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ABSTRACT

Quantifying past climate variation and attributing its causes improves our

understanding of the natural variability of the climate system. Tree-ring based

proxies have provided skilfull and highly resolved reconstructions of temper-

ature and hydroclimate of the last Millennium. However, like all proxies, they

are subject to uncertainties, arising from varying data quality, coverage and

reconstruction methodology. Previous studies have suggested that biological-

based memory processes could cause spectral biases in climate reconstruc-

tions. This study determines the effects of such biases on reconstructed tem-

perature variability and the resultant implications for detection and attribu-

tion studies. We find that introducing persistent memory, reflecting the spec-

tral properties of tree-ring data, can change the variability of pseudo proxy

reconstructions compared to the surrogate climate and resolve model-proxy-

discrepancies. This is especially the case for proxies based on ring-width data.

Such memory inflates the difference between the Medieval Climate Anomaly

and the Little Ice Age, and suppresses and extends the cooling in response to

volcanic eruptions. When accounting for memory effects climate model data

can reproduce long-term cooling after volcanic eruptions as seen in proxy re-

constructions. Results of detection and attribution studies show that signals

in reconstructions as well as residual unforced variability are consistent with

those in climate models when the model fingerprints reflect autoregressive

memory as found in tree-rings.
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1. Introduction34

Long-term climate reconstructions from natural climate archives provide the basis for quanti-35

fying the full amount of natural climate variability and attributing variations to external forcings36

or chaotic internal fluctuations. While tree-rings provide annually resolved and precisely dated37

climate signal (Stokes and Smiley (1968)) and correlate well with observed temperature and pre-38

cipitation records (Fritts (1976)), they are subject to a wide range of uncertainties (e.g. Fritts39

(1976); Esper et al. (2004); Jones et al. (2009); Cook and Pederson (2010); Frank et al. (2010a)).40

Here we focus on investigating the impacts of spectral biases on temperature reconstructions from41

tree-rings, specifically impacts on low-frequency variability and response to volcanic forcing, and42

their implications for detection and attribution studies.43

It is well known that physiological processes within a tree can affect the climate signal and44

induce a biological-based memory signal (Fritts (1976); Schulman et al. (1956); Matalas (1962);45

Vaganov et al. (2010)). Fritts (1976) suggests that the storage of sugar and hormones as well as the46

growth of leaves (needles), roots and fruits could affect the persistence of the climate signal from47

one year to the next. Many studies have found that data based on ring width (RW) as a proxy for48

past temperature and precipitation contains more autocorrelation and long-term memory than data49

derived from maximum latewood density (MXD) (Esper et al. (2015); Franke et al. (2013); Zhang50

et al. (2015b); Anchukaitis et al. (2012); Krakauer and Randerson (2003); Helama et al. (2009)).51

It should, however, be noted that it is not clear why MXD data do not portray similar persistent52

properties as RW. It was observed that RW underestimates and temporally extends the response to53

volcanic eruptions compared to MXD (Frank et al. (2010a); D’Arrigo et al. (2013); Anchukaitis54

et al. (2012); Esper et al. (2015)). Franke et al. (2013) found that RW temperature records are55

strongly red biased compared to observations, whereas the spectral characteristics of MXD data56
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are in better agreement with observations, although they still seem biased regarding their ratio57

of low- to high-frequency variability. Furthermore, they found that these biases propagate into58

climate field reconstructions, which display significantly more memory than observations. Zhang59

et al. (2015b) conducted pseudo proxy experiments in which they increased the memory in pre-60

cipitation data from climate models for China. They observed that increased local scale memory61

propagated into the pseudo proxy reconstruction. This modified the climate variability, with addi-62

tional trends at certain intervals and an overall changed frequency spectrum.63

Detection and attribution studies aim to quantify the response to external forcings in reconstruc-64

tions and have shown that particularly volcanism, but also greenhouse gases have a detectable65

influence on climate reconstructions of the last Millennium (Hegerl et al. (2007); Schurer et al.66

(2013a,b)). However, previous studies have not taken reconstruction method, data availability or67

specific proxy biases into account. Here we use pseudo proxy methods to derive fingerprints of68

external forcings accounting for spectral biases in the proxy reconstructions.69

Pseudo proxy experiments (PPEs, Smerdon (2011)) have provided valuable insight on effects of70

reconstruction methods, calibration, coverage and noise properties on proxy reconstructions. Such71

experiments involve proxy-network-like data sampling from climate model output and applying72

proxy methods to derive reconstructions which can be tested in the virtual reality of the model73

climate. Many pseudo proxy studies have addressed data coverage, location, calibration method74

and influences of different noise models (e.g. Von Storch (2004); Bürger et al. (2006); Hegerl75

et al. (2007); Von Storch et al. (2008); Lee et al. (2008); Christiansen et al. (2009); Neukom et al.76

(2014)). It was found that the addition of noise is one of the most important factors influencing the77

performance of the different reconstruction methods. Von Storch et al. (2008) showed that adding78
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noise to pseudo proxy data can suppress low-frequency variance of temperature anomalies in the79

pseudo proxy reconstructions as a consequence of regression during calibration.80

In this article, we investigate potential biases in large-scale temperature reconstructions that are81

related to biological effects in tree-ring proxies. First we introduce our temperature datasets (sec-82

tion 2), followed by methods for pseudo proxy experiments, data analyses and detection and attri-83

bution in section 3. Our results are shown in section 4, where we compare the spectral properties84

of observational and proxy data to find a suitable statistical model for pseudo proxy experiments.85

Based on this we focus on suitable memory models and evaluate the performance of pseudo proxy86

reconstructions. Lastly, we analyze their implications on detection and attribution analyses. We87

discuss our results in section 5.88

2. Data89

a. Tree-ring data90

We use tree-ring data provided by the Northern Hemisphere Tree-Ring Network Development91

(N-TREND) consortium as published by Wilson et al. (2016); Anchukaitis et al. (2017). This92

consortium is the result of a collective strategy by the dendroclimatology community to improve93

large-scale summer temperature reconstructions. The dataset consists of 54 tree-ring chronolo-94

gies and local reconstructions, which are selected from previously published reconstructions (Ta-95

ble S1). Thus, the data includes informed judgments of the original authors for the most robust96

temperature estimates for each particular location. The individual records use different tree-ring97

parameters as temperature proxies, including 11 records derived from ring width (RW), 18 records98

from maximum latewood density (MXD) and 25 mixed records (MIX). The mixed records consist99

of combinations of local, regional and grid point reconstructions derived from RW, MXD and blue100
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intensity (BI) data. BI is a relatively new method to dendroclimatology and provides similar proxy101

climate information to MXD (see Campbell et al. (2007); Björklund et al. (2014); Rydval et al.102

(2014) for more information). A detailed table showing the details of the included proxy records103

is given in the supplementary material.104

The records cover the mid-latitudinal band between 40◦ N and 75◦ N, following the recommenda-105

tion of Wilson et al. (2016), as trees further south are more sensitive to multiple climate influences106

(Fritts (1976); St. George (2014); St. George and Ault (2014); Osborn et al. (2000); Franke et al.107

(2013)). The target area is further divided into three continental scale regions (North America,108

Western Eurasia and Eastern Eurasia). Each region has available data covering more than 1000109

years, with 23 records extending back to at least 978 A.D. All records cover the period 1710 to110

1988. However the number of available records decreases markedly towards the beginning of the111

last Millennium, and North America relies on only three records before 1100 A.D. The individual112

proxy locations are shown in figure 1a.113

To understand the effects of different proxy types, we slightly modify the original N-TREND114

dataset. We distinguish three datasets, consisting of the full network (referred to as N-TREND115

FULL), RW data only (N-TREND RW) and MXD records only (N-TREND MXD). Given the116

small number of BI data in the mixed records we exclude BI-specific biases from our analysis by117

removing BI data from six mixed records for which the individual records were available. From118

those mixed records we additionally recover the original RW and MXD chronologies and include119

them into N-TREND RW and N-TREND MXD to increase the size of the datasets. Table S2120

lists the affected sites and which data type was extracted for the different proxy datasets. The121

N-TREND MXD dataset consists hence of 22 tree-ring records in total, while N-TREND RW122

consists of 17 records.123
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b. Instrumental data124

The CRUTEM4 dataset (Osborn (2013)) provides instrumental data over the period 1850 to125

2013. CRUTEM4 is a gridded dataset of global historical near-surface air temperature anomalies126

over land with a resolution of 5◦. The coverage of the reconstruction target area varies and is127

highly depended on the location (figure 1b). Prior to 1880 coverage is largely restricted to western128

Europe and lower latitudes of eastern North America. In addition to poor coverage, warm biases129

might arise from poorly shielded instruments for early instrumental data prior to the widespread130

use of the Stenvenson screen (Parker (1994); Böhm et al. (2009); Frank et al. (2007)). Given the131

greater uncertainty (Brohan et al. (2006)) and poor data coverage, data prior to 1880 was excluded132

from the analysis. Even at later times the hemispheric reconstruction is clearly biased towards133

Europe, where we find many of the grid points covering the full calibration period. North America134

is well covered at lower latitudes in this period, but lacks data at higher latitudes. Coverage is135

worst for Asia, where most grid points do not start before 1950. This makes the early instrumental136

record for Asia particularly prone to biases and shifts the hemispheric record heavily to Europe137

and North America.138

c. Climate model data139

We used the Community Earth System Model Last Millennium Ensemble Project (Otto-Bliesner140

et al. (2016)), referred to as CESM-LME, for all model-proxy comparisons and pseudo proxy ex-141

periments. The CESM-LME uses a version of CESM-CAM5 CN (1.9x2.5 gx1v6), with a res-142

olution of ∼ 2◦ in atmosphere and land components and ∼ 1◦ resolution in ocean and sea ice143

components. External forcings include volcanic, solar, orbital, changes in land use/land cover and144

greenhouse gas forcing. Forcing reconstructions follow the recommendations by the Paleoclimate145

Intercomparison Project Phase III (PMIP3, Braconnot et al. (2012); Schmidt et al. (2011, 2012))146
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and are the same as used in the last Millennium simulation of the Community Climate System147

Model version 4 (CCSM4, Landrum et al. (2013)). The CESM-LME provides a large range of148

different experiments, including all transient forcings as well as ensembles of individual forcings149

and control runs, covering the period 850 to 2006. For our analyses, we use an ensemble of 13150

climate simulations including all forcings, 5 simulations including volcanic forcing only and 2151

control simulations. To improve like-for-like comparison of model and proxy data, we use only152

May to August (MJJA) surface temperature data over land and within the N-TREND target area153

of 40 to 75◦N.154

3. Methods155

a. Reconstruction method156

Our reconstruction method follows mostly the method introduced along with the original tree-157

ring dataset (Wilson et al. (2016, 2007); D’Arrigo et al. (2006)), targeting northern hemispheric158

(NH) mid-latitudinal summer (May-August: MJJA) land surface temperature. We first standardise159

all data to z-scores (mean µ = 0, variance σ2 = 1) over the period 1750-1950, then apply a nesting160

approach to ensure that the variance is independent of the number of available records (Cook et al.161

(2002); Meko (1997)). Next we classify the data into forward and backward nests of common162

data availability. We define the most replicated nest (NEST1), which includes all records and163

covers the period 1710-1988. We then find the other nests by going backward/forward in time and164

iteratively remove shorter records. A detailed list of the forward and backward nests is given in165

the supplementary material.166

For each nest, we calculate regionally averaged time series. To ensure even contribution from167

all regions we restandardise the regional timeseries over the period 1750-1950. The regions are168
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defined as longitudinal slices of the hemispheric band as shown in figure 1, providing a time series169

for North America (170◦W - 10◦W), Western Eurasia (10◦W - 80◦E) and Eastern Eurasia (80◦E170

- 170◦W). This approach slightly differs from the original method, in which North America had171

been additionally divided along the meridian at 100◦W. By doing so, we ensure that more data is172

available for each region. This is important when constructing timeseries for RW or MXD only,173

which further reduces the number of available proxy records.174

We derive a hemispheric mean series zi(t) for each nest i by averaging over the regional timeseries175

and calibrate the result for NEST1 z1(t) to the instrumental data Tobs(t). The calibration covers176

the period 1880-1988. We choose the start date to exclude poor instrumental coverage and the end177

date to ensure full coverage by the tree-ring network. Calibration includes matching of variance178

and mean (Esper et al. (2005)) of instrumental and proxy data:179

T1(t) =
(
z1(t)−µz1

)
·

σ2
obs

σ2
z1

+µobs. (1)

The hemispheric timeseries from all other nests are scaled to T1(t), the temperature timeseries180

obtained from NEST1, in the same way but each over the full period of NEST1. Ultimately, a ho-181

mogeneous temperature reconstruction is derived by extracting the temperature for each year from182

the densest nest available. Comparing the different proxy datasets (figure 1c) we find that low183

and short term variability varies across the datasets, with FULL and RW displaying more low fre-184

quency variability throughout the last Millennium. This is highlighted in the average temperature185

difference between Medieval Climate Anomaly (MCA, 950-1250 Masson-Delmotte et al. (2013))186

and Little Ice Age (LIA, 1450-1850 Masson-Delmotte et al. (2013)). MXD shows a smaller dif-187

ference than RW and FULL. This can also be observed when comparing differences between 20th188

century warming and LIA, which is consistently higher in RW than in MXD data. As discussed by189

Wilson et al. (2016), the N-TREND reconstruction shows little divergence (Wilson et al. (2007);190
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D’Arrigo et al. (2008)) from the instrumental data during the late 20th century. However to exclude191

potential influences of the remaining divergence we use the period 1900-1980 representative for192

20th century warming. All proxy reconstructions show a similar temperature difference between193

the LIA and this period.194

b. Reconstruction uncertainty195

Quantifying and including all forms of uncertainty in tree-ring (and other proxy) climate recon-196

structions is a significant challenge and beyond the scope of this article. However, we can model197

uncertainties caused specifically by coverage and calibration relatively easily using an ensemble198

approach (Frank et al. (2010b); Neukom et al. (2019)). In order to be able to replicate the same199

reconstruction method when conducting our pseudo proxy experiments, it was important to reduce200

computational time and thus keep the ensemble size relatively small. To address the coverage un-201

certainty we apply a bootstrapping approach to the proxy dataset, in which one proxy record is202

removed in turn before creating the reconstruction. Although this would ideally include the re-203

moval of each proxy record in the dataset in turn, we restrict the analysis to bootstrapping nine204

randomly selected long records in turn, extending back to at least 1150 A.D. Thus we estimate the205

coverage uncertainty specifically in the poorly covered periods. The chronologies which were in206

turn removed from N-TREND FULL were: AG12, AG4, FORF, AG2, ALT, AG5, AG1, AG11 and207

FIRT. For MXD: ALT, POLx, JAEM, ALPS, FORF, TYR, FIRT, ICE and SFIN. For RW: TAT,208

KOL, QUEw, OZN, GOA, ICE, YAM, IDA and TAY. Including the set consisting of all available209

records, we gain a total ensemble of ten sets of data for each N-TREND dataset, consisting of210

1× 54+ 9× 53 records for N-TREND FULL, 1× 22+ 9× 21 for MXD and 1× 17+ 9× 16 for211

RW.212

To address the calibration uncertainty, we slice the calibration period into windows of lengths 60,213
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70 and 80 years similar to Frank et al. (2010b). For each window length we perform the calibration214

for an early, middle and late period (1880-1940, 1904-1964, 1928-1988, 1880-1950, 1899-1969,215

1918-1988, 1880-1960, 1894-1974 and 1908-1988). Including the full period, we thus consider216

ten different implementations of calibration periods, gaining a total reconstruction ensemble of217

100 reconstructions for each N-TREND dataset (Full, RW and MXD). This allows us to estimate218

the spread of our results depending on calibration and coverage uncertainty.219

c. Pseudo proxy experiments220

For our pseudo proxy experiments (PPEs) we generate sets of pseudo proxy data from climate221

model output and treat them in the same way as real proxy data. We sample from the CESM-LME222

ensemble at the grid cells closest to the proxy record to match spatial and temporal availability223

of the N-TREND dataset as in Neukom et al. (2018). For proxy records which represent an area224

larger than a single grid point, the average over all grid cells within the target area was calcu-225

lated. The same was repeated for CRUTEM4 to generate a pseudo instrumental dataset. The226

pseudo proxy data was then processed in the same way as the real proxy reconstruction, including227

standardising (µ = 0, σ = 1), nesting, regional averaging, calibrating to the pseudo-instrumental228

dataset and splicing of the nested data to obtain a hemispheric pseudo reconstruction. To account229

for calibration and coverage uncertainty, the calibration period was varied and longer records were230

bootstrapped in the same way as in the case of the real proxies. The same periods and chronolo-231

gies as detailed in section b were used to create a total ensemble of 1300 PPEs from the 13 CESM232

LME simulations and 500 PPEs from the 5 volcanic forcing only simulations.233

Thus, the pseudo proxy reconstruction represents the spatiotemporal availability of the proxy net-234

work and reconstruction methods, however it does not account for any proxy specific biases or235

non-climatic influences. This PPE serves as the baseline to represent characteristics of local cli-236
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mate model data without simulating tree-ring memory. It is referred to as PPE NoM. To simulate237

biological-based memory we manipulate the pseudo proxy records at the local scale. Two differ-238

ent memory models were distinguished: a short-range autoregressive model of order p (PPE AR),239

and a long-term memory model (PPE LTM). To concentrate on the effects of memory, we have240

not added additional non-climatic white noise to the pseudo proxies. An overview of the different241

experiments, their ensemble sizes and fitting parameters is given in table 1.242

(i) PPE AR: This memory model is based on a linear decomposition of the tree-ring signal z into243

a climate term and an autoregressive memory term of order p. The tree-ring signal zt of a given244

year t is impacted by the locally modelled climate signal xt . This signal is subjected to a memory245

term, which integrates over the previous p year’s signals zt−1,zt−2, . . .zt−p. The signal at time t246

can thus be written as247

zt = xt +
p

∑
k=1

αkzt−k + εt (2)

=
q

∑
k=1

γkxt−k +
p

∑
k=1

αkzt−k + εt , (3)

where εt accounts for additional white noise. The set of parameters α determines the influence248

of the k previous years’ climate on the proxy signal and represents the memory term. The first249

term represents the climate forcing, which accounts for the autoregressive structure of the climate250

signal xt itself. The autoregressive character of the climate is parametrised by the coefficients251

γ and its order q. If xt represents a zero mean white noise process, equation (3) represents an252

auto-regressive moving average process (ARMA(p,q)). This is an autoregressive process of order253

p forced by a moving average process of order q (Box (2016); Von Storch and Zwiers (2002)).254

Assuming the climate signal of the model simulations perfectly match the real world, the climate255

signal xt is given by the model data, averaged over the proxy target area. With the starting points256

of the time series fixed up to xp, zi>p can be iteratively calculated if the memory parameters α j are257
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known. Instead of fitting an ARMA(p,q) process with p+q+2 degrees of freedom on the proxy258

data, we apply an empirical approach for fitting the memory. We use the knowledge of the model259

climate signal x and the proxy signal z to find an estimate for αk, which produces pseudo proxies260

with a similar memory as seen in the proxy records.261

To identify the autoregressive structure in proxy records z and model x, the partial autocorre-262

lation function (PACF) was calculated. The PACF φk of a timeseries y at lag k determines the263

correlation between yt and yt−k, which is not accounted for by y(t − 1), ...y(t − k + 1). Given264

that the partial autocorrelation of an AR(p) process decays to zero beyond lag p we can use it to265

identify the order p. The coefficients φi can be calculated from the Yule-Walker equations (Box266

(2016)). An initial estimate for the memory coefficients α was obtained by using267

αk = φk(z)−φk(x) (4)

with the PACF φk(z) and φk(x) at lag k for the proxy record z and the targeted model data x. This268

was found to be a good estimate for all lags higher than lag 1. For lag 1 α was systematically269

overestimated by equation (4), therefore an optimization algorithm was implemented to fit the270

PPE to the proxy target value.271

A set of fitting parameters was derived for each proxy record z in the target dataset, and the272

associated pseudo proxy record z̃ was fitted using equation (2). We set ε = 0, concentrating on273

the effects of pure memory addition. To determine whether the results are spatially robust, we274

randomly re-distributed the parameters α over the pseudo proxy locations. We found that the275

spread of results is minimal compared to the spread caused by the variation of the calibration276

period and bootstrapping. In order to keep the ensemble number at a reasonable size we therefore277

did not include this uncertainty into the final ensemble of PPEs.278
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(ii) PPE LTM: This method involves a manipulation of the time series in its Fourier space, which279

is based on a previously published study by Zhang et al. (2015a). For a timeseries possessing long-280

term memory (LTM) its power spectral density will decay with281

S( f )∼ f−β . (5)

The parameter β is a measure of the long-term memory. For white noise processes β ≈ 0, whereas282

for red noise β = 2. A robust estimate for β can be obtained from a detrended fluctuation analysis283

of the second order (DFA-2) (Peng et al. (1994); Bryce and Sprague (2012)). For a timeseries284

x(t) with zero mean 〈x〉 the cumulative sum Xt = ∑
t
i=1(xi−〈x〉) is divided into N segments with285

window length n. The local trend Yt for each segment is derived from a least-squares quadratic fit286

of Xt . The root-mean-square deviation of Xt from the local trend for any window-length n gives287

the fluctuation function288

F(n) =

√
1
N

N

∑
t=1

(Xt−Yt)2. (6)

If F(n) follows a power law scaling F(n)∼ nα , the spectral density will satisfy equation (5) and289

β = 2α−1. (7)

A double logarithmic plot of the fluctuation function can provide information about the amount of290

LTM in a timeseries and a robust estimate for α can be calculated from a linear fit.291

It was shown in previous studies that surface temperature follows a slight LTM process on both292

hemispheric and regional scales (e.g. Rypdal and Rypdal (2014)), with β ≈ 0.2 at regional scale293

and β ≈ 0.4 over land (Fredriksen and Rypdal (2016)). Assuming that biological tree-ring memory294

y(t) can be represented by an LTM process which is superposed on the climate signal x(t), its295

spectral energy can be approximated as296

Sz( f ) = S0( f ) · f βz ≈ Sx( f ) · f βy = S0( f ) · f βx+βy . (8)
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The factor S0( f ) accounts for the remaining signal and represents a white noise process. Equation297

(8) is linear in β , which can be used to estimate the additional memory βy and fit the pseudo proxy298

records299

S̃( f ) = S( f ) ·βy βy = βz−βx. (9)

This way a pseudo proxy record with energy spectral density S( f ) is fitted such that its LTM is300

increased to proxy level. The inverse Fourier transform of the manipulated record S̃( f ) gives the301

pseudo proxy record z̃(t).302

d. Superposed epoch analysis303

A superposed epoch analysis is used to reveal the response to volcanic forcing evident in last304

Millennium temperature reconstructions (e.g. Lough and Fritts (1987); Mass and Portman (1989);305

Hegerl et al. (2003); D’Arrigo et al. (2013); Masson-Delmotte et al. (2013); Esper et al. (2015);306

Wilson et al. (2016); Neukom et al. (2018)). We average over the temperature response to a set307

of volcanic eruptions, using a window of maximally 30 years, considering temperature anomalies308

with respect to ten years preceding a volcanic eruption. Any subsequent years within the recovery309

time of an event which are affected by major eruptions are excluded from the epoch analysis.310

We assume that the latest reconstruction of atmospheric sulfate injection (eVolv2k) as published311

by Toohey and Sigl (2017) minimises the dating error for the proxy reconstructions. The volcanic312

forcing dataset implemented in the CESM-LME is based on the IVI2 reconstruction by Gao et al.313

(2008). Both datasets are based on ice core data and provide a measure of aerosol optical depth314

(AOD) and stratospheric sulfate injection. However, dating and magnitude of volcanic eruptions315

in IVI2 differ in many cases from eVolv2k. In order to perform a like-for-like comparison, we316

therefore use eruption dates as given in eVolv2k for the proxy data, while using IVI2 dates for the317

model/PPE data. To increase the number of events while minimising the error induced by dating318
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uncertainty, we consider only events which appear within three years of difference in both datasets.319

An overview of the volcanic forcing during the Last Millennium shown by both reconstructions320

of sulfur injection is given in figure 6. The 16 events included in the epoch analysis have been321

marked. Note that the eruptions in 1761/2 and 1783 (Laki) were excluded from the analysis despite322

matching dating. As noted in Stevenson et al. (2017) in the CESM-LME Laki is wrongly dated at323

1761 instead of 1783, which makes both dates unsuitable for our comparison. A table showing all324

eruptions is given in the supplement. It should also be noted that the dating of volcanic eruptions325

in the climate model/PPEs follows exactly IVI2 and thus has no dating uncertainty. However due326

to the uncertainty in the ice core based reconstructions of volcanic forcing, some degree of dating327

uncertainty remains in the analysis. Nevertheless, we assume that with our approach we have kept328

the dating uncertainty minimal.329

e. Detection and attribution studies330

To quantify the influence of forced variability in the proxy reconstructions, we perform detec-331

tion and attribution using a Total Least Squares (TLS) regression following (Stott et al. (2001);332

Allen and Tett (1999)). The proxy reconstruction Y (t) is regressed onto the fingerprint of volcanic333

forcing X1(t) and all other forcings X2(t), following334

Y (t) = β1 · (X1(t)−ν1(t))+β2 · (X2(t)−ν2(t))+ν0(t). (10)

The fingerprints of external forcing are given by the simulations of the CESM-LME. A TLS re-335

gression allows regressor X(t) and regressand Y (t) to be influenced by a similar amount of noise,336

which is given by their respective implementation of internal variability ν0(t). The amount of337

internal variability in the fingerprints X(t) can be reduced by averaging over multiple ensemble338

members. The scaling factors βi indicate the magnitude of the fingerprints in the reconstruction.339
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The response to a forcing is considered detectable (p < 0.05) when the scaling factor is signif-340

icantly positive. A scaling factor of 1 indicates perfect agreement between models and proxy341

reconstruction (Hegerl and Zwiers (2011)). The residual ε gives an estimate of internal variability342

in the proxies. To account for the uncertainty due to internal variability and to get a distribution343

for the scaling factors, we follow the method introduced by (Schurer et al. (2013a,b)). We re-344

peated our calculations 100 times with different samples of internal variability superimposed on345

the noise-reduced observations and model fingerprints Z̃ = [Y (t)− ν0(t),Xi(t)− νi(t)]. In order346

to investigate the effects of autocorrelation in proxy data on detection and attribution results, we347

further repeated our analyses using pseudo proxy fingerprints.348

4. Results349

a. Spectral properties of observations and model simulations compared to tree-ring data350

We compare the spectral characteristics of the proxy datasets to a set of local instrumental and351

model records over the period 1880-1988. This period provides the maximum availability for the352

proxy data and is well covered by the instrumental dataset.353

For the PACF at local scale (figure 2a) the biggest differences can be noted at lag 1, where RW354

displays a higher correlation than all other datasets. At all lags, correlation is highest for RW,355

followed by MXD, replicating the findings of Esper et al. (2015). Model and instrumental data356

agree well, with observational data showing a slightly higher correlation at all lags. The medians357

of the PACF at lag 1 are offset by ∆α ≈ 0.4 for RW and MXD, which remains relatively constant358

during the period of common data availability (figure 2b). N-TREND MXD is slightly higher than359

the CESM-LME ensemble but is consistent within its 5-95% range. MXD also agrees well with360

the observations within the short period in which instrumental data is available. We compute the361
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detrended fluctuation function for each record (figure 2c) to obtain an estimate for the long-term362

memory at local scale using equation (7). Results for all datasets are relatively widely spread363

but overlap at the 5-95% range. The median of MXD, observations and CESM-LME agree with364

β ≈ 0.5, while RW proxies have slightly more memory (β ≈ 0.8).365

Results at hemispheric scale are similar and show that the features observed on local scale prop-366

agate into the reconstructions. The PACF (figure 2d) is still highest for RW at lag 1 while MXD367

is more persistent at lag 2 and 3. Modelled and observed temperatures have less PACF at these368

lags. Note that at lag 4 the PACF is just above the significance level for observational data and369

some model simulations. It is not clear whether this is a real climatic feature or sampling noise.370

The magnitude of the lag 1 PACF of the MXD reconstruction agrees well with the model mean371

(figure 2e) but RW correlation is still significantly higher during most of the period of common372

data availability. The magnitude of fluctuation (figure 2f) is similar for RW and MXD, however373

RW has more memory with β ≈ 0.9 compared to β ≈ 0.7 for MXD. MXD agrees well with model374

and instrumental data (β ≈ 0.7).375

Our results suggest that an autoregressive process around order 3 can be fitted to the proxy data.376

Given that observational and model data seem to follow mainly an order 1 process we conclude377

that the third order process is caused by non-climatic noise such as biological memory processes.378

b. Spectral properties of pseudo proxy data compared to real proxy data379

We generated pseudo proxy data for different memory models, concentrating on an autoregres-380

sive process of order 3 (PPE AR3) and a long-term memory fit (PPE LTM). We compare the381

partial autocorrelation of different pseudo proxy experiments with real proxy data targeting the382

full network, MXD only and RW only. On local scale (figure 3 a-c) correlations of PPE NoM are383

significantly below the range of the correlation for all targets. All pseudo proxy records including384
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memory match the real proxy range at lag 1. At higher lags PPE LTM decays quickly below the385

proxy range while PPE AR3 matches the proxy records even at higher lags. At the hemispheric386

scale (figure 3d-f) differences between PPE AR3 and PPE LTM are smaller but PPE AR3 still per-387

forms better. Throughout the last Millennium the lag 1 partial correlation for the pseudo proxies388

is shifted up to proxy level (figure 3g-i) but otherwise barely deviate from PPE NoM.389

All the targeted proxy reconstructions have more power at low frequencies than at high fre-390

quencies (figure 4 a-c). The power spectral density follows approximately a power-law decay for391

multidecadal frequencies, observed as a linear decrease in the double logarithmic plot. However392

the gradient flattens towards decadal frequencies, indicating a deviation from the power-law. This393

is particularly prominent in case of RW but can also be observed in the other datasets. The mul-394

tidecadal gradient is matched by the pseudo proxy reconstructions when accounting for memory,395

while PPE NoM has a much smaller gradient. PPE AR3 performs well for all targets. It overlaps396

well with the proxy ensemble within the 5 to 95% range and its median shows the distinctive flat-397

tening of the gradient towards its high frequency end. While PPE LTM also overlaps well with398

the proxy ensemble within the uncertainty range, the median decreases monotonically. Note that399

the spectral density of MXD is particularly noisy at low frequencies (fig. S5). Since this is spe-400

cific to the MXD dataset, it could be caused by local influences but could also originate from data401

processing.402

The detrended fluctuation analysis (DFA, figure 4d-e) confirms that PPE NoM has less long-403

term memory than the proxies, holding particularly for RW (β ≈ 0.3 vs. β ≈ 0.9) and FULL404

(β ≈ 0.4 vs. β ≈ 0.8), while the difference is smaller in case of MXD (β ≈ 0.3 vs. β ≈ 0.6). PPE405

AR3 and PPE LTM both replicate the gradient of the proxy targets. While for RW and FULL the406

average of PPE AR3 and the proxy target overlap roughly for most time steps, the magnitude of407

the fluctuation of the proxies is consistently lower than the PPEs.408
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We conclude that PPE AR3 and PPE LTM both reproduce spectral features characteristic to409

proxy data, such as increased autocorrelation at lag 1, inflation (suppression) of low-frequency410

(high-frequency) variability and more long-term memory. PPE AR3 performs best for all target411

datasets as it matches the partial autocorrelation at higher lags and reproduces the deviation of the412

spectral density from the power-law decay at high frequencies.413

c. Effects of memory on temperature variability of pseudo proxy reconstructions414

The ensemble mean and range of the millennial-length timeseries for the proxy and pseudo415

proxy reconstructions are shown in figure 5a-c. Long term deviations from the mean are inflated416

for memory PPEs compared to PPE NoM. As a result, the MCA is warmer for PPE AR3 and PPE417

LTM, while the LIA is slightly colder. This trend can be observed in all three target datasets, but418

is particularly strong for FULL and RW.419

To quantify the effects of this inflation, we calculate the average temperatures of MCA and LIA.420

The temperature difference between those periods ranges around ∆T = 0.2 for FULL and RW, but421

is less than half for MXD (figure 5e). However, the uncertainty on the exact value is relatively422

high due to the small number of available records at early times. Schneider et al. (2015) found423

that the MCA is less pronounced in MXD data, suggesting varying seasonal or spatial coverage as424

a reason. However PPE NoM shows a clear warming in the MCA for the MXD locations. For all425

target datasets, the median of ∆T is increased when implementing memory in the pseudo proxies.426

For PPE AR3 the median shifts towards the proxy value in case of FULL and RW targets. The427

temperature difference increases further for higher memory, with PPE LTM consistently being428

highest. The increase of ∆T with memory order is a robust feature, which can also be seen when429

comparing average temperatures of the LIA and the 20th century between 1900-1980 (figure 5g-430

i). Note that 20th century warming is slightly underestimated in the CESM-LME, likely due to431
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strong indirect aerosol forcing (Otto-Bliesner et al. (2016)). This could be a reason for a small432

temperature difference compared to the proxy value, and could suppress stronger increase for433

memory PPEs.434

To analyze the effects of biological memory on the magnitude and timescales of cooling in435

response to volcanic eruptions, we perform a superposed epoch analysis (figure 7a-c) including 16436

well-dated volcanic eruptions. Schneider et al. (2015) compared the volcanic response in a density437

only reconstruction to ring width dominated reconstructions for the eruptions in 1257, 1452 and438

1815. They found that the former shows a greater response amplitude, while the latter show a439

temporally extended cooling and thus longer recovery period. The same observations hold for440

our epoch analysis. Here, MXD responds strongly and recovers fast, with a slightly prolonged441

cooling around year three to five. RW has a smaller amplitude along with a prolonged cooling up442

to post-eruption year ten. While the magnitude of the PPE NoM amplitude varies slightly across443

the target datasets, it recovers much quicker than the proxies. Both magnitude and recovery time444

are affected by autoregressive memory, most prominent for RW, while long-term memory mainly445

dampens the amplitude. PPE AR3 shows a prolonged cooling, which is mostly consistent with446

the timescale of the proxy data. The median of the peak response of the PPE AR3 ensemble is447

much dampened compared to PPE NoM, and even slightly lower than N-TREND. However, it is448

consistent with N-TREND within the 5 to 95% range.449

Comparing the residuals of proxy and PPE epoch analysis (figure S2 a-c), we note that the450

residuals increase particularly between year three to five after the eruption. This observation holds451

for all PPE’s and for all target datasets. To increase our understanding, we compare an ensemble452

member of the CESM showing a particularly prolonged recovery and persistent cooling in year453

four after the eruption (figure 7d-f) and one with a particularly quick and steadily decreasing454

recovery (7g-h). In the former case, PPE AR3 reproduces the recovery time, the peak cooling and455
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overlaps with N-TREND for all datasets within its uncertainty range. The residuals are negligibly456

small five years after the eruption (figure S2d-f). In the latter case, even though the cooling is more457

prolonged for PPE AR3 compared to PPE NoM neither its recovery time nor its amplitude match458

the proxy amplitude. The residuals are near constant up to year 15 (figure S2g-h). We conclude that459

model and proxy output can be consistent when taking memory effects into account. Memory can460

explain the long recovery time observed in proxy reconstructions but requires persistent cooling461

on a timescale between three to five years. This short-term persistence could be caused by internal462

variability, but also by missing short-term feedback mechanisms in the model, e.g. changes in the463

North-Atlantic Oscillation (Zanchettin et al. (2013); Driscoll et al. (2012); Timmreck (2012)).464

d. Effects of memory in pseudo proxies on detection and attribution465

We perform detection and attribution studies for the period 1300-1710 in order to evaluate if466

the previously observed low amplitude of fingerprints in proxies might be due to memory effects.467

We chose the upper end of this period to exclude an overlap with the fitting period (1710-1988)468

and the lower end to ensure reasonable data quality and coverage. Additional sensitivity tests469

were performed for the slightly longer period 1300-1850. The proxy reconstructions served as the470

regression targets, while the fingerprints of external forcing were PPE versions of the all forcings471

and volcanic forcing only simulations (figure 8). Neither the proxy reconstruction nor fingerprints472

were smoothed prior to the regression. The fingerprints are most affected for the RW version473

of volcanic forcing only, where the temperature anomalies deviate strongly from the PPE NoM474

reference at certain periods.475

All target datasets show increased volcanic scaling factors for PPE AR3 and PPE LTM compared476

to PPE NoM (figure 9a-c). This indicates that the addition of memory to the fingerprints makes477

the model consistent with the proxy data in case of the longer period. The highest difference478
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between the memory PPEs and PPE NoM can be observed in the RW reconstruction. For this479

dataset the scaling factors for volcanic forcing are increased up to the median value β = 1.5. The480

scaling factors also increase with memory for FULL and MXD, however the difference to the481

reference PPE NoM is smaller. These observations are consistent with the results of the epoch482

analysis, which showed that cooling amplitudes in response to volcanic forcing are reduced. Two483

main observations can be made from plotting the scaled fingerprints relative to their proxy targets484

(figure 9d-f), which are clearly present in FULL and RW, but only weakly present in MXD. The485

big drop of NH temperature following the eruption in the mid-15th century is matched much better486

by the memory PPEs in both magnitude and length, and the same applies to the eruptions in 1600487

and 1640. Low frequency variability is increased for the memory fingerprints, resulting in a better488

fit for RW and FULL reconstructions, which show a substantial low frequency variability between489

1450 and 1600. When targeting the period 1300-1850 (figure 10) the scaling factors are slightly490

reduced and in all cases are consistent with one. This could be explained by overfitting the peak491

warmth in the 16th century in the shorter analysis (compare figures 9 and 10). Note that the longer492

period is also influenced by the wrong dating of Laki (1761 instead of 1783) in the CESM-LME,493

which could influence the results and dampen the scaling factors.494

The residual variability in reconstructions not explained by the fingerprints (figure 11a-c) shows495

a slight decrease when accounting for memory, which is particularly prominent in the RW case.496

Even though the proxy uncertainty is relatively high, the ensemble median shows a clear decrease497

when accounting for memory. Simultaneously, the variance of the PPE control runs decreases498

and approaches the proxy value. Thus, the residual variability becomes consistent with the con-499

trol variability for PPE AR3 and higher memory in case of FULL and RW, while for MXD it is500

consistent for all memory PPEs.501
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We conclude that models and proxy reconstructions are consistent when accounting for memory502

effects in RW data. This indicates better correspondence between signal amplitudes in fingerprints503

and reconstructions.504

5. Discussion and Conclusion505

The implementation of memory improved the agreement between proxy and pseudo proxy re-506

constructions. Ring width only reconstructions have particularly benefited, but results for the full507

network reconstruction including both width and density proxies were also improved. Although508

it has long been well known that ring width data can be successfully fitted by an autoregressive509

memory model (Cook et al. (2002); Meko (1997)), we find, for the first time, that implementing510

autoregressive memory in climate model data can introduce almost identical spectral behaviour in511

model data and resolve proxy-model discrepancies such as the low signal amplitude of the vol-512

canic signal in detection and attribution studies. An autoregressive process of third order performs513

best out of all our memory models considered. The remarkable agreement between the spectral514

density of RW only proxy reconstruction and PPE AR3 suggests that even though RW has a clear515

spectral bias, it is sensitive to the full range of the climate signal. A similarly good agreement516

was found for the full network, in particular for multi-decadal timescales, when the ensemble517

mean agrees well with PPE AR3. As a consequence of memory biases low frequency variability518

is inflated while high frequency variability is suppressed. This could lead to an overestimation of519

the magnitude of long-term anomalies, especially for RW data. This phenomenon is robust for520

all three datasets, where it leads to a warmer MCA, a cooler LIA and increased warming during521

the 20th century in the PPEs when including memory. The effect on the amplitude of the MCA522

is particularly high, which could be caused by poor data coverage further exacerbating the bias.523

Without considering memory, MXD reconstructions are most consistent with model simulations.524
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MXD data shows little autocorrelation and long-term memory compared to RW and improvements525

when fitting memory to the PPEs are small. However, reconstructions using density only still show526

more autocorrelation and long term memory than observations and model simulations. It remains527

unclear from our results if the deviations between MXD and observations/simulations arise from528

biases in the signal of density proxies or in the simulation of persistence of climate signal in the529

CESM.530

The year to year memory causes a dampened amplitude in response to volcanic forcing along531

with a slower recovery, particularly affecting ring width reconstructions. This confirms earlier532

studies (Esper et al. (2015); Franke et al. (2013); Schneider et al. (2015); Stoffel et al. (2015)).533

Our results from the epoch analysis tie in with Neukom et al. (2018), who found that the addition534

of autoregressive AR(1) noise in pseudo proxy reconstructions would slightly dampen the ampli-535

tude, but not cause a prolonged cooling. We have, for the first time, provided a memory model536

which can explain the dampening and the prolonged cooling in proxy reconstructions and resolve537

the divergence between proxy and climate model response. We have shown that autoregressive538

memory processes cause a significant reduction of post-eruption temperatures for several years. A539

particular mismatch between PPEs and proxy targets is present in all datasets after around 5 years.540

This could be explained by internal variability or potentially a lack of short-term feedbacks in the541

climate model and can be resolved by PPE AR3 for specific ensemble members.542

Our results from detection and attribution studies indicate that model simulations and proxy543

reconstructions agree better when accounting for biological-based memory. While the scaling fac-544

tors are increased, the residuals are reduced to an extent which is consistent with the model imple-545

mentation of internal variability. Residuals are smallest for the full network, which is likely a result546

of higher data coverage, including more than twice the amount of proxy records as MXD/RW only547

reconstructions. Our results indicate that for both periods the influence of internal variability is low548
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compared to forced variability. When the fingerprints account for memory effects, more forced549

variability can be detected in the proxy reconstructions, this concerns particularly the variability550

related to volcanic forcing. The magnitude of the resulting scaling factors varies across the target551

datasets, with smallest values in case of MXD and highest values in case of RW. This observation552

holds for both analysed periods. For the period 1300-1710 the scaling factor for volcanic forcing553

obtained from the RW target dataset is significantly higher than one, and the low-frequency vari-554

ability trend during the 16th century is extremely well fitted by the scaled PPE AR3 fingerprints.555

This indicates a potential overfit and does not occur when extending the analysis to 1850. How-556

ever the longer period includes wrongly dated volcanos in the model and thus results are not fully557

reliable. The persistence of the climate signal due to biological memory processes introduces a558

degree of smoothing to the proxy reconstructions. This could explain previous observations that559

using smoothed fingerprints for detection and attribution studies results in higher scaling factors560

than using unsmoothed fingerprints (Schurer et al. (2013a,b)).561

We conclude that it would be beneficial to include ring width into proxy reconstructions, as they562

agree well with the climate model signal. However spectral biases have to be considered when563

comparing model and proxy data. While we have been focusing on tree-ring data in this analysis,564

it is likely that memory biases of this kind will similarly affect other biological proxy archives,565

and thus propagate into multi-proxy studies. It is beyond the scope of this article to analyze the566

exact implications on calibration of proxy data. However, our results suggest that it is beneficial567

for the quality of RW data to invert autoregressive models to extract the real underlying climate568

signal. Given the sensitivity of low frequency variability to statistical processing, we conclude that569

the MCA-LIA difference is not a robust measure for model performance. When comparing model570

and proxies, spectral biases should be taken into account. Particularly for TLS-like calculations,571

where model and proxy reconstructions are assumed to have a similar noise structure, it would be572
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beneficial to take into account that certain types of proxy data might not capture high frequency573

variability and is subject to inflated low frequency variability.574

6. Data availability575
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from the corresponding author on request.577
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in tree-ring width and density data. Dendrochronologia, 35, 62–70, doi:10.1016/j.dendro.2015.639

07.001.640

Esper, J., R. J. Wilson, D. C. Frank, A. Moberg, H. Wanner, and J. Luterbacher, 2005: Climate:641

past ranges and future changes. Quaternary Science Reviews, 24 (20-21), 2164–2166, doi:10.642

1016/j.quascirev.2005.07.001.643
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TABLE 1. Ensemble sizes for N-TREND and PPEs, each applying to the FULL, RW and MXD target dataset.

Name fitting parameter calibration coverage simulations total

N-TREND - 1+9 1+9 - 100

PPE NoM - 1+9 1+9 13 1300

PPE AR3 α1, α2, α3 1+9 1+9 13 1300

PPE LTM β 1+9 1+9 13 1300

PPE NoM- VOLC - 1+9 1+9 5 500

PPE AR3- VOLC α1, α2, α3 1+9 1+9 13 500

PPE LTM- VOLC β 1+9 1+9 13 500

PPE NoM- CTRL - 1+9 1+9 2 200

PPE AR3- CTRL α1, α2, α3 1+9 1+9 2 200

PPE LTM- CTRL β 1+9 1+9 2 200
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within the reconstruction target area. c) FULL, RW and MXD reconstruction ensembles.797

The median is shown as a solid line, with the 5th to 95th percentile indicated by a thin798

dotted line. Shading indicates the percentiles (55th to 95th in steps of 10). Instrumental data799

prior to 1880 is excluded from the analysis due to high uncertainty (dashed). All timeseries800

were smoothed by a 20 years smoothing spline for visualisation purposes. Triangles indicate801

years of volcanic activity and are scaled according to eruption magnitude (Toohey and Sigl802

(2017)). d) Difference of average temperature of Medieval Climate Anomaly (MCA: 950-803

1250) and Little Ice Age (LIA: 1450-1850) and e) 20th century (20C: 1900-1980) and LIA.804
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of ensembles in d- note that the CESM includes 13 simulations and has a much higher spread813

accordingly). . . . . . . . . . . . . . . . . . . . . . . 43814

Fig. 3. a-c) PACF between 1000-1900 A.D. for proxy z-scores (blue) and pseudo proxy experiments815

(PPEs) on local scale. d-f) PACF of hemispheric temperature reconstruction for the same816

period. g-i) 100y running mean of PACF at lag 1. . . . . . . . . . . . . . 44817
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(20C, 1900-1980). Blue horizontal lines and shading indicate median and percentiles of the827
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(Toohey and Sigl (2017)). Events chosen for the proxy (PPE) epoch analysis are highlighted830
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Fig. 7. Superposed epoch analysis for 16 well-dated volcanic eruptions between 1000-1900. a-c)832
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including reconstruction uncertainty (shaded). g-i) Poorly matching ensemble member. . . . 48834
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PPE AR3 ensemble. Fingerprints are smoothed using a 20 years running mean filter for837
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Fig. 9. Results for D&A targeting the period 1300-1710. a-c) Scaling factors. Boxplots indicate the839

distribution of the scaling factors (box: lower and upper quartile, line: median, whiskers:840

5th to 95th percentile). d-f) Scaled PPE fingerprints against targeted proxy reconstruction841

(blue) during the regression period smoothed with a 15y lowpass filter. . . . . . . . 50842
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Fig. 11. Unexplained residual variability of the TLS (orange) and square root of sum of squares of844
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simulation (gray). . . . . . . . . . . . . . . . . . . . . . 52846
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FIG. 1. a) N-TREND2015 dataset. b) Percentage of instrumental data coverage between 1880-2014 within

the reconstruction target area. c) FULL, RW and MXD reconstruction ensembles. The median is shown as a

solid line, with the 5th to 95th percentile indicated by a thin dotted line. Shading indicates the percentiles (55th

to 95th in steps of 10). Instrumental data prior to 1880 is excluded from the analysis due to high uncertainty

(dashed). All timeseries were smoothed by a 20 years smoothing spline for visualisation purposes. Triangles

indicate years of volcanic activity and are scaled according to eruption magnitude (Toohey and Sigl (2017)). d)

Difference of average temperature of Medieval Climate Anomaly (MCA: 950-1250) and Little Ice Age (LIA:

1450-1850) and e) 20th century (20C: 1900-1980) and LIA. Boxes range from upper to lower quartile, whiskers

indicate the 5th to 95th percentile, solid line the median.
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FIG. 2. a) Partial autocorrelation (PACF) α(k) during the calibration period (1880-1988) for local standardised

records (z-scores). b) Median of PACF at lag 1 and percentile range (shaded) of the z-scores, calculated over a

centered 100 years sliding window during the last Millennium (1000-2000). c) Detrended fluctuation analysis

of the z-scores during the calibration period. Dotted (dashed) lines indicate the gradient displayed by white

(pink) noise. d-e) as a-c) but for mean of hemispheric temperature reconstructions (bars indicate the 5th to

95th percentile of ensembles in d- note that the CESM includes 13 simulations and has a much higher spread

accordingly).
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FIG. 3. a-c) PACF between 1000-1900 A.D. for proxy z-scores (blue) and pseudo proxy experiments (PPEs)

on local scale. d-f) PACF of hemispheric temperature reconstruction for the same period. g-i) 100y running

mean of PACF at lag 1.

863

864

865

44



FIG. 4. a-c) Median and percentile range of the power spectral density S(T ) of proxy reconstructions com-

pared to the PPEs, with ensemble range for PPE NoM and PPE AR3. The spectrum has been smoothed using a 7

year running mean filter to increase the visibility of the trend. d-e) Detrended fluctuation analysis F(n) for proxy

and pseudo proxy reconstructions. Dotted and dashed lines indicate the gradient displayed by white (β = 0) and

pink noise (β = 1).
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FIG. 5. a-c) Reconstructions of temperature anomalies during the Last Millennium displayed by real proxies

and PPEs. Shading as in previous figures. d-f) Difference between average temperature of Medieval Climate

Anomaly (MCA, 950-1250) and Little Ice Age (LIA, 1450-1850). g-h) Difference between average temperature

of Little Ice Age and 20th century (20C, 1900-1980). Blue horizontal lines and shading indicate median and

percentiles of the proxy reconstruction. Boxplots as in previous figures.
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FIG. 6. Overview over atmospheric sulfate injection as in IVI2 (Gao et al. (2008)) and eVolv2k (Toohey and

Sigl (2017)). Events chosen for the proxy (PPE) epoch analysis are highlighted and marked by a blue (orange)

dot.
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FIG. 7. Superposed epoch analysis for 16 well-dated volcanic eruptions between 1000-1900. a-c) Full en-

semble range. Shading as in previous figures. d-f) Best matching ensemble member including reconstruction

uncertainty (shaded). g-i) Poorly matching ensemble member.
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FIG. 8. Pseudoproxy fingerprints of external forcings for the PPE ensembles targeting the full, MXD and RW

only network. Red/black shading indicates the percentiles of the PPE NoM and PPE AR3 ensemble. Fingerprints

are smoothed using a 20 years running mean filter for visualisation purposes.
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FIG. 9. Results for D&A targeting the period 1300-1710. a-c) Scaling factors. Boxplots indicate the distribu-

tion of the scaling factors (box: lower and upper quartile, line: median, whiskers: 5th to 95th percentile). d-f)

Scaled PPE fingerprints against targeted proxy reconstruction (blue) during the regression period smoothed with

a 15y lowpass filter.
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FIG. 10. As figure 9 but for the period 1300-1850.
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FIG. 11. Unexplained residual variability of the TLS (orange) and square root of sum of squares of equivalent

time slice of control variability shown in PPE versions of the CESM LME control simulation (gray).
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