij)∑n

i=1(detJi
>
Ji)−

1
2 p(θ∗i )

(19)

In this expression, the only dependency on ε remains in
the samples θij ∼ U iε(θ). In the limit of infinitely small
ε, U iε(θ) becomes a Dirac delta distribution δ(θ − θ∗i )
centred at θ∗i . This means that the only possible sam-
ple from that distribution is θ∗i and hence that h(θij) =
h(θ∗i ) for all j. In the limit of ε→ 0, we thus obtain

E[h(θ)|x0] ≈
∑n
i=1(detJi

>
Ji)
− 1

2 p(θ∗i )h(θ∗i )∑n
i=1(detJi

>
Ji)−

1
2 p(θ∗i )

. (20)

This expression is a weighted average using samples θ∗i
and weights wi as defined in Algorithm 1. This means
that the stated assumptions yield the weighted posterior
samples of OMC and concludes the proof.



C Constructing the Proposal Region for
ROMC

Here we give more details on how we obtain the pro-
posal distribution qi(θ), using Figure 2 as a visual aid.
We start with the optimisation end point θ∗i (blue cross
in Figure 2). We also have the curvature matrix, which
is Ji

>
Ji in Algorithm 2 or the Hessian of the GP model

at θ∗i in Algorithm 3. Its eigenvectors are used to deter-
mine what we call scan directions — one per dimension,
along with its opposite (orange lines). We move along
these directions until the resulting distance to x0 is no
longer under a certain threshold. The distance is calcu-
lated with the GP model if it is available in order to speed
this process up. These end points along the scan direc-
tions are then used to create a (loose) rectangular box,
which is either the final proposal region (Algorithm 2),
or is used to draw training data for the regression model
to create an ellipse which is the final proposal region (Al-
gorithm 3). In both cases, placing a uniform distribution
on the proposal region gives the final proposal distribu-
tion qi(θ).

While we do use ε for the final 1Ciε(θij) check, it would
be reasonable to make the proposal region slightly big-
ger in order to ensure we capture as much of the actual
acceptance region as possible at the cost of rejecting a
few more samples. We achieve this by specifying the
threshold for finding qi(θ) to be bigger than the thresh-
old used for 1Ciε(θij). In Algorithm 2, we use εbig as de-
fined by the 95% quantile of the optimisation end point
distances to define the proposal region. In Algorithm 3,
we use the same 95% quantile on the ellipse, and a big-
ger 97.5% quantile to define the loose box from which
the training data for the regression model is drawn. It is
important to note that just using the single 90% quantile
for all these thresholds still produces a good final poste-
rior, so the method is robust to that choice. The bigger
thresholds we propose above produce a very slight per-
formance improvement in practice (the divergence to the
reference posterior with the bigger thresholds is about
1% smaller,3 which indicates a better performance) and
also make intuitive sense, which is why we use them in
our final implementation.

For Algorithm 3, the regression model is quadratic and is
trained via least squares. As it is quadratic, its contours
are ellipsoidal. Thus, by finding the contour equal to εbig ,
we obtain an ellipse that is suitable for being the proposal
region.

Additionally, to show that Algorithm 3 is reasonably ro-
bust to the construction of the loose box, we compare

3The exact numbers for the Jensen-Shannon divergences are
0.290 and 0.293.

the above proposal construction method with an alter-
native one. This additional method works as follows:
begin with a tiny box centred at the optimisation end
point, aligned with the scan directions obtained from the
GP model’s Hessian. Sample θ values uniformly from
the box, compute their distance using the GP model,
and check how many are under the acceptance thresh-
old. Gradually expand this box until 50% of the sam-
pled points are no longer within the threshold. That is
the final loose region, which is then used to train the re-
gression model and thus to produce an ellipse as before.
The divergence between the resulting final posterior and
the reference posterior is less than 3% bigger4 than when
we use Algorithm 3 as described previously. This dif-
ference is quite small, implying that different proposal
region construction methods can work.

D Additional Information for Exp. 1

In this section, we further discuss Experiment 1 from
Subsection 4.1. As a reminder, the likelihood function
we use is defined by:

p(x|θ) ∼

{
θ4 + u if θ ∈ [−0.5, 0.5]

θ − c+ u otherwise
(21)

where u ∼ N(0, 1) is a nuisance parameter and the only
source of randomness, and the term c = (0.5− 0.54) en-
sures the function is continuous. We assume that the ob-
served data is x0 = 0 and that the distance is Euclidean.

Figure 8 shows the simulator output for specific values of
u. In the case of u > 0, the simulator can never generate
a data point that matches x0 = 0 for any θ, although for
u sufficiently close to 0, some θ may result in a data point
within the distance threshold.

For u < 0, we enter the interesting situation where there
are two values for which the distance is 0, and the dis-
tance is non-zero between them. In other words, there are
two possible zero-solutions to the OMC optimisation ob-
jective d(g(θ, ui), x

0). This would imply that there can
be two disjointed acceptance regions Ciε for a single θ∗i
if the threshold ε is small enough. Currently, both OMC
and our two Robust OMC implementations would not be
able to capture the full disjointed regionCiε in such a sce-
nario — OMC would at best approximate only the size
of the region around θ∗i with a weight, and Robust OMC
would construct the box / ellipse and hence the proposal
distribution only around θ∗i as well. This problem does
not manifest in the results we have presented as we com-
puted the correct acceptance region analytically. In gen-
eral, this is a difficult issue to solve, although a simple fix

4The exact numbers for the Jensen-Shannon divergences are
0.290 and 0.298.



(a) u = 0.4 (b) u = 0 (c) u = −0.4

Figure 8: Experiment 1. Examples of the simulator’s output and its distance to the observed data x0 = 0 for three specific values
of the nuisance parameter u.

Figure 9: Experiment 1. Comparison of OMC, Robust
OMC, and the two heuristic OMC methods against the true
posterior. The reference Rejection ABC posterior’s diver-
gence is also shown.

Figure 10: Experiment 2. Comparison of OMC and Robust
OMC against the true posterior. The reference posterior’s
divergence is also shown.

(i.e. a potential improvement on Robust OMC) would be
to restart the optimiser at different initial values in order
to find all possible solutions to the optimisation objec-
tive. It is also possible that, with enough samples, errors
from the disjointed regions would average out and thus
the final posterior would still be correct.

In the main text, Figure 3 compared OMC, Robust OMC,
and two heuristic OMC methods against a reference pos-
terior obtained from an expensive Rejection ABC run.
Here we show the comparison made against the true pos-
terior (which can be computed analytically) in Figure 9.
As before, Robust OMC outperforms the other methods.
It does not quite reach the level of the reference Rejection
ABC method (blue dashed line) but this is to be expected
as the reference was ran for a much longer time than the
other methods.

E Additional Information for Exp. 2

Here we present further details and results for Exper-
iment 2 discussed in Subsection 4.2. Recall that the
task was about inferring the parameters of a 2D Gaus-

sian with a non-informative summary statistic, namely
just the mean of a sample from the Gaussian, while also
having access to the simulator gradients.

We assume that the sample size is M = 25, and that
the observed sample average is µ0 = 1. We chose a
Gaussian prior for the mean and Inverse-Gamma prior
for the standard deviation: p(µ) = N (0, 5), p(σ) =
Inv-Gamma(0.2, 1). To compute the exact posterior, we
used the fact that for a sample of size M from a nor-
mal N (µ, σ2) the sample mean is distributed according
to N (µ, σ2/M).

In Figure 10, we show the performance of the methods
compared against the true posterior rather than the ref-
erence ABC one used in the main text. The Jensen-
Shannon divergence between Robust OMC’s posterior
and the true posterior is much lower than for the other
methods. The actual posteriors themselves are shown in
Figure 11. OMC correctly identifies the marginal over
µ but fails to do so for σ and does not match the ref-
erence posterior. On the other hand, Robust OMC rea-
sonably matches the reference. Also note that OMC’s
effective sample size divided by the number of total sam-



ples is ESS/n ≈ 0.01, implying that the vast majority of
the samples are ignored. Conversely, the corresponding
value for Robust OMC is ESS/n ≈ 0.55, which is a sig-
nificant improvement.

Figure 13 additionally compares the performance of our
pseudo-determinant heuristic fix to OMC for different
values of the hyper-parameter. This hyper-parameter rep-
resents the number of eigenvalues ignored when comput-
ing the determinants of the Ji

>
Ji matrices and hence the

weights. While the divergence to the reference posterior
does change, there is still a large gap between the best
heuristic OMC and the robust OMC result.

F Additional Information for Exp. 3

Additional results. Figure 12 qualitatively compares
GP-ROMC — the approach where we speed up the final
distance check in Algorithm 3 by using the GP model
instead of the simulator — to the standard Robust OMC
approach and the reference posterior. Additionally, Fig-
ure 14 compares overall Robust OMC performance to
that of OMC and Heuristic OMC. Comparing Robust
OMC to Heuristic OMC, we noticed that as more eigen-
values are ignored for Heuristic OMC, the weights be-
come more similar and the accuracy of the posterior im-
proves. This is because, in this particular example and
unlike before, the unweighted samples θ∗i do reasonably
represent the posterior so that setting all weights to a con-
stant provides a reasonable solution. However, such tun-
ing is not possible in practice where a reference posterior
is not available.

All renderer parameters. The full list of parameters we
use for the renderer in Experiment 3 in Subsection 4.3 is
as follows:

• Ten shape parameters. The object’s exact shape is
based on a morphable mesh specified by Principal
Component Analysis. The 10 dimensions used are
the 10 highest principal components.

• Two rotation parameters, specifically the azimuth
and elevation. The camera is always centred at the
midpoint of the object.

• Three colour parameters — an RGB array which
globally identifies the colour of the object. The first
two (the red and green channels) are the target pa-
rameters θ over which we perform inference in Ex-
periment 3.

• Five illumination parameters that characterise the
lighting on the object. Unlike Moreno et al. (2016)
who use spherical harmonics to model illumina-

tion, we use single-source directional lighting as it
is more intuitive and natural.

Recognition network details. The network we used has
3 convolutional layers, each with 64 5x5 filters and 2x2
max pooling, followed by 2 linear layers with 256 and
64 hidden units respectively. Each layer uses ReLU ac-
tivation functions except the final layer which uses an
identity activation. The network parameters were learned
with Adagrad (Duchi et al., 2011) as it showed the most
robustness to the values of the hyper-parameters of the
neural network training procedure (batch size, learning
rate, and dropout probability), which in turn were cho-
sen via hyper-parameter optimisation. Additionally, Fig-
ure 15 shows samples from the training set used to train
the recognition network. Note that there is a reasonable
amount of variability in shape, pose, illumination, and
colour. Figure 16 shows that the learned recognition net-
work is reasonably good at reconstructing the parameters
for test images from the training data.



Figure 11: Experiment 2 posteriors. For OMC, ESS/n ≈ 0.02, implying that the vast majority of the samples are ignored. For
Robust OMC, ESS/n ≈ 0.55, which is a significant improvement.

Figure 12: Experiment 3 posteriors. Similar to Figure 6, but with the GP-ROMC approach (middle) shown for comparison as well.

Figure 13: Performance of the heuristic pseudo-
determinant fix to OMC as a function of its hyper-
parameter in Experiment 2, compared against Robust OMC
ran with roughly the same computational budget.

Figure 14: Performance of the heuristic pseudo-
determinant fix to OMC in Experiment 3, compared against
OMC and Robust OMC.



Figure 15: Experiment 3. Examples from the training set used to train the recognition network.

Figure 16: Experiment 3. Neural network predictions for the first two colour parameters c0, and c1. Line where true value is exactly
equal to the predicted value is given for reference.
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